RU2566140C1 - Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель - Google Patents

Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель Download PDF

Info

Publication number
RU2566140C1
RU2566140C1 RU2014111571/02A RU2014111571A RU2566140C1 RU 2566140 C1 RU2566140 C1 RU 2566140C1 RU 2014111571/02 A RU2014111571/02 A RU 2014111571/02A RU 2014111571 A RU2014111571 A RU 2014111571A RU 2566140 C1 RU2566140 C1 RU 2566140C1
Authority
RU
Russia
Prior art keywords
powder
cobalt
nickel
iron
magnetic
Prior art date
Application number
RU2014111571/02A
Other languages
English (en)
Inventor
Юрий Александрович Захаров
Ксения Алексеевна Датий
Валерий Михайлович Пугачев
Артем Степанович Богомяков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ)
Федеральное государственное бюджетное учреждение науки Институт углехимии и химического материаловедения Сибирского отделения Российской академии наук (ИУХМСО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ), Федеральное государственное бюджетное учреждение науки Институт углехимии и химического материаловедения Сибирского отделения Российской академии наук (ИУХМСО РАН) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ)
Priority to RU2014111571/02A priority Critical patent/RU2566140C1/ru
Application granted granted Critical
Publication of RU2566140C1 publication Critical patent/RU2566140C1/ru

Links

Images

Abstract

Изобретение относится к области металлургии, а именно к магнитному порошку системы Fe-Co-Ni. Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель характеризуется тем, что каждая частица порошка содержит, мас.%: никель 10-20, кобальт 10-50, железо остальное, при этом состоит из нанокристаллитов размерами менее 20 нм, компактно сложенных в агрегаты размерами от 40 до 80 нм с образованием агломератов сферической формы с размерами от 100 до 200 нм. Порошок характеризуется высокими магнитными свойствами. 7 ил., 1 табл., 1 пр.

