RU2440186C2 - Термостойкий катализатор для газофазного окисления - Google Patents

Термостойкий катализатор для газофазного окисления Download PDF

Info

Publication number
RU2440186C2
RU2440186C2 RU2008150587/04A RU2008150587A RU2440186C2 RU 2440186 C2 RU2440186 C2 RU 2440186C2 RU 2008150587/04 A RU2008150587/04 A RU 2008150587/04A RU 2008150587 A RU2008150587 A RU 2008150587A RU 2440186 C2 RU2440186 C2 RU 2440186C2
Authority
RU
Russia
Prior art keywords
ruthenium
catalyst
oxidation
hydrogen chloride
carbon nanotubes
Prior art date
Application number
RU2008150587/04A
Other languages
English (en)
Other versions
RU2008150587A (ru
Inventor
Аурель ВОЛЬФ (DE)
Аурель ВОЛЬФ
Леслав МЛЕЧКО (DE)
Леслав Млечко
Оливер Феликс-Карл ШЛЮТЕР (DE)
Оливер Феликс-Карл ШЛЮТЕР
Штефан ШУБЕРТ (DE)
Штефан ШУБЕРТ
Юрген КИНТРУП (DE)
Юрген КИНТРУП
Original Assignee
Байер Текнолоджи Сервисиз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Байер Текнолоджи Сервисиз Гмбх filed Critical Байер Текнолоджи Сервисиз Гмбх
Publication of RU2008150587A publication Critical patent/RU2008150587A/ru
Application granted granted Critical
Publication of RU2440186C2 publication Critical patent/RU2440186C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B33/00Oxidation in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к катализаторам для окисления хлороводорода кислородом. Описан катализатор для окисления хлороводорода кислородом, содержащий, по меньшей мере, один компонент, активный при катализе реакций окисления, содержащий, по меньшей мере, один элемент, выбранный из группы, состоящей из рутения, осмия, родия, иридия, палладия, платины, меди, серебра, золота, рения, висмута, кобальта, ванадия, хрома, марганца, никеля, вольфрама и железа, а также носитель для него, причем носитель основан на углеродных нанотрубках. Описан способ каталитического окисления хлороводорода кислородом, предусматривающий использование описанного выше катализатора. Технический результат - описанный катализатор характеризуется высокой стабильностью и активностью. 2 н. и 3 з.п. ф-лы, 1 табл., 3 ил.

