RU2542248C2 - Устройство распределения потока текучей среды для каталитических реакторов с нисходящим потоком - Google Patents

Устройство распределения потока текучей среды для каталитических реакторов с нисходящим потоком Download PDF

Info

Publication number
RU2542248C2
RU2542248C2 RU2012118765/05A RU2012118765A RU2542248C2 RU 2542248 C2 RU2542248 C2 RU 2542248C2 RU 2012118765/05 A RU2012118765/05 A RU 2012118765/05A RU 2012118765 A RU2012118765 A RU 2012118765A RU 2542248 C2 RU2542248 C2 RU 2542248C2
Authority
RU
Russia
Prior art keywords
gas
liquid
mixing chamber
polyphase
gas duct
Prior art date
Application number
RU2012118765/05A
Other languages
English (en)
Other versions
RU2012118765A (ru
Inventor
Кришниах ПАРИМИ
Стивен Кс. СОНГ
Ральф Е. КИЛЛЕН
Рональд К. МИКЕР
Стивен А. САУЭРС
Original Assignee
ШЕВРОН Ю. Эс. Эй. ИНК.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ШЕВРОН Ю. Эс. Эй. ИНК. filed Critical ШЕВРОН Ю. Эс. Эй. ИНК.
Publication of RU2012118765A publication Critical patent/RU2012118765A/ru
Application granted granted Critical
Publication of RU2542248C2 publication Critical patent/RU2542248C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/00024Revamping, retrofitting or modernisation of existing plants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Изобретение представляет устройство распределения текучей среды для соединения с трубопроводом или газоходом для текучей среды с целью улучшения распределения текущей вниз полифазной смеси, включающей в себя одну газовую фазу и одну жидкую фазу выше одного слоя катализатора гранулированного твердого каталитического материала. Устройство распределения текучей среды для получения жидкой и газовой фаз имеет одно или более отверстий в верхней и/или нижней части, по которому газовая фаза может поступать, и газовод, выходящий в смесительную камеру внутри устройства. Устройство распределения текучей среды содержит одно или несколько боковых отверстий для жидкости. Боковое отверстие или отверстия позволяют жидкости поступать в жидкостный трубопровод, который входит во внутреннюю смесительную камеру. Смесительная камера обеспечивает плотный контакт между фазами жидкости и газа. Устройство распределения потока обеспечивает улучшенную устойчивость к негоризонтальности тарелки. 2 н. и 11 з.п. ф-лы, 2 ил., 2 пр.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к устройству распределения текучей среды для многослойных каталитических реакторов с нисходящим потоком. Реакторы этого типа применяются в химической и нефтеперерабатывающей промышленности для выполнения различных реакций, таких как каталитическая депарафинизация, гидрообработка, окончательная гидроочистка и гидрокрекинг. Настоящее устройство распределения текучей среды наиболее применимо для выполнения реакций со смешанными фазами между жидкостью и паром. В частности, это настоящее изобретение относится к устройству для улучшения распределения и смешивания газа и жидкости, выходящей из распределительной пластины над верхней частью последующего каталитического слоя. Устройство наиболее применимо для каталитических реакторов, в которых газожидкостные смеси проходят через слои твердых частиц катализатора, в частности для каталитических реакторов с нисходящим потоком, используемых для гидрообработки и гидрокрекинга в операциях нефтеочистки.
УРОВЕНЬ ТЕХНИКИ
Множество каталитических процессов выполняется в реакторах, содержащих ряды отдельных каталитических слоев. Реакторы, используемые в химической промышленности, нефтеочистке и других отраслях промышленности для пропускания жидкостей или смесей жидкости и газа через плотные слои твердых частиц, применяются для множества различных процессов. Типичными для таких процессов в нефтеперерабатывающей промышленности являются каталитическая депарафинизация, гидрообработка, гидродесульфуризация, окончательная гидроочистка и гидрокрекинг. В этих процессах жидкая фаза обычно, как правило, смешивается с газовой или паровой фазой, и полученная смесь проходит через катализатор из твердых частиц, содержащихся в плотном слое в реакторе с нисходящим потоком.
В реакторах с нисходящим потоком необходимо, чтобы газ и жидкость надлежащим образом смешивались и однородно распределялись по всему горизонтальному поперечному сечению реактора перед поступлением в слои катализатора. Однородное распределение помогает обеспечить достаточное использование катализатора, уменьшает истощение верхнего слоя катализатора, улучшает выход и качество продукции и увеличивает длины пробега. В целом, в многослойном каталитическом реакторе с нисходящим потоком большинство каталитических слоев расположено внутри, и распределительная система для надлежащего смешивания газа и жидкостей располагается в зоне между двумя последовательными слоями катализатора. Эта зона при нормальных условиях оснащена линией введения газа ниже слоя катализатора, в силу чего дополнительный газ вводится для компенсации газа, уже потребленного в предыдущем слое катализатора. Вводимый газ может также выполнять функцию охлаждения катализатора. Как правило, вводимый газ представляет собой водород или включает в себя водород. Жидкость, стекающая вниз из вышележащего слоя катализатора, может аккумулироваться на тарелке коллектора. Газ для охлаждения катализатора и жидкость затем проходят в смесительную камеру, где жидкости придается вращательное движение. Это обеспечивает ее хорошее смешивание и, таким образом, равномерные температурные условия в ней. Смешивание газа с жидкостью также происходит внутри смесительной камеры. Текучая среда из смесительной камеры стекает вниз на отклоняющую или отбойную пластину, при этом поток перенаправляется в первую распределительную тарелку, имеющую множество отверстий для нисходящего потока, обеспечивающих прохождение жидкости. Для распределения потока жидкости по сечению отверстия для нисходящего потока могут включать в себя одну или более труб и газоходы. Газоход представляет собой цилиндрическую конструкцию с открытой верхней частью и одним или более отверстиями в верхней части, через которые может поступать газовая фаза. Газовая фаза проходит вниз по всей длине газохода. Нижняя часть газохода может иметь одно или более боковых отверстий для потока жидкости, через которые жидкая фаза может поступать в газовод и контактировать с газовой фазой. Поскольку жидкости накапливаются на распределительной тарелке, они поднимаются до уровня, который закрывает боковое отверстие или отверстия в газоходе так, что прохождение газа устраняется, и жидкость может поступать через боковое отверстие или отверстия в газоход. Газы и жидкости проходят через отверстие в нижней части газохода, через распределительную тарелку и на подстилающий слой катализатора. Из-за низкой турбулентности потоков жидкости между двумя фазами в газоходе происходит только ограниченное смешивание.