Description

Изобретение относится к получению магнитного порошка, в частности к магнитной системе, состоящей из железа, кобальта и никеля (Fe-Co-Ni). Данная система может применяться для создания из нее или на ее основе новых магнитных материалов, например для использования в системах записи и хранения информации, при изготовлении миниатюрных магнитов, магнитных суспензий, а также как радиопоглощающий материал.
В настоящее время магнитные нанопорошки индивидуальных металлов получают в основном двумя группами способов: химическими, основанными на осаждении с последующим восстановлением или термическим разложением оксидов или гидроксидов металлов, и физическими, включающими, чаще всего, испарение металла и последующую его конденсацию либо механическое дезагрегирование крупных (макроразмерных) образцов. Данные способы получения имеют недостатки:
высокую энергоемкость, относительно невысокие магнитные характеристики продуктов, возможность загрязнения порошка диамагнитными примесями, нестабильность магнитных свойств при повышении температуры, что в целом сказывается на их эксплуатационных характеристиках.
Известен порошок (патент RU 2427451, МПК B22F 9/04, B82B 3/00, опубл. 27.08.2011), полученный предварительной термической обработкой отобранного исходного материала в виде аморфной ленты из магнитомягких сплавов на основе системы Fe-Co-Ni при температуре, равной (0,25-0,29)-Tликвидуса в течение 30-90 минут с охлаждением на воздухе и предварительным измельчением термообработанной ленты до фракции 3-5 мм. Затем проводят измельчение в высокоскоростном дезинтеграторе за счет соударения частиц для получения порошка аморфной структуры с размером фракции 20-60 мкм. Заключительную термическую обработку полученного аморфного порошка проводят при температуре, равной (0,3-0,4)-Tликвидуса, в течение 30-90 мин с охлаждением на воздухе для создания наноструктуры в объеме порошка и выделения нанокристаллитов в аморфной матрице. Данный порошок имеет ряд недостатков: сложную многоступенчатую технологию получения с высокими энергозатратами, а получаемый продукт составлен из крупных частиц со сложными химическим и фазовым составами.
Известны магнитные волокна Fe-Co-Ni (статья Ji Hea Park, Soon С. Kweon, Sang Woo Kirn. Structural and magnetic properties of electrospun FeCoNi magnetic nanofibers with nanogranular phases / Journal of Nanoparticle Research, January 2012, 14:729), имеющие размер 10×100 нм. Недостатками данного материала являются: сложный фазовый состав, загрязнение большим количеством кислорода и, как следствие, недостаточно высокие магнитные характеристики (σ=160-180 Гс·см3/г), изменяющиеся под действием температуры.
Известен магнитный порошок Fe-Co-Ni (статья Zhang Chao-ping, Lei Bing-xin, Li Zhen. Preparation and Magnetic Properties of Nanosize FeCoNi Alloy and Composite Particles by WaterinOil Microemulsions / Nanotechnology and Precision Engineering, Jan 2012, Vol.10, №1, P.36-44), полученный восстановлением борогидридом из водно-масляной взвеси солей.
Недостатками данного материала являются: сложный фазовый состав, наличие интерметаллидов, оксидов, загрязнение большими количествами кислорода и бора, в итоге порошок имеет недостаточно высокие магнитные характеристики, состоит из крупных наночастиц (более 20 нм).
Наиболее близким к заявляемому изобретению является магнитный порошок Fe-Co-Ni (статья Н.Ф. Кущевская и др. Магнитные Fe-Co-Ni наночастицы, полученные восстановлением из смеси оксалатов / Report of the national academy of sciences of Ukraine, 2007, №11, P.93-98), в котором термохимические порошки Fe-Co-Ni были получены восстановлением смеси оксалатов Fe, Co и Ni с соотношением компонентов 60, 30 и 10% (масс. доля) соответственно в специальной углеродосодержащей среде путем проведения процесса в режиме «газообразная восстановительная среда-твердое тело».
Недостатками данного порошка являются:
- сложный фазовый состав целевого продукта (смесь α- и γ-фаз Fe-Co-Ni, либо α-фазы и Fe3O4);
- крупные частицы (3-10 мкм);
- недостаточно высокие магнитные характеристики, которые изменяются в зависимости от температуры (σ=100-150 Гс·см3/г). Задачей данного изобретения является повышение магнитных свойств наноструктурированного порошка частиц системы Fe-Co-Ni.
Задача решается путем получения магнитного наноструктурированного порошка частиц системы железо-кобальт-никель, характеризующегося тем, что каждая частица порошка содержит, масс. %: никель 10-20, кобальт 10-50, железо - остальное, при этом состоит из нанокристаллитов размерами менее 20 нм, компактно сложенных в агрегаты размерами от 40 до 80 нм с образованием агломератов сферической формы с размерами от 100 до 200 нм.
