RU2481751C2 - Система и способ управления цветом сид лампы - Google Patents

Система и способ управления цветом сид лампы Download PDF

Info

Publication number
RU2481751C2
RU2481751C2 RU2010128098/07A RU2010128098A RU2481751C2 RU 2481751 C2 RU2481751 C2 RU 2481751C2 RU 2010128098/07 A RU2010128098/07 A RU 2010128098/07A RU 2010128098 A RU2010128098 A RU 2010128098A RU 2481751 C2 RU2481751 C2 RU 2481751C2
Authority
RU
Russia
Prior art keywords
led
source
control range
feedback control
pulse duration
Prior art date
Application number
RU2010128098/07A
Other languages
English (en)
Other versions
RU2010128098A (ru
Inventor
Джеймс ГЕЙНЗ
Бернд КЛАУБЕРГ
ЭРП Йозефус А.М. ВАН
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2010128098A publication Critical patent/RU2010128098A/ru
Application granted granted Critical
Publication of RU2481751C2 publication Critical patent/RU2481751C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of El Displays (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

Система управления цветом СИД лампы, содержащая контроллер (58) СИД, и множество СИД каналов (60), в процессе работы соединенных с контроллером (58) СИД, причем каждый из множества СИД каналов (60) имеет канальный переключатель (62), соединенный последовательно, по меньшей мере, с одной шунтируемой СИД схемой (83), причем шунтируемая СИД схема (83) имеет шунтирующий переключатель (68), соединенный параллельно с СИД источником (80). Контроллер (58) СИД определяет, находится ли СИД источник (80) в диапазоне управления с обратной связью, сохраняет измеренные значения оптического потока для СИД источника (80), когда СИД источник (80) находится в диапазоне управления с обратной связью, и блокирует сохранение измеренных значений оптического потока, когда СИД источник (80) не находится в диапазоне управления с обратной связью. Технический результат - повышение точности измерения оптического потока. 3 н. и 17 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение было сделано при поддержке правительства Соединенных Штатов по предоставленному Министерством энергетики США контракту DE-FC26-05NT42342. Правительство Соединенных Штатов обладает определенными правами на это изобретение.
Областью техники, к которой относится настоящее раскрытие изобретения, являются источники электропитания, в частности, система и способ управления цветом СИД (светодиодных) ламп.
Традиционно, накальные и флуоресцентные осветительные устройства использовались как источники света в автомобилях и других транспортных средствах. Однако значительный прогресс в технологии светоизлучающих диодов (СИД) сделал СИД привлекательными для использования в транспортных средствах из-за их длительного срока службы, высокой эффективности и низкого профиля. СИД могут теперь излучать белый свет почти также эффективно, как компактная лампа дневного света, и их эффективность, как ожидают, будет увеличиваться. Чтобы полностью реализовать экономию энергии, даваемую СИД, электронные устройства, запускающие их, также должны быть энергетически эффективными.
Разрабатываются автономные СИД лампы, такие как модульная СИД система (СИД SIM) общего применения для освещения, которые используют многочисленные, разных цветов СИД с одной или ограниченным количеством интегральных схем. Интегральные схемы содержат схемы датчиков запуска и управления СИД лампы. Пользователь может управлять цветом и интенсивностью свечения лампы.
Для создания света в видимом диапазоне спектра световой выход СИД различных цветов может объединяться в определенных соотношениях, чтобы создавать СИД лампу желаемого цвета. Например, один СИД может генерировать красный свет, другой может генерировать зеленый свет, а третий может генерировать синий свет. Комбинация "красный-зеленый-синий" (RGB) может создавать любой желаемый цвет и может быть дополнена СИД, генерирующим янтарный (A) или белый (W) свет, чтобы регулировать индекс цветопередачи (CRI) лампы. CRI указывает, насколько хорошо лампа передает цвета объектов по сравнению со стандартным источником освещения, таким как дневной свет или лампа накаливания. RGBA и RGBW означают лампу из четырех СИД с цветами "красный-зеленый-синий-янтарный" и "красный-зеленый-синий-белый" соответственно.
Электрический ток каждого СИД источника в лампах с четырьмя СИД управляется независимо, чтобы позволить лампе охватить полный диапазон цветов и CRI. Одна из конструкций источника электропитания для лампы с четырьмя СИД представляет два параллельных СИД канала с двумя СИД источниками, соединенными последовательно в каждом из СИД каналов. Основной электронной топологией может быть гистерезисный вольтодобавочный преобразователь с канальным переключателем, управляющим током каждого канала. Как длительность импульса, так и амплитуда тока, протекающего через каждый канал, являются изменяемыми. Верхний и нижний гистерезисные рабочие пределы устанавливают амплитуду импульса. Шунтирующий переключатель для каждого СИД источника управляет током, проходящим через каждый СИД источник, замыкая конкретный СИД источник. Гистерезисные пределы могут быть установлены для максимизации рабочего цикла для одного из СИД источников в каждом канале. Ток канала можно снизить, чтобы создать требуемое количество света при максимизированном рабочем цикле одного СИД источника в каждом канале. Это экономит энергию в электронных устройствах и приводит в результате к эффективной генерации света СИД, которые при низком токе обычно более эффективно излучают свет, чем при высоком токе.
Нынешнее поколение СИД ламп может генерировать свет в широком диапазоне цветов, но при определенных условиях возникают проблемы, когда управление некоторыми или всеми цветами в многоцветной СИД системе невыполнимо. Из-за ограниченной способности устанавливать уровни тока и длительность импульсов и из-за допусков в различных компонентах и значения напряжения электропитания, точность управления цветами, которая может быть достигнута, зависит от ряда позиций, таких как уровень снижения яркости, координаты цветов, СИД спектры и алгоритм управления. Если не принимать никакие меры по изменению управления при приближении к проблемным областям, СИД лампа, вероятно, будет демонстрировать непредсказуемое поведение и неустойчивость цвета и интенсивности.
Одной из проблем является погрешность измерения оптического потока. Ламповая система индивидуально измеряет оптический поток света от СИД источников, генерирующих каждый цвет, когда СИД источники работают в режиме широтно-импульсной модуляции (PWM). В определенные моменты времени сигналы тока СИД изменяются так, что оказывается включен только один СИД источник и выполняется измерение потока для этого СИД источника цветного света. Кроме того, при всех выключенных СИД источниках измеряется уровень фонового потока. Устройство измерения оптического потока, такое как фотодиод, имеет время реакции, которое должно учитываться при проведении измерения. Когда измерение оптического потока очень чувствительно к частоте тока СИД, сигнал оптического потока чувствителен к колебаниям формы сигнала тока, которые могут приводить к ошибкам цвета, не дающим возможность представить фактический средний уровень света. Когда измерение оптического потока не очень чувствительно к частоте тока СИД, сигнал оптического потока требует большего времени нарастания, чтобы стабилизироваться при конечном значении для измерения. Когда длительность импульса СИД является слишком малой, СИД источник может выключиться до того, как будет сделано измерение, приводя к нестабильному управлению цветом.
Эту проблему можно пояснять, рассматривая систему ламп, работающую на частоте 1 кГц, так чтобы максимальная длительность импульса равнялась 1 мс. Полагая, что устройство измерения оптического потока стабилизирует свои показания за 20 мкс, измерение потока может выполняться через 20 мкс после начала импульса, то есть через 2% от максимальной длительности импульса. Пользователь лампы может выбрать комбинации цвета/интенсивности, которые могут в результате приводить к рабочему циклу для одного или более цветов, составляющих меньше 2% от максимальной длительности импульса, например желтоватые цвета содержат очень малые части синего цвета; цианистые цвета содержат очень небольшие части красного цвета; и розовые/фиолетовые цвета содержат очень малые части зеленого цвета. Когда рабочий цикл конкретного цвета меньше 2%, измерение потока происходит после того, как конкретный СИД источник выключится, и система управления получит ложное считывание показаний оптического потока.
Для сегодняшнего поколения СИД ламп часто возникает множество дополнительных проблем с измерением оптического потока и управлением цветом:
- времена нарастания и спада шунтирующих переключателей, параллельных каждому СИД источнику, могут составлять значительную долю всего импульса;
