RU2528848C1 - Способ и устройство для непрямой газификации биомассы с использованием водяного пара - Google Patents

Способ и устройство для непрямой газификации биомассы с использованием водяного пара Download PDF

Info

Publication number
RU2528848C1
RU2528848C1 RU2013107371/05A RU2013107371A RU2528848C1 RU 2528848 C1 RU2528848 C1 RU 2528848C1 RU 2013107371/05 A RU2013107371/05 A RU 2013107371/05A RU 2013107371 A RU2013107371 A RU 2013107371A RU 2528848 C1 RU2528848 C1 RU 2528848C1
Authority
RU
Russia
Prior art keywords
gasifier
biomass
water vapor
gas
synthetic gas
Prior art date
Application number
RU2013107371/05A
Other languages
English (en)
Other versions
RU2013107371A (ru
Inventor
Илун ЧЭНЬ
Яньфын ЧЖАН
Хунмин ТАН
Original Assignee
Саншайн Кайди Нью Энерджи Груп Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Саншайн Кайди Нью Энерджи Груп Ко., Лтд. filed Critical Саншайн Кайди Нью Энерджи Груп Ко., Лтд.
Publication of RU2013107371A publication Critical patent/RU2013107371A/ru
Application granted granted Critical
Publication of RU2528848C1 publication Critical patent/RU2528848C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/14Continuous processes using gaseous heat-carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/06Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials combined with spraying with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1665Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1693Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)

