RU2330046C2 - Эфиры альдоновой кислоты, способ их получения и способ получения фармацевтических биологически активных веществ, связанных по свободным аминогруппам с полисахаридами или производными полисахаридов - Google Patents

Эфиры альдоновой кислоты, способ их получения и способ получения фармацевтических биологически активных веществ, связанных по свободным аминогруппам с полисахаридами или производными полисахаридов Download PDF

Info

Publication number
RU2330046C2
RU2330046C2 RU2005120736/04A RU2005120736A RU2330046C2 RU 2330046 C2 RU2330046 C2 RU 2330046C2 RU 2005120736/04 A RU2005120736/04 A RU 2005120736/04A RU 2005120736 A RU2005120736 A RU 2005120736A RU 2330046 C2 RU2330046 C2 RU 2330046C2
Authority
RU
Russia
Prior art keywords
aldonic acid
polysaccharides
biologically active
aldonic
ethers
Prior art date
Application number
RU2005120736/04A
Other languages
English (en)
Other versions
RU2005120736A (ru
Inventor
Клаус ЗОММЕРМЕЙЕР (DE)
Клаус Зоммермейер
Original Assignee
Супрамол Парентерал Коллоидс Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Супрамол Парентерал Коллоидс Гмбх filed Critical Супрамол Парентерал Коллоидс Гмбх
Publication of RU2005120736A publication Critical patent/RU2005120736A/ru
Application granted granted Critical
Publication of RU2330046C2 publication Critical patent/RU2330046C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/02Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/16Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/18Oxidised starch
    • C08B31/185Derivatives of oxidised starch, e.g. crosslinked oxidised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B33/00Preparation of derivatives of amylose
    • C08B33/02Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B35/00Preparation of derivatives of amylopectin
    • C08B35/02Esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к эфирам альдоновой кислоты полисахаридов или производных полисахаридов, селективно окисленных на восстанавливающемся конце цепи до альдоновых кислот, полученные взаимодействием соответствующей альдоновой кислоты или ее соли со спиртом, имеющим молекулярную массу в области от 80 г/моль до 500 г/моль. Настоящее изобретение также относится к одному из охарактеризованных выше эфиров альдоновой кислоты полисахаридов или производных полисахаридов, выделенному в виде твердого вещества, к эфиру, полученному в виде раствора, и к способу получения указанных выше эфиров. В том числе настоящее изобретение относится к способу получения конъюгата фармацевтического биологически активного вещества, связанного по свободным аминогруппам с указанными выше эфирами, и к конъюгату фармацевтического биологически активного вещества. Заявленные эфиры альдоновой кислоты полисахаридов или производных полисахаридов могут взаимодействовать с биологически активным веществом в мягких условиях, что позволяет избегать межмолекулярных и внутримолекулярных реакций сшивки. Также заявленные эфиры не только обеспечивают очень селективное связывание с биологически активным веществом и позволяют легко осуществлять присоединение биологически активного вещества за счет ковалентной связи к полисахариду или производному полисахарида, но и могут связываться с фармацевтическими биологически активными веществами, которые обладают фосфатными группами, без изменения этих групп. Кроме того, согласно настоящему изобретению разработаны простые и экономичные способы получения активированных эфиров альдоновой кислоты и продуктов связывания полисахаридов или производных полисахаридов с биологически активными веществами. 6 н. и 27 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение относится к эфирам альдоновой кислоты, твердым веществам и растворам, которые содержат эти эфиры, а также к способу их получения. Далее, настоящее изобретение относится к способам получения фармацевтических биологически активных веществ, связанных по свободным аминогруппам с полисахаридами или производными полисахаридов, которые осуществляют при использовании эфиров альдоновой кислоты, а также к фармацевтическим биологически активным веществам, которые получают этими способами.
Конъюгация фармацевтических биологически активных веществ, в особенности протеинов, с производными полиэтиленгликоля ("ПЭГилирование") или полисахаридами, как декстраны или, в особенности, гидроксиэтилкрахмал (Hydroxyethylstarke=HES) (HESилирование), в последние годы получила большое значение вследствие увеличения числа фармацевтических протеинов в связи с исследованиями в области генной инженерии.
Такие протеины часто обладают слишком коротким периодом полураспада, который можно целенаправленно удлинять за счет связывания с вышеуказанными полимерными соединениями, как ПЭГ или HES. Благодаря связыванию, однако, также можно положительно влиять на антигенные свойства протеинов. В случае других фармацевтических биологически активных веществ за счет связывания можно значительно повышать растворимость в воде.
В патентах DE 19628705 и DE 10129369 описываются способы, как связывание с гидроксиэтилкрахмалом в безводном диметилсульфоксиде (ДМСО) через соответствующий лактон альдоновой кислоты гидроксиэтилкрахмала, которое может осуществляться по свободным аминогруппам гемоглобина, соответственно амфотерицина В.
Так как в случае протеинов часто нельзя работать непосредственно в безводных апротонных растворителях, либо по причинам растворимости, либо также по причинам денатурации протеинов, существуют также способы связывания с гидроксиэтилкрахмалом в содержащей воду среде. Например, связывание селективно окисленного на восстанавливающемся конце цепи до альдоновой кислоты гидроксиэтилкрахмала осуществляют посредством водорастворимого карбодиимида EDC (1-этил-3-(3-диметиламино-пропил)карбодиимид) (РСТ/ЕР 02/02928). Однако очень часто использование карбодиимидов связано с недостатками, так как карбодиимиды очень часто вызывают внутримолекулярные или межмолекулярные реакции сшивки протеинов в качестве побочных реакций.
В случае содержащих фосфатные группы соединений, как нуклеиновые кислоты, связывание часто совсем невозможно, так как фосфатные группы также могут реагировать с EDC (S.S. Wong, Chemistry of Protein Conjugation and Cross-Linking, CRC-Press, Boca Raton, London, New York, Washington D.C., 1993, c. 199).
Принимая во внимание вышеприведенный уровень техники, задачей изобретения является получение соединений, которые при отсутствии вышеописанных недостатков позволяют целенаправленно осуществлять связывание полисахаридов или их производных с содержащими аминогруппы биологически активными веществами, в особенности с протеинами, в чисто водных системах или также в смесях растворителей с водой.