Оптимальное устройство подачи потока текучей среды должно соответствовать следующим четырем основным требованиям: обеспечивать равномерную подачу текучей среды в слой катализатора во всем диапазоне скоростей газа и жидкости; быть малочувствительным к определенной негоризонтальности распределительной тарелки; обеспечивать хорошее смешивание газа с жидкостью и хороший теплообмен и требовать минимальную высоту слоя катализатора для полного увлажнения подстилающего слоя катализатора. Поскольку силой, побуждающей жидкость течь в газоход, является статическая высота жидкости в тарелке, то стандартные газоводы могут не соответствовать этим критериям из-за плохой устойчивости к отклонениям от негоризонтальности распределительной тарелки. Они также имеют недостаточно оптимальное распыление текучих сред на подстилающий слой катализатора.
Одним из ключевых вопросов в конструкции распределителя потока является схема подачи жидкости и газа из устройства. Стандартный газоходный распределитель обеспечивает только некоторые точечные контакты жидкости со слоем катализатора. В результате он только до определенный высоты катализатора обеспечивает надлежащее увлажнение поверхности катализатора и осуществление желаемых каталитических реакций. Желательны более однородная и соответствующая форма распределения и более однородное увлажнение катализатора в короткой длине слоя катализатора. Цель настоящего изобретения - достижение равномерного распределения текучей среды по поверхности слоя катализатора в форме устойчивого распыления. Другой целью изобретения является улучшение устойчивости конструкции распределителя потока к негоризонтальности тарелки распределителя.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Для максимального увеличения производительности многослойных каталитических реакторов важны газоходы, обеспечивающие хорошее смешивание газа и жидкостей и равномерное распределение смеси газа с жидкостью на подстилающем слое катализатора. В варианте воплощения изобретение представляет собой устройство распределения полифазной текучей среды на гранулярном твердом материале, содержащее, по меньшей мере, один газовод для ввода газовой фазы в смесительную камеру, имеющую радиальный диаметр, который больше, чем радиальный диаметр газовода, проходящего от впускного отверстия газа через нижнее отверстие газовода в смесительную камеру, при этом отверстие газовода расположено не ниже, чем нижний конец жидкостного трубопровода, обеспечивающего введение жидкой фазы в смесительную камеру; и полифазное сопло для ускорения и диспергирования фаз жидкости и газа, выходящих из устройства распределения потока, имеющее впускное отверстие сопла, которое фиксировано подсоединено и соосно выровнено со смесительной камерой.
В другом аспекте изобретения создана тарелка распределителя, имеющая, по меньшей мере, один газовод для распределения протекающей вниз полифазной смеси, включающей в себя по меньшей мере одну газовую фазу и одну жидкую фазу, выше, по меньшей мере, одного слоя катализатора из гранулярного твердого каталитического материала, газовод, включающий в себя одно устройство распределения потока в газоход, при этом устройство распределения потока содержит, по меньшей мере, один газовод для введения газовой фазы в смесительную камеру, имеющую радиальный диаметр, превышающий радиальный диаметр газовода, проходящего от впускного отверстия газа через нижнее отверстие газовода в смесительную камеру, при этом отверстие газовода расположено не ниже, чем нижний конец жидкостного трубопровода, обеспечивающего поступление жидкой фазы в смесительную камеру; и полифазное сопло для ускорения и диспергирования фаз жидкости и газа, выходящих из устройства распределения потока, имеющее впускное отверстие сопла, которое фиксировано подсоединено и соосно выровнено со смесительной камерой.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1 представлен схематический вид с боковым разрезом варианта воплощения устройства распределения потока.
На Фиг.2 представлен упрощенный схематический, перспективный боковой вид в разрезе устройства распределения потока в контексте корпуса реактора.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение в одном варианте воплощения представляет собой устройство распределения потока текучей среды для распределения нисходящего потока полифазной смеси, включающей в себя, по меньшей мере, одну газовую фазу и, по меньшей мере, одну жидкую фазу, выше, по меньшей мере, одного каталитического слоя гранулированного твердого каталитического материала. Устройство распределения потока текучей среды для получения жидкой и газовой фаз имеет одно или несколько отверстий в верхней и/или самой верхней части, через которые может поступать газовая фаза, и имеет газовод, который выходит в смесительную камеру внутри устройства. Устройство распределения текучей среды также содержит в себе одно или несколько боковых отверстий для введения жидкости. Боковое отверстие или отверстия позволяют жидкости поступать в жидкостный трубопровод, выходящий в смесительную камеру. Смесительная камера обеспечивает плотный контакт между фазами жидкости и газа. Впускная труба для газа является более узкой, чем смесительная камера, что вызывает эффект типа Вентури и создает более низкое давление внутри устройства распределения текучей среды. Перепад давления помогает "протянуть" жидкую фазу через жидкостный трубопровод в смесительную камеру. Таким образом, в большей мере расход жидкости через боковые отверстия, а не статическая высота жидкости на тарелке, по меньшей мере частично, определяется эффектом Вентури относительно узкого газовода. В связи с этим настоящее устройство распределения потока обеспечивает большую устойчивость к негоризонтальности тарелки, чем известные газоходы. Текучая среда (смешанные газовые и жидкие фазы) выходит из устройства распределения текучей среды через конический и скошенный выход Вентури в виде расширяющегося распылителя. Перепад давления через устройство распределения текучей среды минимизируется для экономии энергии и уменьшения истощения самого верхнего слоя.