Description

Настоящее изобретение относится к катализатору для реакций окисления, который содержит, по меньшей мере, один компонент, активный при катализе реакций окисления, а также носитель для него, характеризующийся тем, что носитель состоит из углеродных нанотрубок. Катализатор характеризуется повышенной стабильностью и активностью в сравнении с известными из уровня техники катализаторами.
Как общеизвестно, особенно, в качестве катализаторов восстановления или окисления применяют, например, рутений (Handbook of Heterogeneous Catalysis).
Типичным примером использования рутения в реакции окисления является, например, взаимодействие хлороводорода с кислородом, как описано в патенте ФРГ DE 1567788. Вследствие необходимых для этого высоких температур (около 350°С) рутений наносят на оксидный носитель.
В качестве другой возможности получения катализатора можно назвать нанесение рутения на содержащий углерод носитель, такой как активированный уголь или сажа. Вследствие чувствительности к окислению углеродного носителя, особенно, при высоких температурах такие рутениевые катализаторы используют, главным образом, в жидких фазах или электрохимически. Как описано в патенте КНДР CN 1564356, такие рутений-углеродные катализаторы используют в качестве катализаторов окисления при окислении метанола в топливном элементе с нанесенным на углеродные носители платинорутениевым катализатором. Кроме того, рутений-углеродный катализатор применяют при окислении монооксида углерода (Mater. Res. Soc. Symp.Proceedings. 756 (2003), 397-402), а также вместе с титаном при окислении этанола (J. Appl. Electrochem. 30 (4) (2000), 467-474).
В виде кристаллической модификации углерода многостенные углеродные нанотрубки (Multi-Wall-Carbon-Nanotubes) благодаря их высокой электропроводности находят повышенное использование в качестве носителя для каталитически активных металлов в электрохимических процессах, например в качестве электродного материала. При этом углеродные нанотрубки частично или полностью заменяют традиционно используемую электропроводную сажу. Такие электроды часто применяют в топливных элементах и, таким образом, для окисления метанола и этанола (Carbon 42 (15), (2004), 3257-3260). Эти реакции проводят при низких температурах, ниже 150°С.
Помимо этого, из литературы известно, что многостенные углеродные нанотрубки благодаря их устойчивости к агрессивному окислительному воздействию при высоких температурах используют в качестве катализатора без другого каталитического компонента для реакций при высоких температурах. Например, их используют в качестве катализатора окисления при окислительном дегидрировании этилбензола с получением стирола (Catal. Today 102-103 (2005), 110-114).
Кроме того, углеродные нанотрубки находят применение при электрохимическом окислении катехоламинов и катехолов (Analyst 131 (2) (2006), 262-267), а также глутатиона (Electrochimica Acta 51 (15), (2006), 3046-3051) и в комбинации с платиной при электрохимическом окислении цистеина (Analytica Chimica Acta 557 (1-2), (2006), 52-56). Использование многостенных углеродных нанотрубок в комбинации с каталитически активным компонентом рутением не известно.
Окисление при жестких условиях в отношении температуры и парциального давления кислорода является разработанным в 1868 г. Диконом способом каталитического окисления хлороводорода кислородом;
4HCl+O2→ 2Cl2+2H2O
Окисление хлороводорода в хлор является равновесной реакцией. Положение равновесия с повышением температуры сдвигается в сторону, неблагоприятную для получения желаемого целевого продукта. Поэтому целесообразно использовать катализаторы с как можно более высокой активностью, позволяющей проводить реакцию при более низкой температуре. Первые катализаторы для окисления хлороводорода с каталитически активным компонентом - рутением описаны уже в 1965 году в патенте ФРГ DE 1567788. В этом случае исходят из треххлористого рутения. Другие катализаторы на основе рутения с активной массой оксида рутения или смешанного оксида рутения заявлены в немецкой заявке на патент DE-A 19748299. При этом содержание оксида рутения составляет от 0,1 мас.% до 20 мас.%, а средний диаметр частиц оксида рутения составляет от 1,0 нм до 10,0 нм. Другие нанесенные на носитель - оксид титана или оксид циркония рутениевые катализаторы известны из немецкой заявки на патент DE-A 19734412. Для получения описанных в нем катализаторов на основе хлорида рутения, содержащих, по меньшей мере, одно соединение - диоксид титана или диоксид циркония, назван ряд исходных соединений рутения, таких, например, как рутений-карбонильные комплексы, соли рутения и неорганических кислот, рутений-нитрозильные комплексы, рутений-аминовые комплексы, рутениевые комплексы с органическими аминами или рутений-ацетилацетонатные комплексы. В предпочтительном варианте осуществления в качестве носителя используют диоксид титана в форме рутила. Хотя рутениевые катализаторы и обладают нужной высокой активностью, однако при высоких температурах они склонны к спеканию (агломерации) и, следовательно, к деактивации. Для повышения экономичности необходимо увеличение активности при хорошей долговременной стабильности.
Разработанные до сих пор рутениевые катализаторы окисления на носителях обладают недостаточной активностью или стабильностью. Например, такие катализаторы имеют недостаточную активность для окисления хлороводорода. Правда, при повышении температуры реакции активность их может увеличиться, однако это привело бы к спеканию/декативации или потере каталитического компонента.
Задача настоящего изобретения состояла в разработке катализатора, способного осуществлять реакции окисления, такие, например, как окисление хлороводорода, при низких температурах и с высокой активностью.
