RU2459183C2 - Клапан для дозирования вязкой текучей среды, в частности для дозирования красок - Google Patents

Клапан для дозирования вязкой текучей среды, в частности для дозирования красок Download PDF

Info

Publication number
RU2459183C2
RU2459183C2 RU2009139770/28A RU2009139770A RU2459183C2 RU 2459183 C2 RU2459183 C2 RU 2459183C2 RU 2009139770/28 A RU2009139770/28 A RU 2009139770/28A RU 2009139770 A RU2009139770 A RU 2009139770A RU 2459183 C2 RU2459183 C2 RU 2459183C2
Authority
RU
Russia
Prior art keywords
valve
hole
plunger
valve according
rounded end
Prior art date
Application number
RU2009139770/28A
Other languages
English (en)
Other versions
RU2009139770A (ru
Inventor
Антуан ШАССЕН (FR)
Антуан ШАССЕН
Original Assignee
Филлон Текноложи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Филлон Текноложи filed Critical Филлон Текноложи
Publication of RU2009139770A publication Critical patent/RU2009139770A/ru
Application granted granted Critical
Publication of RU2459183C2 publication Critical patent/RU2459183C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0041Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes with provisions for metering the liquid to be dispensed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D3/00Accessories or implements for use in connection with painting or artistic drawing, not otherwise provided for; Methods or devices for colour determination, selection, or synthesis, e.g. use of colour tables
    • B44D3/12Paint cans; Brush holders; Containers for storing residual paint
    • B44D3/127Covers or lids for paint cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0003Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with automatic fluid control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0658Armature and valve member being one single element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • G01F11/30Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply and discharge valves of the lift or plug-lift type
    • G01F11/32Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply and discharge valves of the lift or plug-lift type for liquid or semiliquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)
  • Coating Apparatus (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

Изобретение относится к средствам дозирования и может быть использовано в окрасочной технике. Изобретение направлено на повышение точности дозирования вязких жидкостей, что обеспечивается за счет того, что клапан содержит муфту с закругленным концом, имеющую отверстие на одном из своих концов, и плунжер, размещенный внутри этой муфты с закругленным концом. Имеется также обтюратор, размещенный в плунжере и способный перекрывать отверстие, которое имеется на конце муфты. При этом согласно изобретению отношение между диаметром поверхности (So) прохода и глубиной (Р) упомянутого отверстия превышает 1. 2 н. и 12 з.п. ф-лы, 5 ил.