Настоящее устройство распределения текучей среды может использоваться в каталитических реакторах с нисходящим потоком. В каталитическом реакторе с нисходящим потоком данное устройство обеспечивает смешивание газовой и жидкой фазы и распределяет текучие среды в виде диспергированного распыления на, например, подстилающий слой катализатора. В данном описании газ, жидкость и их комбинации называются "текучей средой" или "текучими средами".
Устройство распределения потока согласно изобретению может быть вставлено в существующий ранее газоход в распределительной тарелке. При таком усовершенствованном устройстве распределения потока, которое может быть вставлено в существующий ранее газоход, далее называется вставкой газохода. В новой конструкции реактора устройство распределения потока может быть установлено непосредственно в распределительной тарелке вместо газохода. Как правило, настоящее устройство распределения текучей среды может иметь размер диаметра от одного до четырех дюймов, хотя возможны и меньшие или большие размеры в зависимости от области применения. В некоторых таких вариантах воплощения настоящее устройство распределения текучей среды может иметь размер диаметра от 1,5 дюйма до около 3 дюймов. Количество устройств распределения текучей среды для использования в каталитических реакторах с нисходящим потоком может варьироваться и выбирается исходя из желаемых скоростей потока и других условий, требуемых в каталитических реакторах с нисходящим потоком. Выбор количеств устройств распределения текучей среды подобен обычному выбору для определения количества стандартных газоходов в каталитическом реакторе с ниспадающим потоком.
В вариантах воплощения устройство распределения потока может использоваться в усовершенствованном применении. Может использоваться существующий ранее газоход, а устройство распределения потока вставляется в него. Например, на Фиг.1 показано использование устройства 1 распределения потока в качестве вставки, при этом диаметр устройства обеспечивает его вставку в существующий ранее газоход в распределительную тарелку 85 с образованием со стенкой 4 газохода существенно герметичного уплотнения для текучих сред. На Фиг.2 показано расположение газоходов, включающих устройство 1 распределения, на распределительной тарелке. В вариантах воплощения устройство распределения текучей среды проходит вверх от нижней части газохода 65 на расстояние, которое больше 50% или больше 75% расстояния между нижней частью газохода 65 и верхней частью газохода 70. Устройство может быть выполнено так, чтобы его можно было вставить во множество уже существующих газоходов различных размеров для усовершенствованного применения. Это может быть достигнуто с помощью измерения внутреннего диаметра существующего ранее газохода и выполнения наружного диаметра настоящего устройства распределения потока таким образом, чтобы он был меньше, чем внутренний диаметр существующего газохода. В вариантах воплощения наружный диаметр устройства находится в пределах от 1,5 дюйма до около 3 дюймов, хотя не исключаются меньшие или большие диаметры, что зависит от области применения. В другом варианте воплощения устройство может использоваться в качестве автономного устройства распределения текучей среды.
В усовершенствованных и в неусовершенствованных вариантах воплощения внешняя стенка 5 образует цилиндрическую конструкцию. Верхняя покрывающая часть 6 накрывает цилиндрическую конструкцию, образуемую внешней стенкой 5 и находится в жидкогазонепроницаемом уплотнении с цилиндрической наружной стенкой. Верхняя покрывающая часть 6 включает в себя, по меньшей мере, одно впускное отверстие 10 для газа. В вариантах воплощения это впускное отверстие для газа имеет диаметр от около 0,1 дюйма до около 1,0 дюйма, хотя не исключаются меньшие или большие диаметры, что зависит от применения. В некоторых таких вариантах воплощения впускное отверстие для газа имеет диаметр в пределах от около 0,3 дюйма до около 0,7 дюйма. В одном из вариантов воплощения верхняя покрывающая часть 6 включает в себя одно, расположенное в центре, впускное отверстие 10 для газа. Это впускное отверстие 10 для газа выходит в осевой газовод 15 для потока газа. Газовод 15 имеет нижнее отверстие 20, выходящее в смесительную камеру 25. В вариантах воплощения газовод 15 соосен со смесительной камерой 25. В вариантах воплощения газовод расположен вертикально. При движении газа по газоводу образуется перепад давления между давлением в смесительной камере 25 и давлением во впускном отверстии 10 для газа. Этот перепад давления между более низким относительным давлением внутри устройства распределения потока и более высоким относительным давлением снаружи устройства способствует движению жидкостей в устройство распределения потока через одно или более боковых отверстий 35. Поскольку поток жидкости, по меньшей мере частично, обусловлен описанным выше перепадом давления, любая негоризонтальность тарелки будет оказывать меньшее воздействие на поток жидкости. Например, пока боковое отверстие или отверстия для жидкости будут находиться ниже поверхности уровня 60 жидкости, любые перепады потока жидкости, вызванные негоризонтальностью тарелки, будут минимизированы потому, что большая часть потока жидкости определяется перепадом давления, вызванным потоком газа в противовес любому перепаду давления, относящемуся к варьированию уровней жидкости вследствие негоризонтальности тарелки.
В вариантах воплощения жидкостный трубопровод 35 установлен таким образом, чтобы отверстие(я) 20 газовода в смесительную камеру 25 расположено в горизонтальной плоскости, которая расположена, по меньшей мере, на высоте более низкого участка 75 жидкостного трубопровода 35. В некоторых вариантах воплощения отверстие 20 газовода находится в горизонтальной плоскости между нижним участком 75 и верхним участком 80 жидкостного трубопровода 35. В некоторых вариантах воплощения отверстие 20 газовода находится в горизонтальной плоскости, которая совпадает с верхним участком 80 жидкостного трубопровода 35. В некоторых вариантах воплощения отверстие 20 газовода находится в горизонтальной плоскости не ниже, чем верхний участок 80 жидкостного трубопровода 35.
Комбинация горизонтального жидкостного трубопровода 35 и вертикального газовода, который расположен на, по меньшей мере, высоте более низкого участка жидкостного трубопровода, обеспечивает возможность использования устройства распределения потока в существующем газоходе при существующем боковом отверстии(ях) 30 для жидкости.