Неожиданно было обнаружено, что целевым нанесением каталитически активных при окислении металлов, таких, например, как рутений, на углеродные нанотрубки (CNT) вследствие особенного обменного взаимодействия между каталитически активным компонентом и носителем можно получить ряд новых высокоактивных катализаторов, обладающих явно более высокой каталитической активностью, чем известные из уровня техники катализаторы. К тому же, неожиданно было обнаружено, что катализаторы на основе нанотрубок по изобретению обладают особенной стабильностью в кислородсодержащей атмосфере даже при высокой температуре.
Таким образом, настоящее изобретение позволяет получить катализатор для реакций окисления, содержащий, по меньшей мере, один компонент, активный при катализе окислительных реакций, а также носитель для него, характеризующийся тем, что носитель базируется на углеродных нанотрубках.
Предпочтительным является катализатор, у которого каталитически активный компонент нанесен на носитель в виде водного раствора или суспензии с последующим удалением растворителя.
Особенно предпочтительным является катализатор, характеризующийся тем, что каталитически активный компонент нанесен на носитель в виде водного раствора или суспензии галогенидов рутения, оксидов рутения, гидрокидов рутения или оксигалогенидов рутения, в каждом случае, отдельно или в любой смеси с последующим удалением растворителя.
Реакцией окисления называется такая реакция, в которой, по меньшей мере, один участвующий в реакции элемент подвергается окислению, то есть получает более высокое число окисления.
Под углеродными нанотрубками понимают, главным образом, цилиндрические углеродные трубки с диаметром предпочтительно от 3 до 150 нм. Длина их многократно превышает диаметр, предпочтительно, по меньшей мере, в 100 раз. Трубки состоят из слоев упорядоченных углеродных атомов и имеют отличающееся по морфологии ядро. Эти углеродные нанотрубки называют, например, также «углеродными фибриллами» или «полыми углеродными волокнами». Описанные углеродные нанотрубки благодаря их размерам и их особым свойствам имеют техническое значение для получения композиционных материалов. Одно- и многостенные углеродные нанотрубки, в принципе, известны. Предпочтительными являются многостенные углеродные нанотрубки.
Углеродные нанотрубки, особенно углеродные нанотрубки с диаметром от 3 до 150 нм и аспектным отношением длины к диаметру (L/D) более 100, предпочтительно получают разложением углеводородов на гетерогенном катализаторе, который содержит марганец, кобальт и предпочтительно также дополнительно молибден, а также содержит инертный носитель.
Углеродные нанотрубки характеризуются высокой теплопроводностью (больше 2000 Вт/м·К) и фуллеренподобной структурой. Во-первых, они обеспечивают эффективный отвод реакционного тепла, а также, во-вторых, особую стабильность высоких степеней окисления. Другим преимуществом их является явно более высокая окислительная устойчивость по сравнению с аморфным углеродом. Используемые углеродные нанотрубки могут быть одностенными или многостенными, предпочтительно многостенными, особенно предпочтительно с числом стенок от 3 до 50. Диаметр их составляет, в особенности, от 1 до 500 нм, предпочтительно от 2 до 50 нм, наиболее предпочтительно от 2 до 30 нм. Длина углеродных нанотрубок составляет, в особенности, 10 нм - 10 мм, предпочтительно 100 нм - 1 мм, особенно предпочтительно от 1 до 100 мкм. Специфическая поверхность по БЭТ углеродных нанотрубочек составляет предпочтительно от 20 до 1000 м2/г, особенно предпочтительно от 100 до 400 м2/г. Используемые углеродные нанотрубки могут применяться, в общем случае, непосредственно после получения («as-produced») или также после предварительной очистки. В предпочтительном варианте исполнения используют поверхностно-модифицированные углеродные нанотрубки. Под поверхностной модификацией подразумевают общеизвестную для специалиста окислительную обработку углеродных нанотрубок окислительными соединениями, как, например, кислоты, такие как азотная, серная, хлорная кислота и их смеси, или другие окисляющие среды, такие как перекись водорода, кислород, озон, двуокись углерода и т.д. Однако известны также и другие модификации, например введение функциональных аминогрупп.
Подобные углеродные нанотрубки и способ их получения описаны, например, в международной заявке WO 2006/050903 A2, опубликованное содержание которой в используемом объеме, в особенности, относительно описанных там углеродных нанотрубок относится к опубликованному содержанию настоящего изобретения. Они, кроме того, являются коммерчески доступными под торговым наименованием Baytubes®, Bayer MaterialScience AG.
В качестве главных каталитически активных компонентов пригодны все компоненты, катализирующие реакцию окисления. Например, пригодны следующие элементы или их соединения: рутений, осмий, родий, иридий, палладий, платина, медь, серебро, золото, рений, висмут, кобальт, железо или их смеси. В предпочтительном варианте воплощения используют рутений и его соединения. В наиболее предпочтительном варианте воплощения, не ограничиваясь этим, используют рутений в форме оксида, или в виде хлорида, или в виде оксихлорида.
В другом варианте осуществления способа по изобретению каталитически активный компонент может наноситься на носитель в неоксидной форме и в ходе реакции превращаться в форму оксида. Обычно содержание каталитически активного компонента составляет от 0,1 до 80 мас.%, предпочтительно от 1 до 50 мас.%, наиболее предпочтительно в пределах от 1 до 25 мас.%, в расчете на общую массу катализатора и носителя.
Каталитический компонент можно наносить на носитель различными способами. Например, но не ограничиваясь этим, может использоваться влажная и мокрая пропитка (импрегнирование) носителя соответствующими находящимися в растворе исходными соединениями или исходными соединениями в жидкой или коллоидной форме, способ осаждения или совместного осаждения, а также ионный обмен и газофазное нанесение покрытия (CVD, PVD). Предпочтительной является комбинация пропитки (импрегнирования) и последующего осаждения восстанавливающими соединениями (предпочтительно водородом, гидридами и соединениями гидразина) или щелочными веществами (предпочтительно гидроксидом натрия, гидроксидом калия или аммиаком).
