RU2243031C1 - Способ получения гидрозолей гидратированных окислов металлов из растворов их солей - Google Patents

Способ получения гидрозолей гидратированных окислов металлов из растворов их солей Download PDF

Info

Publication number
RU2243031C1
RU2243031C1 RU2003134312/12A RU2003134312A RU2243031C1 RU 2243031 C1 RU2243031 C1 RU 2243031C1 RU 2003134312/12 A RU2003134312/12 A RU 2003134312/12A RU 2003134312 A RU2003134312 A RU 2003134312A RU 2243031 C1 RU2243031 C1 RU 2243031C1
Authority
RU
Russia
Prior art keywords
solution
electrodes
extreme
membranes
solutions
Prior art date
Application number
RU2003134312/12A
Other languages
English (en)
Inventor
Г.Н. Федотов (RU)
Г.Н. Федотов
ков Ю.Д. Треть (RU)
Ю.Д. Третьяков
А.А. Микус (RU)
А.А. Микус
Д.В. Жуков (RU)
Д.В. Жуков
Original Assignee
Московский государственный университет леса
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский государственный университет леса filed Critical Московский государственный университет леса
Priority to RU2003134312/12A priority Critical patent/RU2243031C1/ru
Application granted granted Critical
Publication of RU2243031C1 publication Critical patent/RU2243031C1/ru

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Изобретение относится к сельскому хозяйству и почвоведению, а именно к методам получения растворов для мелиорации почв. Способ включает замену анионов солей в водном растворе на ионы гидроксила путем ионного обмена. Процесс ионного обмена проводят между емкостью с раствором соли и емкостями с растворами щелочи, контактирующими между собой через анионообменные мембраны. Процесс ионного обмена интенсифицируется электролизом при помещении электродов в емкости с растворами щелочи и переключении полярности электродов через каждые 5-60 с. Способ позволяет путем электролиза получить устойчивые гидрозоли гидратированных окислов металлов в больших количествах.

Description

Изобретение относится к сельскому хозяйству и почвоведению, а именно к методам получения растворов для мелиорации почв.
Известен способ получения золя гидрооксида железа [1], заключающийся в обработке раствора хлорного железа анионообменной смолой в ОН-форме. В раствор хлорного железа добавляют порциями анионит таким образом, чтобы объем добавленной ионообменной смолы не превышал 20-30% общего объема системы. По достижении указанного соотношении смолу отфильтровывают, а в раствор добавляют новую порцию анионита. Отфильтрованный анионит регенерируют раствором щелочи. Процесс продолжают до получения золя, обладающего нужными свойствами.
Основными недостатками такого способа являются его нетехнологичность и трудоемкость, связанные с необходимостью использовать анионообменную смолу в виде суспензии, отфильтровывать ее и регенерировать. Попытки проведения процесса в непрерывном режиме с использованием ионообменных колонок не дали положительного результата из-за коагуляции коллоидных частиц золя в колонках и осаждении частиц на анионите.
Целью изобретения является разработка простого и технологичного способа получения гидрозолей гидратированных окислов металлов из растворов их солей.
Поставленная задача решается путем помещения раствора соли в среднюю камеру трехкамерного электролизера, отделенную от крайних камер, содержащих раствор щелочи, анионообменными мембранами, размещении в крайних камерах электродов и интенсификации ионного обмена между камерами пропусканием электрического тока между электродами при периодической смене полярности электродов.
Техническая сущность изобретения заключается в замене анионов солей в водном растворе на ионы гидроксила путем ионного обмена при проведении процесса ионного обмена между емкостью с раствором соли и емкостями с растворами щелочи, контактирующими между собой через анионообменные мембраны, и интенсификации процесса ионного обмена электролизом при помещении электродов в емкости с растворами щелочи и переключении полярности электродов через каждые 5-60 с.
Предлагаемый способ позволяет путем электролиза получать устойчивые гидрозоли гидратированных окислов металлов, что значительно упрощает получение золей по сравнению с методом ионного обмена с использованием гранулированных анионитов и дает возможность получать эти золи в больших количествах.
Нижеследующие примеры раскрывают суть предполагаемого изобретения.
Пример 1.
Раствор хлорного железа (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности не проводили. В результате образующийся гидрооксид железа (3) выделялся на мембране, контактирующей с катодом, и золь получить не удавалось.
Пример 2.
Раствор хлорного железа (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили с интервалом 70-90 с. В результате происходило частичное выделение гидрооксида железа (3) на мембранах, хотя и в значительно меньшей степени, чем без смены полярности электродов.
Пример 3.
Раствор хлорного железа (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили с интервалом 60 с. В результате не происходило выделения гидрооксида железа(3) на мембранах и удавалось получить устойчивый золь.
Пример 4.
Раствор хлорного железа (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили с интервалом 15-16 с. В результате не происходило выделения гидрооксида железа (3) на мембранах и удавалось получить устойчивый золь.
Пример 5.
Раствор хлорного железа (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили с интервалом 7-8 с. В результате не происходило выделения гидрооксида железа(3) на мембранах и удавалось получить устойчивый золь.
Пример 6.
Раствор хлорного железа (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили с интервалом 5 с. В результате не происходило выделения гидрооксида железа (3) на мембранах и удавалось получить устойчивый золь, однако процесс резко замедлился из-за того, что значительная часть проходящего через систему электрического тока расходовалась на деполяризацию двойного электрического слоя. Визуальные наблюдения за процессом электролиза по выделению газа на электродах свидетельствуют, что газовыделение начинается примерно через 3 с после переключения полярности, а становится стабильным через 5-6 с.
Полученные результаты свидетельствуют, что если переключать полярность электродов каждые 5-60 с, то удается получить устойчивый золь гидрооксида железа (3).
Пример 7.
Раствор цирконил нитрата (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили через 15-16 с. В результате удалось получить устойчивый золь гидратированной окиси циркония.
Пример 8.
Раствор нитрата трехвалентного хрома (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили через 15-16 с. В результате удалось получить устойчивый золь гидратированной окиси трехвалентного хрома.
Пример 9.
Раствор хлорида четырехвалентного олова (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили через 15-16 с. В результате удалось получить устойчивый золь гидратированной окиси четырехвалентного олова.
Пример 10.
Раствор нитрата алюминия (0,5 л) концентрацией 0,5 моль/л наливали в среднюю кювету трехкамерного электролизера (каждая из кювет размером 15×7×10 см). В крайние кюветы наливали 1н раствор КОН. Крайние кюветы были отделены от средней анионообменными мембранами. В крайние кюветы в раствор щелочи помещали угольные электроды и пропускали через раствор ток плотностью на мембранах 0,3-0,4 А/см2. Переключение полярности электродов проводили через 13-16 с. В результате удалось получить устойчивый золь гидратированной окиси алюминия.
Таким образом, предполагаемое изобретение позволяет получать гидрозоли гидратированных окислов металлов из растворов их солей достаточно простым и технологичным методом.
Литература.
1. Шариков Ф.Ю. Криохимический синтез высокодисперсных оксидных порошков с использованием процессов ионного обмена/Дис.канд.хим. наук. М.: МГУ, 1991. 122 с.

