RU2442102C1 - Управляемый снаряд - Google Patents

Управляемый снаряд Download PDF

Info

Publication number
RU2442102C1
RU2442102C1 RU2010137355/11A RU2010137355A RU2442102C1 RU 2442102 C1 RU2442102 C1 RU 2442102C1 RU 2010137355/11 A RU2010137355/11 A RU 2010137355/11A RU 2010137355 A RU2010137355 A RU 2010137355A RU 2442102 C1 RU2442102 C1 RU 2442102C1
Authority
RU
Russia
Prior art keywords
rocket
projectile
warhead
overload
inner casing
Prior art date
Application number
RU2010137355/11A
Other languages
English (en)
Inventor
Владимир Маркович Кузнецов (RU)
Владимир Маркович Кузнецов
Владимир Петрович Жуков (RU)
Владимир Петрович Жуков
Владимир Иванович Морозов (RU)
Владимир Иванович Морозов
Борис Александрович Голомидов (RU)
Борис Александрович Голомидов
Валерий Борисович Петров (RU)
Валерий Борисович Петров
Original Assignee
Государственное унитарное предприятие "Конструкторское бюро приборостроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное унитарное предприятие "Конструкторское бюро приборостроения" filed Critical Государственное унитарное предприятие "Конструкторское бюро приборостроения"
Priority to RU2010137355/11A priority Critical patent/RU2442102C1/ru
Application granted granted Critical
Publication of RU2442102C1 publication Critical patent/RU2442102C1/ru

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Предлагаемое изобретение относится к области ракетной техники, в частности к управляемым снарядам. Управляемый снаряд содержит корпус, боевую часть, внутренний кожух и блоки аппаратуры управления. Корпус снаряда снабжен устройством предварительного продольного нагружения. Боевая часть последовательно расположена в корпусе. Внутренний кожух выполнен в виде втулок, состыкованных между собой по торцам, в которых расположены блоки аппаратуры управления. Устройство предварительного продольного нагружения выполнено в виде двух винтовых упоров, расположенных на концах корпуса и поджатых к переднему торцу боевой части и заднему торцу кожуха. Достигается увеличение маневренности снаряда. 1 ил.