Далее, такое соединение должно обладать таким свойством, чтобы происходило по возможности количественное присоединение биологически активного вещества через ковалентную связь к полисахариду или производному полисахарида.
Далее, задачей изобретения является получение соединений, которые позволяют осуществлять по возможности мягкое связывание полисахарида или его производного с биологически активным веществом. Так, за счет взаимодействия по возможности незначительно должны изменяться, в особенности, структура, активность и совместимость биологически активного вещества. Например, нужно избегать межмолекулярных и внутримолекулярных реакций сшивки. Сверх того, должна существовать возможность связывания также биологически активных веществ, обладающих фосфатными группами.
Далее, задачей настоящего изобретения, следовательно, является получение соединений, которые обеспечивают по возможности селективное связывание с биологически активным веществом. Так, в особенности должна быть обеспечена целенаправленная стехиометрия конъюгата, причем в особенности должна существовать возможность получения конъюгатов 1:1 за счет использования этих соединений.
Наконец, задачей изобретения является разработка по возможности простого и экономичного способа получения таких соединений и продуктов связывания полисахаридов или производных полисахаридов с биологически активными веществами.
Поставленные задачи, а также другие, которые, правда, дословно не указаны, однако, как само собой разумеется, могут возникать из обсуждаемых в данном контексте зависимостей или неизбежно следуют из них, решаются с помощью описанных в пункте 1 формулы изобретения эфиров альдоновой кислоты. Целесообразные вариации предлагаемых согласно изобретению эфиров альдоновой кислоты, а также устойчивые и используемые в способах получения конъюгатов эфиры альдоновой кислоты приведены в зависимых от пункта 1 пунктах 2-19 формулы изобретения.
В отношении способа получения эфиров альдоновой кислоты поставленная задача решается согласно пунктам 20-28 формулы изобретения.
В пунктах 29-34 формулы изобретения описываются способы получения конъюгатов полисахарид-биологически активное вещество и получаемые этими способами фармацевтические биологически активные вещества.
Благодаря эфирам альдоновой кислоты, которые образуются из селективно окисленных на восстанавливающемся конце цепи до альдоновых кислот полисахаридов или производных полисахаридов, получают соединения, с помощью которых решаются поставленные задачи. Такие сложные эфиры можно рассматривать как активированные кислоты. В водной среде за счет взаимодействия с нуклеофильными NH2-группами они превращаются в (более стабильные) амиды.
Далее, благодаря настоящему изобретению достигают, в частности, следующих преимуществ:
Предлагаемые согласно изобретению эфиры альдоновой кислоты позволяют легко осуществлять присоединение биологически активного вещества за счет ковалентной связи к полисахариду или производному полисахарида.
Эфиры альдоновой кислоты согласно настоящему изобретению могут взаимодействовать с биологически активным веществом в мягких условиях. При этом, в особенности, структура, активность и совместимость биологически активного вещества за счет взаимодействия изменяются только в незначительном объеме. Таким образом, можно избегать, в частности, в особенности межмолекулярных и внутримолекулярных реакций сшивки. Далее, можно связывать фармацевтические биологически активные вещества, которые обладают фосфатными группами, без изменения этих групп.
Предлагаемые согласно изобретению эфиры альдоновой кислоты обеспечивают очень селективное связывание с биологически активным веществом. Далее, можно обеспечивать, например, целенаправленную стехиометрию желательного конъюгата, причем за счет использования этих соединений становится возможным в особенности получение конъюгатов 1:1.
Сверх того, согласно изобретению разработаны простые и экономичные способы получения активированных эфиров альдоновой кислоты и продуктов связывания полисахаридов или производных полисахаридов с биологически активными веществами.
Эфиры альдоновой кислоты согласно настоящему изобретению образуются из полисахаридов или производных полисахаридов, которые могут селективно окисляться на восстанавливающемся конце цепи. Такого рода полисахариды, а также получаемые из них производные, кроме того, известны специалистам и могут быть коммерчески доступны. Полисахариды представляют собой макромолекулярные углеводы, молекулы которых имеют большое число (по меньшей мере >10, обычно, однако, значительно больше) гликозидно связанных друг с другом моносахаридных молекул (глюкоза). Среднемассовая молекулярная масса предпочтительных полисахаридов составляет величину в области предпочтительно 1500-1000000 Дальтонов, особенно предпочтительно 2000-300000 Дальтонов и в высшей степени предпочтительно 2000-50000 Дальтонов. Молекулярную массу Mw определяют обычными способами. К ним относятся, например, водная гель-проникающая хроматография (ГПХ), высокоэффективная жидкостная хроматография (ВЭЖХ), светорассеяние и тому подобное.
За счет молекулярной массы полисахаридного остатка можно изменять, в частности, время пребывания в организме.
К предпочтительным полисахаридам относятся крахмал, а также получаемые путем гидролиза фракции крахмала, которые можно рассматривать как продукты расщепления крахмала. Крахмал обычно подразделяют на амилозу и амилопектин, которые различаются степенью разветвления. Согласно изобретению особенно предпочтителен амилопектин.
Под амилопектином при этом понимают прежде всего вообще разветвленные крахмалы или продукты, получаемые из крахмала, с a-(1-4)- и a-(1-6)-связями между молекулами глюкозы. Разветвление цепи при этом происходит через a-(1-6)-связи. В случае естественно встречающихся амилопектинов они неравномерно расположены примерно в случае каждых 15-30 сегментов глюкозы. Молекулярная масса нативного амилопектина является очень высокой и составляет величину в области от 107 Дальтонов до 2х108 Дальтонов. Исходят из того, что амилопектин в известных пределах также образует спирали.
Для амилопектинов можно определять степень разветвления. Мерой разветвления является соотношение числа молекул ангидроглюкозы, которые содержат точки разветвления (a-(1-6)-связи), к общему числу молекул ангидроглюкозы амилопектина, причем это соотношение выражают в мол.%. Встречающийся в природе амилопектин имеет степени разветвления примерно 4 мол.%. Используемые для получения эфиров альдоновой кислоты амилопектины предпочтительно имеют среднее разветвление в пределах от 5 мол.% до 10 мол.%.