В качестве промоторов могут использоваться металлы с основным действием (например, щелочные, щелочноземельные и редкоземельные металлы). Предпочтительными являются щелочные металлы, особенно натрий и цезий, и щелочноземельные металлы. Наиболее предпочтительными являются щелочноземельные металлы, в особенности стронций и барий.
Промоторы, не ограничиваясь только этим, могут наноситься на катализатор методом импрегнирования и CVD-способом, предпочтительно импрегнированием, наиболее предпочтительно после нанесения главных каталитических компонентов.
Для стабилизации дисперсии главных каталитических компонентов на носителе, не ограничиваясь этим, могут использоваться различные стабилизаторы дисперсии, такие, например, как соединения скандия, оксиды марганца и оксиды лантана. Стабилизаторы предпочтительно наносят вместе с главными каталитическими компонентами импрегнированием и/или осаждением.
Катализаторы могут подвергаться сушке при нормальном или предпочтительно пониженном давлении в атмосфере азота, аргона или воздуха при температуре от 40 до 200°С. Продолжительность сушки составляет предпочтительно от 10 минут до 6 часов.
Катализаторы могут использоваться без кальцинирования или с кальцинированием. Кальцинирование может осуществляться в восстановительной, окислительной или инертной фазе. Предпочтительным является кальцинирование в потоке воздуха или азота. Кальцинирование можно осуществлять без доступа кислорода при температуре от 150 до 600°С, предпочтительно от 200 до 300°С. В присутствии окислительных газов кальцинирование осуществляют при температуре от 150 до 400°С, предпочтительно от 200 до 300°С.
Как уже описывалось выше, новые катализаторы предпочтительно используют в известном как Дикон-процесс каталитическом способе. При этом хлороводород окисляют в хлор кислородом по экзотермической равновесной реакции, при этом образуется водяной пар. Температура реакции обычно составляет от 150 до 450°С, а обычное реакционное давление составляет от 1 до 25 бар. Так как речь идет о равновесной реакции, то целесообразно проводить процесс при как можно более низких температурах, при которых катализатор еще сохраняет достаточную свою активность. Кроме того, целесообразно использовать кислород в сверхстехиометрическом количестве по отношению к хлороводороду. Обычным является, например, избыток кислорода от двух- до четырехкратного. Поскольку не нужно опасаться потери селективности, то может быть экономически выгодным проводить процесс при относительно высоком давлении и соответственно при большей продолжительности выдержки по сравнению с нормальным давлением.
Пригодные предпочтительные катализаторы для способа Дикона содержат оксид рутения, хлорид рутения или другие соединения рутения на диоксиде кремния, оксиде алюминия, диоксиде титана или диоксиде циркония в качестве носителя. Пригодные катализаторы могут быть получены, например, нанесением хлорида рутения на носитель с последующей сушкой или сушкой и кальцинированием. Пригодные катализаторы могут содержать дополнительно к соединению рутения или вместо соединения рутения также и соединения других благородных металлов, таких как золота, палладия, платины, осмия, иридия, серебра, меди или рения. Кроме того, пригодные катализаторы могут содержать оксид трехвалентного хрома.
Каталитическое окисление хлороводорода может проводиться адиабатически или предпочтительно изотермически либо близко к изотермическому периодическим, но предпочтительно непрерывным способом с псевдоожиженным или неподвижным слоем катализатора, предпочтительно способом с неподвижным слоем катализатора, наиболее предпочтительно в кожухотрубных реакторах на гетерогенных катализаторах при температуре реакции от 180 до 450°С, предпочтительно от 200 до 400°С, наиболее предпочтительно от 220 до 350°С, и давлении от 1 до 25 бар (от 1000 до 25000 гПа), предпочтительно от 1,2 до 20 бар, наиболее предпочтительно от 1,5 до 17 бар, особенно от 2,0 до 15 бар.
Обычно употребляемыми реакционными аппаратами, в которых проводят каталитическое окисление хлороводорода, являются реакторы с неподвижным слоем катализатора или реакторы с псевдоожиженным слоем катализатора. Каталитическое окисление хлороводорода можно проводить предпочтительно также и многостадийно.
При адиабатическом, изотермическом или близком к изотермическому проведению процесса можно также использовать несколько, а именно от 2 до 10, предпочтительно от 2 до 6, наиболее предпочтительно от 2 до 5, особенно от 2 до 3, расположенных в ряд реакторов с промежуточным охлаждением. Кислород может подаваться либо полностью весь вместе с хлороводородом перед первым реактором, или добавляться поделенным на части между различными реакторами. Это последовательное расположение отдельных реакторов в ряд может быть также сведено в один аппарат.
Другой предпочтительный вариант выполнения пригодного для способа устройства состоит в том, что используют структурированную насыпную массу катализатора, в которой активность катализатора нарастает в направлении потока. Такое структурирование насыпной массы катализатора может осуществляться различной пропиткой носителя катализатора активной массой или различным разбавлением катализатора инертным материалом. В качестве инертного материала могут использоваться, например, кольца, цилиндры или шарики из диоксида титана, диоксида циркония или их смесей, оксида алюминия, стеатита, керамики, стекла, графита или высококачественной стали. В предпочтительном использовании формованных тел катализатора инертный материал должен иметь предпочтительно подобные внешние размеры.
В качестве формованных тел катализатора, исходя из углеродных нанотрубок, пригодны формованные тела любой формы, предпочтительными формами являются таблетки, кольца, цилиндры, звезды, «автомобильные колеса» или шарики. Наиболее предпочтительными формами являются шарики, кольца, цилиндры или прессованные звезды.
