RU2356836C1 - Method of complex treatment of serpentinite - Google Patents

Method of complex treatment of serpentinite Download PDF

Info

Publication number
RU2356836C1
RU2356836C1 RU2007133945/15A RU2007133945A RU2356836C1 RU 2356836 C1 RU2356836 C1 RU 2356836C1 RU 2007133945/15 A RU2007133945/15 A RU 2007133945/15A RU 2007133945 A RU2007133945 A RU 2007133945A RU 2356836 C1 RU2356836 C1 RU 2356836C1
Authority
RU
Russia
Prior art keywords
nickel
solution
iron
concentrate
magnesium
Prior art date
Application number
RU2007133945/15A
Other languages
Russian (ru)
Inventor
Руфина Григорьевна Фрейдлина (RU)
Руфина Григорьевна Фрейдлина
Надежда Борисовна Овчинникова (RU)
Надежда Борисовна Овчинникова
Александр Илларионович Гулякин (RU)
Александр Илларионович Гулякин
Лев Николаевич Сабуров (RU)
Лев Николаевич Сабуров
Юрий Анатольевич Ряпосов (RU)
Юрий Анатольевич Ряпосов
Original Assignee
Открытое Акционерное Общество "Российский научно-исследовательский и проектный институт титана и магния" (ОАО "РИТМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Российский научно-исследовательский и проектный институт титана и магния" (ОАО "РИТМ") filed Critical Открытое Акционерное Общество "Российский научно-исследовательский и проектный институт титана и магния" (ОАО "РИТМ")
Priority to RU2007133945/15A priority Critical patent/RU2356836C1/en
Application granted granted Critical
Publication of RU2356836C1 publication Critical patent/RU2356836C1/en

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

FIELD: chemistry; metallurgy.
SUBSTANCE: present invention pertains to metallurgy and chemistry of inorganic substances. According to the invention serpentinite is leached with hydrochloric acid. The suspension is filtered, obtaining magnesium chlorate solution and silicon dioxide. Impurities are removed from the magnesium chlorate solution through neutralisation, obtaining a nickel-iron concentrate. Carnallite is produced from the purified magnesium chlorate solution and spent electrolyte. The carnallite is dehydrated and subjected to electrolysis, obtaining magnesium, chlorine and spent electrolyte. The nickel-iron concentrate is leached by 10-15% hydrochloric acid at temperature 80°C and pH 3-5. The suspension is filtered, obtaining an iron-containing residue and a solution, containing nickel chloride. Nickel compounds are extracted from the solution containing nickel chloride by treatment with a solution of sodium hydroxide at pH=8.0-8.5. The residue is washed in water soluble salts-chlorides, dried and calcinated, obtaining a nickel concentrate.
EFFECT: increased concentration of nickel oxide in the nickel concentrate.
2 cl, 1 tbl, 1 ex

Description

Изобретение относится к области металлургии и химической технологии неорганических веществ и может быть использовано для комплексной переработки серпентинита с получением товарных продуктов: диоксида кремния, соединений магния - хлорида магния и/или карналлита, металлического магния, железо- и никельсодержащих концентратов.The invention relates to the field of metallurgy and chemical technology of inorganic substances and can be used for complex processing of serpentinite to obtain marketable products: silicon dioxide, magnesium compounds - magnesium chloride and / or carnallite, metallic magnesium, iron and nickel-containing concentrates.

Известен способ переработки серпентинита /Пат. РФ №2241670, МПК C01F 5/30, С25С 3/04, C01B 7/01; 33/14, 21.07.2007/. Серпентинит выщелачивают соляной кислотой, пульпу разделяют фильтрованием на диоксид кремния и хлормагниевый раствор. Диоксид кремния хлорируют с получением тетрахлорида кремния, из которого парофазным гидролизом выделяют аэросил. Хлормагниевый раствор очищают от примесей нейтрализацией с получением железоникелевого концентрата. Из очищенного раствора MgCl2 и отработанного электролита синтезируют карналлит, который после обезвоживания используют для электролитического производства магния.A known method of processing serpentinite / Pat. RF №2241670, IPC C01F 5/30, С25С 3/04, C01B 7/01; 33/14, 07/21/2007 /. Serpentinite is leached with hydrochloric acid, the pulp is separated by filtration into silica and a magnesium chloride solution. Silicon dioxide is chlorinated to give silicon tetrachloride, from which aerosil is isolated by vapor-phase hydrolysis. The chlorine-magnesium solution is purified from impurities by neutralization to obtain an iron-nickel concentrate. Carnallite is synthesized from a purified MgCl 2 solution and spent electrolyte, which, after dehydration, is used for the electrolytic production of magnesium.