Число боковых отверстий может меняться в зависимости от желательной скорости потока. На Фиг.1 в варианте воплощения показано одно боковое отверстие для жидкости. В других вариантах воплощения может использоваться несколько боковых отверстий для потока жидкости. В вариантах воплощения несколько боковых отверстий находятся в одной горизонтальной плоскости относительно друг друга. В вариантах воплощения боковое отверстие имеет диаметр в пределах от около 0,2 дюйма до около 0,75 дюйма, хотя не исключаются меньшие или большие диаметры, что зависит от области применения. В некоторых таких вариантах воплощения боковое впускное отверстие для жидкости имеет диаметр между 0,25 и 0,60 дюймов. В вариантах воплощения боковое отверстие 30 для жидкости является круглым и образует цилиндрический трубопровод 35 для жидкости. В некоторых таких вариантах воплощения ось цилиндрического жидкостного трубопровода является горизонтальной. В некоторых таких вариантах воплощения ось бокового отверстия является радиальной к газоводу, то есть перпендикулярна ему. Жидкостной трубопровод 35 имеет круглое выходное отверстие 40, выходящее в смесительную камеру 25. В вариантах воплощения жидкость течет в жидкостном трубопроводе в направлении, перпендикулярном к потоку газа в газоводе. В некоторых таких вариантах воплощения, по меньшей мере, часть (или вся) жидкости, вытекающей из жидкостного трубопровода, входит в контакт с газом, вытекающим из газовода в перпендикулярном направлении. Как правило, смесительная камера 25 имеет диаметр B, который больше, чем диаметр цилиндрического газовода 15, и больше, чем диаметр C жидкостного трубопровода 35. Форма смесительной камеры может быть различной при условии, что смесительная камера имеет достаточный объем для смешивания поступающих газовых и жидких фаз до истечения текучей среды. В основании смесительной камеры 25 и ниже бокового отверстия 30 для жидкости расположено скошенное и суженное полифазное выходное сопло 46. Полифазное сопло 46 имеет диаметр D, который меньше диаметра B смесительной камеры 25. В варианте воплощения впускное отверстие 45 полифазного сопла 46 является фиксировано прикрепленным и соосно выровненным со смесительной камерой 25. В некоторых таких вариантах воплощения впускное отверстие сопла соосно выровнено с газоводом. Впускное отверстие сопла 45 расположено в центре в основании смесительной камеры и соосно с цилиндрической внешней стенкой 5. Форма сопла создает вытекающим текучим средам эффект Вентури, ускоряя и диспергируя жидкие и газовые фазы, выходящие из смесительной камеры. В вариантах воплощения скос сопла находится в пределах от 5 градусов до 85 градусов, причем угол скоса измеряется от плоскости, разделяющей полифазное сопло 46 пополам и параллельно к верхней покрывающей части. В некоторых таких вариантах воплощения скос находится в пределах между 30 градусами и 60 градусами и составляет, например, 45 градусов.
Текучие среды движутся через полифазное сопло 46 и выходят из устройства распределения через донное отверстие 50, которое расположено в центре в донной стенке 55. Диаметр E донного отверстия 50 больше, чем диаметр наиболее узкой части D полифазного сопла. Жидкости являются значительно распыленными после выхода из устройства распределения через донное отверстие, чтобы обеспечить однородное увлажнение подстилающего слоя катализатора (не показан). В варианте воплощения полифазное сопло включает в себя внутреннюю стенку 49. В варианте воплощения внутренняя стенка 49 скошена. В некоторых таких вариантах воплощения скос внутренней стенки находится в пределах между 5 градусами и 85 градусами, если измерять от плоскости, разделяющей пополам отверстие сопла. В некоторых таких вариантах воплощения скос внутренней стенки находится в пределах от 30 градусов до 60 градусов и составляет, например, 45 градусов.
В другом варианте воплощения внутренняя стенка может быть плоской. Под плоской здесь подразумевается, что внутренняя стенка параллельна донной стенке 55 и/или перпендикулярна к боковой стенке 5. В варианте воплощения донное отверстие имеет диаметр E, который меньше, чем диаметр F донной стенки. В другом варианте воплощения донное отверстие имеет диаметр E, который равен диаметру F донной стенки, то есть донное отверстие охватывает всю основную площадь устройства распределения.
Настоящее устройство распределения потока обеспечивает большую устойчивость к негоризонтальности тарелки, чем известные газоходы. Кроме того, настоящее устройство распределения потока может использоваться в усовершенствованных приложениях, обеспечивая дополнительный экономический эффект и свободу выбора конструкционных решений. Благодаря конструкции сопла и отклоняющего сопла может быть получено однородное распыление и полное увлажнение поверхности катализатора под распределителем.
ПРИМЕРЫ
Пример 1 (Сравнительный)
Два одинаковых газохода A и B были установлены в испытательной ячейке с диаметром 11 дюймов, при этом газоход А приблизительно на 0,25 дюйма меньше, чем газоход B для моделирования негоризонтальности тарелки. Газоходы были расположены приблизительно на расстоянии 6 дюймов. Диаметр каждого газохода составлял 2,5 дюйма. Два боковых отверстия диаметром в 0,5 дюйма находились на расстоянии 1,0 дюйма выше дна каждого из газоходов A и B. Высота каждого газохода составляла 6,5 дюймов. Для моделирования условий в каталитическом реакторе с нисходящим потоком использовались вода со скоростью течения 2,6 галлона в минуту и воздух со скоростью потока в 8 стандартных кубических футов в минуту. Вода поступала в газоходы через горизонтальные отверстия, а газ поступал через верхнее отверстие. Замерялась скорость течения жидкости через каждый из газоходов. Газоход A имел скорость потока 58,5%, а газоход B - 41,5%.
Пример 2 (изобретение)
Эксперимент, представленный в Примере 1, был повторен с устройством распределения потока согласно изобретению, вставленным в каждый из газоходов A и B. Замерялись скорости течения через каждый из газоходов. Газоход A имел скорость потока 49,3%, а газоход B - 50,7%.
Вышеупомянутые примеры показывают, что устройство распределения потока согласно изобретению, используемое в качестве вставки в приложение усовершенствованного типа (Пример 2), показало более высокую устойчивость к негоризонтальности тарелки, чем газоходы (Пример 1) без этой вставки. Кроме того, смешивание газа и жидкости в Примере 2 было лучше, чем в Примере 1, а распыление в Примере 2 было более широким и более однородным, чем распыление в Примере 1. Таким образом, устройство распределения текучей среды согласно изобретению продемонстрировало улучшенные характеристики для использования его в качестве устройства распределения текучей среды по сравнению с обычным газоходом.

