RU2483119C2 - Способ электроплавки стали в дуговой печи - Google Patents

Способ электроплавки стали в дуговой печи Download PDF

Info

Publication number
RU2483119C2
RU2483119C2 RU2011123744/02A RU2011123744A RU2483119C2 RU 2483119 C2 RU2483119 C2 RU 2483119C2 RU 2011123744/02 A RU2011123744/02 A RU 2011123744/02A RU 2011123744 A RU2011123744 A RU 2011123744A RU 2483119 C2 RU2483119 C2 RU 2483119C2
Authority
RU
Russia
Prior art keywords
electrode
carbon
bath
zone
furnace
Prior art date
Application number
RU2011123744/02A
Other languages
English (en)
Other versions
RU2011123744A (ru
Inventor
Эдуард Эдгарович Меркер
Галина Абдудаевна Карпенко
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2011123744/02A priority Critical patent/RU2483119C2/ru
Publication of RU2011123744A publication Critical patent/RU2011123744A/ru
Application granted granted Critical
Publication of RU2483119C2 publication Critical patent/RU2483119C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали. Способ включает подачу металлизованных окатышей через осевые отверстия в графитовых электродах в шлаковый расплав подэлектродной зоны ванны печи. Совместно с металлизованными окатышами в шлаковый расплав через осевые отверстия графитовых электродов подают порошкообразный углеродсодержащий материал и инертный газ или смесь газов. Расход порошкообразного углеродсодержащего материала определяют из соотношения
Figure 00000013
,
где
Figure 00000014
,
Figure 00000015
,
Figure 00000016
- соответственно расход углеродсодержащего материала, потери углерода в результате окисления электродов в шлаковом расплаве и приход углерода в подэлектродную зону ванны при расплавлении в ней металлизованных окатышей, кг/плавка. Расход инертного газа устанавливают из расчета образующегося объема в подэлектродной зоне ванны
Figure 00000017
где ΔVв - изменение объема этой зоны в ванне, м3/мин; dэ - внешний диаметр электрода, м; Нш - заглубление электрода в шлаковом расплаве ванны, м; τ - время, мин. Использование изобретения обеспечивает увеличение стойкости электродов и снижение расхода электроэнергии на процесс плавки. 2 з.п. ф-лы, 2 ил., 1 табл.