Недостатками данной технологии является получение хлоридных отходов, содержащих FeCl3, AlCl3, CrCl3, MgCl2, MnCl2 и др., образующихся при хлорировании диоксида кремния. Существуют определенные трудности для разделения смеси хлоридов и получения индивидуальных соединений. Кроме того, при очистке хлормагниевых растворов получаемый железоникелевый концентрат в прокаленном виде содержит не более 2,4% NiO, что затрудняет его переработку с получением индивидуальных соединений никеля. При такой очистке не происходит разделения соединений железа и никеля.The disadvantages of this technology is the production of chloride waste containing FeCl 3 , AlCl 3 , CrCl 3 , MgCl 2 , MnCl 2 , etc., formed during the chlorination of silicon dioxide. There are certain difficulties for the separation of a mixture of chlorides and to obtain individual compounds. In addition, when cleaning chlormagnesium solutions, the resulting iron-nickel concentrate in calcined form contains no more than 2.4% NiO, which complicates its processing to produce individual nickel compounds. With this purification, no separation of iron and nickel compounds occurs.

Известен способ комплексной переработки серпентинита с использованием серной кислоты /Пат. РФ №2097322, МПК C01B 33/142, C01F 5/02, C01D 5/02, 27.11.97/. Этот способ не пригоден для получения магния металлического электролизом, для производства которого применяют безводные соединения хлорида магния и/или карналлита.A known method of complex processing of serpentinite using sulfuric acid / Pat. RF №2097322, IPC C01B 33/142, C01F 5/02, C01D 5/02, 11.27.97 /. This method is not suitable for producing magnesium metal by electrolysis, for the production of which anhydrous magnesium chloride and / or carnallite compounds are used.

Известен способ комплексной переработки серпентинита с получением чистого диоксида кремния /Пат. РФ №2243154, МПК CO1B 33/12, 25.02.2003/. Серпентинит выщелачивают солянокислым раствором, содержащим 10-21% HCl, при температуре 60-100°С и Ж:Т=3-10:1 в течение 2-6 ч с получением диоксида кремния и хлормагниевого раствора. Хлормагниевый раствор очищают от примесей нейтрализацией в две стадии: на первой - бруситом при 80-90°С и рН 3,5-4,0, на второй - раствором гидроксида натрия до рН 6-7 с добавлением сульфида или гидросульфида натрия. Недостатками данного способа являются большие потери никеля с осадком I стадии очистки, достигающие 75-80%. Степень осаждения железа составляет ~80%. На второй стадии получен концентрат, содержащий 4,0-4,5% NiO и до 75% Fe2O3. При этом не происходит разделения железа и никеля, в связи с тем что гидроксидные соединения железа являются хорошим коллектором для соединений никеля.A known method of complex processing of serpentinite with obtaining pure silicon dioxide / Pat. RF №2243154, IPC CO1B 33/12, 02.25.2003 /. Serpentinite is leached with a hydrochloric acid solution containing 10-21% HCl at a temperature of 60-100 ° C and W: T = 3-10: 1 for 2-6 hours to obtain silicon dioxide and a chlorine-magnesium solution. The chlorine-magnesium solution is purified from impurities by neutralization in two stages: in the first, by brucite at 80-90 ° С and pH 3.5-4.0, in the second, by sodium hydroxide solution to pH 6-7 with the addition of sodium sulfide or hydrosulfide. The disadvantages of this method are the large losses of Nickel with sediment stage I purification, reaching 75-80%. The degree of precipitation of iron is ~ 80%. In the second stage, a concentrate is obtained containing 4.0-4.5% NiO and up to 75% Fe 2 O 3 . There is no separation of iron and nickel, due to the fact that hydroxide compounds of iron are a good collector for compounds of nickel.