Далее, можно использовать гиперразветвленные амилопектины, которые имеют степень разветвления, значительно превышающую известную естественную степень разветвления амилопектинов. При этом в случае степени разветвления в каждом случае речь идет о среднем значении (средняя степень разветвления), так как амилопектины являются полидисперсными веществами.
Такие гиперразветвленные амилопектины обладают значительно более высокими степенями разветвления, выражаемыми в виде мол.% ангидроглюкоз разветвления, по сравнению с неизмененным амилопектином, соответственно гидроксиэтилкрахмалом, и вследствие этого по своей структуре подобны гликогену.
Средняя степень разветвления гиперразветвленных амилопектинов обычно составляет величину в пределах от >10 мол.% до 25 мол.%. Это означает, что эти амилопектины в среднем примерно на каждые 10-4 глюкозных звеньев имеют одну a-(1-6)-связь и, таким образом, одну точку разветвления.
Предпочтительно используемые в области медицины типы амилопектина характеризуются степенью разветвления от 11 мол.% до 16 мол.%.
Другие предпочтительные гиперразветвленные амилопектины имеют степень разветвления в пределах от 13 мол.% до 16 мол.%.
Используемые согласно изобретению амилопектины имеют величину среднемассовой молекулярной массы Mw в пределах предпочтительно от 2000 Дальтонов до 800000 Дальтонов, в особенности от 2000 Дальтонов до 300000 Дальтонов и особенно предпочтительно от 2000 Дальтонов до 50000 Дальтонов.
Вышеуказанные крахмалы могут быть коммерчески доступны. Далее, их получение известно из литературы. Так, крахмал можно получать, в частности, из картофеля, тапиоки, маниока, риса, пшеницы или кукурузы. Получаемые из этих растений крахмалы прежде всего многократно подвергают гидролитической реакции расщепления. При этом молекулярная масса от примерно 20000000 Дальтонов снижается до нескольких миллионов Дальтонов, причем также известно дальнейшее уменьшение молекулярной массы до вышеуказанных значений. В частности, особенно предпочтительно можно использовать фракции, образующиеся в результате расщепления крахмала восковидной кукурузы, для получения предлагаемых согласно изобретению эфиров альдоновой кислоты.
Вышеуказанные гиперразветвленные фракции крахмала описываются, в частности, в немецкой патентной заявке 10217994.
Далее, для получения предлагаемых согласно изобретению эфиров альдоновой кислоты можно использовать также производные полисахаридов. К ним относятся, в особенности, гидроксиалкилкрахмалы, например гидроксиэтилкрахмал и гидроксипропилкрахмал, которые можно получать путем гидроксиалкилирования из вышеуказанных крахмалов, в особенности из амилопектина. При этом предпочтителен гидроксиэтилкрахмал (HES).
Согласно изобретению предпочтительно используют гидроксиэтилкрахмал, который представляет собой гидроксиэтилированное производное полимера глюкозы амилопектина, содержащегося в крахмале восковидной кукурузы в количестве более 95%. Амилопектин состоит из глюкозных звеньев, которые содержат α-1,4-гликозидные связи и имеют α-1,6-гликозидные разветвления.
Гидроксиэтилкрахмал обладает предпочтительными реологическими свойствами и в настоящее время клинически используется в качестве кровезаменителя и в гемодилюционной терапии (Sommermeyer и др., Krankenhauspharmazie, 8, 271-278 (1987), и Weidler и др., Arzneimittelforschung/Drug Res., 41, 494-498 (1991)).
Гидроксиэтилкрахмал по существу отличается среднемассовой молекулярной массой Mw, среднечисловой молекулярной массой Mn, молекулярно-массовым распределением и степенью замещения. Замещение гидроксиэтильными группами по простой эфирной связи при этом возможно у атомов углерода 2,3 и 6 ангидроглюкозных звеньев. Степень замещения при этом можно указывать как DS ("степень замещения"), которая относится к доле замещенных молекул глюкозы по отношению ко всем звеньям глюкозы, или как MS ("молярное замещение"), которое обозначает среднее число гидроксиэтильных групп на глюкозное звено.
Степень замещения MS (молярное замещение) определяют как среднее число гидроксиэтильных групп на ангидроглюкозное звено. Ее определяют из общего числа гидроксиэтильных групп в образце, например, согласно Morgan, путем расщепления простого эфира и последующего количественного определения образующихся при этом этилиодида и этилена.
Напротив, степень замещения DS (степень замещения) определяют как долю замещенных ангидроглюкозных звеньев по отношению ко всем ангидроглюкозным звеньям. Ее можно определять из измеренного количества незамещенной глюкозы после гидролиза образца. Из этих определений получается, что MS > DS. В случае, когда имеется только монозамещение, следовательно, каждое замещенное ангидроглюкозное звено содержит только одну гидроксиэтильную группу, MS=DS.
Остаток гидроксиэтилкрахмала предпочтительно имеет степень замещения MS от 0,1 до 0,8. Особенно предпочтительно остаток гидроксиэтилкрахмала имеет степень замещения MS от 0,4 до 0,7.
Реакционная способность отдельных гидроксильных групп в незамещенном ангидроглюкозном звене по отношению к гидроксиэтилированию различна в зависимости от условий реакции. В известных пределах благодаря этому оказывают влияние на тип замещения, следовательно, на отдельные, различно замещенные ангидроглюкозные звенья, которые статистически распределены в отдельных полимерных молекулах. Предпочтительно преобладающе гидроксиэтилируются положение С2 и положение С6, причем положение С6 из-за своей более легкой доступности замещается чаще.
В рамках настоящего изобретения предпочтительно используют замещенные преобладающе в положении С2 гидроксиэтилкрахмалы (HES), которые замещены по возможности однородно. Получение таких гидроксиэтилкрахмалов описывается в патенте ЕР-0402724-В2. Они в течение физиологически приемлемого времени расщепляются без остатка и, с другой стороны, все-таки обладают регулируемым поведением при элиминировании. Преобладающее замещение в положении С2 делает гидроксиэтилкрахмал относительно трудно расщепляемым α-амилазой. Преимуществом является то, что по возможности не образуются замещенные последовательно друг за другом внутри полимерной молекулы ангидроглюкозные звенья, чтобы обеспечивать безостаточную расщепляемость. Далее, такие гидроксиэтилкрахмалы, несмотря на низкую степень замещения, обладают достаточно высокой растворимостью в водной среде, так что растворы также в течение более продолжительных промежутков времени являются стабильными и не образуются никакие агломераты, соответственно гели.
В пересчете на гидроксиэтильные группы ангидроглюкозных звеньев остаток гидроксиэтилкрахмала имеет предпочтительно соотношение замещения С26 в пределах от 2 до 15. Особенно предпочтительно соотношение замещения С26 составляет от 3 до 11.