Способ получения магнитного наноструктурированного порошка агломератов системы Fe-Co-Ni осуществляется путем взаимодействия прекурсоров, в качестве которых используют водные растворы солей железа, кобальта и никеля в виде хлоридов, сульфатов или нитратов. Их смесь взаимодействует с реагентами при повышенных температурах (до 85-90°C). В качестве реагентов используют восстановитель - гидразингидрат и щелочь.
При осуществлении способа полученный порошок Fe-Co-Ni имеет высокую чистоту - суммарное содержание посторонних примесей не более 0,1 массовых процентов от образца порошка (фиг. 1). Выбранный способ получения имеет ряд преимуществ: легко масштабируется, позволяет снизить стоимость получаемого продукта благодаря низкой энергоемкости способа и использованию недорогих исходных реактивов.
Наноструктурированная система железо-кобальт-никель представляет собой нанокристаллиты размерами менее 20 нм (по уширению дифракционного профиля - фиг.2), компактно сложенные в агрегаты размерами от 40 до 80 нм (определено по фотографиям атомно-силового микроскопа - фиг.3), слагающие, в свою очередь, малопористые сфероподобные агломераты размерами от 100 до 200 нм (по электронно-микроскопическим фотографиям - фиг.4). Чем меньше величина частицы, которую можно сравнить с величиной единичного магнитного домена для металлов (железо - 15 нм, кобальт и никель - 70 нм), тем выше магнитные характеристики (фиг.5, 6).
Каждая составляющая агломерата представляет собой твердый раствор Fe-Co-Ni с объемноцентрированной кубической (ОЦК) решеткой, в узлах которой чередуются атомы кобальта, никеля и железа, что определяется при анализе рентгенодифракционных профилей системы, положение которых соответствует данной кристаллической структуре (фиг.2). Рефлексов каких-либо других кристаллических структур не наблюдается. При рентгенофлуоресцентном и атомно-эмиссионном спектральном анализе порошка, содержащего наноструктурированные частицы металлов, а именно железо, кобальт и никель, обнаруживаются в количествах, соответствующих заложенным в прекурсорах при синтезе, что также подтверждает их совместное нахождение в одной кристаллической фазе. Также формирование твердого раствора доказывается из рассчитанных параметров решетки (фиг.7), которые укладываются на прямые, соответствующие изоконцентрационным срезам.
Частицы порошка имеют высокую плотность (измеренные значения пикнометрической плотности 7-8 г/см3) и являются механически прочными (по результатам воздействия ультразвука они не подвергаются дезагрегации, при прессовании не разрушаются - фиг.3). Удельная поверхность полученного порошка, определенная по методу БЭТ (метод Брунауэра, Эммета и Тейлора), составляет около 5-6 м2/г.
Для достижения высоких магнитных и эксплуатационных характеристик выбраны металлы Fe, Co и Ni, так как железо-кобальт - высокомагнитный сплав и одновременно кобальт с никелем предохраняют железо от коррозии.
Способ получения магнитных наноструктурированых твердорастворных порошков железо-кобальт-никель реализуется следующим образом: готовят смесь растворов солей: m1 железа, m2 кобальта, m3 никеля в 120 мл дистиллированной воды. При непрерывном перемешивании на нагревательном элементе раствор доводят до 85-95°C. Далее в раствор добавляют расчетное количество гидроксида натрия для осаждения гидроксидов металлов железа, кобальта и никеля. Также при его добавлении увеличивается восстановительная способность гидразингидрата, вводимого в раствор далее. Постоянное интенсивное перемешивание необходимо для равномерного формирования компонентов по всему реакционному объему. После смесь выдерживают в течение 10-15 сек при постоянном перемешивании для полного осаждения гидроксидов металлов. Нагрев прекращают и добавляют расчетное количество раствора гидразингидрата. Время протекания реакции восстановления составляет от 10 до 20 мин. По всему объему равномерно образуются нанодисперсные частицы железо-кобальт-никель, формирование которых фиксируется визуально. Чем более равномерно формируются частицы в объеме, тем мельче будет порошок. Выход продукта составляет 90-95% от теоретического.
При осуществлении способа полученный наноразмерный порошок частиц-агломератов Fe-Co-Ni имеет высокую чистоту - суммарное массовое содержание железа, кобальта и никеля по результатам рентгенофлуоресцентного и атомно-эмиссионного спектрального анализов достигает 99,9% (фиг.1).
На фиг.1 показаны результаты рентгенофлуоресцентного анализа элементного состава порошка, состоящего из наноструктурированных агломератов системы Fe-Co-Ni состава 80/10/10 масс. % соответственно.
На фиг.2 представлена типичная дифрактограмма наноструктурированного порошка системы Fe-Co-Ni для состава 80/10/10 масс. % соответственно (рефлекс для ОЦК структуры 111 на 57-58°, уширение рефлексов соответствует размерам нанокристаллитов).