Наиболее близким аналогом является способ комплексной переработки силикатов магния /Пат. РФ №2290457, МПК С25С 3/04, C01F 5/32, опубл. 27.12.2006. Бюл. №36/ - прототип.The closest analogue is a method of complex processing of magnesium silicates / Pat. RF №2290457, IPC С25С 3/04, C01F 5/32, publ. 12/27/2006. Bull. No. 36 / is a prototype.

Сущность способа заключается в следующем. Измельченный серпентинит классифицируют на классы и подвергают магнитной сепарации для удаления кальцийсодержащих минералов. Магнитную фракцию выщелачивают соляной кислотой. Полученный раствор хлорида магния отделяют от аморфного кремнезема, который промывают и сушат. Раствор хлорида магния очищают от примесей с получением железоникелевого концентрата. Очищенный раствор хлорида магния и молотый отработанный калиевый электролит используют для производства синтетического карналлита, который обезвоживают и подают на электролиз. В результате электролиза получают металлический магний, хлор и отработанный электролит. Электролит используют для синтеза карналлита. Хлор конвертируют в хлористый водород, который направляют на обезвоживание карналлита. Из газов обезвоживания выделяют хлористый водород с получением соляной кислоты, используемой для выщелачивания серпентинита. Недостатком данного способа является получение железоникелевого концентрата с невысоким содержанием оксида никеля (не более 2,5% NiO).The essence of the method is as follows. Ground serpentinite is classified into classes and magnetically separated to remove calcium-containing minerals. The magnetic fraction is leached with hydrochloric acid. The resulting solution of magnesium chloride is separated from amorphous silica, which is washed and dried. The magnesium chloride solution is purified from impurities to obtain an iron-nickel concentrate. A purified solution of magnesium chloride and ground spent potassium electrolyte are used to produce synthetic carnallite, which is dehydrated and fed to the electrolysis. Electrolysis produces metallic magnesium, chlorine, and spent electrolyte. The electrolyte is used to synthesize carnallite. Chlorine is converted to hydrogen chloride, which is sent to dehydrate carnallite. Hydrogen chloride is isolated from the dehydration gases to produce hydrochloric acid, which is used to leach serpentinite. The disadvantage of this method is to obtain an iron-nickel concentrate with a low nickel oxide content (not more than 2.5% NiO).

Технический результат предлагаемого способа заключается в повышении концентрации оксида никеля при переработки железоникелевого концентрата с получением никелевого концентрата.The technical result of the proposed method is to increase the concentration of Nickel oxide in the processing of iron-nickel concentrate with obtaining Nickel concentrate.

Технический результат достигается следующим образом. Железоникелевый концентрат дополнительно выщелачивают соляной кислотой. Образующуюся пульпу фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля. Из раствора выделяют соединения никеля осаждением раствором гидроксида или карбоната натрия.The technical result is achieved as follows. The nickel-iron concentrate is additionally leached with hydrochloric acid. The resulting pulp is filtered to obtain an iron-containing precipitate and a solution containing nickel chloride. Nickel compounds are isolated from the solution by precipitation with a solution of sodium hydroxide or carbonate.

Сущность предлагаемого способа заключается в следующей совокупности существенных признаков.The essence of the proposed method lies in the following set of essential features.