- период гистерезиса может быть примерно равен длительности импульса PWM, так что в каждом импульсе PWM присутствует доля периода гистерезиса, которая не имеет того же самого среднего тока, что и полные периоды;
- времена нарастания и спада сигнала шунтирующих переключателей могут быть настолько короткими, что положительный выброс или отрицательный выброс в форме тока является существенным;
- между периодом PWM и периодом гистерезисного токового сигнала может возникать фазовая синхронизация, заставляющая систематически производить измерение оптического потока с установившейся фазой гистерезисного токового сигнала;
- большие ошибки оптического датчика могут возникать из-за высокого отношения "сигнал-шум" при низких уровнях света, из-за температурной зависимости датчика или тому подобного;
- ошибочные результаты считывания при измерении оптического потока могут происходить из-за отказа фотодиода, интерференции, или тому подобного;
- колебания тока СИД, вызванные гистерезисным вольтодобавочным преобразователем, могут иметь такую низкую частоту, что фильтрация сигнала фотодиода становится неэффективна, и результаты измерений потока не представляют средний поток; и
- СИД источник одного из цветов может иметь чрезмерно большую СИД эффективность, приводя к коротким рабочим циклам для этого конкретного цвета.
Было бы желательно иметь систему и способ управления цветами СИД лампы, которые преодолеют упомянутые выше недостатки.
Один аспект настоящего изобретения обеспечивает СИД лампу, имеющую контроллер СИД; и множество СИД каналов в процессе работы подключаются к контроллеру СИД, причем каждый из множества СИД каналов имеет канальный переключатель, включенный последовательно, по меньшей мере, с одной схемой шунтирования СИД, и схема шунтирования СИД имеет шунтирующий переключатель, параллельный СИД источнику. Контроллер СИД определяет, находится ли СИД источник в диапазоне управления с обратной связью, сохраняет результаты измерения оптического потока для СИД источника, когда СИД источник находится в диапазоне управления с обратной связью, и блокирует сохранение результатов измерения оптического потока, когда СИД источник не находится в диапазоне управления с обратной связью.
Другой аспект настоящего изобретения обеспечивает способ управления цветом СИД лампы, содержащий обеспечение СИД лампы, имеющей множество СИД каналов, причем каждый из множества СИД каналов имеет канальный переключатель, включенный последовательно, по меньшей мере, с одной шунтируемой СИД схемой, причем шунтируемая СИД схема имеет шунтирующий переключатель, параллельный СИД источнику; инициализацию параметров настройки СИД лампы для СИД лампы; определение, находится ли СИД источник в диапазоне управления с обратной связью; сохранение результатов измерения оптического потока для СИД источника, когда СИД источник находится в диапазоне управления с обратной связью; и блокирование сохранения результатов измерения оптического потока, когда СИД источник не находится в диапазоне управления с обратной связью.
Другой аспект настоящего изобретения обеспечивает систему управления цветом СИД лампы, содержащую СИД лампу, имеющей множество СИД каналов, причем каждый из множества СИД каналов имеет канальный переключатель, включенный последовательно, по меньшей мере, с одной шунтируемой СИД схемой, причем шунтируемая СИД схема имеет шунтирующий переключатель, параллельный СИД источнику; средство инициирования параметров настройки СИД лампы для СИД лампы; средство определения, находится ли СИД источник в диапазоне управления с обратной связью; средство сохранения результатов измерения оптического потока для СИД источника, когда СИД источник находится в диапазоне управления с обратной связью; и средство блокирования сохранения результатов измерения оптического потока, когда СИД источник не находится в диапазоне управления с обратной связью.
Приведенные выше и другие признаки и преимущества изобретения станут дополнительно очевидны из последующего подробного описания предпочтительных в настоящее время вариантов осуществления, читаемого вместе с сопроводительными чертежами. Подробное описание и чертежи являются простыми иллюстрациями изобретения и не предназначены ограничивать объем изобретения, определяемый приложенной формулой изобретения и ее эквивалентами.
Фиг.1 - принципиальная схема системы управления цветом СИД лампы, соответствующей настоящему изобретению.
Фиг.2A-2B - блок-схемы последовательности выполнения операций способов управления цветом СИД лампы в соответствии с настоящим изобретением; и
фиг.3 - принципиальная схема другого варианта осуществления системы управления цветом СИД лампы, соответствующей настоящему изобретению.
На фиг.1 показана схема системы управления цветом СИД лампы, соответствующей настоящему изобретению. В этом примере СИД лампа является двухканальной схемой, лампой с двойной СИД схемой, то есть СИД лампа имеет два СИД канала с двумя шунтируемыми СИД схемами в каждом СИД канале.
СИД лампа 30, использующая систему управления цветом, содержит контроллер 58 СИД, имеющий микроконтроллер 50, в рабочем состоянии соединенный со схемой 40 специализированной интегральной схемы (ASIC) гистерезисного управления, управляющей подачей электропитания на два СИД канала 60. Каждый СИД канал 60 имеет канальный переключатель 62 и СИД схему 64, включенную последовательно между напряжением источника электропитания и общей точкой. Каждый канальный переключатель 62 принимает управляющий сигнал 63 управления каналами от схемы 40 ASIC гистерезисного управления, чтобы управлять током, проходящим через СИД канал 60. В этом примере каждая СИД схема 64 содержит диод 67, соединенный параллельно с последовательно соединенными катушкой индуктивности 66 и с двумя шунтируемыми СИД схемами 83 и резистором 81. Каждая шунтируемая СИД схема 83 содержит шунтирующий переключатель 68, соединенный параллельно со СИД источником 80. СИД источник 80 содержит один или более СИД, соединенных последовательно и/или параллельно друг другу, чтобы генерировать свет желаемого цвета или длины волны. Каждый шунтирующий переключатель 68 принимает управляющий сигнал 69 шунтирующего переключателя от схемы 40 ASIC гистерезисного управления. Шунтирующий переключатель 68 закорачивает ток канала мимо связанного с ним СИД источника, чтобы управлять световым выходом соответствующего СИД источника. В этом примере базовой электронной топологией является гистерезисный вольтодобавочный преобразователь. Контроллер 58 СИД содержит хранилище данных для сохранения оперативных данных, таких как результаты измерений оптического потока СИД источников 80. Специалисты в данной области техники должны понимать, что контроллер 58 СИД может быть единой интегральной схемой или множеством соединяемых в процессе работы интегральных схем, обеспечивающих желаемые функции. Например, контроллер 58 СИД может быть единой интегральной схемой, содержащей микропроцессор со встроенным запоминающим устройством, или может быть двумя интегральными схемами, где одна содержит микропроцессор, а другая - запоминающее устройство.
Цветной выход каждого СИД источника 80 может быть выбран для создания светового выхода СИД лампы 30, когда это желательно для конкретной цели. В одном варианте осуществления СИД источники являются "красным-зеленым-синим-янтарным" (RGBA). В другом варианте осуществления СИД источники являются "красным-зеленым-синим-белым" (RGBW). В одном варианте осуществления СИД источники 80, генерирующие зеленый и синий свет, могут находиться в одном СИД канале 60, а СИД источники 80, генерирующие янтарный и красный свет, могут находиться в другом СИД канале 60.
Микроконтроллер 50 принимает входные сигналы 42 от пользователя, такие как сигналы команд цвета, сигналы команд снижения яркости или тому подобные. Микроконтроллер 50 может также принимать сигналы 44 обратной связи микроконтроллера, такие как сигналы температурного датчика, сигналы оптического датчика или тому подобные, которые желательны для конкретного применения. В одном варианте осуществления сигналы 44 обратной связи генерируются схемой 40 ASIC гистерезисного управления из сигналов 52 обратной связи управления, таких как сигналы температурного датчика, сигналы оптического датчика или тому подобных, как желательно для конкретного применения. Микроконтроллер 50 генерирует сигнал 46 разрешения верхней стороны (HS) и сигнал 48 широтной импульсной модуляции нижней стороны (LS PWM), которые подаются в схему 40 ASIC гистерезисного управления в ответ на входные сигналы 42 пользователя и, как вариант, сигналы 44 обратной связи микроконтроллера.