В качестве комбинирующихся с углеродными нанотрубками (CNT) веществ носителя пригодны, например, диоксид кремния, графит, диоксид титана со структурой рутила или анатаза, диоксид циркония, оксид алюминия или их смеси; предпочтительно диоксид титана, диоксид циркония, оксид алюминия или их смеси; наиболее предпочтительно γ- или δ-оксид алюминия или их смеси.
Формование катализатора можно осуществлять после или предпочтительно перед пропиткой вещества носителя.
Степень конверсии хлороводорода при однократном проходе может ограничиваться значением от 15 до 90%, предпочтительно от 40 до 85%, наиболее предпочтительно от 50 до 70%. Не прореагировавший хлороводород после отделения может быть возвращен частично или полностью на каталитическое окисление хлороводорода. Объемное отношение хлороводорода к кислороду на входе в реактор составляет, в особенности, 1:1 и 20:1, предпочтительно 2:1 и 8:1, наиболее предпочтительно 2:1 и 5:1.
Тепло реакции каталитического окисления хлороводорода целесообразно использовать для образования водяного пара высокого давления. Он может быть использован для работы реактора фосгенирования и/или дистилляционных колонн, в особенности для работы изоцианат-дистилляционных колонн.
Катализатор по изобретению для окисления хлороводорода характеризуется высокой активностью при низких температурах. Не основываясь на какой-либо теории, предполагается, что углеродные нанотрубки (CNT) являются активными в качестве стабилизатора высоких степеней окисления (например, Ru (VIII)).
Нижеследующие примеры наглядно поясняют настоящее изобретение.
Примеры
Пример 1: Модификация углеродных нанотрубок
В многогорлой колбе с обратным холодильником на колбонагревателе кипятили 20 г многостенных углеродных нанотрубок (Baytubes®, Bayer MaterialScience AG) при перемешивании в течение 5 часов в концентрированной азотной кислоте. Затем модифицированные таким образом углеродные нанотрубки сушили при температуре 40°С в вакууме в течение 8 часов. Продукт исследовали посредством фотоэлектронной спектроскопии (XPS), трансмиссионной электронной спектроскопии и титрованием по типу кислота - основание. Модифицированные CNT содержали около 1 ммол кислотных групп на один грамм.
Получение катализатора по изобретению
Пример 2: Нанесение каталитически активных компонентов на углеродные нанотрубки.
В круглодонной колбе с капельной воронкой и обратным холодильником суспендировали 18 г CNT из Примера 1 в растворе из 2,35 г коммерчески доступного н-гидрата хлорида рутения в 50 мл воды и перемешивали в течение 30 минут. Затем прикапывали в течение 30 минут 24 г 10%-ного раствора гидроксида натрия. После этого в течение 15 минут еще прикапывали 12 г 10%-ного раствора гидроксида натрия, нагревали реакционную смесь до 65°С и выдерживали при этой температуре в течение 1 часа. После охлаждения суспензию фильтровали и твердое вещество промывали 5 раз 50 мл воды. Влажное твердое вещество сушили при 120°С в сушильном вакуумном шкафу в течение 4 часов, а затем кальцинировали в потоке воздуха при температуре 300°С, при этом получали рутений-оксидный катализатор, нанесенный на CNT. Расчетное количество рутения составило Ru/(RuO2+CNT)=10%.
Продукт исследовали посредством рентгеновской фотоэлектронной спектроскопии (XPS). В результате было установлено, что рутениевая фаза состоит на 72% из RuO2, на 20% из RuO3 и на 8% из RuO4.
Для использования в катализаторном тесте катализатор разбавляли частицами кварца до концентрации 17 мас.% в расчете на общее количество.
Катализатор не по изобретению.
Пример 3: Нанесение активного компонента на двуокись титана
Соответственно способу Примера 2 получали рутениевый катализатор на диоксиде титана (мас./мас. Ru с 4,7 или 10%) и кальцинировали в воздушном потоке при температуре 300°С (3а или 3b).
Каталитические тесты
Пример 4: Использование катализаторов из Примеров 2 и 3 при окислении хлороводорода
Катализаторы из Примеров 2 и 3 пропускали в виде потока в насыпной массе неподвижного слоя катализатора в кварцевой реакционной трубе (диаметр 10 мм) при температуре 300°С с газовой смесью из 80 мл/мин (стандартные температура и давление, STP) хлороводорода и 80 мл/мин (STP) кислорода. Кварцевую реакционную трубу нагревали псевдоожиженным слоем из песка, подогреваемым электрически. Через 30 мин газовый поток продукта направляли в течение 10 мин в 16%-ный раствор иодида калия. Образующийся йод затем оттитровывали стандартным 0,1N раствором тиосульфата, чтобы установить введенное количество хлора. Получалось приведенное в Таблице 1 количество хлора. Фотоэлектронной спектроскопией для катализатора из Примеров 2, 3 и 6 получили в распечатанном виде содержание окислов Ru (IV), Ru (VI) и Ru (VIII).
Пример 5: Слепой опыт с CNT
В качестве слепого опыта использовали CNT из Примера 1 вместо катализатора и подвергали испытанию, как описано в Примере 4. Получили приведенную в Таблице 1 активность. Небольшое количество полученного хлора возвращено на газофазную реакцию.
Пример 6: Продолжительная стабильность катализатора на CNT-носителе
Рутениевый катализатор на СNТ-носителе из Примера 2 подвергали испытанию, как в Примере 4, однако время выдержки продлевали и отбирали несколько проб через 10 мин введения в 16%-ный раствор иодида калия. Получились приведенные на Фиг.1 количества хлора.
Пример 7: Температурная зависимость активности катализатора на СNТ-носителе
Рутениевый катализатор на СNТ-носителе из Примера 2 подвергали испытанию, как описано в Примере 4, однако температуру изменяли в пределах от 200 до 300°С. В конце производили два контрольных измерения, чтобы во время изменения температуры не произошло феноменов деактивации. Получились приведенные на Фиг.2 количества хлора.
На Фиг.3 показан снимок трансмиссионной электронной микроскопии катализатора по изобретению.
Таблица 1
Активность при окислении хлороводорода
Пример Состав M (кат), г Образование хлора, ммол/мин·г (кат) Образование хлора, ммол/мин·г (Ru)
2 RuO2/CNTox (10%Ru) 0,191 1,029 10,29
3 RuO2/TiO2 (10%Ru) 0,612 0,820 8,20
5 CNTox (0,483) (0,084) -