На фиг.3 приведено изображение наноструктурированного скомпактированного порошка агломератов Fe-Co-Ni, полученное с помощью атомно-силового микроскопа для состава 40/50/10 масс. % соответственно.
На фиг.4 представлено растровое электронное изображение агломератов нанопорошка Fe-Co-Ni состава 40/50/10 масс. % соответственно (агломераты размерами 100-200 нм).
На фиг.5 приведены результаты измерения магнитных характеристик для состава Fe-Co-Ni 60/30/10 масс. % соответственно.
На фиг.6 приведена типичная зависимость намагниченности насыщения в зависимости от температуры. Показана весьма слабая зависимость величины σ от температуры образцов, что является важным эксплуатационным свойством системы.
На фиг.7 показана зависимость параметра решетки системы Fe-Co-Ni от содержания кобальта. Прямолинейный характер зависимости говорит об образовании твердого раствора.
При анализе частиц нанопорошка железа-кобаль-никель при помощи метода широкоугольной рентгенографии (фиг.2) установлено, что размер нанокристаллитов составляет от 5 до 20 нм (определено по уширению дифракционных максимумов при помощи метода Шерера). Наноструктурированные агломераты системы железо-кобальт-никель имеют сферические структуры диаметром от 100 до 200 нм (фиг.4). Полученный порошок не имеет посторонних примесей и загрязнений, что показано на фиг.1, и согласуется с данными на фиг.2. Положение пика на фиг.2 соответствует фазе металлических железа, кобальта и никеля с объемноцентрированной кубической решеткой, а их уширение указывает на нанокристаллическое состояние вещества. Индивидуальный кобальт имеет гексагональную плотнейшую упаковку с максимумом на 53°, которого мы не наблюдаем на дифрактограмме, следовательно, это говорит о его полном встраивании в объемноцентрированную кубическую решетку. Индивидуальный же никель имеет гранецентрированную кубическую решетку с максимумом на 56°, чего не представлено на дифрактограмме ввиду полного встраивания никеля в кристаллическую структуру, характерную для железа.
При рентгенофлуоресцентном и атомно-эмиссионном спектральном анализе порошка, содержащего наноструктурированные агломераты металлов, а именно железо, кобальт и никель, обнаруживаются в количестве, соответствующем заложенному при синтезе прекурсоров Fe, Co и Ni, что также подтверждает их совместное нахождение в одной кристаллической фазе, а их суммарное массовое содержание по результатам рентгенофлуоресцентного и атомно-эмиссионного спектрального анализа достигает 99,9% (фиг.1, 3).
Пример 1 (для состава агломерированной системы Fe-Co-Ni 50/40/10) исходная реакционная смесь содержит 4,979 г гептагидрата сульфата железа, 3,231 г гексагидрата хлорида кобальта, гексагидрата хлорида никеля 0,624 г и 120 мл дистиллированной воды при постоянном перемешивании механической мешалкой (35 оборотов/мин). Количество прекурсора рассчитывается на 3 г чистого металла из соотношения молярная масса - заданное количество. Приготовленный раствор солей металлов нагревают до 85°C.
Затем при постоянном перемешивании добавляют 30 г сухого гидроксида натрия для осаждения гидроксидов металлов железа, кобальта и никеля.
После перемешивания в течение 10-15 сек в смесь добавляют 30 мл раствора гидразингидрата, предварительно отключив нагревание. Реакция протекает 15 минут при постоянном перемешивании, в это время во всем объеме фиксируется образование нанодисперсных частиц твердого раствора железо-кобальт-никель. Далее смесь фильтруют. Осадок черного цвета (наноструктурированный порошок агломератов металлов) промывают дистиллированной водой и изопропиловым спиртом с целью удаления возможных загрязнений побочными продуктами. Наноразмерный порошок агломератов железо-кобальт-никель сушат в условиях слабого вакуума (10-2 мм рт. ст.) в сушильном шкафу при температуре 40-50°C в течение часа. Хранят в бюксах. Намагниченность насыщения - 200 Гс·см3/г.
Остальные примеры выполнения получения наноразмерного порошка агломератов системы железо-кобальт-никель, выполняемые аналогично примеру 1, сведены в таблицу. Примеры показывают изменение магнитных свойств при варьировании состава компонентов в полученном агломерате.
Экспериментально установлено, что получены наноструктурированные частицы металлов в виде твердого раствора системы Fe-Co-Ni, образующие агломераты размером 100-200 нм (против 3-10 мкм в прототипе).
Намагниченность насыщения σ достигает 200 Гс·см3/г против 100-150 Гс·см3/г в прототипе.
При осуществлении способа синтеза порошок Fe-Co-Ni имеет высокую чистоту - суммарное содержание посторонних примесей не более 0,1 массовых процентов от образца порошка.
Преимущества способа синтеза: легко масштабируется, позволяет снизить стоимость получаемого продукта благодаря низкой энергоемкости способа и использованию недорогих исходных реактивов, отсутствие загрязняющих факторов.
Figure 00000001