Description

Предлагаемое изобретение относится к области ракетной техники и может быть использовано при проектировании управляемых ракет.
Для ракет зенитных, противотанковых, авиационных и им подобных, предназначенных для поражения целей, которые быстро меняют свое положение относительно точки старта ракеты, характерны быстрые, резкие пространственные маневры. Под маневренностью ракет понимают быстроту изменения скорости полета по величине и направлению, а оценивают маневренность с помощью перегрузок.
Одной из тактико-технических характеристик управляемой ракеты, характеризующей ее маневренность, является располагаемая перегрузка. Высокоскоростные малогабаритные сильно оперенные ракеты большого удлинения имеют ряд особенностей, совокупность которых дает возможность, изменяя изгибную жесткость корпуса, управлять располагаемой перегрузкой ракеты. К таким особенностям относятся:
- низкая частота упругих изгибных колебаний корпуса по первому тону, соизмеримая с частотой колебаний ракеты по углам атаки и обусловленная, в первую очередь, большим удлинением ракеты,
- большие аэродинамические нагрузки, воздействующие на ракету из-за высоких скоростей полета и наличия разнообразных несущих аэродинамических элементов ракеты (носовая часть, боевая часть, рули, крылья, переходной конус, стабилизаторы),
- значительные упругие изгибные деформации (прогибы) ракеты вследствие перечисленных выше факторов, которые приводят к появлению дополнительных местных углов атаки на каждой несущей поверхности.
В результате взаимодействия перечисленных выше факторов при отклонении рулей на угол δ ось ракеты устанавливается по отношению к скорости набегающего потока на угол атаки, существенно больший балансировочного угла атаки ракеты при условии абсолютной жесткости ее корпуса. Соответственно, и перегрузка упругой ракеты будет отличаться от перегрузки жесткой ракеты. Отличие может составлять до 80-100%.
Располагаемая перегрузка ракеты определяется как нормальная по отношению к вектору скорости перегрузка, которую может создать сбалансированная ракета при максимальном отклонении рулей. Зависимость для расчета располагаемой перегрузки ракеты определяется, как известно, отношением суммы проекций на нормаль к вектору скорости всех сил, действующих на ракету в установившемся (балансировочном) движении, к весу ракеты
Figure 00000001
Для жесткой ракеты в результате преобразований получается известная зависимость
для активного участка траектории
Figure 00000002
для пассивного участка траектории
Figure 00000003
где
Figure 00000004
- скоростной напор;
ρ - плотность воздуха;
V - скорость ракеты;
S - характерная площадь (площадь миделя) ракеты;
F - сила тяги двигателя;
Figure 00000005
- коэффициент подъемной силы ракеты;
Figure 00000006
- коэффициент подъемной силы рулей;
m - масса ракеты;
g - ускорение свободного падения;
δ - угол отклонения рулей;
αб - балансировочный угол атаки ракеты.
Для жесткой ракеты балансировочный угол атаки, как реакция ракеты на отклонение рулей в установившемся движении, рассчитывается по упрощенной формуле
Figure 00000007
где
Figure 00000008
- коэффициент аэродинамического момента от рулей;
Figure 00000009
- коэффициент стабилизирующего аэродинамического момента всей ракеты.
С использованием (4) зависимости (2) и (3) можно преобразовать к следующему виду:
Figure 00000010
где
Figure 00000011
- для активного участка траектории,
Figure 00000012
- для пассивного участка траектории.
Обычно в A1 пренебрегают величиной
Figure 00000013
, поэтому формулы для A1 упрощаются для активного и пассивного участка траектории, соответственно
Figure 00000014
Figure 00000015
Из соображений обеспечения статической устойчивости управляемых ракет балансировочные углы атаки ограничивают предельно допустимыми. По тем же самым причинам должны быть ограничены и углы отклонения рулей. Предельно допустимые значения балансировочных углов атаки и отклонения рулей могут быть надежно установлены по результатам продувки моделей ракет и рулей в аэродинамических трубах или определены приближенно [Лебедев А.А., Чернобровкин Л.С. Динамика полета. М.: Машиностроение, 1973., стр.364].
Ракета может выполнить маневр, характеризующийся радиусом кривизны ry, только в том случае, если будет создана необходимая перегрузка Ny, которую можно, если пренебречь нормальной перегрузкой, необходимой для преодоления силы тяжести, приближенно записать в виде:
Figure 00000016
.
При этом маневр с меньшим радиусом кривизны траектории может быть осуществлен при прочих равных условиях за счет увеличения перегрузки. Увеличение перегрузки возможно за счет увеличения балансировочных углов атаки или углов отклонения рулей, скорости ракеты и за счет уменьшения радиуса кривизны траектории. Так как