Claims (5)

1. Катализатор для окисления хлороводорода кислородом, содержащий, по меньшей мере, один компонент, активный при катализе реакций окисления, содержащий, по меньшей мере, один элемент, выбранный из группы, состоящей из рутения, осмия, родия, иридия, палладия, платины, меди, серебра, золота, рения, висмута, кобальта, ванадия, хрома, марганца, никеля, вольфрама и железа, а также носитель для него, отличающийся тем, что носитель основан на углеродных нанотрубках.
2. Катализатор по п.1, в котором активный компонент содержит рутений.
3. Катализатор по п.1, отличающийся тем, что каталитически активный компонент нанесен на носитель в виде водного раствора или суспензии и растворитель удален.
4. Катализатор по п.2 или 3, отличающийся тем, что каталитически активный компонент нанесен на носитель в виде водного раствора или суспензии галогенидов рутения, оксидов рутения, гидроксидов рутения или оксигалогенидов рутения в каждом случае по отдельности или в любой смеси и растворитель удален.
5. Способ каталитического окисления хлороводорода кислородом, отличающийся тем, что в качестве катализатора используют катализатор, содержащий, по меньшей мере, один компонент, активный при катализе реакций окисления, содержащий, по меньшей мере, один элемент, выбранный из группы, состоящей из рутения, осмия, родия, иридия, палладия, платины, меди, серебра, золота, рения, висмута, кобальта, ванадия, хрома, марганца, никеля, вольфрама и железа, и носитель, который основан на углеродных нанотрубках.
RU2008150587/04A 2006-05-23 2007-05-10 Термостойкий катализатор для газофазного окисления RU2440186C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006024550A DE102006024550A1 (de) 2006-05-23 2006-05-23 Temperaturstabiler Katalysator für die Gasphasenoxidation
DE102006024550.4 2006-05-23