Селективное окисление альдегидной группы вышеуказанных полисахаридов, соответственно производных полисахаридов, до альдоновой кислоты само по себе известно. Его можно осуществлять с помощью мягкого окислителя, например смеси иод/гидроксид калия согласно заявке DE 19628705-А1, или с помощью ферментов.
Для взаимодействия можно использовать свободную альдоновую кислоту. Далее, можно использовать также соли. К ним относятся в особенности соли щелочных металлов, как, например, натриевая и/или калиевая соль альдоновой кислоты.
Для получения предлагаемых согласно изобретению эфиров альдоновой кислоты используют спирты. Понятие спирт включает соединения, содержащие ОН-группы. Эти ОН-группы, в частности, могут быть связаны с атомом азота или с фенильным остатком.
Предпочтительно используют кислые спирты, которые известны специалисту. К ним относятся, в частности, N-гидроксиимиды, например N-гидроксисукцинимид и сульфо-N-гидроксисукцинимид, замещенные фенолы и гидроксиазолы, например гидроксибензтриазол, причем особенно предпочтительны N-гидроксисукцинимиды и сульфо-N-гидроксисукцинимид.
Другие пригодные кислые спирты для получения предлагаемых согласно изобретению эфиров альдоновой кислоты указаны в литературе (V.H.L. Lee (Ed.), Peptide and Protein Drug Delivery, Marcel Dekker, 1991, c. 65).
Согласно особому аспекту настоящего изобретения используют спирты, ОН-группа которых имеет значение pKs в области от 6 до 12, предпочтительно в области от 7 до 11. Это значение относится к определяемой при температуре 25°С константе диссоциации кислоты, причем это значение многократно указано в литературе.
Молекулярная масса спирта составляет величину предпочтительно в пределах от 80 г/моль до 500 г/моль, в особенности от 100 г/моль до 200 г/моль.
Спирт можно добавлять к реакционной смеси в свободной форме. Далее, для реакции можно использовать также соединения, которые при добавке воды в случае необходимости при кислотном катализе высвобождают спирт.
Согласно особому аспекту настоящего изобретения для взаимодействия с альдоновой кислотой или солью альдоновой кислоты используют диэфиры угольной кислоты. Эти соединения обеспечивают протекание особенно быстрой и мягкой реакции, причем образуются только угольная кислота, соответственно карбонаты, спирты и желательные эфиры альдоновой кислоты.
Предпочтительными диэфирами угольной кислоты являются, среди прочих, N'N-сукцинимидилкарбонат и сульфо-N'N-сукцинимидил-карбонат.
Эти диэфиры угольной кислоты можно использовать в относительно небольших количествах. Так, диэфир угольной кислоты можно использовать в 1-3-кратном молярном избытке, предпочтительно в 1-1,5-кратном избытке, в пересчете на альдоновую кислоту и/или соль альдоновой кислоты. Продолжительность реакции при использовании диэфиров угольной кислоты является относительно незначительной. Так, реакция часто может заканчиваться спустя 2 часа, предпочтительно спустя 1 час.
Превращение в эфир альдоновой кислоты предпочтительно осуществляют в безводном апротонном растворителе. Содержание воды должно составлять предпочтительно самое большее 0,5 мас.%, особенно предпочтительно самое большее 0,1 мас.%. Пригодными растворителями являются, в частности, диметилсульфоксид (ДМСО), N-метилпирролидон, диметилацетамид (ДМА) и/или диметилформамид (ДМФА).
Реакция этерификации сама по себе известна, причем можно использовать любой способ. Превращение в эфир альдоновой кислоты можно осуществлять, в частности, при применении активаторов. При использовании свободного спирта рекомендуется такого рода образ действий. К активаторам относятся в особенности карбодиимид, как, например, дициклогексилкарбодиимид (DCC) и 1-этил-3-(3-диметиламинопропил)карбодиимид (EDC).
При применении свободного спирта его можно использовать в молярном избытке. Согласно особому аспекту настоящего изобретения спиртовой компонент используют предпочтительно в 5-50-кратном молярном избытке, особенно предпочтительно в 8-20-кратном избытке в пересчете на альдоновую кислоту и/или производное альдоновой кислоты.
Превращение в эфир альдоновой кислоты протекает в мягких условиях. Так, вышеописанные реакции можно проводить при температурах предпочтительно в диапазоне от 0°С до 40°С, особенно предпочтительно в диапазоне от 10°С до 30°С.
Согласно особому аспекту настоящего изобретения превращение осуществляют при незначительной основности. Незначительной основности можно достигать путем добавления реакционной смеси в 10-кратный избыток воды. При этом вода перед добавкой имеет значение рН=7,0 при температуре 25°С, причем вода по существу не содержит никакого буфера. Путем измерения значения рН при температуре 25°С после добавки реакционной смеси получают основность реакционной смеси. Эта смесь после добавки предпочтительно имеет значение рН самое большее 9,0, особенно предпочтительно самое большее 8,0 и особенно предпочтительно самое большее 7,5.
Взаимодействие с HES-альдоновыми кислотами, например с N-гидроксисукцинимидом, протекает в безводном ДМА при исключении воды с помощью EDC путем реакции при комнатной температуре с образованием N-гидроксисукцинимидного эфира HES-кислоты. При этом в особенности является неожиданным то, что не происходит никакой побочной реакции молекул HES за счет взаимодействия имеющихся в большом избытке ОН-групп ангидроглюкоз с EDC, а также предотвращается перегруппировка первично образующейся О-ацилизомочевины из EDC и альдоновой кислоты до соответствующей N-ацилмочевины.
Полученные путем вышеописанного взаимодействия растворы можно использовать без выделения эфиров альдоновой кислоты в реакциях связывания. Поскольку, как правило, объем предварительно активированной альдоновой кислоты в апротонном растворителе является небольшим по сравнению с растворенным в объеме буфера протеином-мишенью, количества апротонного растворителя чаще всего не оказывают мешающего влияния. Предпочтительные растворы включают по меньшей мере 10 мас.% эфира альдоновой кислоты, предпочтительно по меньшей мере 30 мас.% эфира альдоновой кислоты и особенно предпочтительно по меньшей мере 50 мас.% эфира альдоновой кислоты.
Эфиры альдоновой кислоты можно осаждать из раствора в апротонном растворителе, например в DMA, с помощью известных осадителей, как, например, безводный этанол, изопропанол или ацетон, и очищать путем многократного повторения процесса. Предпочтительные твердые вещества включают по меньшей мере 10 мас.% эфира альдоновой кислоты, предпочтительно по меньшей мере 30 мас.% эфира альдоновой кислоты и особенно предпочтительно по меньшей мере 50 мас.% эфира альдоновой кислоты.
Такие эфиры альдоновой кислоты, выделенные в виде вещества, затем можно использовать для связывания, например, для HESилирования. При этом тогда не возникают никакие побочные реакции, как описанные выше в случае активированной с помощью EDC кислоты.