Description

Область техники
Изобретение относится к клапану для дозирования вязких текучих сред, в частности для дозирования красок. Клапан в соответствии с предлагаемым изобретением находит предпочтительное применение в области дозирования колеров для автомобильных красок.
Предшествующий уровень техники
В настоящее время в области кузовного ремонта автомобилей краску для окрашивания транспортного средства получают путем смешивания некоторого количества базовых колеров, обычно от пяти до десяти таких базовых колеров. Это смешивание обычно осуществляется на основе формулы, определяемой изготовителем краски и уточняющей массу краски каждого базового колера, подлежащей введению в смесь, для определенной общей массы смеси. Известные системы дозирования позволяют достигнуть точности дозирования порядка 0,1 г, что оказывается достаточным для приготовления смеси, имеющей общую массу от 100 до 300 г в зависимости от колера.
Известные технические решения для дозирования красок в области кузовного ремонта основываются на принципе дозирующей крышки, установленной на контейнере, обычно представляющем собой жесткий короб, как раскрыто, например, в документе WО 2006/027450 А2. Оператор наклоняет короб, снабженный крышкой, и приводит в действие систему открытия для того, чтобы обеспечить возможность вытекания краски под действием силы тяжести. Изменяя наклон и степень открытия отверстия, оператор управляет дозированием с точностью до капли. В других известных системах дозирования используются полужесткие или гибкие контейнеры. При этом оператор использует давление, которое он оказывает на контейнер, для выдавливания краски через установленное устье и может управлять дозированием капель.
Недостаток таких систем заключается в том, что точность дозирования ограничена массой капли краски, примерно от 0,03 до 0,1 г. С другой стороны, эта капля может в каждый момент времени либо упасть в сосуд смешивания и изменить количество взвешиваемого состава, либо остаться, приклеившись к устью, и загрязнять его. Однако в настоящее время базовые колеры становятся все более концентрированными и легко намазываемыми, а поверхности, подлежащие ремонту, становятся все меньшими, что создает потребность в приготовлении небольших порций краски, составляющих примерно от 30 до 50 г. При этом для получения той же колориметрической точности, которая достигается при дозировании в 0,1 г для приготовления от 100 до 300 г смеси, потребуется большая точность дозирования, доходящая до 0,01 г. Таким образом, появляется необходимость контролировать массу, определенно меньшую, чем масса одной капли.
Другой феномен, специфическим образом относящийся к краскам, состоит в том, что вязкость этих красок может изменяться в относительно широких пределах. Действительно вязкость зависит от многих факторов, таких, в частности, как температура текучей среды, и в том случае, когда речь идет о краске, потеря растворителя. В частности, для относительно недавно разработанных красок с высоким содержанием сухого экстракта и, соответственно, с малым содержанием растворителя, даже небольшая потеря растворителя влечет за собой существенное повышение вязкости.
Однако эти изменения вязкости оказывают существенное влияние на точность дозирования, в частности, по соображениям завихрений, возникающих в процессе выброса струи краски, в той мере, в какой вязкость представляет собой существенный фактор в определении характеристик турбулентного течения.
В патентном документе GВ 207392 описан клапан дозирования жидкости, содержащий муфту с закругленным концом, имеющую отверстие на одном из своих концов, и плунжер, размещенный внутри этой муфты с закругленным концом и имеющий возможность перекрывать упомянутое отверстие. Такой клапан выполнен с возможностью дозирования горячих жидкостей и жидкостей, обладающих коррозионными свойствами. Однако этот клапан практически не обеспечивает дозирования жидкостей, имеющих некоторую вязкость и обладающих тенденцией к быстрому засыханию, как это свойственно для красок. Действительно, вязкая жидкость, проходящая через этот клапан, будет иметь тенденцию к существенному замедлению своего движения на уровне нижнего отверстия в форме удлиненной трубки этого клапана. Это замедление движения связано с вязкостью жидкости и, соответственно, со значительным трением, которое будет возникать между этой жидкостью и стенками трубчатого отверстия клапана. Таким образом, будет существовать весьма высокая вероятность того, что часть вязкой жидкости останется в трубчатом отверстии и высохнет там, закупоривая клапан и делая его непригодным для дальнейшего использования.
В документе ЕР 0252421 А1 описан другой тип клапана, содержащий муфту с закругленным концом, имеющую отверстие на одном из своих концов и снабженный плунжером для перекрытия этого отверстия. Этот клапан разработан для автоматических дозаторов напитков, то есть для работы с жидкостями, не являющимися вязкими и не требующими слишком высокой точности дозирования, т.е. они не являются жидкостями, связанными с явлениями высыхания и абразивного износа.
В документе ЕР 0283137 А1 описан клапан того же типа (с муфтой с закругленным концом и с плунжером перекрытия), выполненный с возможностью выдачи жидкостей, таких как краски. Плунжер заканчивается золотником типа «конус в конусе» (конический подвижный клапан, упирающийся в коническое посадочное место вокруг отверстия муфты с закругленным концом), при этом для устранения явлений удержания и для облегчения очистки головки клапана поверхность дистального конца плунжера располагается на одном уровне с отверстием в положении перекрытия. Однако вследствие своей геометрии этот клапан обладает недостатком, который заключается в том, что клапан в открытом положении создает турбулентное течение, в частности, под действием давления выпускаемой жидкостью. Турбулентность является нежелательной для удовлетворительного дозирования и она, кроме того, обычно вызывает формирование капли на конце клапана сразу после его закрытия, вследствие этого возникает необходимость предусматривать такую наружную форму, которая облегчает очистку клапана после использования.
В документе DЕ 3409142 А1 описан клапан похожей конструкции, предназначенный для выдачи пищевых жидкостей, таких, например, как концентрированные напитки, и обладающий теми же недостатками и ограничениями, что и клапан из описанного выше документа.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Одна из технических задач данного изобретения состоит в том, чтобы устранить описанные выше недостатки и предложить новую конструкцию клапана, специально предназначенную для дозирования с очень высокой точностью вязких жидкостей, таких как краски.
Основной задачей настоящего изобретения является создание клапана, который позволяет избежать трудностей, связанных с вязкостью жидкости, в процессе принудительного выталкивания этой жидкости через клапан.
Более конкретно задача данного изобретения состоит в создании клапана, который по существу позволяет обеспечить реализацию совокупности следующих преимуществ:
- очень высокую точность дозирования;
- высокую степень повторяемости количеств выдаваемой текучей среды;
- относительно небольшую чувствительность к изменениям вязкости текучей среды;
- отсутствие захватывания и удерживания краски на уровне отверстия клапана таким образом, чтобы исключить локальное удерживание и опасность засыхания краски;
- совместимость со струей высокого давления, в частности, в случае использования в сочетании с приемным сосудом под давлением.
Последний из перечисленных выше аспектов, а именно надежное управление струей краски, является особенно важным в применении для дозирования колеров для приготовления красок.
Действительно, необходимо располагать хорошо контролируемым расходом текучей среды, что требует поддержания резервуара под давлением, то есть локального поддержания более высокой скорости течения на уровне отверстия клапана.
Здесь важно, чтобы струя оставалась ламинарной, в противном случае появление завихрений будет вызывать образование капли на конце клапана вокруг его выходного отверстия в конце процесса дозирования.
Кроме того, следует учесть возможности преодоления неконтролируемых явлений, оказывающих влияние на вязкость текучей среды, например изменения температуры, потерю растворителя, изменения вязкости от одной произведенной партии материала к другой или от одного колера краски к другому.