Figure 00000017
, то
Figure 00000018
.
Таким образом, радиус кривизны траектории не зависит от скорости ракеты.
До сравнительно недавнего времени летательный аппарат (ЛА) рассматривался как абсолютно твердое тело. Однако проектирование и летные испытания современных ЛА показывают, что этого совершенно недостаточно. Практика построения систем управления современных ЛА показала, что наряду с характеристиками ЛА как твердого тела необходимо учитывать ряд дополнительных факторов, обусловленных упругостью конструкции.
Для упругой ракеты определение для балансировочного угла атаки такое же, как для жесткой, только ракета с упругим корпусом характеризуется не только колебаниями по углу атаки, но и упругими изгибными колебаниями корпуса по первому тону разложения по собственным формам этих колебаний. Вывод расчетных зависимостей для располагаемой перегрузки проводился с использованием, в качестве отправных, положений и формул, изложенных в [Колесников К.С. Динамика ракет. М.: Машиностроение, 1980], где ракета рассматривается как неоднородный упругий стержень со свободными концами, совершающий движение под действием внешних нагрузок.
Для получения зависимости для расчета располагаемой перегрузки ракеты подставим в формулу (1) проекции всех сил, действующих на ракету в установившемся (балансировочном) движении, на нормаль к вектору скорости. Тогда
Figure 00000019
,
где
Figure 00000020
- проекция всех аэродинамических сил, возникающих на ракете при наличии угла атаки;
Figure 00000021
- проекция аэродинамической силы от отклонения рулей;
Fn - проекция силы тяги двигателя.
В результате преобразований получается упрощенная формула для расчета располагаемой перегрузки ракеты с упругим корпусом
np=A1V2(1+A2V2),
где коэффициенты А1 и А2 вычисляются по зависимостям
Figure 00000014
Figure 00000022
,
где
Figure 00000023
- коэффициент аэродинамического момента от рулей;
Figure 00000024
- коэффициент стабилизирующего аэродинамического момента всей ракеты;
ω1 - частота собственных упругих колебаний корпуса ракеты по первому тону, равная
Figure 00000025
Е - модуль упругости ракеты;
J(x) - момент инерции поперечного сечения по длине ракеты;
EJ(x) - распределение изгибной жесткости по длине ракеты;
Figure 00000026
- вторая производная от первой собственной формы по длине ракеты;
l - длина ракеты;
m1 - приведенная масса ракеты по первому тону упругих изгибных колебаний корпуса;
f1(xdp) - значение собственной формы упругих изгибных колебаний корпуса ракеты по первому тону в месте расположения центра давления руля;
Figure 00000027
- значение производной собственной формы упругих изгибных колебаний корпуса ракеты по первому тону в месте расположения центра давления ракеты;
xc - положение центра масс ракеты;
xdp - положение центра давления руля;
xds - положение центра давления ракеты;
Figure 00000028
- суммарная аэродинамическая сила, приложенная в центре давления всей ракеты;
ρ - плотность воздуха;
V - скорость ракеты;
S - характерная площадь (площадь миделя) ракеты;
F - сила тяги двигателя;
Figure 00000029
- коэффициент подъемной силы ракеты;
Figure 00000030
- коэффициент подъемной силы рулей;
m - масса ракеты;
g - ускорение свободного падения;
δ - угол отклонения рулей.
Радиус кривизны траектории в этом случае можно выразить в следующем виде:
Figure 00000031
.
Таким образом, маневр с меньшим радиусом кривизны для упругой ракеты может быть осуществлен при прочих равных условиях за счет увеличения скорости ракеты. Кроме того, регулируя соответствующим образом изгибную жесткость корпуса сверхзвуковой управляемой ракеты EJ(x), т.е. изменяя частоту ω1, и форму f1(x) собственных упругих изгибных колебаний корпуса ракеты по первому тону, можно управлять располагаемой перегрузкой ракеты так, чтобы ее величина была достаточной для выполнения того или иного маневра. Однако необходимо отметить, что всегда существует предельно низкая частота собственных упругих колебаний корпуса, при которой колебания ракеты по углам атаки и упругие колебания корпуса становятся неустойчивыми. В результате это приведет к большим углам атаки и, как следствие, разрушению ракеты. Как показывает практика проектирования подобных ракет, реальным является управление перегрузкой в пределах ее увеличения на 80-100%.
Распределение изгибной жесткости по длине снаряда EJ(x) зависит в первом приближении от геометрических, инерционно-массовых характеристик снаряда и физических свойств материала (модулей упругости) в каждом сечении х. При большом числе величин получение и использование в дальнейшем зависимости для EJ(x) представляет большие трудности, поэтому обычно учитывают параметры, оказывающие существенное влияние. Распределение изгибной жесткости по длине снаряда определяется решением дифференциального уравнения поперечных колебаний [Лебедев А.А., Чернобровкин Л.С. Динамика полета. М.: Машиностроение, 1973., стр.599] после экспериментального воздействия на снаряд внешней поперечной нагрузки.
За прототип принят управляемый снаряд (патент России №2288438 от 27.06.2005 г.), включающий корпус с последовательно расположенными в нем боевой частью, внутренним кожухом, выполненным в виде втулок, состыкованных между собой по торцам, в котором расположены блоки аппаратуры управления.
Недостатком прототипа является то, что управляемый снаряд рассматривается как абсолютно твердое тело, т.е. как жесткий снаряд, у которого увеличение маневренности (перегрузки) осуществляется только за счет увеличения углов отклонения рулей, при этом отсутствие учета изгибной жесткости корпуса снижает точность наведения снаряда на цель.
Поэтому задачей предлагаемого изобретения является обеспечение увеличения маневренности (перегрузки) за счет суммирования влияния углов отклонения рулей и регулирования соответствующим образом изгибной жесткости корпуса управляемого снаряда, что обеспечивает увеличение величины фактического угла отклонения руля относительно набегающего потока.
Решение указанной задачи достигается тем, что в предлагаемом управляемом снаряде, содержащем корпус с последовательно расположенными в нем боевой частью, внутренним кожухом, выполненным в виде втулок, состыкованных между собой по торцам, в которых расположены блоки аппаратуры управления, корпус снаряда снабжен устройством предварительного продольного нагружения, выполненным в виде двух винтовых упоров, расположенных на его концах и поджатых к переднему торцу боевой части и заднему торцу кожуха.
Длина винтовых упоров, расположенных на концах устройства предварительного продольного нагружения и поджатых к переднему торцу боевой части и заднему торцу кожуха, выбирается из условия того, что длина резьбы при наличии входных фасок принимается равной 4…5 шагов резьбы, так как из опыта известно, что при нагружении резьбовых соединений внешнюю продольную нагрузку воспринимают 3…4 витка резьбы. Шаг резьбы и площадь контакта этих упоров с передним торцом боевой части и задним торцем кожуха конкретного управляемого снаряда определяется величиной предварительного продольного нагружения, обеспечивающего величину прогиба корпуса в заданных пределах.
Наличие в устройстве предварительного продольного нагружения двух винтовых упоров, расположенных на его концах и поджатых к переднему торцу боевой части и заднему торцу кожуха, исключает возможность осевого перемещения блоков снаряда относительно его корпуса и исключает возможность их повреждения.
Предлагаемое изобретение поясняется чертежом, на котором приведена предлагаемая конструкция управляемого снаряда с устройством предварительного продольного нагружения, где: 1 - носовая часть снаряда; 2 - руль; 3 - корпус; 4 - боевая часть; 5, 6 - втулки кожуха с торцами; 7 - блоки аппаратуры управления; 8 - передний винтовой упор; 9 - задний винтовой упор.
Назначение и принцип действия устройства предварительного продольного нагружения в составе управляемого снаряда осуществляется следующим образом: после сборки и экспериментального воздействия на снаряд внешней поперечной нагрузки определяют фактическую изгибную жесткость корпуса снаряда. При недостатке фактической жесткости по сравнению с расчетной затяжкой упоров 8, 9 выбирают зазоры между торцами упоров боевой части 4, торцами 6 втулок 5 и задним упором 9. При этом боевая часть и втулки кожуха вступают в работу на изгиб и фактически увеличивают толщину корпуса, тем самым увеличивая его изгибную жесткость, т.к. величина ее для кольцевого сечения пропорциональна четвертой степени суммы толщины стенки корпуса и толщины стенки кожуха. При ослаблении затяжки между торцами боевой части, втулок и упоров образуются зазоры, обеспечивающие прогиб корпуса на величину, определяемую суммой зазоров между торцами. При этом боевая часть и втулки кожуха вступают в работу на уменьшение изгиба и фактически уменьшают толщину корпуса, уменьшая изгибную жесткость снаряда.
Таким образом, регулируя затяжку между торцами боевой части, втулок и упоров, т.е. регулируя изгибную жесткость снаряда с помощью устройства предварительного продольного нагружения в составе управляемого снаряда, образуются зазоры, обеспечивающие величину прогиба корпуса в заданных пределах, которую можно учитывать в процессе наведения снаряда на цель, что обеспечивает увеличение величины фактического угла отклонения руля относительно набегающего потока, а следовательно, увеличение маневренности (перегрузки) и точности наведения на цель управляемого снаряда.

Claims (1)

  1. Управляемый снаряд, содержащий корпус с последовательно расположенными в нем боевой частью, внутренним кожухом, выполненным в виде втулок, состыкованных между собой по торцам, в которых расположены блоки аппаратуры управления, отличающийся тем, что корпус снаряда снабжен устройством предварительного продольного нагружения, выполненным в виде двух винтовых упоров, расположенных на его концах и поджатых к переднему торцу боевой части и заднему торцу кожуха.
RU2010137355/11A 2010-09-07 2010-09-07 Управляемый снаряд RU2442102C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010137355/11A RU2442102C1 (ru) 2010-09-07 2010-09-07 Управляемый снаряд

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010137355/11A RU2442102C1 (ru) 2010-09-07 2010-09-07 Управляемый снаряд

Publications (1)

Publication Number Publication Date
RU2442102C1 true RU2442102C1 (ru) 2012-02-10

Family

ID=45853728

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010137355/11A RU2442102C1 (ru) 2010-09-07 2010-09-07 Управляемый снаряд

Country Status (1)

Country Link
RU (1) RU2442102C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115368B (zh) * 2015-06-04 2016-09-14 西安近代化学研究所 一种炮射导弹武器平台用战斗部
RU2746340C2 (ru) * 2019-03-26 2021-04-12 Федеральное государственное казенное военное образовательное учреждение высшего образования "Михайловская военная артиллерийская академия" Министерства обороны Российской Федерации Система наведения управляемого реактивного снаряда

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115368B (zh) * 2015-06-04 2016-09-14 西安近代化学研究所 一种炮射导弹武器平台用战斗部
RU2746340C2 (ru) * 2019-03-26 2021-04-12 Федеральное государственное казенное военное образовательное учреждение высшего образования "Михайловская военная артиллерийская академия" Министерства обороны Российской Федерации Система наведения управляемого реактивного снаряда

Similar Documents

Publication Publication Date Title
CN105910495B (zh) 基于性能指标的面向效能的导弹武器系统设计方法
CN111306998B (zh) 一种参数摄动自适应的制导火箭弹垂直攻击制导方法
CN104089546A (zh) 弹体的可变气动布局结构
RU2442102C1 (ru) Управляемый снаряд
Chadwick et al. Interception of spiraling ballistic missiles
Kobayashi et al. Experimental study on aerodynamic characteristics of telescopic aerospikes with multiple disks
Youn et al. Numerical study on bending body projectile aerodynamics
RU2291381C1 (ru) Управляемый снаряд (варианты)
Barrett Adaptive aerostructures: the first decade of flight on uninhabited aerial vehicles
RU2182309C1 (ru) Хвостовой блок вращающегося реактивного снаряда
RU2255298C1 (ru) Ракетная часть реактивного снаряда
Milinovic et al. Experimental and simulation testing of flight spin stability for small caliber cannon projectile
RU2459177C1 (ru) Сверхзвуковой управляемый реактивный снаряд
RU2809446C1 (ru) Сверхзвуковой вращающийся реактивный снаряд
Al'bokrinova et al. Gliding unmanned aerial vehicle flight dynamics at low speed and launch altitudes
RU2241953C1 (ru) Вращающаяся управляемая ракета
RU2343397C2 (ru) Реактивный снаряд
RU2790656C1 (ru) Сверхзвуковой управляемый реактивный снаряд
RU2814624C1 (ru) Стабилизатор реактивного снаряда
RU2814640C1 (ru) Реактивный снаряд
Li et al. A Study of Aerodynamic Characteristics of an Anti-tank Missile
RU2642693C2 (ru) Сверхзвуковой реактивный снаряд
RU2357193C1 (ru) Сверхзвуковой реактивный снаряд
KR20130051770A (ko) 원통형 발사관에서 발사되는 유도탄의 네 개의 접이식 곡면날개
Jacewicz et al. Miniature bomb concept for unmanned aerial vehicles

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20160412