Claims (1)

  1. Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель, характеризующийся тем, что каждая частица порошка содержит, мас. %: никель 10-20, кобальт 10-50, железо остальное, при этом состоит из нанокристаллитов размерами менее 20 нм, компактно сложенных в агрегаты размерами от 40 до 80 нм с образованием агломератов сферической формы с размерами от 100 до 200 нм.
RU2014111571/02A 2014-03-25 2014-03-25 Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель RU2566140C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014111571/02A RU2566140C1 (ru) 2014-03-25 2014-03-25 Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014111571/02A RU2566140C1 (ru) 2014-03-25 2014-03-25 Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель

Publications (1)

Publication Number Publication Date
RU2566140C1 true RU2566140C1 (ru) 2015-10-20

Family

ID=54327616

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014111571/02A RU2566140C1 (ru) 2014-03-25 2014-03-25 Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель

Country Status (1)

Country Link
RU (1) RU2566140C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708195C1 (ru) * 2019-04-18 2019-12-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ) Магнитный наноструктурированный порошок частиц системы кадмий - никель

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2427451C2 (ru) * 2009-11-16 2011-08-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения нанокристаллического магнитного порошка для создания широкополосных радиопоглощающих материалов
RU2432232C1 (ru) * 2010-04-05 2011-10-27 Государственное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ) Способ получения наноразмерных порошков твердого раствора железо-кобальт

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2427451C2 (ru) * 2009-11-16 2011-08-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения нанокристаллического магнитного порошка для создания широкополосных радиопоглощающих материалов
RU2432232C1 (ru) * 2010-04-05 2011-10-27 Государственное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ) Способ получения наноразмерных порошков твердого раствора железо-кобальт

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
КУЩЕВСКАЯ Н.Ф. и др. Магнитные Fe-Co-Ni наночастицы, полученные восстановлением из смеси оксалатов. Доповiдi Нацioнальноi академii наук Украiни, 2007, N11, с.93-98. *
КУЩЕВСКАЯ Н.Ф. и др. Синтез ферромагнитных наноразмерных порошков Fe-Co-Ni. Сообщение III. Особенности кристаллической структуры и фазового состава. Наноструктурное материаловедение, 2008, N1, c.27-32 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708195C1 (ru) * 2019-04-18 2019-12-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ) Магнитный наноструктурированный порошок частиц системы кадмий - никель

Similar Documents

Publication Publication Date Title
Farhadi et al. Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co 3 O 4) nanoparticles
Yadav et al. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites
Farhadi et al. Simple preparation of ferromagnetic Co 3 O 4 nanoparticles by thermal dissociation of the [Co II (NH 3) 6](NO 3) 2 complex at low temperature
Guan et al. Nickel flower-like nanostructures composed of nanoplates: one-pot synthesis, stepwise growth mechanism and enhanced ferromagnetic properties
Sunny et al. Synthesis and properties of highly stable nickel/carbon core/shell nanostructures
Jeevanandam et al. Synthesis of α-cobalt (II) hydroxide using ultrasound radiation
Gao et al. Novel tunable hierarchical Ni–Co hydroxide and oxide assembled from two-wheeled units
Anandha Babu et al. An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route
Rafique et al. Controlled synthesis, phase formation, growth mechanism, and magnetic properties of 3-D CoNi alloy microstructures composed of nanorods
US20110197710A1 (en) Making metal and bimetal nanostructures with controlled morphology
Salavati-Niasari et al. Controlled synthesis of spherical α-Ni (OH) 2 hierarchical nanostructures via a simple hydrothermal process and their conversion to NiO
Nakate et al. Microwave assisted synthesis and characterizations of NiCo2O4 nanoplates and electrical, magnetic properties
Bai et al. Shape-controlled synthesis of Ni particles via polyol reduction
Li et al. Hollow CoNi alloy submicrospheres consisting of CoNi nanoplatelets: facile synthesis and magnetic properties
Hoghoghifard et al. Influence of annealing temperature on structural, magnetic, and dielectric properties of NiFe2O4 nanorods synthesized by simple hydrothermal method
Bao et al. Synthesis and size-dependent magnetic properties of single-crystalline hematite nanodiscs
Guo et al. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties
Karthick et al. Synthesis of nano-bound microsphere Co 3 O 4 by simple polymer-assisted sol–gel technique
RU2566140C1 (ru) Магнитный наноструктурированный порошок частиц системы железо-кобальт-никель
Ficai et al. Synthesis and characterization of mesoporous magnetite based nanoparticles
Yao et al. Wet chemical synthesis and magnetic properties of core–shell nanocolumns of Ni (OH) 2@ Co (OH) 2 and their oxides
Zhu et al. Template‐Free Synthesis of Magnetic Chains Self‐Assembled from Urchin‐Like Hierarchical Ni Nanostructures
Baqiya et al. Spinel-structured nanoparticles for magnetic and mechanical applications
Dong et al. Preparation of α-Fe2O3 particles with controlled shape and size via a facile hydrothermal route
Wang SnO2/α-Fe2O3 hierarchical nanostructure: Hydrothermal preparation and formation mechanism

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210326