Далее, для связывания раствор активированной альдоновой кислоты можно добавлять к водному раствору фармацевтического биологически активного вещества, который предпочтительно забуферен, при пригодном значении рН. Фармацевтические биологически активные вещества включают по меньшей мере одну аминогруппу, которая может превращаться в амид альдоновой кислоты. К предпочтительным биологически активным веществам относятся протеины и пептиды.
Значение рН при взаимодействии зависит от свойств биологически активного вещества. Предпочтительно, если это возможно, значение рН находится в пределах от 7 до 9, особенно предпочтительно в пределах от 7,5 до 8,5.
Связывание происходит, в общем, при температурах в диапазоне от 0°С до 40°С, предпочтительно от 10°С до 30°С, причем это не должно рассматриваться как ограничение. Продолжительность реакции можно легко определять пригодным способом. В общем, время реакции составляет величину в области от 1 часа до 100 часов, предпочтительно от 20 часов до 48 часов.
Эфир альдоновой кислоты можно использовать в избытке, в пересчете на фармацевтическое биологически активное вещество. Предпочтительно используют эфир альдоновой кислоты в 1-5-кратном молярном избытке, особенно предпочтительно в 1,5-2-кратном избытке, в пересчете на фармацевтическое биологически активное вещество.
В качестве побочного продукта в случае вышеуказанного взаимодействия осаждается главным образом только спирт, например N-гидроксисукцинимид, который можно легко отделять от продукта связывания, например, путем ультрафильтрации. В качестве побочной реакции может происходить омыление водой до образования свободной кислоты и свободного спирта. Поэтому особенно неожиданным является то, что предлагаемые согласно изобретению эфиры альдоновой кислоты большей частью вступают в реакцию связывания с фармацевтическим биологически активным веществом. Это следует из примеров, в особенности из представленных на фигурах хроматограмм.
Фиг. 1 MALLS-ГПХ-Хроматограмма непрореагировавшего бычьего сывороточного альбумина (BSA). Мономерный и димерный альбумины четко разделены.
Фиг. 2 MALLS-ГПХ-Хроматограмма непрореагировавшего сложного HES-10/0,4-сукцинимидилового эфира.
Фиг.3 MALLS-ГПХ-Хроматограмма продукта реакции сложного HES-10/0,4-сукцинимидилового эфира и BSA. Представлены сигналы трехкратного определения показателя преломления (RI), УФ-детектора, а также сигнал светорассеяния при 90°.
Фиг. 4 MALLS-ГПХ-Хроматограмма продукта реакции сложного HES-10/0,4-сукцинимидилового эфира и BSA с изображением молекулярной массы в зависимости от времени.
Ниже изобретение поясняется подробнее с помощью примеров и сравнительных примеров, причем изобретение не должно ограничиваться этими примерами.
Примеры и способы получения
Пример 1
Получение эфира HES-10/0,4-кислоты с N-гидроксисукцинимидом
5 г высушенного, селективно окисленного на восстанавливающемся конце цепи, согласно DE 19628705, гидроксиэтилкрахмала со средней молекулярной массой Mw=10000 Дальтонов и степенью замещения MS=0,4 растворяют в 30 мл безводного диметилацетамида при температуре 40°С и после охлаждения раствора в отсутствие влажности смешивают с 10-кратным молярным количеством N-гидроксисукцинимида. Затем порциями добавляют эквимолярное по отношению к HES-кислоте количество EDC и реакционную смесь оставляют реагировать в течение 24 часов. Продукт реакции затем осаждают безводным ацетоном и для очистки многократно переосаждают.
Пример 2
Получение связанного с HES-10/0,4-кислотой миоглобина
15 мг Миоглобина растворяют в 20 мл дистиллированной воды и с помощью раствора гидроксида натрия устанавливают значение рН=7,5. К раствору в течение 1 часа порциями добавляют 1,5 г продукта реакции HES-10/0,4-кислоты и N-гидроксисукцинимида, полученного согласно примеру 1, и значение рН поддерживают постоянным при 7,5 за счет добавки раствора гидроксида натрия. Смесь выдерживают при перемешивании в течение ночи. Образование HESилированного миоглобина определяют путем гель-проникающей хроматографии с выходом 70%, в пересчете на используемый миоглобин.
Пример 3
Получение эфира HES-10/0,4-кислоты с N'N-дисукцинимидилкарбонатом
0,02 ммоль (соответственно, 0,14 г) высушенной HES-10/0,4-кислоты в отсутствие влажности растворяют в 2 мл безводного диметилформамида. К раствору добавляют 0,02 ммоль N'N-дисукцинимидилкарбоната и оставляют реагировать в течение 1 часа при комнатной температуре и при перемешивании.
Пример 4
Получение продукта связывания HES-10/0,4-кислоты с бычьим сывороточным альбумином
50 мг бычьего сывороточного альбумина (BSA; соответственно, 0,7 мкмоль) растворяют в 6 мл 0,3 М раствора гидрокарбоната с рН=8,4. К раствору добавляют смесь, полученную согласно примеру 3, и оставляют реагировать в течение 2 часов при перемешивании и при комнатной температуре.
Доказательство того, что реакция произошла, получают с помощью высокоэффективной гель-проникающей хроматографии низкого давления с многократным детектированием (УФ-детектирование при 280 нм, MALLS-детектор светорассеяния (MALLS=многоугловое лазерное светорассеяние), детектор показателя преломления (RI)).
На фигурах 1-4 в сравнении представлены хроматограммы непрореагировавшего сложного HES-10/0,4-сукцинимидилового эфира, исходного продукта BSA, а также реакционной смеси.
Факт, что произошла реакция, устанавливают по значительному уменьшению пика BSA и появлению пика более высокомолекулярного соединения, который определяют при 280 нм.
Пример 5
Получение эфира HES-50/0,7-кислоты с N'N-дисукцинимидилкарбонатом
0,02 ммоль (0,5 г) высушенной HES-50/0,7-кислоты в отсутствие влажности растворяют в 2 мл безводного диметилформамида. К раствору добавляют 0,02 ммоль N'N-дисукцинимидилкарбоната и оставляют реагировать в течение 1 часа при комнатной температуре и при перемешивании.
Пример 6
Получение продукта связывания HES-50/0,7-кислоты с BSA
50 мг бычьго сывороточного альбумина (BSA) (0,7 мкмоль) растворяют в 6 мл 0,3 М раствора бикарбоната с рН=8,4. К раствору добавляют раствор активированной HES-50/0,7-кислоты согласно примеру 5 и оставляют реагировать в течение 2 часов при перемешивании и при комнатной температуре.
Аналитический контроль в отношении реакционной смеси осуществляют путем высокоэффективной гель-проникающей хроматографии низкого давления с трехкратным детектированием, как описывается в примере 4.
Факт, что произошла реакция, устанавливают по уменьшению сигнала при 280 нм непрореагировавшего BSA и соответствующему появлению отвечающего более высоким молекулярным массам сигнала продукта связывания. Сдвиг соответственно более высокой молекулярной массе HES-кислоты увеличен по сравнению с указанным в примере 4.

Claims (33)

1. Эфиры альдоновой кислоты полисахаридов или производных полисахаридов, селективно окисленных на восстанавливающемся конце цепи до альдоновых кислот, полученные взаимодействием соответствующей альдоновой кислоты или ее соли со спиртом, имеющим молекулярную массу от 80 до 500 г/моль.
2. Эфиры альдоновой кислоты по п.1, отличающиеся тем, что полисахаридами или производными полисахаридов являются фракции крахмала или производные фракций крахмала.
3. Эфиры альдоновой кислоты по п.2, отличающиеся тем, что фракциями крахмала являются фракции, образующиеся в результате расщепления амилопектина.
4. Эфиры альдоновой кислоты по п.3, отличающиеся тем, что фракции, образующиеся в результате расщепления амилопектина, получены путем кислотного расщепления и/или расщепления α-амилазой крахмала восковидной кукурузы.
5. Эфиры альдоновой кислоты по п.4, отличающиеся тем, что фракции крахмала имеют среднюю молекулярную массу Mw 2000-50000 Дальтон и среднюю разветвленность 5-10 мол.% α-1,6-гликозидных связей.
6. Эфиры альдоновой кислоты по п.4, отличающиеся тем, что фракции крахмала имеют среднюю молекулярную массу Mw 2000-50000 Дальтон и среднюю разветвленность в области от >10 до 25 мол.% α-1,6-гликозидных связей.
7. Эфиры альдоновой кислоты по п.2, отличающиеся тем, что производными фракций крахмала являются гидроксиэтильные производные фракций, образующихся в результате расщепления крахмала восковидной кукурузы.
8. Эфиры альдоновой кислоты по п.7, отличающиеся тем, что средняя молекулярная масса Mw фракций гидроксиэтилкрахмала находится в области 2-300000 Дальтон и степень замещения MS составляет от 0,1 до 0,8, а также соотношение С26 заместителей у атомов углерода С2 и С6 ангидроглюкоз составляет от 2 до 15.
9. Эфиры альдоновой кислоты по п.1, отличающиеся тем, что спирт, из которого образован спиртовой компонент эфира альдоновой кислоты, имеет значение pks от 6 до 12.
10. Эфиры альдоновой кислоты по п.1, отличающиеся тем, что спирт, из которого образован спиртовой компонент эфира альдоновой кислоты, включает HO-N-группу или фенольную группу.
11. Эфиры альдоновой кислоты по п.1, отличающиеся тем, что спирт, из которого образован спиртовой компонент эфира альдоновой кислоты, выбран из N-гидроксисукцинимида, сульфо-N-гидроксисукцинимида, замещенных фенолов и гидроксибензтриазола.
12. Эфиры альдоновой кислоты по п.11, отличающиеся тем, что спиртом, из которого образован спиртовой компонент эфира альдоновой кислоты, является N-гидроксисукцинимид и сульфо-N-гидроксисукцинимид.
13. Эфир альдоновой кислоты по любому из пп.1-12, выделенный в виде твердого вещества.
14. Эфир альдоновой кислоты по любому из пп.1-12, полученный в виде раствора.
15. Эфир альдоновой кислоты по п.14, отличающийся тем, что получен в виде раствора, включающего по меньшей мере один органический растворитель.
16. Эфир альдоновой кислоты по п.15, отличающийся тем, что получен в виде раствора, включающего самое большое 0,5 мас.% воды.
17. Эфир альдоновой кислоты по одному из пп.14-16, отличающийся тем, что получен в виде раствора, включающего по меньшей мере один апротонный растворитель.
18. Эфир альдоновой кислоты по п.17, отличающийся тем, что получен в виде раствора, где растворитель включает диметилсульфоксид (ДМСО), N-метилпирролидон, диметилацетамид (ДМА) и/или диметилформамид (ДМФА).
19. Способ получения эфиров альдоновой кислоты полисахаридов или производных полисахаридов по любому из пп.1-18, отличающийся тем, что по меньшей мере одну соответствующую альдоновую кислоту и/или ее соль подвергают взаимодействию с по меньшей мере одним спиртом, имеющим молекулярную массу от 80 до 500 г/моль, в апротонном растворителе.
20. Способ по п.19, отличающийся тем, что спирт используют в 5-50-кратном молярном избытке в пересчете на альдоновую кислоту и/или ее соль.
21. Способ по п.19 или 20, отличающийся тем, что взаимодействие осуществляют при использовании по меньшей мере одного активатора.
22. Способ по п.21, отличающийся тем, что активатор включает по меньшей мере один карбодиимид.
23. Способ по п.21, отличающийся тем, что активатор используют в 1-3-молярном избытке в пересчете на альдоновую кислоту и/или производное альдоновой кислоты.
24. Способ по п.19, отличающийся тем, что используют соединение, которое высвобождает спиртовой компонент для взаимодействия с альдоновой кислотой или производным альдоновой кислоты.
25. Способ по п.24, отличающийся тем, что используют диэфир угольной кислоты.
26. Способ по п.19, отличающийся тем, что взаимодействие осуществляют при температуре от 0 до 40°С.
27. Способ по п.19, отличающийся тем, что взаимодействие осуществляют при незначительной основности.
28. Способ получения конъюгата фармацевтического биологически активного вещества с эфиром альдоновой кислоты, охарактеризованным в любом из пп.1-18, включающий взаимодействие по меньшей мере одного указанного эфира альдоновой кислоты с фармацевтическим биологически активным веществом, содержащим по меньшей мере одну свободную аминогруппу, с образованием связи между указанным эфиром альдоновой кислоты и фармацевтическим биологически активным веществом по указанной по меньшей мере одной аминогруппе.
29. Способ по п.28, отличающийся тем, что взаимодействие осуществляют в водной среде.
30. Способ по п.29, отличающийся тем, что значение рН водной среды находится от 7 до 9.
31. Способ по одному из пп.28-30, отличающийся тем, что взаимодействие осуществляют при температуре от 0 до 40°С.
32. Способ по одному из пп.28-30, отличающийся тем, что фармацевтическим биологически активным веществом является полипептид или протеин.
33. Конъюгат фармацевтического биологически активного вещества, которое денатурируется в безводной среде и вступает в нежелательные побочные реакции с карбодиимидами, такие, как межмолекулярная или внутримолекулярная сшивка или реакция с фосфатными группами фармацевтического биологически активного вещества, с эфиром альдоновой кислоты, охарактеризованным в любом из пп.1-18, полученный способом по любому из пп.28-32.
RU2005120736/04A 2002-12-04 2003-12-03 Эфиры альдоновой кислоты, способ их получения и способ получения фармацевтических биологически активных веществ, связанных по свободным аминогруппам с полисахаридами или производными полисахаридов RU2330046C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10256558.9 2002-12-04
DE10256558A DE10256558A1 (de) 2002-12-04 2002-12-04 Ester von Polysaccharid Aldonsäuren, Verfahren zu ihrer Herstellung und Verwendung zur Kopplung an pharmazeutische Wirkstoffe