Description

Областью применения изобретения является металлургия, а именно электрометаллургия стали, в которой основой является непрерывная подача металлизованных окатышей в ванну дуговой сталеплавильной печи [1].
Известен также способ электроплавки стали на основе применения непрерывной загрузки металлизованных окатышей в ванну дуговой печи через осевые отверстия в графитовых электродах [2].
В процессе электроплавки стали графитовые электроды, погруженные в шлаковый расплав, окисляются, что снижает их стойкость. Окисляется также и боковая поверхность электрода вследствие выгорания электрода в окислительной атмосфере печи. Это обстоятельство является существенным недостатком всех известных способов [1, 2].
Задачей изобретения является повышение эффективности электроплавки стали на основе применения методов [1, 2] подачи металлизованных окатышей с возможностью увеличения стойкости графитовых электродов [3, 4] электродов, благодаря наличию в них осевых отверстий, используются не только для подачи металлизованных окатышей, но и других материалов в ванну дуговой печи. Это создается благодаря тому, что в качестве защитной среды используют газ или смесь газов, не взаимодействующие с материалом электрода [3, 4]. Известен также способ защиты графитированного электрода от окисления путем подачи воды, или воздушной смеси, или водовоздушной смеси на часть боковой поверхности электрода, находящейся под сводом печи [5].
Однако несмотря на достигнутую экономию графитовых материалов до 25% данный способ [5] и другие способы [3, 4] не нашли широкого практического применения из-за высоких издержек по эксплуатации электродов с использованием дополнительных специальных устройств [3], например фурмы, вертикально перемещающейся вдоль боковой поверхности [4] электрода или устройства [6], выполненного в виде кольцевого коллектора с соплами, расположенного вокруг электрода и соединенного с элетрододержателем. К тому же все эти известные способы не защищают торцевую часть электрода от окисления, находящуюся в шлаковом расплаве в подэлектродной зоне ванны. Кроме того, следует отметить, что вышеназванные способы не только громоздки [3, 4, 5] и даже взрывоопасны [5], но и для их реализации требуется большой расход газов, воды и защитных покрытий [7], а следовательно, в условиях электроплавки стали на их нагрев затрачивается большое количество тепла, что снижает технико-экономические показатели производства.
Наиболее близким к изобретению по технической сущности и достигаемому результату является способ [8] электроплавки стали с погруженными в шлаковый расплав электродами, которые имеют осевые отверстия для подачи через эти отверстия окатышей и других материалов. Данный способ позволяет использовать нерасходуемый электрод [9], содержащий электрододержатель, к которому подводится электроэнергия, а также погружаемый в расплав наконечник [9, с.69, рис.35] из карбидообразующего материала с осевым отверстием [1, 2], что позволяет [10] осуществлять подачу восстановительного газа через осевое отверстие, а расход восстановительного углеродсодержащего газа выбирать в зависимости [6, 10] от объема подэлектродной зоны в шлаковом расплаве ванны печи.
Недостатком прототипа, т.е. указанного способа [8], является то, что при электроплавке стали не предусматривается подача углеродсодержащего материала или газа в ванну печи через осевое отверстие в электроде в приэлектродную зону, т.е. в зону шлакового расплава, где находятся высокотемпературные электрические дуги. К другим недостаткам прототипа [8] и других известных способов [1, 2, 3, 4] можно отнести то, что при электроплавке стали не предусматриваются оптимальные условия подачи в шлаковый расплав под электродами окатышей, углеродсодержащих материалов и восстановительных или инертных газов [6, 9, 10]. Поэтому для решения этой сложной технической задачи по плавлению окатышей и углеродсодержащего материала со снижением степени окисления углерода необходимо в подэлектродной зоне создавать восстановительную атмосферу, что потребует большого расхода природного газа и определение его расхода, например, по формуле авторов [9]:
Figure 00000001
где QГ - расход газа, м3/ч; dc - диаметр сопла, м; dэ - диаметр электрода, м.
Технический результат изобретения - устранение указанных недостатков, повышение эффективности электроплавки окатышей в шлаковом расплаве, увеличение стойкости электродов с учетом использования осевых отверстий в них для совместной подачи в ванну печи окатышей углеродсодержащих материалов, инертных и восстановительных газов, а также снижение расхода электроэнергии на процесс плавки.
Технический результат достигается тем, что в способе электроплавки стали подачу металлизованных окатышей через осевые отверстия электродов в шлаковый расплав ванны печи осуществляют совместно с углеродсодержащим материалом, инертным газом или смесью газов. В этих условиях, например, для 150 т дуговой печи (при dэ=0,6 м; Нш>0,5 м) изменение объема
Figure 00000002
можно при τ=1 мин найти:
Figure 00000003
Это значение ΔVв говорит о том, что каждую минуту под электродов обновляется 0,141 м3 расплава с окатышами и другими материалами.
При этом, учитывая, что в пространстве имеется кислород (О2) и потому при подаче природного газа (СН4) через осевое отверстие электрода образуется значительное количество СО2 и Н2О по реакции: СН42=СО22О, исходя из молекулярных весов, участвующих в реакции веществ, можно найти, что сгорание 1 кг природного газа ведет к образованию 2,75 кг углекислого газа и 2,25 кг воды, т.е. такое большое количество (5 кг) оксидов, с одной стороны, потребляет большое количество тепла на их нагрев, а с другой стороны, эти газы окисляют [3, 4, 7] поверхность графитового электрода. В случае использования оптимального расхода углеродсодержащего материала этот нежелательный фактор исключается, т.к. по реакции 2С+O2+2СО+QКДЖ образуется восстановительный газ (СО) в меньшем количестве и, к тому же, этот газ снижает скорость окисления на торцевой и боковой поверхностях графитового электрода, т.е. создаются условия для повышения их стойкости. Использование в этом случае инертных газов (азот, аргон и др.) в качестве носителя порошкообразного материала является важным, т.к. инертный газ к тому же играет не только защитную роль от окисления углерода на торцевой и боковой поверхностях электродов, но и стабилизирует [1, 2] горение электрических дуг и интенсифицирует процессы перемешивания при плавлении окатышей в шлаковом расплаве.
Кроме того, с технологической точки зрения, при электроплавке окатышей в шлаковом расплаве (Фиг.1) подача углеродистого порошка способствует не только защите электрода от окисления, но и позволяет регулировать подачу углерода в расплав с целью интенсификации режимов [1, 2, 5] обезуглероживания металла и плавления металлизованных окатышей в ванне печи, что приводит к увеличению ее производительности и снижению расхода электроэнергии на процесс электроплавки. Это подтверждается, в частности, лабораторным экспериментом на ЭПУ.
На фиг.1 представлена схема образования подэлектродной зоны в ванне дуговой печи, где обозначены 1 - подэлектродная зона; 2 - электрическая дуга; 3 - графитовый электрод; 4 - окатыши и другие материалы; 5 - осевое отверстие в электроде; Нш - толщина шлака; ΔVв - объем подэлектродной зоны.
Эффективность электроплавки стали по предлагаемому изобретению оценили по данным лабораторного эксперимента (фиг.1) на опытной печной установке, которая включала тигель емкостью 300 г со шлаком и металлом, электрод графитовый диаметром 350 мм с осевым отверстием ~10-12 мм, электрододержатель, систему подачи окатышей и углеродсодержащего материала (коксик) на шлаковый расплав. Питание электропечной установки (ЭПУ) осуществлялось от двух параллельно соединенных выпрямителей с мощностью Р=23,7 кВт. Для сравнения использовали два типа графитовых электродов (сплошной без осевого отверстия и полый, т.е. электрод с отверстием).
Результаты эксперимента приведены в таблице.
Тип электрода Мощность дуги Ру, кВт Удельная скорость загрузки окатышей, г/с Расход коксика, г/с Время плавления, с Износ электрода, г
Сплошной 12,0 0,3 - 56 14
Полый 12,0 0,3 0,03 48 8
Сплошной 14,0 0,4 - 68 18
Полый 14,0 0,4 0,04 58 10
Сплошной 16,0 0,5 - 82 21
Полый 16,0 0,5 0,05 70 12
Из анализа приведенных данных следует, что подача окатышей в подэлектродную зону (полые электроды) с применением коксика в область дуги приводит к снижению износа электрода и времени плавления металлизованных окатышей.
Таким образом, настоящим изобретением решается комплексная техническая задача по ускорению процесса плавления окатышей при их подаче через отверстие в электроде при совместной подаче углеродсодержащего материала и смеси газов. Кроме того, техническим результатом является также то, что предлагаемый способ позволяет повысить стойкость при работе электрода со снижением времени плавления окатышей, т.е. с повышением производительности работы ЭПУ.
Это достигается благодаря тому, что предлагается способ электроплавки стали в дуговой печи, включающий подачу металлизованных окатышей через осевые отверстия в графитовых электродах, отличающийся тем, что совместно с металлизованными окатышами в шлаковый расплав подэлектродной зоны ванны печи через осевые отверстия графитовых электродов подают углеродсодержащий материал, инертный газ или смесь газов, при этом расход углеродсодержащего материала определяют из соотношения:
Figure 00000004
где -
Figure 00000005
,
Figure 00000006
,
Figure 00000007
соответственно расход углеродсодержащего материала, потери углерода в результате окисления электродов в шлаковом расплаве и приход углерода в подэлектродную (приэлектродную) зону ванны при расплавлении в ней металлизованных окатышей, кг/плавку и кроме того способ отличающийся тем, что расход инертного газа устанавливают из расчета образующегося объема в подэлектродной зоне ванны:
Figure 00000008
где ΔVв - изменение объема этой зоны в ванне, м3/мин; dэ - диаметр электрода, м; Hш - толщина шлака под электродом в ванне печи, м; τ - время, мин, а также предлагаемый способ отличается тем, что в качестве смеси газов используют аргон или азот с добавлением к ним углеродсодержащего или восстановительного газа, например углеродного газа или монооксида углерода.
Работа по предлагаемому способу электроплавки стали в дуговой печи может быть технически осуществлена в соответствии со схемой (Фиг.2) размещения электрода с осевым отверстием в ванне печи. В жидкий металл (1) и шлаковый расплав (2) графитовый электрод (3) с осевым отверстием (4) погружен в ванну дуговой печи с помощью электрододержателя (5). В осевое отверстие электрода (4) вставлен электроизолированный конус (6), в который подают углеродсодержащий материал (7), металлизованные окатыши (8) и инертный или восстановительный газы (9). При подаче через электрододержатель (5) электрической энергии в торце электрода (3) образуется электрическая дуга (10), которая нагревает шлаковый расплав в подэлектродном (11) пространстве печи. В результате воздействия электрической дуги (10) на расплав (11) осуществляется нагрев и плавление окатышей и других материалов (7, 8), что способствует проведению электроплавки стали в дуговой печи с достижением более высоких технико-экономических показателей производства.
Литература
1. Меркер Э.Э. и др. Патент РФ на изобретение №2385952 от 10.04.2010; Бюл. 19.
2. Меркер Э.Э. и др. Патент РФ на изобретение №2374582 от 07.09.2005; Бюл №33 от 27.11.2009.
3. Кузин С.А. Патент РФ на изобретение №94026565 от 27.06.1996.
4. Стадничук А.В., Стадничук В.И. Патент РФ на изобретение №2218676 от 10.12.2003.
5. Лопухов Г.А., Кацов Е.З. Производство стали в дуговых печах // Итоги науки и техники. Сер. Производство чугуна и стали. Том 19. - М.: ВИНИТИ, 1989 г., с.48-49.
6. Патент США №4852120, МКИ 4 Н05В 7/12, 1989 г.
7. Аналькова Г.Д. и др. Обзорная информация // Цветная металлургия. Сер. Производство легких цветных металлов. М.: ЦНИИцветмет экономики информации, 1989 г.
8. Меркер Э.Э. и др. Патент РФ на изобретение №2360009 от 27.06.2009. Бюл. 18.
9. Патент РФ №2158062. Способ защиты нерасходуемого электрода в шлаковом расплаве печи.
10. Поволоцкий Д.А. и др. Устройство и работа сверхмощных дуговых сталеплавильных печей. - М.: Металлургия, 1990, 176 с.

Claims (3)

1. Способ электроплавки стали в дуговой печи, включающий подачу металлизованных окатышей через осевые отверстия в графитовых электродах в шлаковый расплав подэлектродной зоны ванны печи, отличающийся тем, что совместно с металлизованными окатышами в шлаковый расплав подэлектродной зоны ванны печи через осевые отверстия графитовых электродов подают порошкообразный углеродсодержащий материал и инертный газ или смесь газов, при этом расход порошкообразного углеродсодержащего материала определяют из соотношения
Figure 00000004
, где
Figure 00000009
,
Figure 00000010
,
Figure 00000011
- соответственно расход углеродсодержащего материала, потери углерода в результате окисления электродов в шлаковом расплаве и приход углерода в подэлектродную зону ванны при расплавлении в ней металлизованных окатышей, кг/плавку.
2. Способ по п.1, отличающийся тем, что расход инертного газа устанавливают из расчета образующегося объема в подэлектродной зоне ванны
Figure 00000012

где ΔVв - изменение объема этой зоны в ванне, м3/мин; dэ - внешний диаметр электрода, м; Нш - заглубление электрода в шлаковом расплаве ванны, м; τ - время, мин.
3. Способ по п.1, отличающийся тем, что в качестве смеси газов используют аргон или азот с добавлением к ним углеродсодержащего или восстановительного газа, например природного газа или монооксида углерода.
RU2011123744/02A 2011-06-14 2011-06-14 Способ электроплавки стали в дуговой печи RU2483119C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011123744/02A RU2483119C2 (ru) 2011-06-14 2011-06-14 Способ электроплавки стали в дуговой печи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011123744/02A RU2483119C2 (ru) 2011-06-14 2011-06-14 Способ электроплавки стали в дуговой печи

Publications (2)

Publication Number Publication Date
RU2011123744A RU2011123744A (ru) 2012-12-20
RU2483119C2 true RU2483119C2 (ru) 2013-05-27

Family

ID=48792124

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011123744/02A RU2483119C2 (ru) 2011-06-14 2011-06-14 Способ электроплавки стали в дуговой печи

Country Status (1)

Country Link
RU (1) RU2483119C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567424C1 (ru) * 2014-04-11 2015-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ плавки стали из железорудных металлизованных окатышей в дуговой сталеплавильной печи
RU2774680C1 (ru) * 2022-02-18 2022-06-21 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ внепечной обработки стали в ковше

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621323A1 (de) * 1985-06-28 1987-01-08 Asea Ab Verfahren zur herstellung von stahl in einem lichtbogenofen
RU2025499C1 (ru) * 1986-08-27 1994-12-30 Клекнер Кра Патент ГмбХ Способ ведения плавки в электродуговой печи и электродуговая печь для ведения плавки
RU94026565A (ru) * 1994-07-18 1996-06-27 С.А. Кузин Способ защиты графитированного электрода от окисления
RU2158062C1 (ru) * 1999-07-28 2000-10-20 Открытое акционерное общество "Институт Гипроникель" Способ защиты нерасходуемого электрода в шлаковом расплаве
RU2360009C2 (ru) * 2005-09-07 2009-06-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Способ электроплавки стали в дуговой печи
RU2374582C2 (ru) * 2005-09-07 2009-11-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Дуговая печь для выплавки стали с использованием металлизованных окатышей

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621323A1 (de) * 1985-06-28 1987-01-08 Asea Ab Verfahren zur herstellung von stahl in einem lichtbogenofen
RU2025499C1 (ru) * 1986-08-27 1994-12-30 Клекнер Кра Патент ГмбХ Способ ведения плавки в электродуговой печи и электродуговая печь для ведения плавки
RU94026565A (ru) * 1994-07-18 1996-06-27 С.А. Кузин Способ защиты графитированного электрода от окисления
RU2158062C1 (ru) * 1999-07-28 2000-10-20 Открытое акционерное общество "Институт Гипроникель" Способ защиты нерасходуемого электрода в шлаковом расплаве
RU2360009C2 (ru) * 2005-09-07 2009-06-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Способ электроплавки стали в дуговой печи
RU2374582C2 (ru) * 2005-09-07 2009-11-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Дуговая печь для выплавки стали с использованием металлизованных окатышей

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567424C1 (ru) * 2014-04-11 2015-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ плавки стали из железорудных металлизованных окатышей в дуговой сталеплавильной печи
RU2774680C1 (ru) * 2022-02-18 2022-06-21 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ внепечной обработки стали в ковше

Also Published As

Publication number Publication date
RU2011123744A (ru) 2012-12-20

Similar Documents

Publication Publication Date Title
RU2261922C2 (ru) Способ получения металлов и металлических сплавов
KR102424236B1 (ko) 리튬 이온 배터리의 제련 방법
RU2226553C1 (ru) Способ и устройство для получения расплавленного железа
JP5552754B2 (ja) アーク炉の操業方法
US5454852A (en) Converter for the production of steel
CA2449774A1 (en) Method for melting and decarburization of iron carbon melts
RU2483119C2 (ru) Способ электроплавки стали в дуговой печи
RU2487181C1 (ru) Способ электрошлакового переплава металлосодержащих отходов
RU2476603C1 (ru) Способ выплавки стали в дуговой печи
JPH10500455A (ja) 電気アーク炉で鋼を製造する方法とそのための電気アーク炉
RU2121518C1 (ru) Способ переработки оксидного сырья, содержащего цветные металлы
CA2967119C (en) Plasma and oxygas fired furnace
CN220624924U (en) Ventilated graphite electrode for submerged arc furnace
RU2318876C1 (ru) Устройство для прямого восстановления металлов
AU702459B2 (en) Process for melting a charge in an electrical arc furnace
RU2476599C2 (ru) Способ электродугового жидкофазного углетермического восстановления железа из оксидного сырья и устройство для его осуществления
SU908842A1 (ru) Способ выплавки стали в дуговых печах
CN212051508U (zh) 一种含钒铁水提钒设备
RU60936U1 (ru) Устройство для прямого восстановления металлов
RU2437941C1 (ru) Способ выплавки стали в дуговой сталеплавильной печи с повышенным расходом жидкого чугуна
RU2384625C1 (ru) Способ плазменного восстановления железа из оксидного расплава и устройство для его осуществления
RU61283U1 (ru) Плазменно-дуговая печь
RU2532243C1 (ru) Агрегат комплексной обработки жидкой стали (акос)
Koster et al. The advanced KT injection system for high-productivity EAFs
Bhat Potential, problems and innovations of plasma heat applications in the metallurgical industry

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160615