Abstract

Изобретение относится к химической промышленности и может быть использовано для получения синтетического газа. Измельченную биомассу подают в газификатор (6) с одновременной подачей азота (4) и высокотемпературного перегретого водяного пара. Биомассу подвергают осушке, удалению летучих веществ, пиролизу, газификации. Полученный неочищенный синтетический газ подают в распылительную башню (11), в которой производят его резкое охлаждение с конденсацией шлака и смолы, растворение оксидов щелочных металлов. Полученный первичный синтетический газ подвергают последовательным операциям охлаждения, удаления пыли, раскисления (14) и осушению (15). Изобретение позволяет получить чистый синтетический газ с высокой теплотворной способностью, не содержащий смолу и оксид щелочного металла. 2 н. и 8 з.п. ф-лы, 1 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к технологии преобразования горючих материалов в чистый и высокоэффективный синтетический газ и, более конкретно, к способу и системе для непрямой газификации биомассы с использованием водяного пара.
Предпосылки создания изобретения
Технология газификации горючих материалов была достигнута в результате разработки в прошедшем двадцатом столетии, особенно технология газификации горючего угля, которая была очень тщательно изучена. Исследователи успешно разработали способ газификации угля, который является широко применимым, высокоэффективным в газификации и исключает выброс загрязнений. Технология газификации биомассы, представленной, например, ветвями деревьев, соломой и другими сельскохозяйственными и лесными отходами, является новой широко используемой технологией в 21 столетии. Традиционная технология газификации биомассы включает: газификацию в неподвижном слое, газификацию в псевдоожиженном слое и двухстадийную газификацию, каждая из которых является технологией прямой газификации. Способы технологии прямой газификации характеризуются тем, что тепло, получаемое частью биомассы, подает источник энергии для газификации, причем воздух, насыщенный кислородом воздух или комбинация насыщенного кислородом воздуха и водяного пара действуют как окислитель в ходе реакции газификации. Однако исследования показывают, что технология прямой газификации биомассы имеет следующие недостатки.
Во-первых, компоненты и теплотворная способность топлив биомассы являются нестабильными, биомасса имеет низкую температуру воспламенения и быструю реакцию горения, таким образом, может иметь место взрыв. Поскольку часть участков перегревается и имеет место коксообразование, рабочую температуру газификатора очень трудно регулировать.
Во-вторых, когда воздух работает как окислитель, в котором содержание инертного газа N2 известно, приводит к более высокому содержанию N2, более низкому содержанию эффективного газа (CO + H2) и низкому отношению H2/CO, кроме того, теплотворная способность синтетического газа является низкой и нестабильной, которая поддерживается ниже 5000 кДж/Нм3 и слабо удовлетворяет необходимым требованиям для последующего промышленного использования.
В-третьих, когда насыщенный кислородом воздух работает как окислитель, хотя содержание N2 является относительно низким, необходимо дополнительное устройство разделения воздуха. Ввиду большой емкости и высокого энергопотребления устройства разделения воздуха такой способ значительно увеличивает производственные затраты.
В-четвертых, когда насыщенный кислородом воздух и водяной пар оба работают как окислители, хотя содержание N2 в синтетическом газе снижается, а содержание Н2 увеличивается, водяной пар, работающий как реакционная среда, по-прежнему потребляет большое количество тепловой энергии, плюс энергопотребление при разделении воздуха, производственные затраты способа приближаются к максимуму.
В-пятых, примерно 15-20% биомассы требуется для сжигания с целью обеспечения источника энергии для газификации, но в то же время большое количество CO2 получается при горении, соответственно, содержание целевого газа (CO + H2) снижается. Кроме того, высокотемпературный синтетический газ и смешанный воздух уносят большое количество тепла, и, таким образом, превращение тепловой энергии в химическую энергию значительно минимизируется, и эффективность охлажденного газа также снижается, которая обычно составляет ниже 70% и не выше 80% в исключительных случаях.
В-шестых, рабочая температура газификатора обычно регулируется в интервале 800-1200°C, при такой температуре газификация биомассы дает большое количество смолы, которая трудно удаляется, и слишком большое количество смол, агрегированное в устройстве и трубах, склонно вызывать их закупоривание и загрязнение.
В-седьмых, зола, получаемая при газификации биомассы, содержит значительное количество оксидов щелочных металлов, таких как K и Na, которые обычно составляют 20-40% мас. общей золы. Однако при температуре выше 800°C оксиды щелочных металлов склонны газифицироваться и смешиваться с синтетическим газом, что не только ухудшает свойства синтетического газа, но также повышает его сродство (адгезию) к трубам и устройствам вместе со смолами, приводя к значительной коррозии на устройствах и трубах.
Ввиду вышеуказанных существующих проблем технология прямой газификации биомассы является трудной для применения в практическом производстве. Таким образом, требуется способ газификации биомассы, который может применяться в промышленном производстве и обеспечивать экономические преимущества.
Краткое описание изобретения
Ввиду вышеуказанных проблем одной целью настоящего изобретения является создание способа и системы непрямой газификации биомассы с использованием водяного пара. Способ характеризуется легким регулированием, энергосбережением и низкой стоимостью; получаемый синтетический газ отличается высокой эффективностью, высокой теплотворной способностью и отсутствием смолы или оксидов щелочного металла.
Для достижения вышеуказанной цели предлагается способ непрямой газификации биомассы с использованием водяного пара. В способе используется высокотемпературный перегретый водяной пар в качестве окислителя и энергоносителя для преобразования биомассы в неочищенный синтетический газ в газификаторе, резкое охлаждение неочищенного синтетического газа в распылительной башне и, наконец, получение чистого синтетического газа. Способ включает следующие стадии:
a) измельчение биомассы, подачу биомассы в газификатор с одновременным распылением высокотемпературного перегретого водяного пара в газификаторе, регулирование газификатора в интервале рабочей температуры 1200-1600°C, полное контактирование биомассы с высокотемпературным перегретым водяным паром с осушкой, отделением летучих веществ, пиролизом и газификацией и получение неочищенного синтетического газа и золы. Поскольку рабочая температура газификатора выше температуры образования смолы, смола и кокс, полученные в процессе пиролиза, газифицируются, и неочищенный синтетический газ почти не содержит смол. Зола отводится из отвода золы газификатора, после охлаждения или отведения тепла зола направляется в хранилище золы для широкого применения.
b) направление неочищенного синтетического газа в распылительную башню, резкое охлаждение неочищенного синтетического газа распыляемой водой с охлаждением неочищенного синтетического газа до температуры 650-800°C. Ввиду того, что температура неочищенного синтетического газа после охлаждения ниже температуры сублимации оксидов щелочных металлов, содержащих K и Na, поскольку оксиды щелочных металлов легко растворяются в воде, шлак и незначительные количества смол в неочищенном синтетическом газе конденсируются, и оксиды щелочных металлов и часть кислотных газов растворяются в распыляемой воде, так что получается первичный синтетический газ, не содержащий или содержащий незначительные количества оксидов щелочных металлов.
c) охлаждение, удаление пыли, раскисление и осушка с превращением первичного синтетического газа в чистый синтетический газ. Операция охлаждения не только является необходимой в этом способе для получения синтетического газа, но также обеспечивает утилизацию большого количества тепла для широкого применения. Операция удаления пыли отделяет пыль от неочищенного синтетического газа и снижает концентрацию пыли газа до менее 50 мг/Нм3. Вредные газы, подобные H2S, COS, HCl, NH3 и HCN, удаляются в процессе раскисления. После осушки первичный синтетический газ превращается в чистый синтетический газ, который хранится для дальнейшего промышленного применения.
Измельченная на стадии a) биомасса имеет размер частиц менее 50 мм × 50 мм и водосодержание ниже 40%. Биомасса с такими размерами частиц и водосодержанием полностью контактирует с высокотемпературным перегретым водяным паром, так что операции осушки, отделения летучих веществ, пиролиза и выпаривания проводятся стабильно в рабочем режиме, и рабочая температура газификатора легко регулируется.
На стадии a) на вводе питания газификатора устанавливается атмосфера азота для предотвращения возможного воспламенения и взрыва, вызываемых утечкой газа из газификатора.
На стадии a) предпочтительная рабочая температура газификатора регулируется в интервале 1200-1400°C, и предпочтительное рабочее давление газификатора регулируется в интервале 105-109 кПа. Такой рабочий температурный интервал обеспечивает полный контакт биомассы с высокотемпературным перегретым водяным паром, которая полностью газифицируется с образованием неочищенного синтетического газа, почти не содержащего смол; в то же время энергопотребление максимально снижается и рабочие характеристики газификатора значительно улучшаются. Кроме того, газификатор работает при нормальном давлении, и другое устройство, работающее под давлением, не требуется, что обеспечивает снижение производственных затрат.
На стадии a) скорость распыления высокотемпературного перегретого водяного пара в газификаторе составляет 35-50 м/с, время удерживания неочищенного синтетического газа в газификаторе составляет 15-20 с, и скорость отведения неочищенного синтетического газа из газификатора составляет 15-20 м/с. Высокая скорость подачи высокотемпературного перегретого водяного пара в газификатор значительно улучшает контактирование с биомассой, тогда как относительно низкая скорость подачи неочищенного синтетического газа предотвращает агрегирование золы на выходе из газификатора и в газовых трубах.
На стадии b) предпочтительным средством охлаждения неочищенного синтетического газа является резкое охлаждение холодной водой, и температура неочищенного синтетического газа после резкого охлаждения снижается до 750-800°C, что ниже температуры сублимации оксидов щелочных металлов, таким образом, пыль, шлаки, незначительные количества смол и оксидов щелочных металлов отделяются и удаляются холодной водой, что обеспечивает удерживание максимально возможного количества тепловой энергии первичного синтетического газа, облегчая извлечение тепла на последующей операции охлаждения.
На стадии с) сначала первичный синтетический газ охлаждается до температуры 260-320°C, а затем проводятся операции очистки. Так как температура на выходе первичного синтетического газа из распылительной башни является довольно высокой, примерно 750-800°C, операция охлаждения проводится не только для последовательного улавливания пыли, раскисления и осушки, но также способствует использованию перепада температур 430-540°C для извлечения значительного количества тепла в первичном синтетическом газе, так что сбросовое тепло широко используется.
Система газификации биомассы с использованием водяного пара согласно вышеуказанному способу включает: емкость для хранения воды, насос подачи воды, теплообменник, нагреватель с факелом плазмы, газификатор и распылительную башню.
Емкость для хранения воды соединена с вводом воды теплообменника с помощью насоса подачи воды, отвод водяного пара теплообменника соединен с вводом водяного пара нагревателя с факелом плазмы, и отвод водяного пара нагревателя с факелом плазмы соединен с форсункой водяного пара газификатора.
Отвод золы газификатора соединен с вводом золы камеры охлаждения золы, отвод газа газификатора соединен с вводом газа распылительной башни, отвод газа которой соединен с вводом газа теплообменника, и отвод газа теплообменника соединен последовательно с пылесборником, башней раскисления и осушителем.
Нагреватель с факелом плазмы имеет преимущество в ультравысокотемпературном нагреве, быстром тепло- и массопереносе, высокой эффективности и регулируемой тепловой энергии, когда он используется для нагревания воды в емкости для хранения воды, высокотемпературный перегретый водяной пар может получаться эффективно, с высоким выходом и стабильно. Высокотемпературный перегретый водяной пар действует не только как окислитель, но также как энергоноситель, поэтому газификатор работает стабильно. Теплообменник эффективно снимает (отводит) большое количество тепла первичного синтетического газа. Вода в емкости для хранения воды перегревается и превращается в насыщенный водяной пар за счет значительного количества тепла, и насыщенный водяной пар затем направляется в нагреватель с факелом плазмы, таким образом, энергопотребление нагревателя с факелом плазмы снижается, и достигается полное использование тепловой энергии.
Азотное защитное устройство соединено с вводом питания газификатора, так что азотный изолирующий слой предотвращает утечку неочищенного синтетического газа из газификатора и сохраняет воздух снаружи газификатора, что предотвращает возможность воспламенения и взрыва и обеспечивает свойства неочищенного синтетического газа.
Множество форсунок водяного пара размещаются на газификаторе и располагаются на 3-4 уровнях высоты, и форсунки водяного пара каждого уровня размещены равномерно и тангенциально. Таким образом, высокотемпературный перегретый водяной пар распыляется в газификаторе на различных уровнях, и равномерное и стабильное температурное поле поддерживается на различных уровнях высоты газификатора, обеспечивая полный контакт между высокотемпературным перегретым водяным паром и биомассой.
На основе характеристик воды, золы, летучих веществ и температуры плавления золы биомассы, в комбинации с рабочими характеристиками газификатора, в способе по изобретению используется высокотемпературный перегретый водяной пар в большей степени, чем традиционный окислитель-воздух или насыщенный кислородом воздух, для осушки, удаления летучих веществ, пиролиза и газификации биомассы и используется распыляемая вода для охлаждения неочищенного синтетического газа. Преимущества настоящего изобретения суммированы ниже.
Во-первых, высокотемпературный перегретый водяной пар используется для непрямой газификации биомассы. В способе высокотемпературный перегретый водяной пар является не только окислителем, но также энергоносителем, поэтому воздух-окислитель или насыщенный кислородом воздух не требуется, что исключает устройство разделения воздуха с высоким энергопотреблением, и энергопотребление всего способа и общие производственные затраты значительно минимизируются.
Во-вторых, самовоспламенения не происходит в биомассе в процессе последовательных операций осушки, отделения летучих веществ, пиролиза и газификации, поэтому эффективно решаются проблемы традиционного способа газификации, такие как взрыв биомассы в газификаторе, локальное закоксовывание и трудности регулирования газификатора. Поскольку воздух или насыщенный кислородом воздух больше не требуются в реакции, синтетический газ имеет высокое отношение H2/CO и высокое содержание эффективного газа (CO + H2), которое составляет выше 85%, таким образом, теплотворная способность синтетического газа значительно улучшается, и использование синтетического газа намного шире.
В-третьих, преобразование биомассы из исходных материалов в первичный синтетический газ осуществляется последовательно в газификаторе и распылительной башне. Поскольку высокотемпературный перегретый водяной пар поддерживает рабочую температуру газификатора выше температуры газификации смолы, смола, пиролизуемая из биомассы, полностью превращается в неочищенный синтетический газ, и конверсия углерода является очень высокой. Ввиду того, что неочищенный синтетический газ охлаждается после резкого охлаждения холодной водой, не только шлаки охлаждаются с образованием частиц, но также все оксиды щелочных металлов растворяются в воде, так что в получаемом первичном синтетическом газе отсутствуют загрязнения, которые загрязняют устройства и трубы, вызывая их коррозию. Кроме того, весь способ является очень коротким, и конструкция является простой, поэтому способ очень удобен для реализации продукции партиями.
В-четвертых, нагреватель с факелом плазмы дает всю тепловую энергию, которая необходима для газификации биомассы перегретым водяным паром снаружи газификатора, тепловая энергия топлива биомассы полностью превращается в химическую энергию, и эффективность охлажденного газа составляет выше 88%, что на 8% выше, чем у традиционного.
В-пятых, нагреватель с факелом плазмы имеет высокую тепловую эффективность и регулируемую вводимую мощность, когда компоненты топлива биомассы изменяются, мощность нагревателя с факелом плазмы может регулироваться, что очень удобно для регулирования температуры высокотемпературного перегретого водяного пара и поддержания стабильной работы газификатора, и обеспечиваются стабильный выпуск первичного синтетического газа и стабильные свойства.
Испытания показали, что способ газификации биомассы с использованием водяного пара применим для различных видов топлив биомассы и особенно применим в отраслях комбинации совмещенного цикла газификации биомассы и жидкого топлива биомассы.
Краткое описание чертежа
На чертеже представлена структурная диаграмма системы газификации биомассы с использованием водяного пара.
Подробное описание вариантов осуществления изобретения