Publications (2)

Publication Number Publication Date
RU2005120736A RU2005120736A (ru) 2006-01-20
RU2330046C2 true RU2330046C2 (ru) 2008-07-27

Family

ID=32403695

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005120736/04A RU2330046C2 (ru) 2002-12-04 2003-12-03 Эфиры альдоновой кислоты, способ их получения и способ получения фармацевтических биологически активных веществ, связанных по свободным аминогруппам с полисахаридами или производными полисахаридов

Country Status (15)

Country Link
US (1) US20060052342A1 (ru)
EP (1) EP1567558A2 (ru)
JP (1) JP4749720B2 (ru)
KR (1) KR101170033B1 (ru)
CN (1) CN100535015C (ru)
AU (1) AU2003288218B2 (ru)
BR (1) BR0316493A (ru)
CA (1) CA2504799A1 (ru)
DE (1) DE10256558A1 (ru)
MX (1) MXPA05005572A (ru)
NO (1) NO20053179L (ru)
PL (1) PL210453B1 (ru)
RU (1) RU2330046C2 (ru)
WO (1) WO2004050710A2 (ru)
ZA (1) ZA200503135B (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10112825A1 (de) 2001-03-16 2002-10-02 Fresenius Kabi De Gmbh HESylierung von Wirkstoffen in wässriger Lösung
DE10209821A1 (de) 2002-03-06 2003-09-25 Biotechnologie Ges Mittelhesse Kopplung von Proteinen an ein modifiziertes Polysaccharid
DE10209822A1 (de) 2002-03-06 2003-09-25 Biotechnologie Ges Mittelhesse Kopplung niedermolekularer Substanzen an ein modifiziertes Polysaccharid
IL166506A0 (en) 2002-09-11 2006-01-15 Fresenius Kabi De Gmbh Hasylated polypeptides especially hasylated erythropoietin
EP1549350B1 (en) 2002-10-08 2008-09-24 Fresenius Kabi Deutschland GmbH Pharmaceutically active oligosaccharide conjugates
WO2005014655A2 (en) 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
CA2555467C (en) * 2004-02-09 2012-10-09 Noxxon Pharma Ag Process for the production of conjugates from polysaccharides and polynucleotides
DE102004009783A1 (de) * 2004-02-28 2005-09-15 Supramol Parenteral Colloids Gmbh Hyperverzweigte Stärkefraktion, Verfahren zu ihrer Herstellung und ihre Konjugate mit pharmazeutischen Wirkstoffen
CN1946742A (zh) 2004-03-11 2007-04-11 弗雷泽纽斯卡比德国有限公司 通过还原氨基化制备的羟烷基淀粉和蛋白质的偶联物
EP2070951A1 (en) * 2007-12-14 2009-06-17 Fresenius Kabi Deutschland GmbH Method for producing a hydroxyalkyl starch derivatives with two linkers
EP2070950A1 (en) 2007-12-14 2009-06-17 Fresenius Kabi Deutschland GmbH Hydroxyalkyl starch derivatives and process for their preparation
ES2620285T3 (es) 2008-05-02 2017-06-28 Novartis Ag Moléculas de unión con base en fibronectina mejorada y usos de las mismas
WO2011051327A2 (en) 2009-10-30 2011-05-05 Novartis Ag Small antibody-like single chain proteins
WO2011051466A1 (en) 2009-11-02 2011-05-05 Novartis Ag Anti-idiotypic fibronectin-based binding molecules and uses thereof
WO2011092233A1 (en) 2010-01-29 2011-08-04 Novartis Ag Yeast mating to produce high-affinity combinations of fibronectin-based binders
WO2013113503A1 (en) 2012-01-31 2013-08-08 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and an oligonucleotide

