RU2522902C1 - Люминесцентный сенсор на пары аммиака - Google Patents

Люминесцентный сенсор на пары аммиака Download PDF

Info

Publication number
RU2522902C1
RU2522902C1 RU2012151750/28A RU2012151750A RU2522902C1 RU 2522902 C1 RU2522902 C1 RU 2522902C1 RU 2012151750/28 A RU2012151750/28 A RU 2012151750/28A RU 2012151750 A RU2012151750 A RU 2012151750A RU 2522902 C1 RU2522902 C1 RU 2522902C1
Authority
RU
Russia
Prior art keywords
ammonia
quantum dots
sample
embedded
pores
Prior art date
Application number
RU2012151750/28A
Other languages
English (en)
Other versions
RU2012151750A (ru
Inventor
Анвар Саматович Баймуратов
Александр Васильевич Баранов
Михаил Александрович Баранов
Кирилл Вадимович Богданов
Андрей Викторович Вениаминов
Галина Николаевна Виноградова
Юлия Александровна Громова
Виктор Валерьевич Захаров
Михаил Юрьевич Леонов
Александр Петрович Литвин
Ирина Владимировна Мартыненко
Владимир Григорьевич Маслов
Мария Викторовна Мухина
Анна Олеговна Орлова
Пётр Сергеевич Парфёнов
Владимир Анатольевич Полищук
Вадим Константинович Турков
Елена Владимировна Ушакова
Анатолий Валентинович Фёдоров
Сергей Александрович Черевков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики"
Priority to RU2012151750/28A priority Critical patent/RU2522902C1/ru
Publication of RU2012151750A publication Critical patent/RU2012151750A/ru
Application granted granted Critical
Publication of RU2522902C1 publication Critical patent/RU2522902C1/ru

Links

Images

Abstract

Изобретение предназначено для обнаружения и определения концентрации паров аммиака в атмосфере или пробе воздуха. Сенсор включает в себя полупроводниковые нанокристаллы (квантовые точки), внедренные в пристеночный слой трековых пор полиэтилентерефталатных мембран, при этом сами поры остаются пустыми. В присутствии в пробе воздуха паров аммиака молекулы аммиака связываются с поверхностью квантовых точек, в результате чего интенсивность люминесценции квантовых точек уменьшается. Изобретение решает задачи повышения чувствительности, точности определения концентрации паров аммиака, срока эксплуатации и упрощения изготовления сенсора. 5 ил., 1 пр.