В соответствии с предлагаемым изобретением поставленные выше задачи решаются посредством создания клапана дозирования, тип которого был описан в упомянутом ранее документе ЕР 0283137 А1. Указанный клапан содержит муфту с закругленным концом, имеющую отверстие на одном из ее концов, плунжер, размещенный внутри этой муфты с закругленным концом, и обтюратор, способный перекрывать упомянутое отверстие, причем обтюратор в положении перекрытия расположен на одном уровне с наружной поверхностью муфты с закругленным концом в непосредственной близости от отверстия.
В соответствии с предлагаемым изобретением заявленный клапан характеризуется тем, что отношение между диаметром поверхности прохода и глубиной отверстия определенно превышает 1.
Здесь под выражением "поверхность прохода" следует понимать поверхность Sо отверстия в направлении, поперечном по отношению к направлению протекания текучей среды. Эта поверхность прохода может быть круглой и имеет при этом диаметр Dо. Этот диаметр Dо представляет собой длину, которая также может быть определена как диаметр отверстия. Выражение "глубина" отверстия здесь определяет размер, который также может быть назван "толщиной" отверстия. При этом речь идет о длине отверстия в направлении протекания текучей среды. Следовательно, глубина отверстия является перпендикулярной по отношению к поверхности прохода этого отверстия.
Таким образом, отверстие выполнено так, чтобы иметь возможно меньшую длину этого отверстия, обеспечивающую направление струи текучей среды, проходящей через клапан, причем отверстие выполнено в зоне небольшой толщины и длина зоны контакта между отверстием и струей является относительно небольшой по сравнению с поверхностью отверстия.
В частности, поскольку размер отверстия выбран так, что имеет возможно меньшую длину, обеспечивающую направление движения струи текучей среды в непосредственной близости от устья (причем отверстие выполнено в зоне относительно небольшой толщины), длина зоны контакта между отверстием и струей жидкости будет уменьшенной, что позволяет сохранить совершенно ламинарное течение, несмотря на высокую кинетическую энергию выталкивания струи.
Таким образом, расход текучей среды зависит только от характеристик, присущих геометрии клапана, от давления, приложенного к текучей среде, и от плотности этой текучей среды при том, что он практически не зависит от вязкости текучей среды. Это позволяет осуществлять дозирование предельно точным и надежно воспроизводимым образом.
Специфическая конфигурация клапана в соответствии с предлагаемым изобретением дополнительно способствует четкому прерыванию струи текучей среды без образования подтеков и без формирования капли на уровне отверстия. Устранение формирования такой капли или существенное уменьшение ее размеров позволяет значительно повысить точность дозирования, избавляясь при этом от дисперсии, связанной с этой каплей, и существенно уменьшая загрязнение клапана.
Если обозначить через Dо диаметр поверхности прохода и через Р глубину, описанное выше условие может быть записано в следующей форме:
Dо/Р>>1 (Уравнение 1)
Условие "определенно превышает 1" означает, что упомянутое отношение равно или превышает 3. И предпочтительным образом это отношение равно или превышает 5, что может быть записано в следующей форме:
Dо/Р≥5 (Уравнение 2)
Благодаря отверстию с описанным выше соотношением размеров, проход клапана весьма резко уменьшается на очень малой длине в соответствии с принципом действия диафрагмы. Зона муфты с закругленным концом, содержащая упомянутое отверстие, может, таким образом, быть обозначена как "диафрагма". Поток текучей среды оказывается под атмосферным давлением непосредственно на выходе из этой диафрагмы. На уровне сужения этой диафрагмы движение текучей среды существенно ускоряется на очень малой длине.
В соответствии с законом Бернулли это ускорение соответствует очень быстрому преобразованию потенциальной энергии давления в кинетическую энергию, без эффекта вязкости. Эта диафрагма имеет очень малую длину, чтобы ограничить потери напора по потоку позади сужения и устранить явления турбулентности, описанные Рейнольдсом, несмотря на значительную скорость движения текучей среды.
Таким образом, можно получить ламинарную струю текучей среды, расход которой зависит только от характеристик диафрагмы, от давления, приложенного к текучей среде на входе клапана, и от плотности этой текучей среды. Вязкость текучей среды здесь практически не оказывает влияния. Это явление оказывается важным для управления дозированием, поскольку если характеристики диафрагмы, приложенное давление и плотность текучей среды являются стабильными и удобными для надежного контроля, вязкость текучей среды зависит от многочисленных факторов, в частности от ее температуры и, в том случае, когда речь идет о красках, от потери растворителя. Для недавно разработанных красок с высоким содержанием сухого экстракта, то есть для красок с небольшим содержанием растворителя, даже небольшая потеря этого растворителя влечет за собой значительное повышение вязкости.
Другое преимущество ламинарной струи связано с тем, что на выходе диафрагмы текучая среда имеет высокую скорость, то есть обладает большой кинетической энергией. Поскольку связанная с этой диафрагмой система перекрытия, а именно плунжер, установленный по потоку перед этой диафрагмой и имеющий возможность перекрывать расход текучей среды непосредственно на уровне сужения диафрагмы, а именно отверстие муфты с закругленным концом, резко перекрывает упомянутое отверстие при помощи плунжера, обеспечивается очень надежная отсечка струи.
Эта отсечка струи располагается в зоне, где текучая среда имеет достаточно высокую скорость движения, то есть расход текучей среды по потоку перед выходным отверстием резко останавливается. Что касается текучей среды, располагающейся по потоку непосредственно за зоной перекрытия, то она обладает значительной кинетической энергией и продолжает свое движение. Именно эта кинетическая энергия позволяет текучей среде освободиться от сил сцепления с поверхностями диафрагмы и плунжера и исключить, таким образом, формирование капли. Устранение формирования капли или существенное уменьшение ее размеров позволяет существенно повысить точность дозирования, преодолевая дисперсию, связанную с этой каплей, при этом обеспечивается существенное уменьшение загрязнения клапана.
В положении перекрытия обтюратор располагается на одном уровне с наружной поверхностью муфты с закругленным концом в непосредственной близости от отверстия, и этот обтюратор, таким образом, оказывается способным полностью перекрыть упомянутое отверстие без зоны задержки, что способствует резкой отсечке струи текучей среды без образования подтеков и без формирования капли на уровне отверстия.
Предпочтительно поверхность перекрытия упомянутого обтюратора имеет форму острия, плоскую форму или форму усеченной сферы.
Здесь под выражением "усеченная сфера" следует понимать некоторую часть сферы. Усеченная сфера также может быть определена как обрезанная или усеченная сфера, в которой отсутствует некоторая ее часть. Таким образом, "усеченная сфера" представляет собой некоторую часть сферы так же, как и усеченная часть конуса представляет собой некоторую часть этого конуса.
В соответствии с предпочтительным вариантом реализации муфта с закругленным концом содержит, если смотреть на нее снаружи, выпуклую или плоскую зону, располагающуюся в непосредственной близости от упомянутого отверстия.
Такая плоская зона, или же выпуклая или выгнутая наружу зона, не представляет внешних полостей или вогнутостей, которые могли бы служить в качестве зоны удержания текучей среды. Таким образом, формирование подтеков или капель практически не допускается.
Предпочтительно форма упомянутой выпуклой зоны может соответствовать форме полусферы.
Кроме того, в случае выпуклой зоны, отверстие может располагаться на вершине этой выпуклой зоны. В случае плоской зоны отверстие может располагаться в центре плоской зоны.
Предпочтительно плунжер изготавливается из магнитного материала.
В этом случае клапан дополнительно может содержать головку, изготовленную из магнитного материала, причем эта головка и плунжер реализуются таким образом, чтобы наличие магнитного поля могло создавать силу притяжения между головкой и плунжером. Таким образом, под действием магнитного поля плунжер может быть притянут к головке, чтобы освободить упомянутое отверстие. Предпочтительно на фазе притяжения плунжер находится в положении упора в упомянутую головку.