Claims (13)

1. Устройство для распределения полифазной текучей среды на гранулированном твердом материале, содержащее, по меньшей мере, один газовод для введения газовой фазы в смесительную камеру, имеющую диаметр поперечного сечения, превышающий диаметр поперечного сечения газовода, при этом газовод проходит от впускного отверстия для газа и имеет нижнее отверстие, выходящее в смесительную камеру и расположенное не ниже нижнего участка жидкостного трубопровода, предназначенного для введения жидкой фазы в смесительную камеру, и полифазное сопло для ускорения и диспергирования жидких и газовых фаз, выходящих из указанного устройства, имеющее впускное отверстие, которое фиксировано соединено и соосно выровнено со смесительной камерой.
2. Устройство по п.1, в котором газовод является цилиндрическим.
3. Устройство по п.1, в котором газовод расположен вертикально.
4. Устройство по п.1, в котором отверстие газовода расположено в горизонтальной плоскости между нижним участком и верхним участком жидкостного трубопровода.
5. Устройство по п.1, в котором отверстие газовода расположено в горизонтальной плоскости не ниже верхнего участка жидкостного трубопровода.
6. Устройство по п.1, в котором полифазное сопло дополнительно содержит донное выпускное отверстие.
7. Устройство по п.1, которое дополнительно содержит верхнюю покрывающую часть в жидкогазонепроницаемом уплотнении с цилиндрической наружной стенкой и, по меньшей мере, одно впускное отверстие для газа.
8. Устройство по п.6, в котором диаметр донного отверстия превышает диаметр наиболее узкой части полифазного сопла.
9. Устройство по п.8, в котором скос полифазного сопла находится в пределах между 30 градусами и 60 градусами при измерении от плоскости, разделяющей пополам отверстие полифазного сопла.
10. Устройство по п.1, в котором полифазное сопло дополнительно содержит скошенную внутреннюю стенку.
11. Устройство распределения потока по п.10, в котором скос внутренней стенки находится в пределах между 30 градусами и 60 градусами при измерении от плоскости, разделяющей пополам отверстие полифазного сопла.
12. Распределительная тарелка, имеющая по меньшей мере один газоход для распределения текущей вниз полифазной текучей среды, включающей в себя, по меньшей мере, одну газовую фазу и, по меньшей мере, одну жидкую фазу, выше, по меньшей мере, одного слоя катализатора из гранулированного твердого каталитического материала, при этом газоход включает в себя установленное в нем одно устройство распределения текучей среды, содержащее, по меньшей мере, один газовод для введения газовой фазы в смесительную камеру, имеющую диаметр поперечного сечения, превышающий диаметр поперечного сечения газовода, при этом газовод проходит от впускного отверстия для газа и имеет нижнее отверстие, выходящее в смесительную камеру и расположенное не ниже нижнего участка жидкостного трубопровода, предназначенного для введения жидкой фазы в смесительную камеру, и полифазное сопло для ускорения и диспергирования жидких и газовых фаз, выходящих из указанного устройства, имеющее впускное отверстие, которое фиксировано соединено и соосно выровнено со смесительной камерой.
13. Тарелка по п.12, в которой газоход имеет боковое отверстие для потока жидкости, расположенное соосно с жидкостным трубопроводом.
RU2012118765/05A 2009-10-07 2010-10-06 Устройство распределения потока текучей среды для каталитических реакторов с нисходящим потоком RU2542248C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/575,334 2009-10-07
US12/575,334 US8211375B2 (en) 2009-10-07 2009-10-07 Flow distribution device for downflow catalytic reactors
PCT/US2010/051583 WO2011044201A2 (en) 2009-10-07 2010-10-06 Flow distribution device for downflow catalytic reactors