Способ и система газификации биомассы с использованием водяного пара конкретно описываются со ссылкой на прилагаемый чертеж.
Как показано на чертеже, система непрямой газификации биомассы с использованием водяного пара включает: ленточный конвейер 1 для транспортирования биомассы, бункер 2, шнековый питатель 3, газификатор 6 для преобразования биомассы в неочищенный синтетический газ, распылительную башню 11 для резкого охлаждения неочищенного синтетического газа, нагреватель 5 с факелом плазмы для подачи высокотемпературного перегретого водяного пара в газификатор 6, емкость 10 для хранения воды и насос 9 подачи воды для обеспечения источника воды для нагревателя 5 с факелом плазмы, теплообменник 12 для широкого использования тепловой энергии и пылесборник 13, башню 14 раскисления и осушитель 15 для последующей очистки синтетического газа.
Выходной конец ленточного конвейера 1 размещен выше ввода в бункер 2, отвод из бункера 2 соединен с вводом питания шнекового питателя 3, и отвод питания из шнекового питателя 3 соединен с вводом питания газификатора 6.
В качестве ключевого устройства для преобразования биомассы в синтетический газ газификатор 6 имеет корпус и облицовку. Корпус имеет рубашку воздушного охлаждения или водяного охлаждения и является теплоизолированным при обычном давлении; облицовка выполнена из материала, являющегося тугоплавким, антикоррозионным и изоляционным. Ввод питания газификатора 6 расположен на верхней части, или верхнем конце, и число вводов питания составляет два или четыре в соответствии с производительностью, так что биомасса может равномерно подаваться в газификатор 6, и в газификаторе 6 поддерживается стабильный газовый поток. Азотное защитное устройство 4 расположено на вводе питания газификатора 6 с образованием азотного изолирующего слоя, который может эффективно предотвращать контактирование неочищенного синтетического газа с атмосферой. Множество форсунок водяного пара размещаются на газификаторе 6 и располагаются на 3-4 уровнях высоты, и форсунки водяного пара каждого уровня размещены равномерно и тангенциально. Таким образом, высокотемпературный перегретый водяной пар в газификаторе 6 образует равномерное и стабильное поле, которое полностью контактирует и смешивается с биомассой. Отвод золы расположен на дне газификатора 6, и могут использоваться один или два отвода золы в соответствии с производительностью, зола, выгружаемая из газификатора 6, находится в жидком состоянии. Отвод золы соединен с камерой 7 охлаждения золы, в которой жидкая зола переходит в твердое состояние. Отвод газа газификатора 6 расположен на верхней части или в нижней части и соединен трубой с вводом газа распылительной башни.
Распылительная башня 11 является ключевым устройством для резкого охлаждения неочищенного синтетического газа, в котором неочищенный синтетический газ непосредственно промывается циркулирующей охлаждающей водой с удалением шлаков, оксидов щелочных металлов и других примесей из неочищенного синтетического газа. Отвод газа распылительной башни 11 соединен с вводом газа теплообменника 12; и отвод газа теплообменника 12 соединен последовательно с пылесборником 13, башней 14 раскисления и осушителями 15. Отвод газа осушителей 15 соединен с емкостью 16 хранения газа для хранения чистого синтетического газа.
Высокотемпературный перегретый водяной пар, распыляемый в газификаторе 6, образуется из мягкой или обессоленной воды в емкости 10 для хранения воды. Отвод из емкости 10 для хранения воды соединен с вводом воды теплообменника 12 с помощью насоса 9 подачи воды. Теплообменник 12 обычно выбран из бойлера со скрепером. Отвод водяного пара теплообменника 12 соединен с вводом пара нагревателя 5 с факелом плазмы, а отвод пара нагревателя 5 с факелом плазмы соединен трубами с форсунками водяного пара газификатора 6.
Система также включает хранилище 8 золы, зола из сборника 7 золы и распылительной башни 11 направляется в хранилище 8 золы ручным или механизированным способом.
Способ газификации биомассы с использованием водяного пара описывается следующим образом.
A) Измельченная биомасса направляется последовательно в газификатор 6 с помощью ленточного конвейера 1, бункера 2 и шнекового питателя 3 с одновременной подачей азота из азотного защитного устройства 4 на ввод питания газификатора 6. Когда биомассой является серая солома, например ветви и корни деревьев, размер частиц биомассы регулируется ниже 50 мм × 50 мм, и водосодержание биомассы регулируется ниже 40% мас. Когда биомассой является желтая солома, например шелуха обмолоченного зерна, солома, стебли злаков, размер частиц биомассы может быть больше 50 мм × 50 мм.
B) Обессоленная вода выпускается из емкости 10 для хранения воды и подается на ввод воды теплообменника 12 с помощью насоса 9 подачи воды, и обессоленная вода обменивается теплом с первичным синтетическим газом, поступающим от ввода газа теплообменника, и значительное количество тепла экстрагируется обессоленной водой, в процессе чего получается насыщенный водяной пар с 0,4-0,6 МПа. Насыщенный водяной пар выпускается из отвода водяного пара теплообменника 12 в нагреватель 5 с факелом плазмы и преобразуется в высокотемпературный перегретый водяной пар.
C) Высокотемпературный перегретый водяной пар, получаемый высокотемпературным нагревателем 5 с факелом плазмы, находится при температуре 1200-1600°C и подается в газификатор 6 форсунками водяного пара. Рабочими параметрами газификатора 6 являются следующие: температура 1200-1400°C и давление 105-109 кПа. Скорость подачи высокотемпературного перегретого водяного пара в газификатор регулируется в интервале 35-50 м/с, так что биомасса полностью контактирует с перегретым водяным паром в процессе опускания, после операций осушки, отделения летучих веществ, пиролиза и выпаривания получаются неочищенный синтетический газ и жидкая зола. Неочищенный синтетический газ выдерживается в газификаторе 6 в течение 15-20 с, и скорость отведения неочищенного синтетического газа из газификатора регулируется в интервале 15-20 м/с.
D) Жидкая зола, получаемая в газификаторе 6, находится при температуре 1200-1400°C и выпускается через отвод золы газификатора 6 в камеру 7 охлаждения золы. После извлечения тепла жидкая зола охлаждается до температуры ниже 150°C и подается в хранилище 8 золы для применения в различных отраслях. Неочищенный синтетический газ, получаемый из газификатора 6, находится при температуре 1200-1400°C и направляется по трубам в распылительную башню 11. После промывки холодной водой температура неочищенного синтетического газа падает до 750-800°C, при этом высокотемпературные шлаки превращаются в частицы, и оксиды щелочных металлов и часть кислотных газов растворяются в холодной воде и выгружаются из распылительной башни 11, так что получается первичный синтетический газ. Холодная вода в распылительной башне 11 может рециклироваться после осаждения и фильтрации, и осадки направляются в хранилище 8 золы.
E) Первичный синтетический газ из распылительной башни 11 поступает в теплообменник 12 через ввод газа после удаления шлаков, так что кокс, зола и коррозия эффективно устраняются в теплообменнике 12. В этот момент первичный синтетический газ находится по-прежнему при температуре 750-800°C, после извлечения значительного количества тепла обессоленной водой температура падает до 260-320°C. Первичный синтетический газ подается из отвода газа теплообменника 12 в пылесборник 13, в котором пыль удаляется из первичного синтетического газа, и первичный синтетический газ на выходе из пылесборника 13 имеет концентрацию пыли не более 50 мг/Нм3.
F) После удаления пыли первичный синтетический газ направляется в башню 14 раскисления, в которой удаляются вредные газы, подобные H2S, COS, HCl, NH3 и HCN.
G) После раскисления первичный синтетический газ поступает в осушитель 15, в котором удаляется вода, и получается чистый синтетический газ. Чистый синтетический газ направляется по трубам в емкость 16 хранения газа и хранится для дальнейшего промышленного применения.
После многоразовых испытаний и определения данных главные компоненты и характеристики чистого синтетического газа показаны в таблице 1.
Таблица 1
Номер Компонент Единица Значение
1 CO % об. 25-35
2 H2 % об. 40-50
3 N2+Ar % об. 1,6-1,8
4 CO2 % об. 15-20
5 CH2 % об. 5-6
6 CnHm % об. <2
7 Теплотворная способность синтетического газа (LHV) МДж/Нм3 12,5-13,4
8 Эффективность охлажденного газа % -88,1
Как показано в таблице 1, чистый синтетический газ, полученный данным способом, содержит 85% общего содержания (СО + H2), соотношение H2/CO составляет более 1, теплотворная способность синтетического газа составляет 12,5-13,4 МДж/Нм3, и эффективность охлажденного газа составляет примерно 88%. Таким образом, синтетический газ может принести большую экономическую выгоду и является особенно применимым в отраслях комбинации совмещенного цикла газификации биомассы и жидкого топлива биомассы.

Claims (10)

1. Способ газификации биомассы с использованием водяного пара, в котором используется высокотемпературный перегретый водяной пар в качестве окислителя и энергоносителя с преобразованием биомассы в неочищенный синтетический газ в газификаторе, резким охлаждением неочищенного синтетического газа в распылительной башне и получением в результате чистого синтетического газа, включающий:
a) измельчение биомассы, подачу биомассы в газификатор с одновременным распылением высокотемпературного перегретого водяного пара в газификаторе, регулирование газификатора в интервале рабочей температуры 1200-1600°C, полное контактирование биомассы с высокотемпературным перегретым водяным паром с осушкой, отделением летучих веществ, пиролизом, газификацией и получением неочищенного синтетического газа и золы;
b) подачу неочищенного синтетического газа в распылительную башню, резкое охлаждение неочищенного синтетического газа распыленной водой с охлаждением неочищенного синтетического газа до температуры 650-800°C, конденсирование шлака и смолы, растворение оксидов щелочных металлов и части кислотных газов и получение первичного синтетического газа; и
c) охлаждение, удаление пыли, раскисление и осушку с превращением первичного синтетического газа в чистый синтетический газ.
2. Способ по п.1, отличающийся тем, что биомасса, измельченная на стадии a), имеет размер частиц не более 50 мм × 50 мм и водосодержание не более 40% мас.
3. Способ по п.1 или 2, отличающийся тем, что на стадии a) на вводе питания газификатора предусматривается атмосфера азота.
4. Способ по п.1 или 2, отличающийся тем, что рабочая температура газификатора на стадии a) регулируется в интервале 1200-1400°C, и рабочее давление газификатора регулируется в интервале 105-109 кПа.
5. Способ по п.4, отличающийся тем, что на стадии a) скорость подачи высокотемпературного перегретого водяного пара в газификатор составляет 35-50 м/с; время удерживания неочищенного синтетического газа в газификаторе составляет 15-20 с, и скорость отведения неочищенного синтетического газа из газификатора составляет 15-20 м/с.
6. Способ по п.1 или 2, отличающийся тем, что на стадии b) неочищенный синтетический газ резко охлаждается водой и охлаждается до температуры 750-800°C.
7. Способ по п.1 или 2, отличающийся тем, что на стадии c) первичный синтетический газ охлаждается до температуры 260-320°C.
8. Система газификации биомассы с использованием водяного пара в соответствии со способом по п.1, которая включает:
емкость (10) для хранения воды;
насос (9) подачи воды;
теплообменник (12);
нагреватель (5) с факелом плазмы;
газификатор (6); и
распылительную башню (11),
отличающаяся тем, что
емкость (10) для хранения воды соединена с вводом воды теплообменника (12) с помощью насоса (9) подачи воды;
отвод водяного пара теплообменника (12) соединен с вводом водяного пара нагревателя (5) с факелом плазмы;
отвод водяного пара нагревателя (5) с факелом плазмы соединен с форсункой водяного пара газификатора (6);
отвод золы газификатора (6) соединен с вводом золы камеры (7) охлаждения золы;
отвод газа газификатора (6) соединен с вводом газа распылительной башни (11);
отвод газа распылительной башни (11) соединен с вводом газа теплообменника (12); и
отвод газа теплообменника (12) соединен последовательно с пылесборником (13), башней (14) раскисления и осушителем (15).
9. Система по п. 8, отличающаяся тем, что азотное защитное устройство (4) соединено с вводом питания газификатора (6).
10. Система по п.7 или 8, отличающаяся тем, что множество форсунок водяного пара размещено в газификаторе (6) и расположено на 3-4 уровнях высоты, и форсунки водяного пара каждого уровня размещены равномерно и тангенциально.
RU2013107371/05A 2010-07-20 2011-07-05 Способ и устройство для непрямой газификации биомассы с использованием водяного пара RU2528848C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010234086.6 2010-07-20
CN2010102340866A CN101906324B (zh) 2010-07-20 2010-07-20 生物质水蒸汽间接气化工艺及其设备
PCT/CN2011/076843 WO2012010051A1 (zh) 2010-07-20 2011-07-05 生物质水蒸汽间接气化工艺及其设备

Publications (2)

Publication Number Publication Date
RU2013107371A RU2013107371A (ru) 2014-08-27
RU2528848C1 true RU2528848C1 (ru) 2014-09-20

Family

ID=43261912

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013107371/05A RU2528848C1 (ru) 2010-07-20 2011-07-05 Способ и устройство для непрямой газификации биомассы с использованием водяного пара

Country Status (15)

Country Link
US (2) US9290707B2 (ru)
EP (1) EP2597136B1 (ru)
JP (1) JP5627777B2 (ru)
KR (1) KR101472855B1 (ru)
CN (1) CN101906324B (ru)
AP (1) AP3767A (ru)
AU (1) AU2011282340B2 (ru)
BR (1) BR112013001318B1 (ru)
CA (1) CA2805966C (ru)
MX (1) MX2013000838A (ru)
MY (1) MY161951A (ru)
RU (1) RU2528848C1 (ru)
SG (1) SG188946A1 (ru)
TR (1) TR201300597T1 (ru)
WO (1) WO2012010051A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170523U1 (ru) * 2015-08-21 2017-04-27 Борис Владимирович Романов Энергопроизводящая печь длительного горения "вартовчанка"
RU2741004C1 (ru) * 2020-04-24 2021-01-22 Леонид Григорьевич Кузнецов Комплекс для переработки твердых органических отходов
US11984237B1 (en) 2023-07-20 2024-05-14 Mikhail Aleksandrovich Meshchaninov Source of charged particles
US11986791B1 (en) 2023-07-20 2024-05-21 Mikhail Aleksandrovich Meshchaninov Reactor for waste treatment

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906324B (zh) * 2010-07-20 2013-04-03 武汉凯迪控股投资有限公司 生物质水蒸汽间接气化工艺及其设备
CN101906326B (zh) * 2010-07-20 2013-03-13 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化工艺及其设备
CN101906325B (zh) * 2010-07-20 2013-09-04 阳光凯迪新能源集团有限公司 生物质低温裂解高温气化工艺及其设备
CN102167986B (zh) * 2011-03-17 2013-04-17 开滦能源化工股份有限公司 提供热电气的公用工程岛
CN102311810A (zh) * 2011-08-22 2012-01-11 中南大学 一种生物质高温熔融气化的方法及其装置
MY167593A (en) * 2012-06-26 2018-09-20 Lummus Technology Inc Two stage gasification with dual quench
US9102885B2 (en) * 2013-07-26 2015-08-11 Renmatix, Inc. Method of transporting viscous slurries
CN106010671B (zh) * 2016-06-29 2021-07-30 华中农业大学 一种集约型生物质热解气化燃气净化装置
CN106381164B (zh) * 2016-11-25 2018-11-13 刘绥成 生物质资源处理方法
CN106861328B (zh) * 2017-03-16 2019-04-09 广东正鹏生物质能源科技有限公司 一种生物质气化燃烧装置净化系统
CN107011949A (zh) * 2017-06-01 2017-08-04 河北凯跃化工集团有限公司 一种提高半水煤气除尘质量的方法及装置
ES2824506T3 (es) * 2017-12-18 2021-05-12 Clariant Int Ltd Método para la producción de gas de síntesis
CN108102725B (zh) * 2018-01-02 2022-03-08 武汉恩孚水务有限公司 一种热解气化炉的热解速度控制方法
CN109370653A (zh) * 2018-10-29 2019-02-22 董林妤 一种生物质气化合成气的制取方法及其设备
CN110643394A (zh) * 2019-10-28 2020-01-03 济南黄台煤气炉有限公司 一种带压富氧循环流化床气化工艺方法与系统
CN111019711B (zh) * 2019-12-16 2021-09-14 武汉科技大学 一种生活垃圾热裂解气化工艺
KR102444094B1 (ko) * 2020-02-28 2022-09-16 연세대학교 원주산학협력단 바이오원유 가스화 공정에서의 합성가스의 내 타르저감 및 합성가스의 합성가스의 조성물을 조절할 수 있는 방법 및 그 장치
CN112377915A (zh) * 2020-10-21 2021-02-19 南京德仓生态技术有限公司 一种有机废弃物气化处理系统及方法
CN112708477B (zh) * 2021-01-05 2023-07-04 昆明理工大学 提高高炉煤气燃烧热值同时脱除有机硫和无机硫的方法
KR102601811B1 (ko) * 2022-11-16 2023-11-14 주식회사 비츠로넥스텍 건조 및 전처리를 포함하는 플라즈마 탄화 시스템 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477090A (zh) * 2003-05-16 2004-02-25 中国科学院广州能源研究所 生物质间接液化一步法合成二甲醚的方法
RU2233312C1 (ru) * 2002-12-16 2004-07-27 Государственное унитарное предприятие Научно-производственное объединение "Гидротрубопровод" Способ получения синтез-газа из водоугольной суспензии
CN1730609A (zh) * 2005-08-24 2006-02-08 王华峰 一种生物质热解气化、净化方法
RU2346026C2 (ru) * 2007-04-06 2009-02-10 Общество с ограниченной ответственностью "Альтернативные энергетические системы" Способ получения синтез-газа и полукокса пиролизом биомассы
CA2716387A1 (en) * 2008-02-28 2009-09-03 Krones Ag Method and device for converting carbonaceous raw materials

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001857A1 (de) * 1977-10-31 1979-05-16 PPS Polyvalent Patent Service AG, Anlage und Verfahren zur kontinuierlichen Erzeugung von hochwertigem Generator- und Wassergas
AU516020B2 (en) * 1978-05-31 1981-05-14 Texaco Development Corp. Utilizing sensible heat in partial oxidation of fuels
JP3989192B2 (ja) * 2001-06-05 2007-10-10 Jfeエンジニアリング株式会社 ガス化改質方式における廃棄物中の塩素分の処理方法
JP2003147373A (ja) * 2001-11-13 2003-05-21 Eco Technos:Kk プラズマによる有機物のガス化方法
JP3801539B2 (ja) * 2002-07-17 2006-07-26 三菱重工業株式会社 粉粒体供給装置
WO2004048851A1 (en) * 2002-11-25 2004-06-10 David Systems Technology, S.L. Integrated plasma-frequency induction process for waste treatment, resource recovery and apparatus for realizing same
JP4255279B2 (ja) * 2002-12-27 2009-04-15 独立行政法人科学技術振興機構 固体燃料ガス化システム
TW200519072A (en) * 2003-08-21 2005-06-16 Pearson Technologies Inc Process and apparatus for the production of useful products from carbonaceous feedstock
US7452392B2 (en) * 2003-11-29 2008-11-18 Nick Peter A Process for pyrolytic heat recovery enhanced with gasification of organic material
EP1888717A4 (en) * 2005-06-03 2010-09-01 Plascoenergy Ip Holdings Slb SYSTEM FOR CONVERTING COAL TO A GAS OF A SPECIFIED COMPOSITION
CA2610806C (en) * 2005-06-03 2013-09-17 Plasco Energy Group Inc. A system for the conversion of carbonaceous feedstocks to a gas of a specified composition
GB2423079B (en) * 2005-06-29 2008-11-12 Tetronics Ltd Waste treatment process and apparatus
DE102006007458B4 (de) * 2006-02-17 2010-07-08 Native Power Solutions Gmbh & Co. Kg Verfahren und Vorrichtung zum Vergasen von kohlenstoffhaltigem Material sowie Vorrichtung zur Erzeugung von elektrischer Energie
CN101479020B (zh) * 2006-05-05 2012-07-18 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 气体调整系统
NZ573217A (en) * 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
CN1869157A (zh) * 2006-06-21 2006-11-29 广西大学 一种用木质纤维素类生物质制取可燃气体的方法
CN201006868Y (zh) * 2006-12-30 2008-01-16 中国石油大学(北京) 一种煤和生物质多射流复合式流化床气化装置
US7833512B2 (en) * 2007-01-16 2010-11-16 Peter Pulkrabek Production of synthesis gas from biomass and any organic matter by reactive contact with superheated steam
US9074152B2 (en) * 2007-09-12 2015-07-07 General Electric Company Plasma-assisted waste gasification system
CN101191060B (zh) * 2007-11-23 2011-04-27 合肥天焱绿色能源开发有限公司 一种由固体生物质制备合成气的方法和设备
US20110041404A1 (en) * 2008-03-14 2011-02-24 Atomic Energy Council - Institute Of Nuclear Energy Research Plasma-based apparatus for gasifying bio-waste into synthetic gas
US8100996B2 (en) * 2008-04-09 2012-01-24 Velocys, Inc. Process for upgrading a carbonaceous material using microchannel process technology
US9150802B2 (en) * 2009-06-09 2015-10-06 Sundrop Fuels, Inc. Systems and methods for an indirect radiation driven gasifier reactor and receiver configuration
EP2452123A1 (en) * 2009-07-06 2012-05-16 Peat International, INC. Apparatus for treating waste
US20110162278A1 (en) * 2010-01-06 2011-07-07 General Electric Company System for removing fine particulates from syngas produced by gasifier
US8592492B2 (en) * 2010-03-08 2013-11-26 Praxair Technology, Inc. Using fossil fuels to increase biomass-based fuel benefits
US8667914B2 (en) * 2010-05-07 2014-03-11 Advanced Plasma Power Limited Waste treatment
CN201770674U (zh) * 2010-07-20 2011-03-23 武汉凯迪控股投资有限公司 生物质水蒸气间接气化设备
CN101906324B (zh) * 2010-07-20 2013-04-03 武汉凯迪控股投资有限公司 生物质水蒸汽间接气化工艺及其设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2233312C1 (ru) * 2002-12-16 2004-07-27 Государственное унитарное предприятие Научно-производственное объединение "Гидротрубопровод" Способ получения синтез-газа из водоугольной суспензии
CN1477090A (zh) * 2003-05-16 2004-02-25 中国科学院广州能源研究所 生物质间接液化一步法合成二甲醚的方法
CN1730609A (zh) * 2005-08-24 2006-02-08 王华峰 一种生物质热解气化、净化方法
RU2346026C2 (ru) * 2007-04-06 2009-02-10 Общество с ограниченной ответственностью "Альтернативные энергетические системы" Способ получения синтез-газа и полукокса пиролизом биомассы
CA2716387A1 (en) * 2008-02-28 2009-09-03 Krones Ag Method and device for converting carbonaceous raw materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170523U1 (ru) * 2015-08-21 2017-04-27 Борис Владимирович Романов Энергопроизводящая печь длительного горения "вартовчанка"
RU2741004C1 (ru) * 2020-04-24 2021-01-22 Леонид Григорьевич Кузнецов Комплекс для переработки твердых органических отходов
US11984237B1 (en) 2023-07-20 2024-05-14 Mikhail Aleksandrovich Meshchaninov Source of charged particles
US11986791B1 (en) 2023-07-20 2024-05-21 Mikhail Aleksandrovich Meshchaninov Reactor for waste treatment

Also Published As

Publication number Publication date
CA2805966A1 (en) 2012-01-26
BR112013001318B1 (pt) 2018-12-04
KR101472855B1 (ko) 2014-12-15
KR20130048778A (ko) 2013-05-10
US20160145514A1 (en) 2016-05-26
AP3767A (en) 2016-07-31
CA2805966C (en) 2019-01-15
JP5627777B2 (ja) 2014-11-19
EP2597136A1 (en) 2013-05-29
EP2597136A4 (en) 2014-01-08
CN101906324B (zh) 2013-04-03
SG188946A1 (en) 2013-05-31
US9290707B2 (en) 2016-03-22
MY161951A (en) 2017-05-15
AU2011282340A1 (en) 2013-02-28
US20130125463A1 (en) 2013-05-23
JP2013531121A (ja) 2013-08-01
EP2597136B1 (en) 2018-10-24
AU2011282340B2 (en) 2014-09-25
CN101906324A (zh) 2010-12-08
WO2012010051A1 (zh) 2012-01-26
TR201300597T1 (tr) 2013-10-21
AP2013006726A0 (en) 2013-02-28
RU2013107371A (ru) 2014-08-27
US9822319B2 (en) 2017-11-21
MX2013000838A (es) 2013-06-28

Similar Documents

Publication Publication Date Title
RU2528848C1 (ru) Способ и устройство для непрямой газификации биомассы с использованием водяного пара
RU2526387C1 (ru) Способ и устройство для низкотемпературного пиролиза биомассы и высокотемпературной газификации биомассы
RU2515307C1 (ru) Способ и устройство для пиролиза и газификации биомассы с использованием двух взаимно соединенных печей
US9458398B2 (en) Heat recovery systems for biomass gasification systems
CN201770674U (zh) 生物质水蒸气间接气化设备
CN201770675U (zh) 生物质双炉连体裂解气化设备
CN201737906U (zh) 生物质低温裂解高温气化设备

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200706