Кроме того, отношение поверхности прохода муфты с закругленным концом к поверхности прохода отверстия определенно превышает 1.
Если обозначить через Sd поверхность прохода муфты с закругленным концом и через Sо поверхность прохода отверстия, то это отношение может быть записано как:
Sd/Sо>>1 (Уравнение 3)
Условие "определенно превышает 1" означает, что упомянутое отношение превышает или равно 9 (3×3). Предпочтительным образом это отношение превышает или равно 50, что может быть записано в следующей форме:
Sd/Sо≥50 (Уравнение 4)
Поверхность прохода муфты с закругленным концом определяется как максимальная протяженность камеры, определяемой этой муфтой с закругленным концом в направлении, перпендикулярном направлению протекания текучей среды.
При таком отношении между двумя поверхностями прохода канал, располагающийся по потоку перед зоной перекрытия клапана, предполагает относительно большой проход. Это позволяет в максимально возможной степени ограничить влияние вязкости текучей среды на скорость протекания. Таким образом, потери напора по потоку перед диафрагмой оказываются весьма незначительными, поскольку сечение прохода является достаточно большим, вследствие чего скорость текучей среды является относительно малой. Циркуляция потока текучей среды через клапан вплоть до отверстия в муфте с закругленным концом облегчается в результате значительного сечения прохода против выходного отверстия. Речь идет, с одной стороны, об ограничении потерь напора, зависящих от вязкости, а с другой стороны, об устранении турбулентных режимов по потоку перед зоной перекрытия.
Другими словами, при соблюдении упомянутого выше отношения обеспечивают очень резкое уменьшение сечения прохода текучей среды. Зона, располагающаяся по потоку перед отверстием, является относительно широкой и расширяющейся, а отверстие предполагает очень резкое сужение, как это имеет место в диафрагмах, используемых в качестве регуляторов расхода в гидравлике.
В соответствии с предпочтительным способом реализации клапан дозирования дополнительно содержит пружину, имеющую возможность толкать плунжер в положение перекрытия. Предпочтительным образом упомянутая пружина располагается, по меньшей мере, частично, внутри плунжера.
Предпочтительно плунжер может содержать, по меньшей мере, одно отверстие, позволяющее обеспечить прохождение текучей среды из зоны подачи муфты с закругленным концом в направлении отверстия этой муфты с закругленным концом.
Клапан дозирования предпочтительно дополнительно содержит средство, способное перемещать плунжер между положением перекрытия и положением освобождения отверстия. В соответствии с предпочтительным вариантом реализации это средство содержит электрическую катушку, надетую на муфту с закругленным концом.
Чтобы ограничить влияние переходного режима, в течение которого поток не является ламинарным, предпочтительно, чтобы открытие и закрытие клапана происходило, возможно, более быстро.
Кроме того, если клапан управляется по принципу "все или ничего", его управление легко может быть автоматизировано.
Предлагаемое изобретение относится также к контейнеру для текучей среды с клапаном, имеющим, по меньшей мере частично, характеристики, описанные ранее.
В таком контейнере перемещение текучей среды может осуществляться путем помещения этой текучей среды под давлением. При таком перемещении текучей среды под действием давления недостатки системы с использованием силы тяжести, такой как описана в документе WО 2006/027450 А2, и сильно зависящей от уровня заполнения контейнера, больше не существуют. Создание давления текучей среды позволяет освободиться от влияния изменений уровня контейнера. Действительно, не составляет труда приложить давление, достаточно высокое для того, чтобы сделать пренебрежимо малым влияние уровня заполнения контейнера. В этом случае относительное давление между текучей средой в зоне подачи муфты с закругленным концом и внешней средой клапана предпочтительным образом является стабильным.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопровождающие чертежи, на которых:
Фиг.1 изображает пример реализации клапана в соответствии с предлагаемым изобретением в продольном разрезе в закрытом положении;
Фиг.2 изображает вид спереди плунжера клапана, показанного на фиг.1;
Фиг.3 изображает клапан, показанный на фиг.1, в открытом положении во время протекания текучей среды через клапан;
Фиг.4 изображает детальный вид нижней части клапана, показанного на фиг.1;
Фиг.5 изображает вид в разрезе по линии V-V на фиг.1.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ВОПЛОЩЕНИЯ ИЗОБРЕТЕНИЯ
На фиг.1 представлен пример реализации клапана в соответствии с предлагаемым изобретением, клапан показан без своей электромагнитной системы управления и в закрытом положении.
Клапан образован головкой 2, присоединенной к резервуару с текучей средой (не показан). Головка изготавливается из материала, проницаемого для магнитного потока. Муфта 3 с закругленным концом закрепляется на головке 2. Эта муфта изготавливается из немагнитного материала. Она содержит на своем конце отверстие 3.1. Направляемый в муфту с закругленным концом плунжер 4 изготовлен из материала, проницаемого для магнитного потока. Этот плунжер 4 содержит обтюратор 4.1, способный перекрывать отверстие 3.1 в муфте 3 с закругленным концом. Обтюратор 4.1 может представлять собой дополнительную деталь из эластомера, и поверхность 11 перекрытия (см. фиг.3) может принимать форму острия, плоскости или усеченной сферы. Плунжер удерживается в своем нижнем положении под действием пружины 5.
Текучая среда подводится в зону 1 подачи под определенным относительным давлением, которое может создаваться при помощи любого подходящего в данном случае средства, при помощи простого воздействия силы тяжести или при помощи создания разрежения во внешней, окружающей клапан среде. Текучая среда движется в корпусе клапана внутри и вокруг плунжера 4 и пружины 5. Текучая среда легко движется вплоть до зоны 1.1 перекрытия через широкие отверстия 4.2, выполненные в плунжере 4.
На фиг.2 изображен вид плунжера 4 и демонстрируются отверстия 4.2, позволяющие текучей среде циркулировать из зоны 1 подачи к зоне 1.1 перекрытия.
На фиг.3 изображен клапан в его рабочей конфигурации и в открытом положении. На клапане размещена цилиндрическая катушка 6, способная индуцировать магнитное поле в головке 2 и в плунжере 4 через муфту 3 с закругленным концом. Магнитное поле создает усилие притяжения между головкой 2 и плунжером 4. В том случае, когда это усилие оказывается превышающим сопротивление пружины 5, плунжер 4 поднимается вместе с обтюратором 4.1, что приводит к освобождению отверстия 3.1 в муфте 3 с закругленным концом. При этом текучая среда может также выходить из клапана в виде ламинарной струи 1.2 для попадания в сосуд 7, установленный на чашке 8 весов.
На фиг.4 изображен детальный вид нижней части муфты 3 с закругленным концом. Здесь отчетливо можно видеть диаметр Dо поверхности Sо прохода отверстия 3.1, глубину Р этого отверстия 3.1, выпуклую зону 10 муфты 3 с закругленным концом, а также наружную поверхность 9 муфты 3 с закругленным концом, располагающуюся в непосредственной близости от отверстия 3.1.
На фиг.5 изображен вид в разрезе по линии V-V, показанной на фиг.1. На этом виде в разрезе опущены пружина 5 и плунжер 4 для того, чтобы иметь возможность более отчетливо показать поверхность Sd прохода муфты 3 с закругленным концом и поверхность Sо прохода отверстия 3.1. Здесь ясно видно, что Sо определенно меньше Sd. Следует отметить, что Sd соответствует всей совокупности поверхности, ограниченной стенками муфты 3 с закругленным концом, и включает, в частности, поверхность Sо. Таким образом, Sо может рассматриваться как центральная часть Sd.
Благодаря клапану в соответствии с предлагаемым воплощением изобретения получают систему дозирования, которая находит особенно предпочтительное применение для дозирования красок базовых колеров для ремонта автомобиля. Эта система дозирования экономически адаптирована к кузовам средних размеров, обладает высокой точностью, отличается простотой использования и требует минимума затрат на очистку.
Разумеется, использование клапана в соответствии с предлагаемым изобретением не ограничивается областью окраски автомобилей. Действительно, такой клапан может быть использован в любой области, где требуется точное и надежное дозирование текучей среды.