«Измельченный серпентинит выщелачивают соляной кислотой, суспензию фильтруют с получением хлормагниевого раствора и диоксида кремния. Хлормагниевый раствор очищают от примесей нейтрализацией с получением железоникелевого концентрата, который отделяют от очищенного хлормагниевого раствора. Синтез карналлита ведут из очищенного хлормагниевого раствора и измельченного отработанного электролита. Полученный карналлит обезвоживают и подвергают электролизу с получением металлического магния, хлора и отработанного электролита. Электролит используют для синтеза карналлита. Хлор конвертируют в хлористый водород, который используют для обезвоживания карналлита. Из газов обезвоживания выделяют хлористый водород с получением соляной кислоты, используемой для выщелачивания серпентинита. Железоникелевый концентрат, полученный на стадии очистки хлормагниевого раствора от примесей, выщелачивают 10-15%-ной кислотой при температуре 80°С до рН 3-5, суспензию фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля. Из раствора, содержащего хлорид никеля, выделяют соединения никеля обработкой раствором гидроксида натрия при рН 8,0-8,5, осадок промывают от водорастворимых солей - хлоридов, сушат и прокаливают с получением никелевого концентрата.“The ground serpentinite is leached with hydrochloric acid, the suspension is filtered to obtain a chlorine-magnesium solution and silicon dioxide. The chlorine-magnesium solution is purified from impurities by neutralization to obtain an iron-nickel concentrate, which is separated from the purified chlorine-magnesium solution. The synthesis of carnallite is carried out from purified chlorine-magnesium solution and ground spent electrolyte. The resulting carnallite is dehydrated and subjected to electrolysis to obtain magnesium metal, chlorine and spent electrolyte. The electrolyte is used to synthesize carnallite. Chlorine is converted to hydrogen chloride, which is used to dehydrate carnallite. Hydrogen chloride is isolated from the dehydration gases to produce hydrochloric acid, which is used to leach serpentinite. The iron-nickel concentrate obtained at the stage of purification of the chloromagnesium solution from impurities is leached with 10-15% acid at a temperature of 80 ° C to pH 3-5, the suspension is filtered to obtain an iron-containing precipitate and a solution containing nickel chloride. Nickel compounds are isolated from a solution containing nickel chloride by treatment with a solution of sodium hydroxide at pH 8.0-8.5, the precipitate is washed from water-soluble salts of chlorides, dried and calcined to obtain a nickel concentrate.

На основании проведенных исследований установлено, что при использовании соляной кислоты концентрацией менее 10% образуются растворы с низким содержанием никеля, а более 15% возрастает степень перехода железа в раствор. При температуре менее 80°С наблюдается низкая скорость процесса, возрастает его продолжительность, что приводит к неоправданным затратам. При рН менее 2 возрастает степень перехода железа в раствор, а при рН>5 процесс выщелачивания практически прекращается.Based on the studies, it was found that when using hydrochloric acid with a concentration of less than 10%, solutions with a low nickel content are formed, and more than 15% increases the degree of transition of iron into solution. At temperatures less than 80 ° C, a low speed of the process is observed, its duration increases, which leads to unjustified costs. At pH less than 2, the degree of transition of iron into solution increases, and at pH> 5, the leaching process practically stops.

При выделении никеля из раствора при рН<8 происходит неполное осаждение никеля. Известно, что начало осаждения никеля из 1М раствора составляет 6,7, а рН полного осаждения никеля - 9,5. При этом остаточная концентрация никеля менее 10-5 М /Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. С.248/.When nickel is precipitated from a solution at pH <8, incomplete precipitation of nickel occurs. It is known that the onset of nickel deposition from a 1M solution is 6.7, and the pH of complete nickel deposition is 9.5. Moreover, the residual nickel concentration is less than 10 -5 M / Lurie Yu.Yu. Handbook of analytical chemistry. M .: Chemistry, 1971. P.248 /.

Пример осуществления способа.An example implementation of the method.

100 г железоникелевого концентрата состава, мас.%: 10,4 Fe; 0,29 Ni; 0,15 Mn; 0,25 Cr; 2,4 SiO2; 11,0 Mg; 0,68 Ca; 46,3 H2O; 61,2 п.п.п; отношение Ni/Fe=0,028, смешали со 150 мл воды, пульпу нагрели до 80°С и начали подачу соляной кислоты (1:1) до определенной величины рН. В таблице 1 приведено влияние величины рН на степень перехода в раствор соединений железа и никеля.100 g of iron-nickel concentrate composition, wt.%: 10.4 Fe; 0.29 Ni; 0.15 Mn; 0.25 Cr; 2.4 SiO 2 ; 11.0 Mg; 0.68 Ca; 46.3 H 2 O; 61.2 p.p.p .; Ni / Fe ratio = 0.028, mixed with 150 ml of water, the pulp was heated to 80 ° C and the supply of hydrochloric acid (1: 1) to a certain pH value was started. Table 1 shows the effect of pH on the degree of transition of iron and nickel compounds into the solution.