Publications (2)

Publication Number Publication Date
RU2008150587A RU2008150587A (ru) 2010-06-27
RU2440186C2 true RU2440186C2 (ru) 2012-01-20

Family

ID=38362778

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008150587/04A RU2440186C2 (ru) 2006-05-23 2007-05-10 Термостойкий катализатор для газофазного окисления

Country Status (9)

Country Link
US (1) US20070274899A1 (ru)
EP (1) EP2029274A1 (ru)
JP (1) JP2009537312A (ru)
KR (1) KR20090017532A (ru)
CN (1) CN101448570A (ru)
DE (1) DE102006024550A1 (ru)
RU (1) RU2440186C2 (ru)
TW (1) TW200803978A (ru)
WO (1) WO2007134722A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491991C1 (ru) * 2012-08-20 2013-09-10 Закрытое акционерное общество "ЭКАТ" Катализатор для разложения озона и способ его получения

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052012A1 (de) 2008-10-17 2010-04-22 Bayer Materialscience Ag Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
US8895950B2 (en) 2009-10-23 2014-11-25 Nantero Inc. Methods for passivating a carbonic nanolayer
JP5636601B2 (ja) * 2010-03-11 2014-12-10 住友化学株式会社 固定床反応器による塩素の製造方法
JP5806536B2 (ja) * 2010-07-23 2015-11-10 川研ファインケミカル株式会社 触媒前駆体分散液、触媒及び排気ガスの浄化方法
CN108137315A (zh) * 2015-10-26 2018-06-08 沙特基础工业全球技术公司 基于碳纳米管的核壳材料的制备
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
CN106517095A (zh) * 2016-09-27 2017-03-22 上海氯碱化工股份有限公司 制备氯气的方法
US11390960B1 (en) * 2016-09-28 2022-07-19 Plasma Processes, Llc High temperature corrosion resistant composite structure consisting of ruthenium and its alloys
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569635A (en) * 1994-05-22 1996-10-29 Hyperion Catalysts, Int'l., Inc. Catalyst supports, supported catalysts and methods of making and using the same
WO1995010481A1 (en) * 1993-10-13 1995-04-20 E.I. Du Pont De Nemours And Company Carbon nanotubes and nested fullerenes supporting transition metals
CN1475434A (zh) * 1996-08-08 2004-02-18 ס�ѻ�ѧ��ҵ��ʽ���� 氯的生产方法
CN1182717A (zh) * 1996-10-31 1998-05-27 住友化学工业株式会社 氯气的生产方法
DE10242400A1 (de) * 2002-09-12 2004-03-18 Basf Ag Festbettverfahren zur Herstellung von Chlor durch katalytische Gasphasen-Oxidation von Chlorwasserstoff
ATE482029T1 (de) * 2004-11-16 2010-10-15 Hyperion Catalysis Int Verfahren zur herstellung von auf kohlenstoffnanoröhrennetzwerken geträgerten katalysatoren
EP1782885B1 (en) * 2005-11-07 2012-04-04 Research Institute of Petroleum Industry (RIPI) Carbon nanotubes supported cobalt catalyst for converting synthesis gas into hydrocarbons
DE102006022447A1 (de) * 2006-05-13 2007-11-15 Bayer Materialscience Ag Verfahren zur gekoppelten Herstellung von Chlor und Isocyanaten