Publications (2)

Publication Number Publication Date
RU2012118765A RU2012118765A (ru) 2013-11-20
RU2542248C2 true RU2542248C2 (ru) 2015-02-20

Family

ID=43823336

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012118765/05A RU2542248C2 (ru) 2009-10-07 2010-10-06 Устройство распределения потока текучей среды для каталитических реакторов с нисходящим потоком

Country Status (14)

Country Link
US (1) US8211375B2 (ru)
EP (1) EP2542335A4 (ru)
JP (2) JP2013507239A (ru)
KR (1) KR101732409B1 (ru)
CN (1) CN102574087B (ru)
AR (1) AR078526A1 (ru)
AU (1) AU2010303517B2 (ru)
BR (1) BR112012008022B1 (ru)
CA (1) CA2776782C (ru)
IN (1) IN2012DN03171A (ru)
MY (1) MY161960A (ru)
RU (1) RU2542248C2 (ru)
TW (1) TWI466716B (ru)
WO (1) WO2011044201A2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690825C2 (ru) * 2015-04-01 2019-06-05 Ифп Энержи Нувелль Смесительное и распределительное устройство со смесительной и обменной зонами
RU2690828C2 (ru) * 2015-04-01 2019-06-05 Ифп Энержи Нувелль Смесительное и распределительное устройство, содержащее распределительную тарелку с периферийными отверстиями
RU2722377C2 (ru) * 2016-04-29 2020-05-29 Ифп Энержи Нувелль Устройство для смешивания и распределения с зонами смешения и обмена и дефлекторами
RU2753712C2 (ru) * 2017-05-05 2021-08-20 Ифп Энержи Нувелль Новое устройство распределения многофазной смеси в камере, содержащей псевдоожиженную среду
RU2774371C2 (ru) * 2018-03-07 2022-06-20 Ифп Энержи Нувелль Устройство смешения, находящееся выше зоны распределения
US11654391B2 (en) 2018-08-10 2023-05-23 Starklab Device for bringing a gas stream and a liquid stream into contact