Схема 40 ASIC гистерезисного управления также принимает сигналы 54 обратной связи по току, которые указывают ток через каждый СИД канал 60, и чувствительна к сигналам 54 обратной связи по току, чтобы регулировать управляющие сигналы 63 канальных переключателей. Схема 40 ASIC гистерезисного управления генерирует управляющие сигналы 63 канальных переключателей и управляющие сигналы 69 шунтирующих переключателей в ответ на сигналы 46 разрешения HS, сигналы 48 LS PWM, сигналы 54 обратной связи по току и, как вариант, управляющие сигналы 52 обратной связи.
При работе пользователь обеспечивает входные сигналы 42 пользователя на микроконтроллер 50, который генерирует сигналы 46 разрешения HS и сигналы 48 LS PWM. Схема 40 ASIC гистерезисного управления принимает сигналы 46 разрешения HS и сигналы 48 LS PWM и генерирует управляющие сигналы 63 канальных переключателей и управляющие сигналы 69 шунтирующих переключателей. Контроллер 58 СИД может осуществить способ управления цветом СИД, как описано ниже в сочетании с фиг.2, генерируя управляющие сигналы 63 канальных переключателей 63 и управляющие сигналы 69 шунтирующих переключателей. Со ссылкой на фиг.1, управляющий сигнал 63 канального переключателя обеспечивается для каждого из канальных переключателей 62, чтобы управлять током, проходящим через СИД канал 60, и управляющий сигнал 69 шунтирующего переключателя обеспечивается для каждого из шунтирующих переключателей 68, чтобы управлять световым выходом соответствующего СИД источника. В одном варианте осуществления схема 40 ASIC гистерезисного управления принимает и восприимчива к сигналам 54 обратной связи по току от каналов 60 СИД. В другом варианте осуществления схема 40 ASIC гистерезисного управления принимает и восприимчива к сигналам 52 обратной связи управления, таким как сигнал 53 обратной связи по температуре от температурного датчика 51 и/или сигналы 55 обратной связи по оптическому потоку от одного или более датчиков 56 оптического потока. Датчик 56 оптического потока может быть снабженным фотодиодом с усилителем, с несколькими дискретными значениями усиления усилителя фотодиода, чтобы получить хорошее отношение "сигнал-шум" для результатов измерений оптического потока при различных выходных уровнях света СИД. Специалисты в данной области техники должны понимать, что контроллер 58 СИД может принимать системные управляющие сигналы, которые желательны для конкретного применения осветительной системы. Системные управляющие сигналы могут вырабатываться проводными схемами управления и/или в соответствии с проводными схемами управления, соответствующими протоколу DALI, протоколу DMX или подобным, или в соответствии со схемами радиоуправления, соответствующими протоколу Zigbee или подобным. В одном варианте осуществления контроллер 58 СИД может передать системные управляющие сигналы другим лампам в системе освещения, чтобы давать команды лампам делать те же самые изменения, которые делает исходная лампа. Например, контроллер 58 СИД может передать системный управляющий сигнал, дающий команду другим лампам в комнате изменить световой выход цвета, чтобы он совпадал с изменением цвета в исходной лампе, что может потребоваться, чтобы снизить потерю мощности в исходной лампе.
Фиг.2A-2B, где схожие элементы совместно используют схожие ссылочные номера позиций, являются блок-схемами последовательностей выполнения операций способов управления цветом СИД ламп в соответствии с настоящим изобретением. На фиг.2A показана блок-схема последовательности выполнения операций для СИД лампы с постоянным током СИД. На фиг.2B показана блок-схема последовательности выполнения операций для СИД лампы с меняющимся током СИД. В одном варианте осуществления СИД лампа является двухканальной схемой, лампой с двойной СИД схемой, как показано на фиг.1. В другом варианте осуществления СИД лампа является четырехканальной схемой, лампой с одиночной СИД схемой, как показано на фиг.3. Специалисты в данной области техники должны понимать, что способы управления цветом СИД, представленные на фиг.2A-2B, могут использоваться в любой конфигурации СИД лампы, в которой любой количество СИД источников с независимым управлением генерируют дискретные цвета. В одном варианте осуществления СИД лампа использует специализированную интегральную схему (ASIC). В другом варианте осуществления СИД лампа использует дискретные компоненты.
Способы управления цветом СИД предотвращают потерю управления цветами, когда входные параметры ламп изменяют условия на такие, в которых измерение потока одного или более цветов СИД более неосуществимо, то есть когда СИД источник цвета СИД находится вне диапазона управления с обратной связью. СИД лампа сохраняет последний действительный результат измерения оптического потока для каждого цвета и только лишь обновляет это хранящееся значение на новое для измеренного оптического потока, когда условия позволяют действительное измерение потока. Программное обеспечение, работающее на контроллере СИД лампы, контролирует условия, чтобы определить, когда могут быть сделаны правильные измерения оптического потока. Обратная связь по оптическому потоку прежде всего используется для того, чтобы корректировать ухудшение рабочих характеристик СИД источников во времени и ухудшение наиболее вероятно для СИД источников, работающих с полной выходной мощностью, поскольку временное использование сохраненного значения для измеренного оптического потока СИД источников, работающих при низкой выходной мощности, оказывает минимальное влияние на рабочие характеристики СИД лампы.
Со ссылкой на фиг.2A, способ 200 на этапе 220 содержит один или более путей определения, находится ли СИД источник в диапазоне управления с обратной связью. Диапазон управления с обратной связью, как он определяется здесь, является диапазоном работы СИД источника в СИД лампе, при котором сигнал обратной связи, такой как сигнал обратной связи по оптическому потоку, индицирующий оптический поток, обеспечивает правильную обратную связь на контроллер, позволяя воспринимать состояние СИД источника. Примеры определения, находится ли СИД источник в диапазоне 220 управления с обратной связью, содержат определение на этапе 206, превышает ли длительность импульса СИД источника предельную длительность импульса, определение на этапе 210, превышает ли интенсивность измеренного оптического потока СИД источника предельное значение 210 интенсивности, определение на этапе 212, превышает ли отношение "сигнал-шум" для измеренного оптического потока СИД источника предельное отношение "сигнал-шум" или тому подобное. Примеры могут использоваться отдельно, в комбинации или в любом желаемом порядке. Специалисты в данной области техники должны понимать, что конкретные пути определения на этапе 220, находится ли СИД источник в диапазоне управления с обратной связью, могут быть выбраны в зависимости от ситуации при конкретном применении конфигурации СИД лампы.
Способ 200 начинается на этапе 201 и содержит инициирование на этапе 202 параметров настройки СИД лампы для СИД лампы и инициирование на этапе 204 контура оптического измерения после n секунд. Специалисты в данной области техники должны понимать, что первое оптическое измерение при входе в контур оптического измерения может быть выполнено в любое время и что задержка на n секунд не требуется и что после этого оптическое измерение может выполняться каждые n секунд на периодической основе. На этапе 216 определяется, превышает ли длительность импульса для i-го цвета, PW(i), предельную длительность импульса, PWlim. Когда длительность импульса для i-го цвета, PW(i), не превышает предельную длительность импульса, PWlim, на этапе 216 определяется, является ли i-ый цвет последним i-ым цветом. Когда i-ый цвет является последним i-ым цветом, способ 200 на этапе 204 возвращается к инициированию контура оптического измерения после n секунд. Когда i-ый цвет не является последним i-ым цветом, i-ому цвету дается приращение до i+1 и контур оптического измерения на этапе 206 продолжает определение, превышает ли длительность импульса для (i)-ого цвета PW(i), чем предельную длительность импульса, Pwlim, для следующего цвета. Способ 200 может быть продолжен с помощью контроллера 58 СИД, определяя, находится ли СИД источник 80 в диапазоне управления с обратной связью для каждого из СИД источников 80 множества СИД каналов 60.
Когда длительность импульса для i-го цвета PW(i) превышает предельную длительность импульса, PWlim, на этапе 208 измеряется оптический поток для i-го цвета и на этапе 210 определяется, превышает ли интенсивность оптического потока i-го цвета, Int(i), предельную интенсивность, Intlim. Когда на этапе 216 интенсивность оптического потока для i-го цвета Int(i) не превышает предельную интенсивность, Intlim, на этапе 216 определяется, является ли i-ый цвет последним i-ым цветом, и способ 200 продолжается. Когда интенсивность оптического потока для i-го цвета, Int(i), превышает предельную интенсивность, Int lim, на этапе 212 определяется, превышает ли отношение "сигнал-шум", S/N(i), оптического потока для i-го цвета предельное отношение "сигнал-шум" S/N lim. Когда отношение "сигнал-шум", S/N(i), оптического потока для i-го цвета не превышает предельное отношение "сигнал-шум", S/N lim, на этапе 216 определяется, является ли i-ый цвет последним, и способ 200 продолжается. Когда на этапе 214 отношение "сигнал-шум" S/N(i) оптического потока для i-го цвета превышает предельное отношение "сигнал-шум", S/N lim, оптический поток для i-го цвета сохраняется для использования. На этапе 216 определяется, является ли i-ый цвет последним, и способ 200 продолжается.