Claims (14)

1. Клапан для дозирования вязкой текучей среды, содержащий муфту (3) с закругленным концом, имеющую отверстие (3.1) на одном из своих концов, плунжер (4), установленный внутри муфты (3) с закругленным концом, в котором размещен обтюратор (4.1), обеспечивающий перекрытие отверстия (3.1), причем обтюратор в положении перекрытия расположен на одном уровне с наружной поверхностью (9) муфты с закругленным концом в непосредственной близости от упомянутого отверстия, отличающийся тем, что отношение между диаметром (Do) проходной поверхности (So) и глубиной (Р) отверстия определенно превышает 1.
2. Клапан по п.1, в котором поверхность перекрытия (11) обтюратора имеет форму острия, плоскую форму или форму усеченной сферы.
3. Клапан по п.1, в котором муфта с закругленным концом имеет снаружи выпуклую или плоскую зону (10) в непосредственной близости от отверстия (3.1).
4. Клапан по п.3, содержащий выпуклую зону, форма которой соответствует полусфере.
5. Клапан по любому из пп.3 или 4, в котором упомянутое отверстие располагается на вершине выпуклой зоны, в случае выпуклой зоны, и в центре плоской зоны, в случае плоской зоны.
6. Клапан по п.1, в котором плунжер изготовлен, по меньшей мере, частично из магнитного материала или из материала, проницаемого для магнитного потока.
7. Клапан по п.6, который дополнительно содержит головку (2) из магнитного материала, причем эта головка и плунжер выполнены так, чтобы наличие магнитного поля было способно создавать силу притяжения между головкой и плунжером.
8. Клапан по п.1, в котором отношение между поверхностью (Sd) прохода муфты с закругленным концом и поверхностью (So) прохода отверстия определенно превышает 1.
9. Клапан по п.1, дополнительно содержащий пружину (5), способную толкать плунжер в положение перекрытия.
10. Клапан по п.9, в котором пружина размещена, по меньшей мере, частично внутри плунжера.
11. Клапан по п.1, в котором плунжер содержит, по меньшей мере, одно отверстие (4.2), обеспечивающее прохождение текучей среды из зоны (1) подачи муфты с закругленным концом в направлении отверстия муфты с закругленным концом.
12. Клапан по п.1, дополнительно содержащий средство (6), способное перемещать плунжер между положением перекрытия и положением освобождения отверстия.
13. Клапан по п.12, в котором упомянутое средство содержит электрическую катушку (6), надетую на муфту с закругленным концом.
14. Контейнер текучей среды, содержащий клапан дозирования в соответствии с одним из предшествующих пунктов.
RU2009139770/28A 2007-03-28 2008-03-28 Клапан для дозирования вязкой текучей среды, в частности для дозирования красок RU2459183C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07290369.3 2007-03-28
EP07290369.3A EP1975486B1 (fr) 2007-03-28 2007-03-28 Valve de dosage

Publications (2)

Publication Number Publication Date
RU2009139770A RU2009139770A (ru) 2011-05-10
RU2459183C2 true RU2459183C2 (ru) 2012-08-20

Family

ID=38519651

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139770/28A RU2459183C2 (ru) 2007-03-28 2008-03-28 Клапан для дозирования вязкой текучей среды, в частности для дозирования красок

Country Status (9)