Claims (1)

  1. Способ получения гидрозолей гидратированных окислов металлов из растворов их солей, заключающийся в замене анионов солей в водном растворе на ионы гидроксила путем ионного обмена, отличающийся тем, что процесс ионного обмена проводят между емкостью с раствором соли и емкостями с растворами щелочи, контактирующими между собой через анионообменные мембраны, интенсифицируя процесс ионного обмена электролизом при помещении электродов в емкости с растворами щелочи и переключении полярности электродов через каждые 5-60 с.
RU2003134312/12A 2003-11-27 2003-11-27 Способ получения гидрозолей гидратированных окислов металлов из растворов их солей RU2243031C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003134312/12A RU2243031C1 (ru) 2003-11-27 2003-11-27 Способ получения гидрозолей гидратированных окислов металлов из растворов их солей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003134312/12A RU2243031C1 (ru) 2003-11-27 2003-11-27 Способ получения гидрозолей гидратированных окислов металлов из растворов их солей

Publications (1)

Publication Number Publication Date
RU2243031C1 true RU2243031C1 (ru) 2004-12-27

Family

ID=34388686

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003134312/12A RU2243031C1 (ru) 2003-11-27 2003-11-27 Способ получения гидрозолей гидратированных окислов металлов из растворов их солей

Country Status (1)

Country Link
RU (1) RU2243031C1 (ru)

Similar Documents

Publication Publication Date Title
Alvarado et al. Electrodeionization: principles, strategies and applications
US4707240A (en) Method and apparatus for improving the life of an electrode
EP0503589B1 (en) Electrodialysis reversal process and apparatus with bipolar membranes
Su et al. Membrane-free electrodeionization for high purity water production
JP4855068B2 (ja) 電気式脱イオン水製造装置及び脱イオン水製造方法
JP2001500783A (ja) 電気脱イオン化装置と方法
Hu et al. Chemical-free ion exchange and its application for desalination
RU2751710C2 (ru) Способ получения моногидрата гидроксида лития высокой степени чистоты из материалов, содержащих карбонат лития или хлорид лития
Su et al. Membrane-free electrodeionization without electrode polarity reversal for high purity water production
US4295950A (en) Desalination with improved chlor-alkali production by electrolyticdialysis
KR100519196B1 (ko) 이온 교환 물질의 전기화학적 처리
RU2243031C1 (ru) Способ получения гидрозолей гидратированных окислов металлов из растворов их солей
JP6163078B2 (ja) 脱塩方法及び脱塩装置
RU2243030C1 (ru) Способ получения гидрозолей гидратированных окислов металлов из растворов их солей ионным обменом, интенсифицированным электролизом
JP6042234B2 (ja) 脱塩方法及び脱塩装置
WO2014132888A1 (ja) 脱塩方法及び脱塩装置
JP4146649B2 (ja) 脱アルカリ水ガラスの製造方法およびその製造装置
JP2020124708A (ja) 塩水の精製方法
RU2250914C1 (ru) Способ получения гидрозоля гидрооксида трёхвалентного железа
JP2003096586A (ja) 水電解式水素酸素生成装置
JPH0724828B2 (ja) 電解質の除去方法
RU2252068C1 (ru) Способ получения гидрозолей кремниевых и гуминовых кислот из щелочных растворов их солей
RU2250801C1 (ru) Способ получения гидрозолей кремниевых и гуминовых кислот из щелочных растворов их солей ионным обменом, интенсифицированным электролизом
JP4106810B2 (ja) 電気脱イオン装置
JP3647505B2 (ja) 電解生成水の製造方法および製造装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051128