Инициирование параметров настройки СИД лампы на этапе 202 может содержать инициирование таких параметров настройки СИД лампы, как параметры настройки цвета, параметры настройки снижения яркости и т.п. Начальные величины могут быть заранее определены изготовителем, проектировщиком освещения или могут быть сохраненными входными данными пользователя из предыдущего использования. Когда во время работы входные данные пользователя изменяются, способ 200 может быть запущен снова на этапе 202 инициирования параметров настройки СИД ламп, чтобы отразить измененные пользователем входные данные.
Инициирование контура оптических измерений на этапе 204 после n секунд может содержать инициирование контура оптических измерений после заданного числа секунд. В одном примере контур измерений инициирует контур оптических измерения приблизительно каждые 7 миллисекунд, что эквивалентно частоте приблизительно 140 Герц. Специалисты в данной области техники должны понимать, что время может быть выбрано таким образом, чтобы предотвращать восприятие цветовых артефактов (мерцание), хотя, если принимаются другие меры для минимизации мерцания, может использоваться большее время, порядка минут.
Определение на этапе 206, превышает ли длительность импульса для i-го цвета, PW(i), предельную длительность импульса, PW lim, запрещает новое измерение оптического потока и/или запоминание для любого цвета, если длительность импульса ниже предельной длительности импульса, то есть рабочий цикл для цвета ниже определенного процента максимального рабочего цикла, такого как 2%. СИД источник не находится в диапазоне управления с обратной связью, когда длительность импульса для СИД источника не превышает предельную длительность импульса. Результат самого последнего действительного измерения потока сохраняется так, чтобы управление цветом могло быть продолжено, даже при коротком рабочем цикле. Сохраненный результат измерения оптического потока используется до тех пор, пока СИД лампа не вернется в диапазон управления с обратной связью, где могут быть сделаны новые действительные измерения потока и полное управление цветами может быть восстановлено. Полное управление цветами может поддерживаться для цветов, имеющих длительность импульса, превышающую предельную длительность импульса, даже при том, что один или более цветов имеют длительность импульса ниже предельной длительности импульса. За пределами диапазона управления с обратной связью, в таких областях, как области с низким рабочим циклом и/или низким световым выходом, СИД источники обычно запускаются без труда.
Измерение оптического потока для i-го цвета на этапе 208 может содержать измерение оптического потока с помощью оптического датчика, такого как фотодиод, который создает сигнал, соответствующий оптическому потоку.
Определение на этапе 210, превышает ли интенсивность оптического потока для i-го цвета, Int(i), предельную интенсивность Int lim, запрещает запоминание новых данных оптического потока для любого цвета, когда интенсивность меньше предельной интенсивности, то есть когда выбор цвета/интенсивности заставляет один или более цветов СИД выходить за пределы диапазона управления с обратной связью. СИД источник не находится в диапазоне управления с обратной связью, когда интенсивность для измеренного оптического потока для СИД источника не превышает предельную интенсивность. Сохраненный результат измерения оптического потока используется до тех пор, пока СИД лампа не вернется в диапазон управления с обратной связью, так чтобы могли быть сделаны новые измерения потока, и полное управление цветами могло быть восстановлено.
Определение на этапе 212, превышает ли отношение "сигнал-шум" для i-го цвета, S/N(i), оптического потока предельное отношение "сигнал-шум", S/N lim, запрещает сохранение новых данных оптического потока для любого цвета, когда отношение "сигнал-шум" меньше предельного отношения "сигнал-шум", то есть когда выбор цвета/интенсивности заставляет один или более цветов СИД выходить за пределы диапазона управления с обратной связью. СИД источник не находится в диапазоне управления с обратной связью, когда отношение "сигнал-шум" для измеренного оптического потока для СИД источника не превышает предельное отношение "сигнал-шум". Сохраненный результат измерения оптического потока используется до тех пор, пока СИД лампа не вернется в диапазон управления с обратной связью так, чтобы могли быть сделаны новые измерения потока и полное управление цветами могло быть восстановлено. В одном варианте осуществления определение на этапе 212 содержит выполнение измерений оптического потока заданное количество раз, например 100 раз, вычисляя стандартную девиацию результатов измерений оптического потока, используя стандартную девиацию в качестве отношения "сигнал-шум" для i-го цвета, S/N(i), и определяя, превышает ли отношение "сигнал-шум" для i-го цвета S/N(i) для оптического потока предельное отношение "сигнал-шум", S/N lim. Использование большого количества измерений оптического потока выявляет разброс отношения "сигнал-шум", избегая, в то же время, ложных результатов измерений оптического потока.
Сохранение на этапе 214 результатов измерения оптического потока для i-го цвета для последующего использования может содержать сохранение результатов измерения оптического потока для i-го цвета в контроллере СИД. Сохраненные результаты измерения оптического потока могут использоваться как сигнал обратной связи, когда СИД лампа работает вне диапазона управления с обратной связью. В одном варианте осуществления сохраненные результаты измерений оптического потока могут прослеживаться во времени для заданного тока СИД. Когда хранящиеся результаты измерения оптического потока меньше предельного значения для оптического потока, контроллер СИД может генерировать сигнал окончания срока службы СИД лампы, направляемый пользователю, сообщающий о необходимости замены СИД лампы.
СИД лампа может содержать средства снижения рассеивания мощности в электронных устройствах СИД лампы, способные влиять на управление цветом. Частота тока СИД может быть снижена, увеличивая разность в гистерезисных пределах. Более низкая частота может неблагоприятно влиять на управление цветом, поскольку фильтрация сигнала оптического потока недостаточна, чтобы отфильтровывать более низкую частоту. Способ 200 может содержать запрет сохранения новых данных оптического потока для любого цвета, когда частота тока СИД меньше предельной частоты тока СИД или когда разность между значениями гистерезиса больше предельной разности гистерезисных значений. Способ 200 может также содержать меры по поддержанию работы СИД лампы в пределах диапазона управления с обратной связью. СИД лампа может снижать индекс цветопередачи (CRI), чтобы поддерживать более высокую интенсивность цветов определенных СИД и, следовательно, поддерживать управление цветами с обратной связью таких цветов СИД. В примере СИД лампы "красный-зеленый-синий-янтарный" (RGBA) цвет СИД с низким рабочим циклом может быть выключен за счет CRI и другие цвета повторно балансируются, чтобы сохранить правильные цветовые координаты и управление с обратной связью. Точно также, цветовая температура может смещаться за счет рабочих циклов, чтобы поддерживать управление цветами с обратной связью. Цель состоит в поддержании всех рабочих циклов выше минимального уровня, так чтобы оптический поток для всех СИД источников мог измеряться для максимального количества времени.
На фиг.2B показана блок-схема последовательности выполнения операций для СИД лампы с изменяющимся током СИД. На этапе 206 определяется, превышает ли длительность импульса для i-го цвета, PW(i), предельную длительность импульса, PW lim. Когда длительность импульса для i-го цвета PW(i) не превышает предельную длительность импульса, PW lim, на этапе 232 определяется, является ли ток СИД для i-го цвета, I(i), меньше минимального тока I СИД. Когда ток СИД для i-го цвета, I(i), меньше минимального тока СИД, Imin, на этапе 216 определяется, является ли i-ый цвет последним i-ым цветом, и способ 200 продолжается. Когда ток СИД для i-го цвета, I(i), не меньше минимального тока СИД, Imin, ток СИД для i-го цвета, I(i), уменьшается и длительность импульса для i-го цвета, PW(i), на этапе 234 увеличивается. Способ 200 на этапе 206 продолжает определение, превышает ли длительность импульса для i-го цвета, PW(i), предельную длительность импульса, PW lim.