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PLANEIX J М ЕТ AL: "Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis" JOYRNAL OF THE AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, Nr. 17, Seiten 7935-7936; 1994. *
YONG-TAE KIM, KENJI TADAI AND TADAOKI MITANI: "Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials" JOURNAL OF MATERIALS CHEMISTRY, 4914-4921, October 2005. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491991C1 (ru) * 2012-08-20 2013-09-10 Закрытое акционерное общество "ЭКАТ" Катализатор для разложения озона и способ его получения

Also Published As

Publication number Publication date
WO2007134722A1 (de) 2007-11-29
JP2009537312A (ja) 2009-10-29
EP2029274A1 (de) 2009-03-04
CN101448570A (zh) 2009-06-03
US20070274899A1 (en) 2007-11-29
TW200803978A (en) 2008-01-16
DE102006024550A1 (de) 2007-11-29
KR20090017532A (ko) 2009-02-18
RU2008150587A (ru) 2010-06-27

Similar Documents

Publication Publication Date Title
RU2440186C2 (ru) Термостойкий катализатор для газофазного окисления
KR102318493B1 (ko) 탄소 지지 촉매의 제조 방법
JP6670754B2 (ja) 複合体、複合体の製造方法、アンモニア合成触媒及びアンモニア合成方法
JP5642706B2 (ja) 塩化水素の酸化用のルテニウム及びニッケル含有触媒
RU2469790C2 (ru) Катализатор и способ изготовления хлора путем окисления хлороводорода в газовой фазе
TWI600468B (zh) 奈米金承載於氧化銅-二氧化鈰觸媒之製法及其在氫氣流中氧化一氧化碳之應用
US20070274897A1 (en) Processes for the preparation of chlorine by gas phase oxidation
US20070292336A1 (en) Processes for the preparation of chlorine by gas phase oxidation
BRPI0614960A2 (pt) catalisador de leito fluidizado para reações em fase gasosa, processos para a produção do mesmo, e para a oxidação catalìtica de cloreto de hidrogênio, e, uso de catalisador
Sheng et al. Emerging applications of nanocatalysts synthesized by flame aerosol processes
US20140241976A1 (en) Process for the production of chlorine using a cerium oxide catalyst in an isothermic reactor
JP2013139017A (ja) 担持酸化ルテニウムの製造方法及び塩素の製造方法
Gil et al. Synthesis and characterization of nitrogen-doped carbon nanospheres decorated with Au nanoparticles for the liquid-phase oxidation of glycerol
JP5572641B2 (ja) ルテニウム並びに銀及び/又はカルシウムを含む塩化水素の酸化用触媒
EP1782885B1 (en) Carbon nanotubes supported cobalt catalyst for converting synthesis gas into hydrocarbons
TW201513936A (zh) 非均相觸媒及1,2-二氯乙烷的製造用觸媒系統
CN111468159B (zh) 一种mof衍生的氯化氢氧化制氯催化剂及其制备方法
CN113967477A (zh) 一种单原子过渡金属催化剂及其制备方法和应用
US20080003173A1 (en) Processes for the preparation of chlorine by gas phase oxidation, catalysts therefor, and methods of making such catalysts
Markus et al. The influence of acidity of carbon nanofibre-supported palladium catalysts in the hydrogenolysis of hydroxymatairesinol
JP5422222B2 (ja) シクロオレフィンの製造方法およびそれに用いる選択的水素化触媒
WO2016039385A1 (ja) 有機ハイドライド用脱水素触媒及びその製造方法
JP2019195783A (ja) 水蒸気改質触媒、及び水蒸気改質方法
JP2013146720A (ja) 担持酸化ルテニウムの製造方法及び塩素の製造方法
US20110180419A1 (en) Integrated method for producing chlorine

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20130320

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140511