Description

Изобретение относится к устройствам и материалам для обнаружения и определения концентрации паров аммиака в атмосфере или пробе воздуха (химическим сенсорам) и может быть использовано в медицине, биологии, экологии и различных отраслях промышленности.
Известны «Сенсоры на аммиак», основанные на электрохимических методах детектирования паров аммиака, где наблюдается изменение сопротивления токопроводящего материала или электролита в результате его взаимодействия с молекулами аммиака (Патент США №5252292, МПК G01N 27/04, заявка 524562, дата приоритета 17.05.1990, дата публикации 12.10.1993,) [1], (Патент США №36495055, МПК G01N 27/30, заявка 803781, дата приоритета 03.03.1969, дата публикации 14.02.1972) [2]. Недостатками данных устройств являются наличие исходного сигнала (электрического сопротивления) от матрицы в отсутствие аналита - невозможна реализация нуль-метода, достаточно узкий динамический диапазон чувствительности (20-100 млн-1), чувствительность уровня сигнала к условиям окружающей среды (температуры и влажности воздуха), невозможность дистанционной регистрации сигнала.
Известны сенсоры на пары аммиака, основанные на изменении электронного спектра поглощения полимерной пленки при контакте с молекулами аммиака «Детектор аммиака основанный на полианилине» (Патент США №US 6406669 B1, МПК G01N 27/77, заявка 09/760,121, дата приоритета 12.01.2001, дата публикации 18.06.2002) [3]. Такой сенсор обладает низкой инерционностью и характеризуется линейным откликом в широком диапазоне концентраций: от 180 до 18000 млн-1. Известны колорометрические газовые сенсоры на пары аммиака, на основе гидрофобной микропористой мембраны с внедренным органическим красителем, взаимодействующим с молекулами аммиака «Сенсор на аммиака на основе гидрофобной мембране» (Патент США №US 2003/0113932 А1, МПК G01N 21/77, заявка 10/024670, дата приоритета 14.12.2001, дата публикации 19.06.2003) [4]. Однако сенсоры, основанные на абсорбционных методах детектирования, на несколько порядков уступают в чувствительности детектирующим устройствам, основанным на изменении люминесцентного сигнала и, как следствие, принципиально обладают значительно худшей чувствительностью по сравнению с люминесцентными сенсорами.
Наиболее близок к заявляемому изобретению и принят в качестве прототипа сенсор на пары аммиака, содержащий рН-чувствительный флуорофор, изменяющий интенсивность люминесценции в присутствии молекул аммиака за счет депротонации флуорофора, внедренный в гидрофобную полимерную мембрану, проницаемую для молекул аммиака «Гидрофобная флуоресцентная полимерная мембрана для детектирования аммиака» (Патент США №6013529, МПК G01N 33/00, заявка 08/906711, дата приоритета 05.08.1997, дата публикации 11.01.2000) [5]. Прототип имеет следующие недостатки.
1. Необходимость тщательного подбора полимера, при внедрении в который молекул органического флуорофора не будет происходить депротонирование последнего.
2. Достаточно сложный технологически емкий процесс изготовления полимерной матрицы, в которой молекулы органического флуофора должны быть распределены равномерно по всему объему матрицы в изолированном друг от друга состоянии.
3. Органические флуорофоры имеют низкую фотостабильность и, как следствие, изменение люминесцентного отклика от матрицы с внедренным органическим флуорофором может быть связано как с наличием молекул аммиака, так и с фотодеградацией самого флуорофора. Данное обстоятельство принципиально снижает точность детектирования отклика от сенсорного элемента и, соответственно, приводит к снижению его чувствительности.
Решается задача повышения чувствительности и срока эксплуатации при упрощении технологии изготовления сенсора.
Сущность предлагаемого изобретения заключается в том, что в качестве флуорофора используются ярко люминесцирующие полупроводниковые нанокристалы сферической формы (квантовые точки), интенсивность люминесценции которых уменьшается при адсорбции молекул аммиака на поверхность квантовых точек пропорционально концентрации аммиака в пробе. Квантовые точки внедрены в пристеночный слой пор полиэтилентерефталатных трековых мембран таким образом, что сами поры остаются свободными, что позволяет прокачивать через образец пробу воздуха и, соответственно, снизить порог чувствительности сенсора.
Предлагаемый сенсор для детектирования паров аммиака имеет следующие преимущества:
1. Повышение чувствительности и точности определения концентрации паров аммиака за счет возможности прокачивания через сенсорный элемент большого объема воздушной пробы, содержащей пары аммиака. Данное условие достигается тем, что квантовые точки внедряются в пристеночный слой сквозных пор трековой мембраны, а сами поры остаются свободными. Очевидно, что принудительное прокачивание большого объема анализируемой пробы воздуха будет приводить к снижению нижней границы обнаружимости паров аммиака по сравнению с сенсорными элементами на основе полимерных мембран, не имеющих сквозных трековых пор нанометрового или микронного диаметра.
2. Увеличенный срок эксплуатации сенсорного элемента, что обусловлено лучшей фотостабильностью квантовых точек по сравнению с фотостабильностью органических флуорофоров.
3. Упрощение технологии изготовления сенсора заключается в том, что для создания сенсорного элемента, чувствительного к парам аммиака, достаточно пропитать раствором гидрофобных полупроводниковых квантовых точек полиэтилентерефталатную мембрану, которая выпускается в промышленных масштабах. При этом квантовые точки внедряются в пристеночные слои трековых пор в квази изолированном состоянии, пространственное распределение квантовых точек по объему матрицы задается распределением трековых пор, плотность которых имеет характерные значения 108÷109 пор/см2.
Сущность предлагаемого изобретения поясняется на фиг.1-5, на которых представлены:
Фиг.1. Схематичное изображение полимерной мембраны с полупроводниковыми квантовыми точками, внедренными в приповерхностные слои трековых пор.
Фиг.2. Схематичное изображение установки для контролируемой подачи/откачки паров аммиака: 1 - полиэтилентерефталатная трековая мембрана с внедренными CdSe/ZnS квантовыми точками; 2 - камера, заполняемая парами аммиака; 3 - вентиль; 4 - камера с водным раствором аммиака; 5 - герметичная пробка; 6 - водный раствор аммиака; 7 - вентиль; 8 - отвод для удаления паров аммиака из камеры 2.
Фиг.3. Спектры люминесценции образца полимерной трековой мембраны с внедренными CdSe/ZnS квантовыми точками с диаметром ядра 2.5 нм, возбуждение светом с длиной волны 405 нм: 1 - до взаимодействия с парами аммиака; 2 - после выдерживания образца в парах аммиака (Спаров аммиака=13 млн-1) в течение 2 минут; на вставке приведен спектр поглощения образца после взаимодействия с парами аммиака.
Фиг.4. Зависимость степени тушения люминесценции (Q=1-I/I0, где I0 и I - интенсивность люминесценции квантовых точек до и после взаимодействия образца с парами аммиака соответственно) квантовых точек CdSe/ZnS с диаметром ядра 2.5 нм, внедренных в полиэтилентерефталатную трековую мембрану, от концентрации паров аммиака, возбуждение светом с длиной волны 405 нм.
Фиг.5. Зависимость относительной интенсивности люминесценции CdSe/ZnS квантовых точек, внедренных в образец полимерной трековой мембраны, от номера цикла сорбции/десорбции молекул аммиака на их поверхности.
Пример.
Для демонстрации работоспособности предполагаемого сенсора ярко люминесцирующие гидрофобные полупроводниковые квантовые точки CdSe/ZnS с диаметром ядра 2.5 нм, синтезированные согласно процедуре высокотемпературного органометаллического синтеза, описанного в работе (В.О. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi: (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites// J. Phys. Chem. B, 1997, 101 (46), pp.9463-9475) [6], были внедрены в пристеночные слои пор полиэтилентерефталатных трековых мембран со сквозными цилиндрическими порами диаметром 0.5 мкм (ФЛЯР ОИЯИ, Дубна, Россия). Схематическое изображение образца мембраны с внедренными квантовыми точками приведено на Фиг.1. Для этого образцы мембран пропитывались раствором квантовых точек в толуоле, согласно процедуре, описанной в работе (А.О. Orlova, Yu. A. Gromova, А.V. Savelyeva, V.G. Maslov, M. V. Artemyev, A. Prudnikau, A.V. Fedorov and A V Baranov. Track membranes with embedded semiconductor nanocrystals: structural and optical examinations. Nanotechnology. 22 (2011) 455201 (7pp)) [7].
Для исследования влияния паров аммиака на спектральные свойства квантовых точек, внедренных в полиэтилентерефталатные трековые мембраны, образцы мембран помещались в герметичную камеру, к которой обеспечивалась контролируемая подача воздуха, содержащего пары аммиака. На Фиг.2 приведено схематичное изображение камеры для контролируемой подачи/откачивания паров аммиака. Образец мембраны 1 с внедренными квантовыми точками помещается в герметичную камеру 2, которая соединена с камерой 4. В камеру 4 через отверстие, закрываемое пробкой 5, помещается водный раствор аммиака. После установления в камере 4 равновесной концентрации паров аммиака вентиль 3 открывается и камера 2 заполняется парами аммиака определенной концентрации. Образец мембраны с внедренными квантовыми точками выдерживается в парах аммиака фиксированное время (например, в течение 2 минут). После этого образец вынимается и проводится регистрация его люминесцентного отклика.
На Фиг.3 приведены спектры поглощения и люминесценции образца полиэтилентерефталатной мембраны с внедренными полупроводниковыми квантовыми точками до и после взаимодействия образца с парами аммиака.
Выдерживание образца мембраны в течение 2 минут в герметичной камере, наполненной парами аммиака (Спаров аммиака=13 млн-1), приводит к уменьшению интенсивности люминесценции квантовых точек на 60%. Уменьшение люминесценции квантовых точек сопровождается сокращением их времени затухания люминесценции. Это свидетельствует об адсорбции молекул аммиака на поверхность квантовых точек, внедренных в полиэтилентерефталатную трековую мембрану. Следует отметить, что взаимодействие образца с парами аммиака не приводит к изменению спектра поглощения квантовых точек, внедренных в образец (см. фиг.3, вставку).
Для определения динамического диапазона концентрации паров аммиака в воздухе, в котором образец полимерной трековой мембраны с внедренными квантовыми точками может быть использован в качестве сенсорного элемента на пары аммиака, образцы мембран выдерживались в течение 2 минут в камере 2, в которой создавалось определенное давление паров аммиака. Было установлено, что увеличение концентрации паров аммиака в камере от 0 до 20 млн-1 приводит к линейному уменьшению интенсивности люминесценции квантовых точек, внедренных в полимерную трековую мембрану. На Фиг.4 приведена зависимость степени тушения люминесценции квантовых точек, внедренных в образцы полимерных мембран от концентрации паров аммиака.
Для повторного использования полиэтилентерефталатной трековой мембраны с внедренными квантовыми точками CdSe/ZnS в качестве сенсорного элемента необходимо после взаимодействия образца с парами аммиака осуществить его десорбцию с поверхности квантовых точек. Для этого нами была использована установка, приведенная на Фиг.2. Образец 1 мембраны, прореагировавший с парами аммиака, помещался в камеру 2, к трубке с вентилем 7 подсоединялся вакуумный насос. Откачивание воздуха приводило к снижению давления воздуха в камере 2 и, как следствие, к десорбции молекул аммиака с поверхности квантовых точек, внедренных в образец полимерной мембраны. Следует отметить, что при этом наблюдалось восстановление люминесцентного отклика образца до исходного уровня, которое сопровождалось увеличением времени затухания люминесценции квантовых точек, внедренных в образец.
Для исследования возможности многократного использования образца полиэтилентерефталатной трековой мембраны с внедренными CdSe/ZnS квантовыми точками в качестве сенсорного элемента на пары аммиака полный цикл сорбции/десорбции молекул аммиака на поверхность квантовых точек, внедренных в образец, был произведен 8 раз. На Фиг.5 приведена интенсивность люминесценции образца полимерной трековой мембраны с внедренными CdSe/ZnS квантовыми точками в зависимости от наличия или отсутствия паров аммиака (Спаров аммиака=13 млн-1) в камере 1 (см. Фиг.2). Нами было установлено, что восьмикратное повторение полного цикла сорбции/десорбции молекул аммиака на поверхность квантовых точек, внедренных в образец, не приводит к сколько-нибудь заметному изменению их интенсивности люминесценции на каждом этапе цикла. Это свидетельствует о высокой воспроизводимости отклика образца на присутствие паров аммиака, на высокую стабильность квантовых точек, внедренных в полимерную трековую мембрану и, как следствие, на возможность многократного использования нашего образца в качестве сенсорного элемента на пары аммиака.
Таким образом, решаются задачи повышения чувствительности, точности определения концентрации паров аммиака, срока эксплуатации и упрощения изготовления сенсора.
Источники информации
1. Патент США №5252292, МПК G01N 27/04, заявка 524562, дата публикации 12.10.1993, дата приоритета 17.05.1990).
2. Патент США №3649505, 5 МПК G01N 27/30, заявка 803781, дата публикации 14.02.1972, дата приоритета 03.03.1969.
3. Патент США №US 6406669 B1, МПК G01N 27/77, заявка 09/760121, дата публикации 18.06.2002, дата приоритета 12.01.2001
4. Патент США №US 2003/0113932 A1, МПК G01N 21/77, заявка 10/024,670, дата публикации 19.06.2003, дата приоритета 14.12.2001.
5. Патент США №6013529, МПК G01N 33/00, заявка 08/906,711, дата публикации 11.01.2000, дата приоритета 05.08.1997.
6. В.О. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi: (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites//J. Phys. Chem. B, 1997, 101 (46), pp.9463-9475.
7. A.O. Orlova, Yu. A. Gromova, A.V. Savelyeva, V.G. Maslov, M.V. Artemyev, A. Prudnikau, A.V. Fedorov and A V Baranov. Track membranes with embedded semiconductor nanocrystals: structural and optical examinations. Nanotechnology. 22 (2011) 455201 (7pp).