Country Link
US (2) US20100108723A1 (ru)
EP (2) EP1975486B1 (ru)
JP (1) JP5279812B2 (ru)
CN (1) CN101668975B (ru)
AU (1) AU2008252836B2 (ru)
BR (1) BRPI0809336A2 (ru)
PL (1) PL1975486T3 (ru)
RU (1) RU2459183C2 (ru)
WO (1) WO2008142237A2 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135668B1 (fr) * 2008-06-20 2013-08-21 Fillon Technologies Dispositif de stockage, de sélection et de dosage de teintes de base pour peinture, notamment pour peinture automobile
ATE547169T1 (de) 2008-07-16 2012-03-15 Fillon Technologies Vorrichtung zum lagern, auswählen und verteilen einer reihe von produkten, insbesondere einer reihe von grundfarben für autolacke
FR2979239A1 (fr) 2011-08-25 2013-03-01 Trophos Liposome comprenant au moins un derive de cholesterol
FR2983089B1 (fr) 2011-11-28 2013-12-27 Fillon Technologies Dispositif de stockage de selection et de distribution d'une pluralite de produits conditionnes chacun dans un conteneur muni d'un orifice d'expulsion
DE102013202632A1 (de) * 2013-02-19 2014-08-21 Robert Bosch Gmbh Ventil mit vereinfachter Führung
DE102013212809A1 (de) * 2013-07-01 2015-01-08 Brainlink Gmbh Getränkezubereitungssystem mit Einwegbehälter
WO2015058004A1 (en) 2013-10-16 2015-04-23 X-Pert Paint Mixing Systems, Inc. Storage, mixing, dispensing and tracking system
US10317855B2 (en) * 2016-05-31 2019-06-11 Yokogawa Electric Corporation Method for detection of diagnosing control valve stiction
FR3066480B1 (fr) 2017-05-16 2019-06-07 Fillon Technologies Procede et installation d'aide au rechargement en liquide d'un recipient
FR3087669A1 (fr) 2018-10-25 2020-05-01 Fillon Technologies Dispositif de stockage et de distribution de produits liquides
FR3087668A1 (fr) 2018-10-25 2020-05-01 Fillon Technologies Machine de distribution de produit stocke en conteneur comprenant une poche souple et ensemble comprenant au moins un conteneur et ladite machine
FR3093712B1 (fr) 2019-03-11 2021-04-09 Fillon Technologies machine de distribution de produit liquide ou pâteux
EP3767142A1 (en) * 2019-07-19 2021-01-20 Fico Transpar, S.A. Electromagnetically operated valve
US11434122B1 (en) * 2021-12-10 2022-09-06 Cana Technology, Inc. Dispense system for a fluid mixture dispensing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170766A2 (de) * 1984-03-13 1986-02-12 Bosch-Siemens HausgerÀ¤te GmbH Anordnung zur dosierten Abgabe von Flüssigkeiten
EP0252421A1 (de) * 1986-07-07 1988-01-13 Bosch-Siemens HausgerÀ¤te GmbH Dosierkammer-Ausgabeeinrichtung für Flüssigkeiten
EP0283137A1 (en) * 1987-03-09 1988-09-21 Imperial Chemical Industries Plc Paint blending system
RU2120339C1 (ru) * 1996-06-06 1998-10-20 Тимохов Евгений Петрович Краскораспылитель

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1911616A (en) * 1933-05-30 Lttdwig gsttber
US84012A (en) * 1868-11-10 Improved railway-car mover
US1342641A (en) * 1918-03-02 1920-06-08 Moreton Frank Magnetic valve
GB207392A (en) 1922-12-09 1923-11-29 Alfred George Jackson Improvements in electrical devices for controlling the flow of liquids
US1755192A (en) * 1925-12-14 1930-04-22 Super Diesel Tractor Corp Atomizing valve
US2640630A (en) * 1949-03-29 1953-06-02 Frank C Genco Shutoff valve for automatic weighing mechanisms
US2714475A (en) * 1951-10-29 1955-08-02 Richford Corp Dispensing container for fluids
US2805794A (en) * 1953-11-24 1957-09-10 Amon Robert Dispensing devices for liquid or paste material
US3258166A (en) * 1963-11-19 1966-06-28 Dagma G M B H & Co Dispenser for liquids
US3670768A (en) * 1970-06-08 1972-06-20 Dynak Inc Fluid flow control device
US3762683A (en) * 1970-08-31 1973-10-02 D Sangl Flow-through type solenoid valves
US3731881A (en) * 1972-02-24 1973-05-08 Bowmar Instrument Corp Solenoid valve with nozzle
US3780764A (en) * 1972-04-07 1973-12-25 Union Carbide Corp Nozzle shut-off and flow control valve
US3791590A (en) * 1972-09-27 1974-02-12 Jones & Co Inc R A Drip inhibiting glue nozzle
JPS5354280Y2 (ru) * 1974-09-25 1978-12-26
US4034917A (en) * 1975-12-22 1977-07-12 Caterpillar Tractor Co. Variable orifice fuel injection nozzle
US4290579A (en) * 1978-12-22 1981-09-22 Richard Pauliukonis O-ring solenoid valves
US4271982A (en) * 1979-09-14 1981-06-09 Dynatron/Bondo Corporation Glue dispenser
US4261485A (en) * 1979-12-04 1981-04-14 Raymond Borg Automatic bottle cap having a magnetically actuated valve
DE3004454A1 (de) * 1980-02-07 1981-08-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstofeinspritzduese fuer brennkraftmaschinen
US4350301A (en) * 1980-06-25 1982-09-21 The Bendix Corporation Flow controlled pressure regulating device
US4363429A (en) * 1980-07-18 1982-12-14 Angelus Sanitary Can Machine Company Pouch filler nozzle and valve
US4408722A (en) * 1981-05-29 1983-10-11 General Motors Corporation Fuel injection nozzle with grooved poppet valve
US4473189A (en) * 1981-10-08 1984-09-25 Robert Bosch Gmbh Fuel injection valve, particularly for diesel engines
US4537335A (en) * 1982-05-28 1985-08-27 Ex-Cell-O Corporation Filler means for charging containers
DE3332822A1 (de) * 1983-09-12 1985-03-28 Robert Bosch Gmbh, 7000 Stuttgart Magnetventil mit unelastischer ventildichtung
DE3520142A1 (de) * 1985-06-05 1986-12-11 Bosch Gmbh Robert Elektromagnet
CH669765A5 (ru) * 1986-01-22 1989-04-14 Nestle Sa
DE20321276U1 (de) * 1987-05-19 2006-10-19 Rausch & Pausch Gmbh Steuerbares Magnetventil
DE3825134A1 (de) * 1988-07-23 1990-01-25 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil und verfahren zur herstellung
DE3825135A1 (de) * 1988-07-23 1990-01-25 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE69132070T2 (de) * 1990-01-26 2000-09-14 Orbital Engine Co. (Australia) Pty. Ltd., Balcatta Kraftstoffeinspritzdüse
DE4003229A1 (de) * 1990-02-03 1991-08-08 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE4003227C1 (en) * 1990-02-03 1991-01-03 Robert Bosch Gmbh, 7000 Stuttgart, De EM fuel injection valve for IC engine - has two overlapping parts welded together as narrowed section of one part
IT1242592B (it) * 1990-10-12 1994-05-16 Azionaria Costruzioni Acma Spa Dispositivo dosatore-erogatore per macchine riempitrici.
US5137187A (en) * 1991-02-20 1992-08-11 H.G. Kalish Anti-spray fluid dispensing nozzle
US5251659A (en) * 1991-07-22 1993-10-12 Sturman Oded E High speed miniature solenoid
DE4304804A1 (de) * 1993-02-17 1994-08-18 Bosch Gmbh Robert Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
DE4310819A1 (de) * 1993-04-02 1994-10-06 Bosch Gmbh Robert Verfahren zur Einstellung eines Ventils
FR2705753B1 (fr) * 1993-05-28 1995-07-21 Serac Sa Vanne à commande magnétique.
KR100372471B1 (ko) * 1993-08-18 2003-05-09 오비탈 엔진 캄파니(오스트레일리아) 피티와이 리미티드 연료분사기노즐
US5472013A (en) * 1994-07-18 1995-12-05 Outboard Marine Corporation Fuel injection nozzle
US5632412A (en) * 1995-05-01 1997-05-27 Eastman Kodak Company Valve assembly and method for dispensing gelatinous materials
FR2736339B1 (fr) * 1995-07-05 1997-08-29 Serac Group Bec de remplissage a ecoulement laminaire
DE19547406B4 (de) * 1995-12-19 2007-10-31 Robert Bosch Gmbh Brennstoffeinspritzventil
US6109543A (en) * 1996-03-29 2000-08-29 Siemens Automotive Corporation Method of preheating fuel with an internal heater
DE19623713B4 (de) * 1996-06-14 2008-06-19 Robert Bosch Gmbh Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
DE19633260A1 (de) * 1996-08-17 1998-02-19 Bosch Gmbh Robert Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
DE19727414A1 (de) * 1997-06-27 1999-01-07 Bosch Gmbh Robert Verfahren zur Herstellung einer Magnetspule für ein Ventil und Ventil mit einer Magnetspule
DE19730276A1 (de) * 1997-07-15 1999-01-21 Wabco Gmbh Einrichtung mit wenigstens zwei relativ zueinander beweglichen Teilen
JPH1151217A (ja) * 1997-08-05 1999-02-26 Advance Denki Kogyo Kk 流量調節弁機構
US5934520A (en) * 1997-11-03 1999-08-10 Nordson Corporation Liquid dispensing device
US6047907A (en) * 1997-12-23 2000-04-11 Siemens Automotive Corporation Ball valve fuel injector
DE19808067A1 (de) * 1998-02-26 1999-09-02 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
JP4243430B2 (ja) * 1998-06-18 2009-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 燃料噴射弁
US5992461A (en) * 1998-08-18 1999-11-30 Numatics, Incorporated Solenoid valve housing
US6250516B1 (en) * 1999-04-05 2001-06-26 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Assembly for filling canisters
US6223791B1 (en) * 1999-10-21 2001-05-01 3M Innovative Properties Company Gravity feed fluid dispensing valve
FR2801579B1 (fr) * 1999-11-29 2002-01-18 Serac Group Bec de remplissage a debit reglable par un dispositif d'actionnement unique et procede de mise en oeuvre
WO2001060669A1 (de) * 2000-02-18 2001-08-23 Continental Teves Ag & Co. Ohg Drucksteuergerät
DE10012969B4 (de) * 2000-03-16 2008-06-19 Daimler Ag Einspritzdüse und ein Verfahren zur Bildung eines Kraftstoff-Luftgemischs
US6676044B2 (en) * 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
US6648249B1 (en) * 2000-08-09 2003-11-18 Siemens Automotive Corporation Apparatus and method for setting injector lift
US6722626B2 (en) * 2000-08-14 2004-04-20 Siemens Automotive Inc. Valve providing increase in flow for increase in power level
US6484700B1 (en) * 2000-08-24 2002-11-26 Synerject, Llc Air assist fuel injectors
IT1316202B1 (it) * 2000-09-08 2003-04-03 Brahma S P A Elettrovalvola per erogazione a portata variabile di un fluido.
US6502770B2 (en) * 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6412527B1 (en) * 2001-02-09 2002-07-02 Neal Peter Brice Automated baby formula bottle filler
DE10109611A1 (de) * 2001-02-28 2002-09-05 Bosch Gmbh Robert Brennstoffeinspritzventil
US7093362B2 (en) * 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector
JP3829704B2 (ja) * 2001-11-30 2006-10-04 株式会社デンソー 燃料噴射弁
US6889919B2 (en) * 2002-01-18 2005-05-10 Denso Corporation Fuel injection device having stationary core and movable core
FR2838730B1 (fr) * 2002-04-22 2004-06-18 Serac Group Bec de remplissage a commande electromagnetique
US6742556B1 (en) * 2002-12-19 2004-06-01 Stokley-Van Camp, Inc. Filler valve assembly
KR100528561B1 (ko) * 2003-04-21 2005-11-16 엘지전자 주식회사 전자기력 구동 유량 제어 밸브 및 그의 제조방법과 이를이용한 열 교환 장치
US7237731B2 (en) * 2003-08-19 2007-07-03 Siemens Vdo Automotive Corporation Fuel injector with a deep pocket seat and method of maintaining spatial orientation
DE10338081A1 (de) * 2003-08-19 2005-03-10 Bosch Gmbh Robert Brennstoffeinspritzventil
US6991004B2 (en) * 2003-10-30 2006-01-31 Fluid Management, Inc. Combination gravimetric and volumetric dispenser for multiple fluids
WO2005061878A2 (en) * 2003-12-19 2005-07-07 Siemens Vdo Automotive Corporation Polymeric bodied fuel injectors and method of manufacturing the polymeric bodied fuel injectors
US7578419B2 (en) * 2005-01-07 2009-08-25 Greenwald Technologies, Llc Disposable integrated bag and pump
JP4303637B2 (ja) * 2004-03-12 2009-07-29 株式会社テージーケー 可変容量圧縮機用制御弁
US7070066B2 (en) * 2004-04-08 2006-07-04 Nordson Corporation Liquid dispensing valve and method with improved stroke length calibration and fluid fittings
US7407119B2 (en) * 2004-05-19 2008-08-05 Continental Automotive Systems Us, Inc. Magnetic circuit using negative magnetic susceptibility
DE102004033280A1 (de) * 2004-07-09 2006-02-02 Robert Bosch Gmbh Einspritzventil zur Kraftstoffeinspritzung
FR2874901B1 (fr) 2004-09-06 2006-11-17 Fillon Investissement Couvercle de precision a bec verseur pour la fermeture de recipient de liquide
US7011076B1 (en) * 2004-09-24 2006-03-14 Siemens Vdo Automotive Inc. Bipolar valve having permanent magnet
JP4577654B2 (ja) * 2005-02-10 2010-11-10 株式会社デンソー 電磁駆動装置およびこれを用いた燃料噴射弁
JP2006266231A (ja) * 2005-03-25 2006-10-05 Aisan Ind Co Ltd 燃料噴射弁
JP2007100641A (ja) * 2005-10-06 2007-04-19 Hitachi Ltd 燃料噴射弁
JP2007170183A (ja) * 2005-12-19 2007-07-05 Nikki Co Ltd 電磁式燃料噴射弁
US8091864B2 (en) * 2005-12-20 2012-01-10 Ds Smith Plastics Limited Valve for a fluid flow connector having an overmolded plunger
US8387644B2 (en) * 2007-02-09 2013-03-05 Saturn Electronics & Engineering, Inc. Solenoid operated fluid control valve
FR2913280B1 (fr) * 2007-03-02 2009-05-08 Serac Group Soc Par Actions Si Dispositif d'actionnement magnetique d'un organe mobile dans un circuit de circulation d'un produit comportant des particules metalliques
GB2451251A (en) * 2007-07-24 2009-01-28 Jens Termansen Fluid control arrangement
US8061685B2 (en) * 2007-09-28 2011-11-22 Mitsubishi Electric Corporation Solenoid valve having a yoke with an externally-accessible fitting hole
DE102008008118A1 (de) * 2008-02-08 2009-08-13 Schaeffler Kg Elektromagnetische Stelleinheit für ein hydraulisches Wegeventil
US20100224807A1 (en) * 2009-03-05 2010-09-09 Brizes Robert C Multiple flow-rate dispensing valve and method
EP2236807B1 (en) * 2009-03-23 2016-05-11 Continental Automotive GmbH Fluid injector
DE102009015231A1 (de) * 2009-04-01 2010-10-07 Focke & Co.(Gmbh & Co. Kg) (Leim-)Ventil
DE102011006071A1 (de) * 2011-03-24 2012-09-27 Ina - Drives & Mechatronics Gmbh & Co. Ohg Antriebseinrichtung für ein Ventil, Ventil zur Steuerung eines Gas- und/oder Flüssigkeitsstroms
EP2589786A1 (en) * 2011-11-04 2013-05-08 Continental Automotive GmbH Valve assembly for a control valve and control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170766A2 (de) * 1984-03-13 1986-02-12 Bosch-Siemens HausgerÀ¤te GmbH Anordnung zur dosierten Abgabe von Flüssigkeiten
EP0252421A1 (de) * 1986-07-07 1988-01-13 Bosch-Siemens HausgerÀ¤te GmbH Dosierkammer-Ausgabeeinrichtung für Flüssigkeiten
EP0283137A1 (en) * 1987-03-09 1988-09-21 Imperial Chemical Industries Plc Paint blending system
RU2120339C1 (ru) * 1996-06-06 1998-10-20 Тимохов Евгений Петрович Краскораспылитель

Also Published As

Publication number Publication date
AU2008252836A1 (en) 2008-11-27
JP5279812B2 (ja) 2013-09-04
EP1975486A1 (fr) 2008-10-01
AU2008252836B2 (en) 2012-07-26
WO2008142237A3 (fr) 2009-01-22
WO2008142237A2 (fr) 2008-11-27
PL1975486T3 (pl) 2015-05-29
US20130228595A1 (en) 2013-09-05
JP2010522672A (ja) 2010-07-08
EP1975486B1 (fr) 2014-12-03
EP2916054A2 (fr) 2015-09-09
WO2008142237A8 (fr) 2009-10-08
US20100108723A1 (en) 2010-05-06
CN101668975B (zh) 2012-07-04
BRPI0809336A2 (pt) 2014-09-23
CN101668975A (zh) 2010-03-10
RU2009139770A (ru) 2011-05-10

Similar Documents

Publication Publication Date Title
RU2459183C2 (ru) Клапан для дозирования вязкой текучей среды, в частности для дозирования красок
RU2541293C2 (ru) Дозирующее устройство и способ дозирования жидкостей
RU2488448C2 (ru) Головка для выдачи текучей среды
US9446886B2 (en) Differential pressure metering device
CA2052880C (en) Dosage dispensing device for filling machines
JP2004031927A5 (ru)
US5450877A (en) Magnetically-controlled valve
US4407435A (en) Dispenser for pouring measured quantities of a liquid from a container
JP6105563B2 (ja) 流体放出ヘッド
JP2009527710A (ja) 充填マシンの調節可能なフローバルブ
SK382192A3 (en) Device for dosed leading of analyzed liquid
US20110095217A1 (en) Solenoid valve unit
US10941875B2 (en) Valve comprising a variable flow opening
KR20160110223A (ko) 마모-보상 밸브 시트 부재를 갖는 유체 분배 장치 노즐 및 관련 방법
US5027983A (en) Apparatus for filling specified amount of liquid
US6520221B2 (en) Filling nozzle with interception of supply liquids for filling machines
JP2004530599A (ja) 充填ヘッド
US20020047025A1 (en) Valve ball
JP6901123B2 (ja) ドラフトコック
CN221208512U (zh) 抽取及定量配给阀、用于排放喷射介质的装置及头部
EP0808795A1 (en) Metering valve
US11603309B2 (en) Filling valve with leakage protection device
CA2172209A1 (en) Valve assembly and method for dispensing gelatinous materials
SE517995C2 (sv) Dockningsventil, påfyllningsventil samt förfarande för utmatning av flytande material
CN106492893B (zh) 实验室用溶液定量分装器