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8695953B2 (en) * 2010-12-06 2014-04-15 Uop Llc Distribution tray, vessel, or method relating thereto
FR2978679B1 (fr) * 2011-08-03 2014-01-17 Total Raffinage Marketing Plateau distributeur d'un gaz et d'un liquide, reacteur equipe d'un tel plateau et utilisation dudit plateau.
FR2980720B1 (fr) * 2011-09-30 2013-09-06 Ifp Energies Now Plateau distributeur pour la distribution d'un melange polyphasique avec cheminees inclinees en peripherie.
US8697015B2 (en) * 2011-12-01 2014-04-15 Chevron U.S.A. Inc. Flow distribution for monolithic reactors
WO2013087378A2 (en) * 2011-12-15 2013-06-20 Topsøe Fuel Cell A/S Method and system for liquid fuel desulphurization for fuel cell application
US20130180595A1 (en) * 2012-01-13 2013-07-18 Uop, Llc Vessel, distribution tray, and method for passing one or more fluids
US10518235B2 (en) * 2017-07-28 2019-12-31 Uop Llc Methods and apparatus for fluid contacting in a downflow vessel
SA118400251B1 (ar) * 2018-02-23 2021-12-06 انديان اويل كوربوريشن ليمتد توزيع مُحسّن لخليط مائع متعدد الأطوار
US10589244B1 (en) * 2019-02-07 2020-03-17 Uop Llc Hydroprocessing reactor internals having reduced height
EP3714971B1 (en) * 2019-03-28 2022-02-02 Sener, Ingeniería y Sistemas, S.A. System for methanol production from a synthesis gas rich in hydrogen and co2/co
WO2021060699A1 (ko) * 2019-09-24 2021-04-01 주식회사 엘지화학 소켓형 유체 분배 장치
KR102524372B1 (ko) * 2019-09-24 2023-04-21 주식회사 엘지화학 소켓형 유체 분배 장치
US20230149874A1 (en) * 2020-03-31 2023-05-18 Hindustan Petroleum Corporation Limited Apparatus for distributing fluid in downflow reactors
CN115591483B (zh) * 2022-12-15 2023-04-07 东营市俊源石油技术开发有限公司 一种食品级白油加氢制备装置
CN116637585B (zh) * 2023-05-15 2025-08-01 中国石油化工股份有限公司 一种气液多次折流混合的分布器、分布组件、加氢反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127147C1 (ru) * 1996-12-06 1999-03-10 Акционерное общество Ново-Уфимский нефтеперерабатывающий завод Распределительное устройство
RU2153927C2 (ru) * 1995-05-05 2000-08-10 Шеврон Ю.Эс.Эй. Инк. Распределительное устройство для многослойных каталитических реакторов с нисходящим потоком
RU2223140C2 (ru) * 1998-09-02 2004-02-10 Энститю Франсэ Дю Петроль Система распределения-сбора текучей среды, устройство для приведения в контакт текучих сред и твердых веществ и способ выделения, по меньшей мере, одного соединения из смеси
RU2236899C1 (ru) * 2003-08-05 2004-09-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт химии и технологии элементоорганических соединений" Реактор для проведения химических процессов
RU2006129342A (ru) * 2004-01-15 2008-02-20 Хальдор Топсеэ А/С (DK) Тарелка для распределения жидкости и пара

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609277A (en) * 1947-02-24 1952-09-02 Phillips Petroleum Co Contacting of immiscible liquids
US2523126A (en) * 1947-11-20 1950-09-19 Standard Oil Dev Co Apparatus for countercurrent contact of fluid materials
US4140625A (en) * 1977-12-19 1979-02-20 Uop Inc. Mixed-phase distributor for fixed-bed catalytic reaction chambers
WO1985003438A1 (en) 1984-02-03 1985-08-15 Advanced Drug Technology Corporation Enzyme-containing digestive aid compositions
US4836989A (en) * 1987-07-02 1989-06-06 Mobil Oil Corporation Distribution system for downflow reactors
US4933047A (en) 1989-03-22 1990-06-12 Shell Oil Company Chimney tray hat
JP3002360B2 (ja) * 1993-07-26 2000-01-24 株式会社ジャパンエナジー 分散装置
US5635145A (en) * 1994-08-23 1997-06-03 Shell Oil Company Multi-bed downflow reactor
FR2745202B1 (fr) 1996-02-27 1998-04-30 Inst Francais Du Petrole Plateau pour distribuer un melange polyphasique a travers un lit catalytique
FR2807673B1 (fr) 2000-04-17 2003-07-04 Inst Francais Du Petrole Dispositif de distribution d'un melange polyphasique sur un lit de solide granulaire comportant un element brise-jet poreux
FR2832075B1 (fr) 2001-11-09 2005-02-04 Inst Francais Du Petrole Dispositif de distribution d'un melange polyphasique sur un lit de solide granulaire comportant un element brise jet poreux a rebords
EP1663467B1 (en) 2003-08-18 2010-02-24 Shell Internationale Researchmaatschappij B.V. Distribution device
JP4604590B2 (ja) * 2004-07-27 2011-01-05 アイシン精機株式会社 粘性流体継手装置
US7473405B2 (en) * 2004-10-13 2009-01-06 Chevron U.S.A. Inc. Fluid distribution apparatus for downflow multibed poly-phase catalytic reactor
US7506861B2 (en) * 2005-01-21 2009-03-24 Morten Muller Ltd. Aps Distribution device for two-phase concurrent downflow vessels
EP1721660B1 (en) 2005-05-13 2008-01-30 Haldor Topsoe A/S Distributor system for downflow reactors comprising at least one subdivided chimney chamber
BRPI0704849B1 (pt) * 2007-12-13 2016-03-22 Petróleo Brasileiro S A Petrobras bico distribuidor de carga bifásica para reatores de leito fixo
PT2078552E (pt) * 2008-01-09 2014-07-31 Haldor Topsoe As Dispositivo de distribuição líquido-vapor
FR2948296A1 (fr) * 2009-07-21 2011-01-28 Inst Francais Du Petrole Dispositif de melange de gaz et de distribution du melange resultant a l'entree d'un reacteur catalytique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2153927C2 (ru) * 1995-05-05 2000-08-10 Шеврон Ю.Эс.Эй. Инк. Распределительное устройство для многослойных каталитических реакторов с нисходящим потоком
RU2127147C1 (ru) * 1996-12-06 1999-03-10 Акционерное общество Ново-Уфимский нефтеперерабатывающий завод Распределительное устройство
RU2223140C2 (ru) * 1998-09-02 2004-02-10 Энститю Франсэ Дю Петроль Система распределения-сбора текучей среды, устройство для приведения в контакт текучих сред и твердых веществ и способ выделения, по меньшей мере, одного соединения из смеси
RU2236899C1 (ru) * 2003-08-05 2004-09-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт химии и технологии элементоорганических соединений" Реактор для проведения химических процессов
RU2006129342A (ru) * 2004-01-15 2008-02-20 Хальдор Топсеэ А/С (DK) Тарелка для распределения жидкости и пара