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868781A (en) * 1956-04-23 1959-01-13 Monsanto Chemicals Carbohydrate esters of carboxylic acids and methods of preparing same
US4125492A (en) 1974-05-31 1978-11-14 Pedro Cuatrecasas Affinity chromatography of vibrio cholerae enterotoxin-ganglioside polysaccharide and the biological effects of ganglioside-containing soluble polymers
EP0019403B1 (en) * 1979-05-10 1985-07-31 American Hospital Supply Corporation Hydroxyalkyl-starch drug carrier
DE3029307A1 (de) * 1980-08-01 1982-03-04 Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg Haemoglobin enthaltendes blutersatzmittel
DE3836600A1 (de) * 1988-10-27 1990-05-03 Wolff Walsrode Ag Kohlensaeureester von polysacchariden und verfahren zu ihrer herstellung
JP2896580B2 (ja) * 1989-08-25 1999-05-31 チッソ株式会社 アミロース―リゾチームハイブリッドと活性化糖およびその製造法
DE4130807A1 (de) * 1991-09-17 1993-03-18 Wolff Walsrode Ag Verfahren zur herstellung von polysaccharidcarbonaten
NZ250048A (en) * 1992-10-28 1994-10-26 Enzyme Bio Systems Ltd Production of maltodextrins by selective hydrolysation of starches by enzymatic methods
DE19628705A1 (de) 1996-07-08 1998-01-15 Fresenius Ag Neue Sauerstoff-Transport-Mittel, diese enthaltende Hämoglobin-Hydroxyethylstärke-Konjugate, Verfahren zu deren Herstellung, sowie deren Verwendung als Blutersatzstoffe
US5753468A (en) * 1996-08-05 1998-05-19 National Starch And Chemical Investment Holding Corporation Stable high viscosity starch based adhesive and method of preparation
US6011008A (en) * 1997-01-08 2000-01-04 Yissum Research Developement Company Of The Hebrew University Of Jerusalem Conjugates of biologically active substances
IT1303738B1 (it) * 1998-11-11 2001-02-23 Aquisitio S P A Processo di reticolazione di polisaccaridi carbossilati.
MXPA01012815A (es) * 1999-06-11 2003-06-24 Shearwater Corp Hidrogeles derivados de quitosana y poli(etilenglicol) o polimeros relacionados.
US6803438B1 (en) * 1999-09-08 2004-10-12 Polytherics Limited Uniform molecular weight polymers
MXPA01010889A (es) * 2000-02-28 2002-06-21 Grain Processing Corp Procesos y productos de maltosa de alta pureza.
DE10112825A1 (de) * 2001-03-16 2002-10-02 Fresenius Kabi De Gmbh HESylierung von Wirkstoffen in wässriger Lösung
DE10129369C1 (de) * 2001-06-21 2003-03-06 Fresenius Kabi De Gmbh Wasserlösliches, einen Aminozucker aufweisendes Antibiotikum in Form eines Pol ysaccharid-Konjugats
PL209763B1 (pl) * 2001-08-22 2011-10-31 Supramol Parenteral Colloids Gmbh Nadrozgałęziona amylopektyna i jej nadrozgałęzione pochodne
US7179617B2 (en) * 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
FR2840612B1 (fr) * 2002-06-06 2005-05-06 Roquette Freres Polymeres solubles de glucose hautement branches et leur procede d'obtention
WO2004003602A1 (en) * 2002-06-27 2004-01-08 Pirelli & C. S.P.A. Polymide optical waveguides and method for the preparation thereof
IL166506A0 (en) * 2002-09-11 2006-01-15 Fresenius Kabi De Gmbh Hasylated polypeptides especially hasylated erythropoietin
DE10302520A1 (de) * 2003-01-23 2004-08-05 Supramol Parenteral Colloids Gmbh Kohlensäurediester von Stärkefraktionen und deren Derivate, Verfahren zu ihrer Herstellung und Verwendung zur Kopplung an pharmazeutische Wirkstoffe
WO2005014655A2 (en) * 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
SG145746A1 (en) * 2003-08-08 2008-09-29 Fresenius Kabi De Gmbh Conjugates of hydroxyalkyl starch and g-csf
DE102004009783A1 (de) * 2004-02-28 2005-09-15 Supramol Parenteral Colloids Gmbh Hyperverzweigte Stärkefraktion, Verfahren zu ihrer Herstellung und ihre Konjugate mit pharmazeutischen Wirkstoffen
EP1758608A2 (en) * 2004-03-11 2007-03-07 Fresenius Kabi Deutschland GmbH Conjugates of hydroxyethyl starch and erythropoietin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Химический энциклопедический словарь. /Под ред. И.Л.Кнунянц. - М.: Советская энциклопедия, 1983, с.139, 28. Органическая химия. /Под ред. О.Я.Нейланд. - М.: Высшая школа, 1990, с.511. *

Also Published As

Publication number Publication date
ZA200503135B (en) 2006-07-26
NO20053179L (no) 2005-08-15
EP1567558A2 (de) 2005-08-31
RU2005120736A (ru) 2006-01-20
JP2006509849A (ja) 2006-03-23
AU2003288218B2 (en) 2010-05-20
CN100535015C (zh) 2009-09-02
DE10256558A1 (de) 2004-09-16
MXPA05005572A (es) 2005-11-23
BR0316493A (pt) 2005-10-11
KR101170033B1 (ko) 2012-08-01
CN1720264A (zh) 2006-01-11
AU2003288218A1 (en) 2004-06-23
KR20050072832A (ko) 2005-07-12
CA2504799A1 (en) 2004-06-17
PL375693A1 (en) 2005-12-12
PL210453B1 (pl) 2012-01-31
US20060052342A1 (en) 2006-03-09
WO2004050710A3 (de) 2004-09-02
NO20053179D0 (no) 2005-06-28
JP4749720B2 (ja) 2011-08-17
WO2004050710A2 (de) 2004-06-17

Similar Documents

Publication Publication Date Title
ZA200503135B (en) Aldonic acid esters, methods for producing the same, and methods for producing pharmaceutical active ingredients coupled to polysaccharides or polysaccharide derivatives on free amino groups
EP1732609B1 (en) Conjugates of hydroxyalkyl starch and a protein
CN101918455B (zh) 羟烷基淀粉衍生物及其制备方法
AU2003255406B2 (en) Hydroxyalkyl starch derivatives
JP5695568B2 (ja) 疎水性アルコール誘導体により置換されたカルボキシル官能基を含有する多糖類
CA2473068C (en) Starch derivatives, starch active-substance conjugates, method for their preparation and their use as drugs
EP1762250A1 (en) Conjugates of hydroxyalkyl starch and an active substance, prepared by chemical ligation via thiazolidine
JP2896580B2 (ja) アミロース―リゾチームハイブリッドと活性化糖およびその製造法
CA2534418A1 (en) Conjugates of hydroxyalkyl starch and g-csf
US20060100176A1 (en) Carboxylic acid diesters, methods for the production thereof and methods for the production of pharmaceutical active substances coupled to free amino groups with polysaccharide or polysaccharide derivatives
CN1832762B (zh) 羟烷基淀粉与g-csf的偶联物
JP2602535B2 (ja) アミノエチル化水溶性高分子とその製法
WO2006094826A2 (en) Method for coupling enzymatically activated glycoconjugates to a hydroxyalkyl starch
CA2534412A1 (en) Conjugates of a polymer and a protein linked by an oxime linking group

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141204