Claims (1)

  1. Люминесцентный сенсор на пары аммиака в атмосфере или воздушной пробе, состоящий из гидрофобной полимерной мембраны с флуорофором, отличающийся тем, что полимерная мембрана имеет сквозные поры нанометрового или микронного диаметра, при этом флуорофор внедрен в пристеночный слой сквозных пор, а в качестве флуорофора используют ярко люминесцирующие полупроводниковые квантовые точки, интенсивность люминесценции которых изменяется при связывании молекул аммиака с поверхностью квантовых точек.
RU2012151750/28A 2012-12-03 2012-12-03 Люминесцентный сенсор на пары аммиака RU2522902C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012151750/28A RU2522902C1 (ru) 2012-12-03 2012-12-03 Люминесцентный сенсор на пары аммиака

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012151750/28A RU2522902C1 (ru) 2012-12-03 2012-12-03 Люминесцентный сенсор на пары аммиака

Publications (2)

Publication Number Publication Date
RU2012151750A RU2012151750A (ru) 2014-06-10
RU2522902C1 true RU2522902C1 (ru) 2014-07-20

Family

ID=51214077

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012151750/28A RU2522902C1 (ru) 2012-12-03 2012-12-03 Люминесцентный сенсор на пары аммиака

Country Status (1)

Country Link
RU (1) RU2522902C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755332C2 (ru) * 2018-12-25 2021-09-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Чувствительный элемент люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде и способ его получения
RU2758182C2 (ru) * 2017-12-26 2021-10-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) Способ изготовления материала люминесцентного сенсора и устройство люминесцентного сенсора для анализа кислых и основных компонентов в газовой фазе
RU2760679C2 (ru) * 2019-12-25 2021-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Чувствительный слой оптического люминесцентного сенсора на квантовых точках и способ его изготовления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013529A (en) * 1997-08-05 2000-01-11 Bayer Corporation Hydrophobic fluorescent polymer membrane for the detection of ammonia
US6521185B1 (en) * 1995-10-23 2003-02-18 American Research Corporation Of Virginia Fluorescent probes based on the affinity of a polymer matrix for an analyte of interest
RU96977U1 (ru) * 2010-03-25 2010-08-20 Государственное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет" Измеритель концентрации озона
RU2437079C2 (ru) * 2010-02-24 2011-12-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ГОУ ВПО ВГУ) Способ определения примесных газов в атмосферном воздухе
RU2456579C1 (ru) * 2011-02-07 2012-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (НИУ ИТМО) Диссоциативный люминесцентный наносенсор ионов металлов и водорода в водных растворах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521185B1 (en) * 1995-10-23 2003-02-18 American Research Corporation Of Virginia Fluorescent probes based on the affinity of a polymer matrix for an analyte of interest
US6013529A (en) * 1997-08-05 2000-01-11 Bayer Corporation Hydrophobic fluorescent polymer membrane for the detection of ammonia
RU2437079C2 (ru) * 2010-02-24 2011-12-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ГОУ ВПО ВГУ) Способ определения примесных газов в атмосферном воздухе
RU96977U1 (ru) * 2010-03-25 2010-08-20 Государственное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет" Измеритель концентрации озона
RU2456579C1 (ru) * 2011-02-07 2012-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (НИУ ИТМО) Диссоциативный люминесцентный наносенсор ионов металлов и водорода в водных растворах

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758182C2 (ru) * 2017-12-26 2021-10-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) Способ изготовления материала люминесцентного сенсора и устройство люминесцентного сенсора для анализа кислых и основных компонентов в газовой фазе
RU2755332C2 (ru) * 2018-12-25 2021-09-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Чувствительный элемент люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде и способ его получения
RU2760679C2 (ru) * 2019-12-25 2021-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Чувствительный слой оптического люминесцентного сенсора на квантовых точках и способ его изготовления

Also Published As

Publication number Publication date
RU2012151750A (ru) 2014-06-10

Similar Documents

Publication Publication Date Title
Cao et al. Hierarchical metal–organic framework-confined CsPbBr3 quantum dots and aminated carbon dots: A new self-sustaining suprastructure for electrochemiluminescence bioanalysis
Watkins et al. Portable, low-cost, solid-state luminescence-based O2 sensor
RU2522902C1 (ru) Люминесцентный сенсор на пары аммиака
US20140017127A1 (en) Optical Sensor and Sensing System for Oxygen Monitoring in Fluids Using Molybdenum Cluster Phosphorescence
WO2018154078A1 (en) An analytical test substrate as fluorescent probe for performing a detection of an analyte, a portable device for performing such detection and a system thereof
RU2522735C9 (ru) Электрический сенсор на пары гидразина
Duong et al. Ratiometric fluorescence sensors for the detection of HPO42− and H2PO4− using different responses of the morin-hydrotalcite complex
Ando et al. Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots
US9310309B1 (en) Method of sensing acidic/acid-forming and oxidizable gases for use as a residual filter life indicator
Benilov et al. Influence of pH solution on photoluminescence of porous silicon
TWI544217B (zh) 感測器及其製造方法
US8330958B2 (en) Devices for optochemical detecting of vapors and particulates using porous photonic crystals infiltrated with sensory emissive organics
Cirulnick et al. Optical oxygen sensors with improved lifetime incorporating Titania beads and polydimethylsiloxane coatings
Dian et al. Recognition enhancement of oxidized and methyl-10-undecenoate functionalized porous silicon in gas phase photoluminescence sensing
US7969569B2 (en) Method for detecting trace substance using organic electroluminescent device
Sohn Enhanced explosive sensing based on silole-modified luminescent porous silicon
Bhopate et al. Fluorescent chemosensor for quantitation of multiple atmospheric gases
RU2758182C2 (ru) Способ изготовления материала люминесцентного сенсора и устройство люминесцентного сенсора для анализа кислых и основных компонентов в газовой фазе
Kanaujia et al. Effect of volatile solvent infiltration on optical and electrical characteristics of porous photonic structures
CN113125396A (zh) 传感器刷新系统
RU2755332C2 (ru) Чувствительный элемент люминесцентного сенсора для оптического детектирования молекулярного брома и бромсодержащих веществ в газовой среде и способ его получения
Senthamizhan et al. Electrospun fluorescent nanofibers for explosive detection
Saharudin et al. Performance evaluation of optical fiber sensor using different oxygen sensitive nano-materials
Chu et al. Optical carbon dioxide sensor based on the colorimetric change of α-naphtholphthalein and internal reference fluorescent CIS/ZnS QDs
US20180292322A1 (en) System for measuring the quantity of semiconductor nanocrystals present in a fluid