Определение на этапе 206, превышает ли длительность импульса для i-го цвета, PW(i) предельную длительность импульса PW lim, позволяет регулировать ток СИД, когда ток уже не находится на минимуме тока СИД. Уменьшение тока СИД и увеличение длительности импульса на этапе 234 поддерживает один и тот же световой выход СИД источника, улучшая возможность измерения оптического потока, благодаря большей длительности импульса. В одном варианте осуществления минимальный ток СИД, Imin, определяется на дискретных уровнях тока во время производства, поскольку спектр выхода СИД источников изменяется в зависимости от тока.
Минимальный ток СИД, Imin, может зависеть от конструкции СИД лампы и может дополнительно зависеть от требуемого входного сигнала от пользователя.
Когда работа каждого СИД источника в СИД лампе независима от других СИД источников в СИД лампе, как в примере, показанном на фиг.3, минимальный ток СИД, Imin зависит от конструкции СИД лампы. В этом случае минимальный ток СИД, Imin, определяется такими факторами, как способность электронных средств СИД лампы создавать стабильные токи каналов, способность СИД источников генерировать стабильный световой выход, способность фотодиодов измерять стабильные оптические потоки, калибровка конкретных токов и т.п. Эти факторы могут также определять минимальный ток СИД, Imin, когда работа каждого СИД источника СИД лампы не зависит из других СИД источников в СИД лампе, пока входной сигнал пользователя не требует максимального рабочего цикла для одного из СИД источников в СИД канале.
Когда работа каждого СИД источника в СИД лампе не зависит из других СИД источников в СИД лампе, как в примере, показанном на фиг.1, минимальный ток СИД, Imin, может зависеть от входного сигнала пользователя, то есть выхода по цвету и ослаблению яркости, потребованного пользователем. В этом примере СИД лампа содержит СИД каналы с более чем одной СИД схемой в каждом СИД канале, так что каждая СИД схема в СИД канале принимает один и тот же ток канала. Каждая СИД схема содержит СИД источник. Для измерения оптического потока максимальный рабочий цикл для каждого СИД источника ограничен до менее чем 100 процентов, то есть приблизительно 90 процентов или больше, как желательно для конкретного применения. Входной сигнал пользователя для запрошенной рабочей точки может требовать, чтобы один из СИД источников в СИД канале работал в максимальном рабочем цикле с конкретной амплитудой тока, которая требуется, чтобы удовлетворить требования входного сигнала пользователя. Амплитуда тока не может быть уменьшена, не снижая общий световой выход от СИД источника с максимальным рабочим циклом. Хотя другой СИД источник в СИД канале может иметь только малый световой выход для входного сигнала пользователя и было бы желательно увеличить рабочий цикл и снизить амплитуду тока для СИД источника с малым световым выходом, амплитуда тока канала сохраняется, чтобы поддерживать требуемый световой выход другого СИД источника, работающего с максимальным рабочим циклом. Поэтому, минимальный ток СИД, Imin, для всех СИД источников в СИД канале является одним и тем же и определяется СИД источником, работающим с максимальным рабочим циклом.
В одном варианте осуществления уменьшение тока СИД и увеличение длительности импульса на этапе 234 дополнительно содержат регулировку усиления оптического датчика. Усиление оптического датчика изменяется, чтобы гарантировать, что сигнал оптического датчика является достаточно большим для обеспечения точного измерения оптического потока с помощью аналого-цифрового (A/D) преобразователя. Усиление оптического датчика изменяется обратно изменению интенсивности СИД, которая зависит от тока СИД.
На фиг.3, где схожие элементы совместно используют схожие ссылочные номера позиций, представленных на фиг.1, показана схема другого варианта осуществления СИД системы управления цветом СИД лампы в соответствии с настоящим изобретением. В этом примере СИД лампа является четырехканальной схемой, лампой с одиночной СИД схемой, то есть СИД лампа имеет четыре СИД канала с одной шунтируемой СИД схемой в СИД канале. СИД источник различных цветов может быть обеспечен в каждом из СИД каналов, так чтобы ток мог управляться для каждого из цветов СИД. Потери мощности в шунтирующих переключателях могут быть минимизированы, потому что ток через СИД канал может выключаться с помощью канального переключателя для СИД канала, когда конкретный цвет не нужен.
СИД лампа 30, использующая систему управления цветом, содержит контроллер 58 СИД, имеющий микроконтроллер 50, в процессе работы соединенный со специализированной интегральной схемой (ASIC) 40 гистерезисного управления, управляющей подачей электропитания на четыре СИД канала 60. Каждый СИД канал 60 имеет канальный переключатель 62 и СИД схему 64, включенную последовательно между источником напряжения и общей точкой. Каждый канальный переключатель 62 принимает управляющий сигнал канального переключателя 63 от схемы 40 ASIC гистерезисного управления, чтобы управлять током, проходящим через СИД канал 60. В этом примере каждая СИД схема 64 содержит диод 67, соединенный параллельно с катушкой 66 индуктивности, последовательно соединенной с шунтирующим переключателем 68. Каждый шунтирующий переключатель 68 принимает управляющий сигнал 69 шунтирующего переключателя от схемы 40 ASIC гистерезисного управления и присоединяется параллельно СИД источнику 80. Шунтирующий переключатель 68 закорачивает через себя канальный ток соответствующего СИД источника, чтобы управлять световым выходом соответствующего СИД источника. В этом примере основной электронной топологией является гистерезисный вольтодобавочный преобразователь. Катушка 66 индуктивности для каждого СИД канала 60 может иметь величину, обеспечивающую желаемую частоту переключения для конкретного СИД источника 80 в этом СИД канале 60. В одном варианте осуществления СИД источники 80 в каждом из СИД каналов 60 могут генерировать свет различных цветов.
В процессе работы пользователь обеспечивает входные сигналы 42 пользователя на микроконтроллер 50, который вырабатывает сигналы 46 разрешения HS и сигналы 48 LS PWM. Схема 40 ASIC гистерезисного управления принимает сигналы 46 разрешения HS и сигналы 48 LS PWM и вырабатывает управляющие сигналы 63 канальных переключателей и управляющие сигналы 69 шунтирующих переключателей. Контроллер 58 СИД может осуществлять способ управления цветом СИД, описанный выше со ссылкой на фиг.2, при генерации управляющих сигналов 63 канальных переключателей и управляющих сигналов 69 шунтирующих переключателей. Со ссылкой на фиг.3, управляющий сигнал 63 канального переключателя обеспечивается для каждого из канальных переключателей 62 для управления током, проходящим через СИД канал 60, и управляющий сигнал 69 шунтирующих переключателей обеспечивается для каждого из шунтирующих переключателей 68, чтобы управлять световым выходом соответствующего СИД источника.
В одном варианте осуществления катушка 66 индуктивности для каждого СИД канала 60 содержит две или более катушек индуктивности, с одной из катушек индуктивности, конструктивно выполненной так, чтобы входить в насыщение при высоком токе. Ток является высоким во время нормальной работы в расчетной рабочей точке, в которой генерируется белый свет с оптимальным цветом и CRI, таким образом, что одна катушка индуктивности в каждом СИД канале 60 обычно входит в насыщение. Когда ток в СИД канале 60 низкий, такой как при работе с цветом и/или CRI, отличными от расчетной рабочей точки, одна катушка индуктивности с насыщением в каждом СИД канале 60 становится ненасыщенной. Это увеличивает общую индуктивность катушки 66 индуктивности и снижает частоту переключения для СИД канала 60. Две или более катушек 66 индуктивности для каждого СИД канала 60 могут быть выбраны так, что гистерезисное окно составляет постоянный процент от уровня тока через СИД канал 60 так, чтобы частота переключения плавно изменялась с уменьшением уровня тока. В одном варианте осуществления практический верхний предел по частоте составляет приблизительно 2 МГц. Нижний предел по частоте зависит от частоты PWM и может быть гораздо выше, чем частота PWM, например на два или более порядков величины больше, чем частота PWM. Хотя варианты осуществления изобретения, раскрытые здесь, в настоящее время рассматриваются как предпочтительные, различные модификации и изменения могут быть сделаны, не отступая от объема изобретения. Объем изобретения указывается в приложенной формуле изобретения и все изменения, попадающие в пределы смысла и ряда эквивалентов, считаются охваченными им.

Claims (20)

1. СИД лампа, содержащая:
контроллер (58) СИД; и
множество каналов 60 СИД, в процессе работы соединенных с контроллером (58) СИД, причем каждый из множества каналов (60) СИД имеет канальный переключатель (62), соединенный последовательно, по меньшей мере, с одной шунтируемой схемой (83) СИД, причем шунтируемая схема (83) СИД имеет шунтирующий переключатель (68), соединенный параллельно с СИД источником (80);
в котором контроллер (58) СИД определяет, находится ли СИД источник (80) в диапазоне управления с обратной связью, сохраняет измеренный оптический поток для СИД источника (80), когда СИД источник (80) находится в диапазоне управления с обратной связью, и блокирует сохранение измеренных значений оптического потока, когда СИД источник (80) не находится в диапазоне управления с обратной связью.
2. СИД лампа по п.1, в которой контроллер (58) СИД определяет, находится ли СИД источник (80) в диапазоне управления с обратной связью, определяя, превышает ли длительность импульса для СИД источника (80) предельную длительность импульса, причем СИД источник (80) находится в диапазоне управления с обратной связью, когда длительность импульса для СИД источника (80) больше предельной длительности импульса, и СИД источник (80) не находится в диапазоне управления с обратной связью, когда длительность импульса для СИД источника (80) не превышает предельную длительность импульса.
3. СИД лампа по п.1, в которой контроллер (58) СИД блокирует сохранение измеренных значений оптического потока, когда длительность импульса для СИД источника не превышает предельную длительность импульса и СИД ток СИД источника (80) меньше минимального тока СИД.
4. СИД лампа по п.1, в которой контроллер (58) СИД уменьшает СИД ток СИД источника (80) и увеличивает длительность импульса для СИД источника (80), когда длительность импульса для СИД источника (80) не превышает предельную длительность импульса и СИД ток СИД источника (80), не меньше минимального СИД тока.
5. СИД лампа по п.4, дополнительно содержащая оптический датчик (56), в процессе работы подключаемый для измерения оптического потока для СИД источника (80), в которой контроллер (58) СИД увеличивает усиление оптического датчика (56), когда контроллер (58) СИД уменьшает СИД ток для СИД источника (80).
6. СИД лампа по п.1, в которой СИД контроллер (58) определяет, находится ли СИД источник (80) в диапазоне управления с обратной связью, определяя, превышает ли интенсивность измеренного оптического потока для СИД источника (80) предельную интенсивность, причем СИД источник (80) находится в диапазоне управления с обратной связью, когда интенсивность измеренного оптического потока для СИД источника (80) больше предельной интенсивности и СИД источник (80) не находится в диапазоне управления с обратной связью, когда интенсивность измеренного оптического потока для СИД источника (80) не превышает предельную интенсивность.
7. СИД лампа по п.1, в которой контроллер (58) СИД определяет, находится ли СИД источник (80) в диапазоне управления с обратной связью, определяя, превышает ли отношение "сигнал-шум" для измеренного оптического потока СИД источника (80) предельное отношение "сигнал-шум", причем СИД источник (80) находится в диапазоне управления с обратной связью, когда отношение "сигнал-шум" для измеренного оптического потока для СИД источника (80) превышает предельное отношение "сигнал-шум", и СИД источник (80) не находится в диапазоне управления с обратной связью, когда отношение "сигнал-шум" для измеренного оптического потока для СИД источника (80) не превышает предельное отношение "сигнал-шум".
8. СИД лампа по п.7, в которой отношение "сигнал-шум" является стандартной девиацией для заданного числа измерений оптического потока.
9. СИД лампа по п.1, в которой каждый из СИД источников (80) множества СИД каналов (60) генерирует свет различного цвета.
10. СИД лампа по п.1, в которой контроллер (58) СИД определяет, находится ли СИД источник (80) в диапазоне управления с обратной связью для каждого из СИД источников (80) множества СИД каналов (60).
11. Способ управления цветом СИД лампы, содержащий этапы, на которых:
обеспечивают СИД лампу, имеющую множество СИД каналов, причем каждый из множества СИД каналов имеет канальный переключатель, соединенный последовательно, по меньшей мере, с одной шунтируемой СИД схемой, причем шунтируемая СИД схема имеет шунтирующий переключатель, соединенный параллельно с СИД источником;
инициируют (202) параметры настройки СИД лампы для СИД лампы;
определяют (220), находится ли СИД источник в диапазоне управления с обратной связью;
сохраняют (214) результаты измерения оптического потока для СИД источника, когда СИД источник находится в диапазоне управления с обратной связью; и
блокируют сохранение результатов измерения оптического потока, когда СИД источник не находится в диапазоне управления с обратной связью.
12. Способ по п.11, в котором определение (220) содержит определение (206), превышает ли длительность импульса для СИД источника предельную длительность импульса, причем СИД источник находится в диапазоне управления с обратной связью, когда длительность импульса для СИД источника превышает предельную длительность импульса, и СИД источник не находится в диапазоне управления с обратной связью, когда длительность импульса для СИД источника не превышает предельную длительность импульса.
13. Способ по п.11, дополнительно содержащий этапы, на которых:
определяют (206), превышает ли длительность импульса для СИД источника предельную длительность импульса;
определяют (232), меньше ли ток СИД для СИД источника минимального тока СИД; и
блокируют сохранение результатов измерения оптического потока, когда длительность импульса для СИД источника не превышает предельную длительность импульса и ток СИД для СИД источника меньше минимального тока СИД.
14. Способ по п.11, дополнительно содержащий этапы, на которых:
определяют (206), превышает ли длительность импульса для СИД источника предельную длительность импульса;
определяют (232), меньше ли ток СИД для СИД источника минимального тока СИД; и
уменьшают (234) ток СИД для СИД источника и увеличивают длительность импульса СИД источника, когда длительность импульса СИД источника не превышает предельную длительность импульса и ток СИД для СИД источника не меньше минимального тока СИД.
15. Способ по п.14, в котором СИД лампа имеет оптический датчик, при работе подключенный для измерения оптического потока СИД источника, дополнительно содержащий увеличение усиления оптического датчика в ответ на уменьшение тока СИД для СИД источника.
16. Способ по п.11, в котором определение (220) содержит определение, превышает ли интенсивность измеренного оптического потока СИД источника предельную интенсивность, причем СИД источник находится в диапазоне управления с обратной связью, когда интенсивность измеренного оптического потока СИД источника превышает предельную интенсивность, и СИД источник не находится в диапазоне управления с обратной связью, когда интенсивность измеренного оптического потока СИД источника не превышает предельную интенсивность.
17. Способ по п.11, в котором определение (220) содержит определение (212), превышает ли отношение "сигнал-шум" для измеренного оптического потока СИД источника предельное отношение "сигнал-шум", причем СИД источник находится в диапазоне управления с обратной связью, когда отношение "сигнал-шум" для измеренного оптического потока СИД источника превышает предельное отношение "сигнал-шум", и СИД источник не находится в диапазоне управления с обратной связью, когда отношение "сигнал-шум" для измеренного оптического потока СИД источника не превышает предельное отношение "сигнал-шум".
18. Способ по п.17, в котором отношение "сигнал-шум" является стандартной девиацией заданного количества измерений оптического потока.
19. Способ по п.11, дополнительно содержащий определение, находится ли СИД источник в диапазоне управления с обратной связью для каждого из СИД источников множества СИД каналов.
20. Система управления цветом СИД лампы, содержащая:
СИД лампу, имеющую множество СИД каналов, причем каждый из множества СИД каналов имеет канальный переключатель, соединенный последовательно, по меньшей мере, с одной шунтируемой СИД схемой, причем шунтируемая СИД схема имеет шунтирующий переключатель, параллельный СИД источнику;
средство инициирования параметров настройки СИД лампы для СИД лампы;
средство определения, находится ли СИД источник в диапазоне управления с обратной связью;
средство сохранения результатов измерения оптического потока СИД источника, когда СИД источник находится в диапазоне управления с обратной связью; и
средство блокирования сохранения результатов измерения оптического потока, когда СИД источник не находится в диапазоне управления с обратной связью.
RU2010128098/07A 2007-12-07 2008-12-02 Система и способ управления цветом сид лампы RU2481751C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1212307P 2007-12-07 2007-12-07
US61/012,123 2007-12-07
PCT/IB2008/055037 WO2009072059A2 (en) 2007-12-07 2008-12-02 Led lamp color control system and method

Publications (2)

Publication Number Publication Date
RU2010128098A RU2010128098A (ru) 2012-01-20
RU2481751C2 true RU2481751C2 (ru) 2013-05-10

Family

ID=40674206

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010128098/07A RU2481751C2 (ru) 2007-12-07 2008-12-02 Система и способ управления цветом сид лампы

Country Status (12)

Country Link
US (1) US8368315B2 (ru)
EP (2) EP2232951B1 (ru)
JP (1) JP5335809B2 (ru)
KR (1) KR101527712B1 (ru)
CN (1) CN101889476B (ru)
AT (1) ATE515924T1 (ru)
BR (1) BRPI0820957A2 (ru)
DK (1) DK2232951T3 (ru)
ES (1) ES2369233T3 (ru)
PL (1) PL2232951T3 (ru)
RU (1) RU2481751C2 (ru)
WO (1) WO2009072059A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675793C2 (ru) * 2014-01-17 2018-12-25 Филипс Лайтинг Холдинг Б.В. Драйвер светодиодов и способ управления

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259424A1 (en) 2004-05-18 2005-11-24 Zampini Thomas L Ii Collimating and controlling light produced by light emitting diodes
US7766511B2 (en) 2006-04-24 2010-08-03 Integrated Illumination Systems LED light fixture
CN101536607B (zh) * 2006-11-10 2012-09-19 皇家飞利浦电子股份有限公司 用于确定驱动值以驱动照明装置的方法和驱动器
US7729941B2 (en) 2006-11-17 2010-06-01 Integrated Illumination Systems, Inc. Apparatus and method of using lighting systems to enhance brand recognition
US8013538B2 (en) 2007-01-26 2011-09-06 Integrated Illumination Systems, Inc. TRI-light
US8742686B2 (en) 2007-09-24 2014-06-03 Integrated Illumination Systems, Inc. Systems and methods for providing an OEM level networked lighting system
US8368321B2 (en) 2008-04-14 2013-02-05 Digital Lumens Incorporated Power management unit with rules-based power consumption management
US8841859B2 (en) 2008-04-14 2014-09-23 Digital Lumens Incorporated LED lighting methods, apparatus, and systems including rules-based sensor data logging
US8339069B2 (en) 2008-04-14 2012-12-25 Digital Lumens Incorporated Power management unit with power metering
US8823277B2 (en) 2008-04-14 2014-09-02 Digital Lumens Incorporated Methods, systems, and apparatus for mapping a network of lighting fixtures with light module identification
US8866408B2 (en) 2008-04-14 2014-10-21 Digital Lumens Incorporated Methods, apparatus, and systems for automatic power adjustment based on energy demand information
US8805550B2 (en) 2008-04-14 2014-08-12 Digital Lumens Incorporated Power management unit with power source arbitration
US8610376B2 (en) 2008-04-14 2013-12-17 Digital Lumens Incorporated LED lighting methods, apparatus, and systems including historic sensor data logging
US10539311B2 (en) 2008-04-14 2020-01-21 Digital Lumens Incorporated Sensor-based lighting methods, apparatus, and systems
US8552664B2 (en) 2008-04-14 2013-10-08 Digital Lumens Incorporated Power management unit with ballast interface
US8610377B2 (en) 2008-04-14 2013-12-17 Digital Lumens, Incorporated Methods, apparatus, and systems for prediction of lighting module performance
US8754589B2 (en) 2008-04-14 2014-06-17 Digtial Lumens Incorporated Power management unit with temperature protection
US8543249B2 (en) * 2008-04-14 2013-09-24 Digital Lumens Incorporated Power management unit with modular sensor bus
US8373362B2 (en) 2008-04-14 2013-02-12 Digital Lumens Incorporated Methods, systems, and apparatus for commissioning an LED lighting fixture with remote reporting
US8531134B2 (en) 2008-04-14 2013-09-10 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and time-based tracking of operational modes
US8255487B2 (en) 2008-05-16 2012-08-28 Integrated Illumination Systems, Inc. Systems and methods for communicating in a lighting network
KR101042772B1 (ko) * 2009-02-13 2011-06-20 삼성전자주식회사 색상 램프 구동 방법 및 그 장치
US8593135B2 (en) 2009-04-14 2013-11-26 Digital Lumens Incorporated Low-cost power measurement circuit
US8954170B2 (en) 2009-04-14 2015-02-10 Digital Lumens Incorporated Power management unit with multi-input arbitration
US8536802B2 (en) 2009-04-14 2013-09-17 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, and local state machine
US8585245B2 (en) 2009-04-23 2013-11-19 Integrated Illumination Systems, Inc. Systems and methods for sealing a lighting fixture
CA2778546A1 (en) * 2009-09-16 2011-03-24 Electronic Research Pty Ltd A led display system
DE102010001798B4 (de) * 2010-02-11 2012-10-31 Osram Ag Verfahren zum Betreiben einer Leuchtdiodenanordnung sowie Schaltanordnung
US8519636B2 (en) * 2010-05-03 2013-08-27 Ge Investment Co., Ltd. AC LED apparatus
US8362711B2 (en) * 2010-05-03 2013-01-29 Ge Investment Co., Ltd. AC LED apparatus
US9089024B2 (en) 2010-05-11 2015-07-21 Arkalumen Inc. Methods and apparatus for changing a DC supply voltage applied to a lighting circuit
US9086435B2 (en) 2011-05-10 2015-07-21 Arkalumen Inc. Circuits for sensing current levels within a lighting apparatus incorporating a voltage converter
US8436549B2 (en) * 2010-08-13 2013-05-07 Bridgelux, Inc. Drive circuit for a color temperature tunable LED light source
DE202011101272U1 (de) * 2010-10-09 2011-12-23 Dilitronics Gmbh Vorrichtung zur Aussteuerung einer LED-Anordnung
EP3517839B1 (en) 2010-11-04 2021-09-22 Digital Lumens Incorporated Method, apparatus, and system for occupancy sensing
KR101639387B1 (ko) * 2010-12-16 2016-07-13 한국전자통신연구원 조명 보정 방법 및 그 장치
US8737731B2 (en) * 2010-12-16 2014-05-27 Electronics And Telecommunications Research Institute Method and apparatus for correcting light
US9192009B2 (en) 2011-02-14 2015-11-17 Arkalumen Inc. Lighting apparatus and method for detecting reflected light from local objects
EP2490507B1 (de) * 2011-02-21 2013-06-19 Delphi Technologies, Inc. LED-Steuergerät
CA2867678C (en) 2011-03-16 2016-06-14 Arkalumen Inc. Lighting apparatus and methods for controlling lighting apparatus using ambient light levels
US9066381B2 (en) 2011-03-16 2015-06-23 Integrated Illumination Systems, Inc. System and method for low level dimming
EP3734143A3 (en) 2011-03-21 2020-12-02 Digital Lumens Incorporated Methods, apparatus and systems for providing occupancy-based variable lighting
US8939604B2 (en) 2011-03-25 2015-01-27 Arkalumen Inc. Modular LED strip lighting apparatus
US9967940B2 (en) 2011-05-05 2018-05-08 Integrated Illumination Systems, Inc. Systems and methods for active thermal management
US9060400B2 (en) * 2011-07-12 2015-06-16 Arkalumen Inc. Control apparatus incorporating a voltage converter for controlling lighting apparatus
US10874003B2 (en) 2011-07-26 2020-12-22 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US20150237700A1 (en) 2011-07-26 2015-08-20 Hunter Industries, Inc. Systems and methods to control color and brightness of lighting devices
US9609720B2 (en) 2011-07-26 2017-03-28 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US9521725B2 (en) 2011-07-26 2016-12-13 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US8710770B2 (en) 2011-07-26 2014-04-29 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US11917740B2 (en) 2011-07-26 2024-02-27 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US8928240B2 (en) 2011-08-16 2015-01-06 Abl Ip Holding Llc Method and system for driving organic LED's
CA2854784C (en) 2011-11-03 2021-07-20 Digital Lumens Incorporated Methods, systems, and apparatus for intelligent lighting
AU2013235436B2 (en) 2012-03-19 2016-12-01 Osram Sylvania Inc. Methods, systems, and apparatus for providing variable illumination
US8894437B2 (en) 2012-07-19 2014-11-25 Integrated Illumination Systems, Inc. Systems and methods for connector enabling vertical removal
WO2014024064A2 (en) * 2012-08-07 2014-02-13 Koninklijke Philips N.V. Power supply device.
US9185766B2 (en) * 2012-10-11 2015-11-10 General Electric Company Rolling blackout adjustable color LED illumination source
US9379578B2 (en) 2012-11-19 2016-06-28 Integrated Illumination Systems, Inc. Systems and methods for multi-state power management
US9420665B2 (en) 2012-12-28 2016-08-16 Integration Illumination Systems, Inc. Systems and methods for continuous adjustment of reference signal to control chip
US9485814B2 (en) 2013-01-04 2016-11-01 Integrated Illumination Systems, Inc. Systems and methods for a hysteresis based driver using a LED as a voltage reference
AU2014259974B2 (en) 2013-04-30 2018-04-19 Digital Lumens, Incorporated Operating light emitting diodes at low temperature
US9013467B2 (en) 2013-07-19 2015-04-21 Institut National D'optique Controlled operation of a LED lighting system at a target output color
US8928023B1 (en) 2013-08-08 2015-01-06 Osram Sylvania Inc. Arrangement of solid state light sources and lamp using same
WO2015054611A1 (en) 2013-10-10 2015-04-16 Digital Lumens Incorporated Methods, systems, and apparatus for intelligent lighting
CN103747373A (zh) * 2013-12-31 2014-04-23 广州市夜太阳舞台灯光音响设备有限公司 具有led彩光效果的音响
CA2943851A1 (en) * 2014-04-04 2015-10-08 Lumenpulse Lighting Inc. System and method for powering and controlling a solid state lighting unit
EP3150027B1 (en) 2014-05-30 2017-09-20 Philips Lighting Holding B.V. Led lighting circuit fed by current source
US9723681B2 (en) * 2014-08-21 2017-08-01 Hsiao Chang Tsai LED lamp system with different color temperatures and various operation modes
KR20160035803A (ko) * 2014-09-24 2016-04-01 삼성전기주식회사 제어장치 및 그를 포함하는 전원장치
CN104619094B (zh) * 2015-02-28 2017-08-25 深圳市景邦电子有限公司 一种七彩灯控制方法和装置以及七彩灯装置
US9992829B2 (en) 2015-05-05 2018-06-05 Arkalumen Inc. Control apparatus and system for coupling a lighting module to a constant current DC driver
US9992836B2 (en) 2015-05-05 2018-06-05 Arkawmen Inc. Method, system and apparatus for activating a lighting module using a buffer load module
US10568180B2 (en) 2015-05-05 2020-02-18 Arkalumen Inc. Method and apparatus for controlling a lighting module having a plurality of LED groups
US9775211B2 (en) 2015-05-05 2017-09-26 Arkalumen Inc. Circuit and apparatus for controlling a constant current DC driver output
US10225904B2 (en) 2015-05-05 2019-03-05 Arkalumen, Inc. Method and apparatus for controlling a lighting module based on a constant current level from a power source
US10228711B2 (en) 2015-05-26 2019-03-12 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10918030B2 (en) 2015-05-26 2021-02-16 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10030844B2 (en) 2015-05-29 2018-07-24 Integrated Illumination Systems, Inc. Systems, methods and apparatus for illumination using asymmetrical optics
US10060599B2 (en) 2015-05-29 2018-08-28 Integrated Illumination Systems, Inc. Systems, methods and apparatus for programmable light fixtures
CN110476481A (zh) * 2017-01-25 2019-11-19 Led动力技术公司 控制照明装置
US10801714B1 (en) 2019-10-03 2020-10-13 CarJamz, Inc. Lighting device
US11778715B2 (en) 2020-12-23 2023-10-03 Lmpg Inc. Apparatus and method for powerline communication control of electrical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2249925C2 (ru) * 2003-03-27 2005-04-10 Общество с ограниченной ответственностью "Электронгарантсервис" Устройство управления освещением
US20050231459A1 (en) * 2004-04-20 2005-10-20 Sony Corporation Constant current driving device, backlight light source device, and color liquid crystal display device
US6987787B1 (en) * 2004-06-28 2006-01-17 Rockwell Collins LED brightness control system for a wide-range of luminance control
US20060164377A1 (en) * 2005-01-25 2006-07-27 Honeywell International, Inc. Light emitting diode driving apparatus with high power and wide dimming range

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399789A (zh) * 1999-07-02 2003-02-26 熔化照明股份有限公司 高亮度的高输出灯
JP2001326386A (ja) * 2000-05-12 2001-11-22 Seiko Epson Corp 照明装置、バーコードリーダ、照明輝度制御方法及び情報記録媒体
US6577512B2 (en) * 2001-05-25 2003-06-10 Koninklijke Philips Electronics N.V. Power supply for LEDs
JP2004335853A (ja) * 2003-05-09 2004-11-25 Nichia Chem Ind Ltd フレキシブル半導体発光装置
JP2005191528A (ja) * 2003-12-01 2005-07-14 Sharp Corp 半導体発光装置のパルス駆動方法およびパルス駆動回路
US7088059B2 (en) * 2004-07-21 2006-08-08 Boca Flasher Modulated control circuit and method for current-limited dimming and color mixing of display and illumination systems
DE102004047669A1 (de) * 2004-09-30 2006-04-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungseinrichtung und Verfahren zur Regelung
ATE419730T1 (de) * 2005-07-29 2009-01-15 Osram Gmbh Multizellen led anordnung, led array und herstellungsverfahren
JP2007155829A (ja) * 2005-11-30 2007-06-21 Aiphone Co Ltd 液晶モジュール
JP4661771B2 (ja) * 2006-11-29 2011-03-30 パナソニック電工株式会社 可視光通信用照明器具及び可視光通信照明システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2249925C2 (ru) * 2003-03-27 2005-04-10 Общество с ограниченной ответственностью "Электронгарантсервис" Устройство управления освещением
US20050231459A1 (en) * 2004-04-20 2005-10-20 Sony Corporation Constant current driving device, backlight light source device, and color liquid crystal display device
US6987787B1 (en) * 2004-06-28 2006-01-17 Rockwell Collins LED brightness control system for a wide-range of luminance control
US20060164377A1 (en) * 2005-01-25 2006-07-27 Honeywell International, Inc. Light emitting diode driving apparatus with high power and wide dimming range

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675793C2 (ru) * 2014-01-17 2018-12-25 Филипс Лайтинг Холдинг Б.В. Драйвер светодиодов и способ управления

Also Published As

Publication number Publication date
CN101889476B (zh) 2012-07-18
PL2232951T3 (pl) 2012-04-30
US20100264834A1 (en) 2010-10-21
WO2009072059A2 (en) 2009-06-11
DK2232951T3 (da) 2011-10-24
ES2369233T3 (es) 2011-11-28
JP5335809B2 (ja) 2013-11-06
EP2352362A3 (en) 2011-08-24
ATE515924T1 (de) 2011-07-15
CN101889476A (zh) 2010-11-17
KR101527712B1 (ko) 2015-06-11
JP2011507227A (ja) 2011-03-03
RU2010128098A (ru) 2012-01-20
EP2232951A2 (en) 2010-09-29
WO2009072059A3 (en) 2009-08-13
BRPI0820957A2 (pt) 2015-07-07
EP2232951B1 (en) 2011-07-06
EP2352362A2 (en) 2011-08-03
US8368315B2 (en) 2013-02-05
KR20100096230A (ko) 2010-09-01

Similar Documents

Publication Publication Date Title
RU2481751C2 (ru) Система и способ управления цветом сид лампы
JP5335808B2 (ja) Ledランプ電源管理システム及び方法
USRE49137E1 (en) Illumination device and method for avoiding an over-power or over-current condition in a power converter
US9756692B2 (en) Methods and apparatus for communicating current levels within a lighting apparatus incorporating a voltage converter
TWI459858B (zh) 照明系統及發光二極體組件之控制單元
US9474127B2 (en) Lighting system and luminaire
RU2604869C2 (ru) Система и способ воплощения уменьшения яркости, проводимого на основе сигнала сети, твердотельного осветительного модуля
US10405383B2 (en) Method of controlling a lighting arrangement, a lighting control circuit and a lighting system
RU2556019C2 (ru) Способ и устройство для увеличения диапазона регулирования освещенности твердотельных осветительных приборов
KR101814193B1 (ko) 백열 램프 컬러 온도 거동을 갖는 led 조명
CA2572335C (en) Switched constant current driving and control circuit
US8569969B2 (en) Methods and apparatus for controlling multiple light sources via a single regulator circuit to provide variable color and/or color temperature light
US20130038234A1 (en) Dimming regulator including programmable hysteretic down-converter for increasing dimming resolution of solid state lighting loads
RU2617414C2 (ru) Плавное регулирование твердотельного источника света с использованием вычисляемой скорости изменения выходного сигнала
US9237623B1 (en) Illumination device and method for determining a maximum lumens that can be safely produced by the illumination device to achieve a target chromaticity
JP2011508961A5 (ru)
KR20120070503A (ko) Led 구동 회로 및 이것을 이용한 led 조명 등구
US9237612B1 (en) Illumination device and method for determining a target lumens that can be safely produced by an illumination device at a present temperature
US11570860B2 (en) LED control device and lighting device including the same
JP7463844B2 (ja) 点灯装置および照明器具

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170315

MM4A The patent is invalid due to non-payment of fees

Effective date: 20181203