Как следует из полученных данных, величина рН выщелачивания оказывает влияние на степень перехода железа и никеля в раствор, а также на степень очистки никеля от железа. При рН<3,0 и >4,5 степень извлечения железа в раствор возрастает, степень очистки никеля от железа составляет 37 при рН 3,0 и 196 при рН 4,5.As follows from the obtained data, the leaching pH affects the degree of transition of iron and nickel into solution, as well as the degree of purification of nickel from iron. At pH <3.0 and> 4.5, the degree of extraction of iron into the solution increases, the degree of purification of nickel from iron is 37 at pH 3.0 and 196 at pH 4.5.

При рН 3,5-4,25 степень извлечения никеля составляет 54-70%, а железо практически не переходит в раствор. Степень разделения никеля и железа составляет ~76000-185000.At a pH of 3.5–4.25, the degree of nickel recovery is 54–70%, and iron practically does not go into solution. The degree of separation of nickel and iron is ~ 76000-185000.

Из раствора, содержащего хлориды никеля, осадили гидроксид никеля обработкой его 2н раствором NaOH до рН 8,0-8,5. При этом степень осаждения никеля составила 99,50-99,97%. Влажный осадок (60-68% Н2O; п.п.п.80-82%) содержал до 4,8-4,9% Ni или 6,1-6,2% NiO. В высушенном при 100±5°С содержание никеля увеличилось до 14,9%, а в прокаленном при 700°С - до 25%.Nickel hydroxide was precipitated from a solution containing nickel chlorides by treating it with a 2N NaOH solution to a pH of 8.0-8.5. In this case, the degree of nickel deposition was 99.50-99.97%. The wet cake (60-68% H 2 O; pp 80-82%) contained up to 4.8-4.9% Ni or 6.1-6.2% NiO. In the dried at 100 ± 5 ° C, the nickel content increased to 14.9%, and in the calcined at 700 ° C to 25%.

Таким образом, разработанная технология позволяет разделить железо и никель с получением железо- и никельсодержащих концентратов, а также вернуть хлорид магния в производство металлического магния.Thus, the developed technology allows separating iron and nickel to obtain iron and nickel-containing concentrates, as well as returning magnesium chloride to the production of magnesium metal.

Таблица 1Table 1 Влияние величины рН на степень извлечения железа и никеля в растворThe effect of pH on the degree of extraction of iron and nickel in solution Расход HCl (1:1), млHCl consumption (1: 1), ml рНpH Анализ фильтратаFiltrate analysis Степень извлечения, %The degree of extraction,% Степень очистки Ni от Fe*The degree of purification of Ni from Fe * объем, млvolume ml концентрация, г/дм3 concentration, g / dm 3 соотношение Ni/FeNi / Fe ratio NiNi FeFe NiNi FeFe 1,851.85 3,03.0 381381 0,800.80 0,770.77 1,0391,039 100one hundred 2,822.82 3737 190190 3,83.8 386386 0,520.52 0,00010.0001 52005200 69,269.2 0,00030,0003 185714185714 173173 4,04.0 369369 0,420.42 0,00010.0001 42004200 53,553.5 0,00030,0003 150000150,000 170170 4,254.25 366366 0,430.43 0,00020,0002 21502150 54,354.3 0,00070,0007 7678676786 160160 4,54,5 356356 0,660.66 0,120.12 5,55.5 81,181.1 0,360.36 196196 * Степень очистки никеля от железа рассчитывали как отношение никеля к железу в конечном растворе к такому отношению в железоникелевом концентрате.* The degree of purification of nickel from iron was calculated as the ratio of nickel to iron in the final solution to such a ratio in iron-nickel concentrate.

Claims (2)

