RU2534861C1 - Асфальтобетонная смесь - Google Patents

Асфальтобетонная смесь Download PDF

Info

Publication number
RU2534861C1
RU2534861C1 RU2013143473/03A RU2013143473A RU2534861C1 RU 2534861 C1 RU2534861 C1 RU 2534861C1 RU 2013143473/03 A RU2013143473/03 A RU 2013143473/03A RU 2013143473 A RU2013143473 A RU 2013143473A RU 2534861 C1 RU2534861 C1 RU 2534861C1
Authority
RU
Russia
Prior art keywords
bitumen
sulfur
sand
crushed stone
asphalt concrete
Prior art date
Application number
RU2013143473/03A
Other languages
English (en)
Inventor
Галина Васильевна Василовская
Валентина Аркадьевна Шевченко
Рашит Анварович Назиров
Геннадий Ефимович Нагибин
Original Assignee
Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" filed Critical Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет"
Priority to RU2013143473/03A priority Critical patent/RU2534861C1/ru
Application granted granted Critical
Publication of RU2534861C1 publication Critical patent/RU2534861C1/ru

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)

Abstract

Изобретение относится к строительным материалам, в частности к асфальтобетонным смесям, используемым для устройства покрытий автомобильных дорог, аэродромов, спортивных площадок, автомобильных стоянок и т.п. во всех климатических зонах. Технический результат - увеличение прочности и водостойкости асфальтобетона при снижении его себестоимости. Асфальтобетонная смесь, включающая вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, содержит указанное вяжущее, дополнительно включающее серу при соотношении серы с битумом 10-40:60-90, указанное серобитумное вяжущее в количестве 3,5-5,0 мас.% по отношению к минеральной части, в качестве минерального порошка - тонкодисперсные отвальные «хвосты» нейтрализации отходов металлургического завода, получаемые при очистке жидкой фазы пульпы отходов серосульфидной флотации медно-никелевого сульфидного концентрата от железа и цветных металлов, а в качестве щебня - известняковый щебень и указанного песка - песок из шлаков Надеждинского металлургического комбината при следующем соотношении компонентов, мас.%: битум 2,7-4,0 сверх 100%, сера 0,35-1,8 сверх 100%, указанный щебень 50,5-60,0, указанный шлаковый песок 33,5-41,3, указанный минеральный порошок 5,5-10,0. 9 табл.

Description

Изобретение относится к строительным материалам, в частности к асфальтобетонным смесям, используемым для устройства покрытий автомобильных дорог, аэродромов, спортивных площадок, автомобильных стоянок и т.п. во всех климатических зонах.
Известна асфальтобетонная смесь, включающая битум, отходы гальванического производства, нейтрализованный шлам травильного производства, щебень и песок (Патент РФ №2074277 C1, дата приоритета 26.04.1996, дата публикации 27.02.1997, авторы Шевцов A.M., Ткаченко В.Ю., RU).
Недостатком известной асфальтобетонной смеси является низкая прочность при 20°C (предел прочности при сжатии равен 2,0-2,1 МПа) и низкая водостойкость (коэффициент водостойкости равен 0,71-0,80).
Известна также асфальтобетонная смесь, состоящая из серобитумного вяжущего с активирующей добавкой в виде аминов, отходов песчано-гравийной смеси, песчано-гравийной смеси и доломитовых высевок (Патент РФ №2452748 C1, дата приоритета 17.12.2010, дата публикации 10.06.2012, авторы Иванов В.Б. и др., RU).
Недостатком известной асфальтобетонной смеси, получаемой на основе серобитумного вяжущего, является низкая водостойкость (коэффициент водостойкости равен 0,9), небольшая прочность при 50°C (предел прочности - 1,25 МПа) и большая прочность при 0°C (предел прочности - 11,5 МПа), что характеризует низкую морозостойкость смеси.
В качестве прототипа принята асфальтобетонная смесь, содержащая щебень, песок, минеральный порошок и битум, рационально подобранные в соответствии с требованиями стандарта (ГОСТ 9128-2009 «Смеси асфальтобетонные дорожные. аэродромные и асфальтобетон». - М.: МНТКС, 2010, прототип).
Недостатком прототипа следует признать низкий предел прочности, низкую водостойкость и морозостойкость асфальтобетона на основе регламентированных стандартом смесей.
Задачей изобретения является повышение плотности, увеличение прочности и водостойкости асфальтобетона при использовании составов смеси на основе серобитумного вяжущего и отходов промышленного производства.
Для решения поставленной задачи асфальтобетонная смесь, включающая вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, согласно изобретению содержит указанное вяжущее, дополнительно включающее серу при соотношении серы с битумом 10-40:60-90, указанное серобитумное вяжущее в количестве 3,5-5,0 мас.% сверх 100% по отношению к минеральной части, в качестве минерального порошка - тонкодисперсные отвальные «хвосты» нейтрализации отходов металлургического завода, получаемые при очистке жидкой фазы пульпы отходов серосульфидной флотации медно-никелевого сульфидного концентрата от железа и цветных металлов, а в качестве щебня - известняковый щебень и указанного песка - песок из шлаков Надеждинского металлургического комбината при следующем соотношении компонентов, мас.%: битум - 2,7-4,0 сверх 100%; сера - 0,35-1,8 сверх 100%; указанный щебень - 50,5-60,0; указанный шлаковый песок - 33,5-41,3; указанный минеральный порошок - 5,5-10,0.
Технический результат, достигаемый при использовании заявляемых составов асфальтобетонной смеси заключается в следующем:
а) в повышении плотности асфальтобетона за счет высокой дисперсности минерального порошка из отвальных «хвостов» нейтрализации, что способствует повышению прочности, водостойкости и морозостойкости;
б) в уменьшении пористости, увеличении прочности и водостойкости асфальтобетона за счет замены части битума технической серой;
в) в снижении себестоимости асфальтобетона за счет замены мелкого заполнителя и минерального порошка отходами металлургической промышленности.
Достижение технического результата объясняется тем, что шлаковый песок имеет весьма развитую пористую поверхность, в порах которого плотно кольматируется тонкодисперсный наполнитель в виде отвальных «хвостов» нейтрализации. В результате этого повышается плотность, прочность, водостойкость и морозостойкость асфальтобетона. Механизм пластификации серы битумом объясняется растворимостью серы и переходом ее в аморфное состояние в среде углеводородов битума, а также разрушением структурного коагуляционного каркаса битума за счет адсорбции и взаимодействия серы с активными группами структурообразующих компонентов.
С понижением температуры серобитумного вяжущего количество растворенной серы уменьшается. Большая часть расплавленной в битуме серы кристаллизуется с течением времени, выделяется в виде твердой фазы и ведет себя подобно дисперсному наполнителю. При высоких содержаниях серы в серобитумном вяжущем возможно также возникновение кристаллизационной структуры в битуме за счет срастания выделяющихся в виде кристаллов частиц серы.
Элементарная сера в структуре асфальтобетона действует по механизму активного, кольматирующего и армирующего наполнителей в зависимости от ее содержания в вяжущем. Действие серы по механизму наполнителя требует рассматривать ее не как эквивалентную замену битуму, а как добавку, повышающую плотность и прочность материала. Свойства асфальтобетонов и вяжущих можно направленно регулировать варьированием количества и температуры ввода серы. Дозировка серы в вяжущем от 10 до 40 мас.% от количества битума была принята на основании проведенных исследований серобитумных вяжущих. Испытания показали, что введение серы менее 10% оказывает пластифицирующее воздействие на битум, то есть уменьшает его вязкость. Это должно привести к снижению прочности асфальтобетона. Введение серы более 40% приводит к уменьшению растяжимости и увеличению хрупкости вяжущего, что также отрицательно может отразиться на свойствах асфальтобетона. Таким образом, при содержании серы до 40% преобладает эффект активного и кольматирующего наполнителей.
Для осуществления изобретения производят подготовку компонентов и их испытание в соответствии с требованиями стандартов:
- ГОСТ 9128-2009 «Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон», МНТКС, Москва, 2010;
- ГОСТ 12801-98 «Материалы на основе органических вяжущих для дорожного и аэродромного строительства», МНТКС, Москва, 1998;
- ГОСТ Р 52129-2003 «Порошок минеральный для асфальтобетонных и органоминеральных смесей», МНТКС, Москва, 2003;
- ГОСТ 222245-90 «Битумы нефтяные дорожные вязкие», МНТКС, Москва, 1991;
- ГОСТ 127.1-93 «Сера техническая. Технические условия», МНТКС, Москва, 1993.
На достижение технического результата оказывают влияние свойства исходных материалов, имеющих следующие характеристики:
1. В качестве связующего в вяжущем использовалась сера техническая комовая. Химический анализ технической серы показал, что в ее составе основным компонентом является элементарная сера с ромбической решеткой, так называемая альфа-сера. Имеются также примеси с общим содержанием не более 0,7% мас. Таким образом, данный продукт удовлетворяет требованиям ГОСТ 127.1-93 для технической серы по составу. По физическим свойствам, таким как температура плавления ромбической серы и полимеризации уже расплавленной серы, данный продукт практически не отличается от химически чистой элементарной серы с температурой плавления 119°C.
2. В качестве пластифицирующей добавки для серы использовался битум марки БНД 90/130.
3. В качестве крупного заполнителя минеральной части использовался известняковый щебень Березовского карьера г. Красноярска. Свойства и зерновой состав указанного щебня приведены в таблицах 1, 2.
Figure 00000001
Figure 00000002
4. В качестве мелкого заполнителя минеральной части использовались гранулированные шлаки Надеждинского металлургического завода г. Норильска. По данным химического анализа, применяемый шлак состоит из следующих соединений, выраженных в % масс.: Fe2O3 (56,94), SiO2 (30,78), Al2O3 (0,72), CaO (3,72), MgO (2,12), S (0,42), CuO (0,462), Co3O4 (0,163), NiO (0,082), Na2O (1,06), K2O (0,83).
Таким образом, шлаки состоят преимущественно из силиката железа, и имеются также примеси оксидов кремния, кальция, магния, алюминия и др.
Свойства указанных шлаковых песков и зерновой состав приводятся соответственно в таблицах 3, 4.
Figure 00000003
Figure 00000004
5. В качестве минерального порошка использовались отвальные «хвосты» нейтрализации Надеждинского металлургического завода г. Норильска, получаемые при очистке жидкой фазы пульпы отходов серосульфидной флотации медно-никелевого сульфидного концентрата от железа и цветных металлов, представляющие собой тонкодисперсный порошок и имеющие химический состав, представленный в таблице 5.
Figure 00000005
Результаты химического анализа показали, что основными составляющими отвальных «хвостов» нейтрализации являются соединения оксидов железа и кремния, зафиксированы относительно малые концентрации различных соединений с кальцием и серой. Термические исследования показали, что «хвосты» являются стабильными до температуры 300°C.
Физико-механические свойства отвальных «хвостов» исследовались в соответствии с требованиями ГОСТ Р 52129-2003. Свойства этих порошков в сравнении с требованиями ГОСТ для минеральных порошков марки МП-2 (порошки из некарбонатных горных пород, твердых и порошковых отходов промышленного производства) приводятся в таблице 6.
Figure 00000006
Как видно из таблицы 6, по всем показателям отвальные «хвосты» отвечают требованиям ГОСТ Р 52129-2003.
В таблице 7 приводится зерновой состав отвальных «хвостов» в сравнении с требованиями ГОСТ Р 52129-2003.
Figure 00000007
Как видно из таблицы 7, по зерновому составу отвальные «хвосты» отвечают требованиям ГОСТ Р 52129-2003 и имеют высокую дисперсность, что позволяет повысить плотность асфальтобетонных смесей, уменьшить пористость, увеличить прочность и водостойкость асфальтобетона.
Измерения удельной эффективной активности естественных радионуклидов показали, что представленные исходные материалы (сера, шлаки, хвосты) согласно санитарным правилам относятся к I классу и могут быть использованы в дорожном строительстве в пределах территории населенных пунктов и зон перспективной застройки, а также в дорожном строительстве вне заселенных пунктов.
Приготовление асфальтобетонной смеси проводили следующим образом: в отдельной емкости разогревали битум до температуры 130-140°C и также в отдельной емкости разогревали серу до температуры 120-130°C. Затем получали серобитумное вяжущее путем перемешивания в течение 10 мин жидкой серы с горячим битумом.
Наполнители (щебень, шлаковый песок и отвальные «хвосты»), составляющие минеральную часть, грели до температуры 140-150°C. Затем наполнители и серобитумное вяжущее смешивали при температуре 135°C в течение 5-10 минут. Таким образом, температура приготовления сероасфальтобетона была на 10-20°C ниже температуры, указанной в ГОСТ 12801-98 на асфальтобетон, так как вязкость серобитумного вяжущего меньше вязкости битума. Во время приготовления асфальтобетона на серобитумном вяжущем не было обнаружено выделения вредных газов. Наблюдения показали, что применение серобитумного вяжущего приводит к ускорению процесса обволакивания зерен минеральной части смеси, а тем самым, и к быстрейшему получению асфальтобетонной смеси. Асфальтобетонные смеси на серобитумном вяжущем уплотняли при температуре 110-120°C. При таких температурах смеси сохраняли подвижность.
Для определения свойств сероасфальтобетона использовались образцы-цилиндры с размерами d=h=71,4 мм. Формование образцов проводили в металлической форме с двумя вкладышами, нагретой до температуры 90-100°C. Образцы уплотнялись на прессе при давлении 40 МПа в течение 3 мин.
Преимущества предлагаемых асфальтобетонных смесей показаны на составах мелкозернистых смесей, которые по своим гранулометрическим составам удовлетворяют требованиям ГОСТ 9128-2009, предъявляемым к смесям типа «A» марки II. На заявленных минеральных заполнителях и на серобитумном вяжущем готовили четыре состава асфальтобетонной смеси, приведенных в таблице 8.
Figure 00000008
Количество серобитумного вяжущего устанавливается сверх 100% минеральной части асфальтобетона.
Качество асфальтобетона определялось по ГОСТ 12801-98 и сравнивалось со свойствами асфальтобетона по ГОСТ 9128-2009 для III дорожно-климатической зоны (прототип).
Свойства асфальтобетона из указанных составов приводятся в таблице 9.
Figure 00000009
Как видно из таблицы 9, по пределу прочности при 20, 50, 0°C и водостойкости предлагаемые составы асфальтобетона имеют лучшие показатели, чем известные составы (по прототипу).

Claims (1)

  1. Асфальтобетонная смесь, включающая вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, отличающаяся тем, что она содержит указанное вяжущее, дополнительно включающее серу при соотношении серы с битумом 10-40:60-90, указанное серобитумное вяжущее в количестве 3,5-5,0 мас.% по отношению к минеральной части, в качестве минерального порошка - тонкодисперсные отвальные «хвосты» нейтрализации отходов металлургического завода, получаемые при очистке жидкой фазы пульпы отходов серосульфидной флотации медно-никелевого сульфидного концентрата от железа и цветных металлов, а в качестве щебня - известняковый щебень и указанного песка - песок из шлаков Надеждинского металлургического комбината при следующем соотношении компонентов, мас.%:
    Битум 2,7-4,0 сверх 100% Сера 0,35-1,8 сверх 100% Указанный щебень 50,5-60,0 Указанный шлаковый песок 33,5-41,3 Указанный минеральный порошок 5,5-10,0
RU2013143473/03A 2013-09-25 2013-09-25 Асфальтобетонная смесь RU2534861C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013143473/03A RU2534861C1 (ru) 2013-09-25 2013-09-25 Асфальтобетонная смесь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013143473/03A RU2534861C1 (ru) 2013-09-25 2013-09-25 Асфальтобетонная смесь

Publications (1)

Publication Number Publication Date
RU2534861C1 true RU2534861C1 (ru) 2014-12-10

Family

ID=53285687

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143473/03A RU2534861C1 (ru) 2013-09-25 2013-09-25 Асфальтобетонная смесь

Country Status (1)

Country Link
RU (1) RU2534861C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796629B1 (en) * 2017-02-27 2017-10-24 Saudi Arabian Oil Company Fire-resistant sulfur concrete
RU2637701C1 (ru) * 2017-01-11 2017-12-06 Владимир Петрович Кудрявцев Радиопоглощающая асфальтобетонная смесь и дорожное покрытие, выполненное из этой смеси
CN109095818A (zh) * 2018-07-06 2018-12-28 重庆交通大学 改善隧道运营空气质量的沥青基路面极性材料及制备方法
CN111266387A (zh) * 2020-02-04 2020-06-12 北京科技大学 一种道路沥青的回收方法
RU2732751C2 (ru) * 2018-06-29 2020-09-22 Общество с ограниченной ответственностью "Центр стратегических автодорожных исследований" Минерально-органический композит для защиты дорожных покрытий и способ его получения
RU2787268C1 (ru) * 2021-12-03 2023-01-09 Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Асфальтобетонная смесь, содержащая заполнитель из отходов металлургического производства и битумное вяжущее марки PG

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997355A (en) * 1974-03-18 1976-12-14 Chevron Research Company Sulfur composition
SU1323543A1 (ru) * 1984-10-31 1987-07-15 Государственный Дорожный Научно-Исследовательский Институт Способ приготовлени нефтеминеральной смеси
SU1565862A1 (ru) * 1988-07-05 1990-05-23 Государственный Дорожный Научно-Исследовательский Институт Способ приготовлени асфальтобетонной смеси
RU2074277C1 (ru) * 1996-04-26 1997-02-27 Андрей Михайлович Шевцов Асфальтобетонная смесь
RU2163610C2 (ru) * 1998-12-09 2001-02-27 Ооо Сп "Интер-S" Способ получения сероасфальтобетона
RU2276119C2 (ru) * 2004-01-16 2006-05-10 Норильский индустриальный институт Сырьевая смесь для изготовления строительных конструкций и изделий
RU2284304C2 (ru) * 2003-12-17 2006-09-27 Константин Анатольевич Чернов Способ получения серобитумного вяжущего
RU2452748C1 (ru) * 2010-12-17 2012-06-10 Общество с ограниченной ответственностью "ВСК-2000" (ООО "ВСК-2000") Способ получения серобитума

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997355A (en) * 1974-03-18 1976-12-14 Chevron Research Company Sulfur composition
SU1323543A1 (ru) * 1984-10-31 1987-07-15 Государственный Дорожный Научно-Исследовательский Институт Способ приготовлени нефтеминеральной смеси
SU1565862A1 (ru) * 1988-07-05 1990-05-23 Государственный Дорожный Научно-Исследовательский Институт Способ приготовлени асфальтобетонной смеси
RU2074277C1 (ru) * 1996-04-26 1997-02-27 Андрей Михайлович Шевцов Асфальтобетонная смесь
RU2163610C2 (ru) * 1998-12-09 2001-02-27 Ооо Сп "Интер-S" Способ получения сероасфальтобетона
RU2284304C2 (ru) * 2003-12-17 2006-09-27 Константин Анатольевич Чернов Способ получения серобитумного вяжущего
RU2276119C2 (ru) * 2004-01-16 2006-05-10 Норильский индустриальный институт Сырьевая смесь для изготовления строительных конструкций и изделий
RU2452748C1 (ru) * 2010-12-17 2012-06-10 Общество с ограниченной ответственностью "ВСК-2000" (ООО "ВСК-2000") Способ получения серобитума

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Смеси асфальтобетонные дорожные. Аэродромные . и асфальтобетон. ГОСТ 9128-2009, Москва, МНТКС, 2010. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637701C1 (ru) * 2017-01-11 2017-12-06 Владимир Петрович Кудрявцев Радиопоглощающая асфальтобетонная смесь и дорожное покрытие, выполненное из этой смеси
US9796629B1 (en) * 2017-02-27 2017-10-24 Saudi Arabian Oil Company Fire-resistant sulfur concrete
RU2732751C2 (ru) * 2018-06-29 2020-09-22 Общество с ограниченной ответственностью "Центр стратегических автодорожных исследований" Минерально-органический композит для защиты дорожных покрытий и способ его получения
CN109095818A (zh) * 2018-07-06 2018-12-28 重庆交通大学 改善隧道运营空气质量的沥青基路面极性材料及制备方法
CN111266387A (zh) * 2020-02-04 2020-06-12 北京科技大学 一种道路沥青的回收方法
RU2787268C1 (ru) * 2021-12-03 2023-01-09 Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Асфальтобетонная смесь, содержащая заполнитель из отходов металлургического производства и битумное вяжущее марки PG

Similar Documents

Publication Publication Date Title
RU2534861C1 (ru) Асфальтобетонная смесь
Moreno-Maroto et al. A study on the valorization of a metallic ore mining tailing and its combination with polymeric wastes for lightweight aggregates production
Taha et al. Use of cement bypass dust as filler in asphalt concrete mixtures
KR101438060B1 (ko) 매립회와 순환골재를 이용한 도로기층용 재생콘크리트 혼합물 및 그 제조방법
Osuya et al. Evaluation of sawdust ash as a partial replacement for mineral filler in asphaltic concrete
CN106882944A (zh) 一种盐渍土固化剂
Jaritngam et al. An investigation of lateritic soil cement for sustainable pavements
CN105174823A (zh) 一种沥青混凝土的填料及沥青混凝土
RU2460703C1 (ru) Асфальтобетонная смесь
RU2591938C1 (ru) Асфальтобетонная смесь
TW201307247A (zh) 互鎖磚
RU2613211C1 (ru) Асфальтобетонная смесь на основе модифицированного битума для устройства покрытий автомобильных дорог
KR101746271B1 (ko) 모래-황 모르타르로서 사용을 통한 황의 처리
RU2508261C1 (ru) Асфальтобетонная смесь
RU2403217C1 (ru) Асфальтобетонная смесь
RU2613068C1 (ru) Асфальтобетонная смесь на основе модифицированного битума для устройства покрытий автомобильных дорог
EP2686281A1 (de) Verfahren zur herstellung von bindemitteln
RU2377412C1 (ru) Твердеющая закладочная смесь
Almasi et al. Experimental evaluation of calcium chloride powder effect on the reduction of the pavement surface layer performance
JP5394163B2 (ja) 洗浄廃鋳物砂混合水硬性セメント、セメント系固化体の製造方法並びに大気中炭酸ガスの吸着方法
RU2183601C1 (ru) Минерало-органическое вяжущее вещество
RU2439025C1 (ru) Сырьевая смесь для изготовления строительных изделий и конструкций
US1505880A (en) Pavement composition
RU2205808C2 (ru) Асфальтобетонная смесь и способ ее получения
ES2737525B2 (es) Material de mortero u hormigon con residuos de extraccion de minerales metalicos y procedimiento de obtencion del mismo

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180926