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690825C2 (ru) * 2015-04-01 2019-06-05 Ифп Энержи Нувелль Смесительное и распределительное устройство со смесительной и обменной зонами
RU2690828C2 (ru) * 2015-04-01 2019-06-05 Ифп Энержи Нувелль Смесительное и распределительное устройство, содержащее распределительную тарелку с периферийными отверстиями
RU2722377C2 (ru) * 2016-04-29 2020-05-29 Ифп Энержи Нувелль Устройство для смешивания и распределения с зонами смешения и обмена и дефлекторами
RU2753712C2 (ru) * 2017-05-05 2021-08-20 Ифп Энержи Нувелль Новое устройство распределения многофазной смеси в камере, содержащей псевдоожиженную среду
RU2774371C2 (ru) * 2018-03-07 2022-06-20 Ифп Энержи Нувелль Устройство смешения, находящееся выше зоны распределения
US11654391B2 (en) 2018-08-10 2023-05-23 Starklab Device for bringing a gas stream and a liquid stream into contact
RU2800557C2 (ru) * 2018-08-10 2023-07-24 Старклаб Устройство для приведения потока газа и потока жидкости в контакт
RU2833525C1 (ru) * 2020-02-25 2025-01-23 Яра Интернэшнл Aса (Yara International Asa) Распределительная камера для жидкого потока

Also Published As

Publication number Publication date
TW201121643A (en) 2011-07-01
IN2012DN03171A (ru) 2015-09-25
AR078526A1 (es) 2011-11-16
KR101732409B1 (ko) 2017-05-24
CN102574087A (zh) 2012-07-11
AU2010303517B2 (en) 2014-07-31
BR112012008022B1 (pt) 2023-10-03
JP2013507239A (ja) 2013-03-04
KR20120093206A (ko) 2012-08-22
US20110081282A1 (en) 2011-04-07
JP2016106024A (ja) 2016-06-16
JP6093885B2 (ja) 2017-03-08
RU2012118765A (ru) 2013-11-20
WO2011044201A2 (en) 2011-04-14
EP2542335A2 (en) 2013-01-09
MY161960A (en) 2017-05-15
CA2776782A1 (en) 2011-04-14
AU2010303517A1 (en) 2012-04-19
CA2776782C (en) 2017-09-26
EP2542335A4 (en) 2016-12-07
CN102574087B (zh) 2014-10-15
TWI466716B (zh) 2015-01-01
BR112012008022A2 (pt) 2016-06-14
WO2011044201A3 (en) 2011-10-20
US8211375B2 (en) 2012-07-03

Similar Documents

Publication Publication Date Title
RU2542248C2 (ru) Устройство распределения потока текучей среды для каталитических реакторов с нисходящим потоком
CN100430458C (zh) 用于混合流体的混合装置、多反应床下流型反应器及应用
US5935413A (en) Interbed gas-liquid mixing system for cocurrent downflow reactors
CN101391197B (zh) 一种物流混合分配系统
US8597595B2 (en) Multiphase contact and distribution apparatus for hydroprocessing
JP5276098B2 (ja) 触媒床上で液相及び気相の三相反応を実行するための反応器
CN101279229B (zh) 滴流床反应器
CN101142013B (zh) 混合并分配粒状床的上游气流和液流的装置
EA034637B1 (ru) Смешивающее устройство с тангенциальными впусками для емкостей с двухфазным потоком
KR102135558B1 (ko) 혼합 디바이스를 포함하는 다층 하향류 반응기, 상기 반응기의 용도, 및 혼합 방법
MX2008013006A (es) Bandeja de distribucion de fluido y metodo de distribucion de fluido de dispersion elevada a traves de un lecho de material de contacto.
CN101766978B (zh) 一种物流混合分散设备
US20120014847A1 (en) Multiphase contact and distribution apparatus for hydroprocessing
CN101600494B (zh) 流体原料在混合装置中预混合的、在催化剂床上、在两种流体原料之间进行反应的反应器
CN105582857B (zh) 一种气液固三相反应器及其应用方法
RU2625854C2 (ru) Распределительное устройство для многослойного реактора с нисходящим потоком
US7258144B2 (en) Device for homogeneous distribution of a fluid in a chamber and uses thereof
MXPA06001861A (es) Dispositivo de distribucion.
CN1813155A (zh) 用于将二相流分流成为具有所需汽液比的两个或更多个流股的装置
CN208865612U (zh) 补充物料预分配装置、流体混合分配设备及多段进料式反应器
CN220573411U (zh) 入口扩散器及固定床反应器
CN106237938A (zh) 物流混合分配器和固体颗粒床层反应器
CN119425529A (zh) 气液分配器和上行式反应器
CN115738915B (zh) 一种防偏流固定床反应器
CN118788242A (zh) 强化流体分布及传质的气液分配组合及反应器