1. Способ комплексной переработки серпентинита, включающий его выщелачивание соляной кислотой, фильтрование суспензии с получением хлормагниевого раствора и диоксида кремния, очистку хлормагниевого раствора от примесей нейтрализацией с получением железоникелевого концентрата, синтез карналлита из очищенного хлормагниевого раствора и отработанного электролита, обезвоживание карналлита и его электролиз с получением магния, хлора и отработанного электролита, возвращаемых в процесс, отличающийся тем, что железоникелевый концентрат выщелачивают 10-15%-ной соляной кислотой при температуре 80°С до рН 3-5, суспензию фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля.1. A method for the complex processing of serpentinite, including its leaching with hydrochloric acid, filtering the suspension to obtain a magnesium chloride solution and silicon dioxide, neutralizing the magnesium chloride solution from impurities to obtain an iron-nickel concentrate, carnallite synthesis from purified magnesium chloride solution and spent electrolyte, carnallite dehydration and its obtaining magnesium, chlorine and spent electrolyte returned to the process, characterized in that the iron-nickel concentrate in schelachivayut 10-15% hydrochloric acid at a temperature of 80 ° C to pH 3-5, the suspension was filtered to give the iron-containing precipitate and a solution containing nickel chloride. 2. Способ по п.1, отличающийся тем, что из раствора, содержащего хлорид никеля, выделяют соединения никеля обработкой раствором гидроксида натрия при рН 8,0-8,5, осадок промывают от водорастворимых солей - хлоридов, сушат и прокаливают с получением никелевого концентрата. 2. The method according to claim 1, characterized in that nickel compounds are isolated from a solution containing nickel chloride by treatment with a sodium hydroxide solution at pH 8.0-8.5, the precipitate is washed from water-soluble salts of chlorides, dried and calcined to obtain nickel concentrate.
RU2007133945/15A 2007-09-11 2007-09-11 Method of complex treatment of serpentinite RU2356836C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007133945/15A RU2356836C1 (en) 2007-09-11 2007-09-11 Method of complex treatment of serpentinite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007133945/15A RU2356836C1 (en) 2007-09-11 2007-09-11 Method of complex treatment of serpentinite

Publications (1)

Publication Number Publication Date
RU2356836C1 true RU2356836C1 (en) 2009-05-27

Family

ID=41023389

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007133945/15A RU2356836C1 (en) 2007-09-11 2007-09-11 Method of complex treatment of serpentinite

Country Status (1)

Country Link
RU (1) RU2356836C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103651A1 (en) * 2011-02-04 2012-08-09 Institut National De La Recherche Scientifique Production of a crystallized nickel salt from hyperaccumulator plants
RU2739046C1 (en) * 2020-03-20 2020-12-21 Наталья Леонидовна Мохирева Method of complex treatment of serpentinite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103651A1 (en) * 2011-02-04 2012-08-09 Institut National De La Recherche Scientifique Production of a crystallized nickel salt from hyperaccumulator plants
RU2739046C1 (en) * 2020-03-20 2020-12-21 Наталья Леонидовна Мохирева Method of complex treatment of serpentinite

Similar Documents

Publication Publication Date Title
AU2024203143A1 (en) Methods for treating lithium-containing materials
CN110139832B (en) Processing of cobalt sulfate/cobalt dithionate liquors from cobalt resources
KR102413985B1 (en) Hydrometallurgical process to produce pure magnesium metal and various by-products
EP1097247B1 (en) A method for isolation and production of magnesium based products
CN107406906A (en) The method of gas washing in SA production magnesium compound and various accessory substances is used in HCl reclaims loop
US20220064757A1 (en) Lithium recovery and purification
US20240002973A1 (en) Integration of carbon sequestration with selective hydrometallurgical recovery of metal values
RU2356836C1 (en) Method of complex treatment of serpentinite
JP6656709B2 (en) Manufacturing method of zinc ingot
WO2023209567A1 (en) Sequential hydrometalurgical recovery of metal values with sequestered carbon
US20240270591A1 (en) Lithium recovery and purification
HU176986B (en) Method for processing red mud
RU2571909C1 (en) Method for obtaining rare-metal concentrate from chloride sublimates, formed in purification of steam-gas mixtures of titanium tetrachloride production
RU2243154C2 (en) Integrated serpentinite processing method resulting in pure silica production
RU2237111C1 (en) Method of recovering magnesium from silicon-containing wastes
RU2244044C1 (en) Method for producing magnesium from serpentinite
RU2302474C2 (en) Method of production of magnesium from ash of burnt brown coal
RU2097326C1 (en) Method for producing magnesium oxide from bischofite
RU2448175C1 (en) Method of processing manganese-containing material
RU2332474C2 (en) Method of complex processing of ore containing magnesium silicates
RU2262483C1 (en) Synthetic carnallite preparation method
US3484191A (en) Treatment of hygroscopic magnesium chloride salts for removing oxygen containing contaminants
CN112939086A (en) Method for preparing high-purity manganese carbonate by using waste acid residues
CS241836B1 (en) Production method of precipitated calcium carbonate

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner