RU2228234C2 - Профильное формование металлов посредством лазерной проковки - Google Patents

Профильное формование металлов посредством лазерной проковки Download PDF

Info

Publication number
RU2228234C2
RU2228234C2 RU2002104019/02A RU2002104019A RU2228234C2 RU 2228234 C2 RU2228234 C2 RU 2228234C2 RU 2002104019/02 A RU2002104019/02 A RU 2002104019/02A RU 2002104019 A RU2002104019 A RU 2002104019A RU 2228234 C2 RU2228234 C2 RU 2228234C2
Authority
RU
Russia
Prior art keywords
laser
pulse
metal workpiece
compressive stress
metal
Prior art date
Application number
RU2002104019/02A
Other languages
English (en)
Other versions
RU2002104019A (ru
Inventor
Ллойд ХЭКЕЛ (US)
Ллойд ХЭКЕЛ
Фриц ХАРРИС (US)
Фриц ХАРРИС
Original Assignee
Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния filed Critical Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния
Publication of RU2002104019A publication Critical patent/RU2002104019A/ru
Application granted granted Critical
Publication of RU2228234C2 publication Critical patent/RU2228234C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/20Bending sheet metal, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Abstract

Изобретения относятся к лазерной обработке импульсным ударом, в частности к способам и устройству создания форм и профилей в металлических секциях, и может найти применение в различных отраслях машиностроения. Создание форм и профилей в металлических секциях осуществляется посредством генерации индуцированного лазерным излучением сжимающего напряжения на поверхности металлического обрабатываемого изделия. Процесс лазерной обработки может генерировать глубокие сжимающие напряжения для придания формы даже толстым компонентам без индуцирования нежелательных растягивающих напряжений на металлической поверхности. Прецизионность индуцированного лазерным излучением напряжения обеспечивает возможность точного прогнозирования и последующего профилирования деталей. Световой пучок с энергией от 10 до 100 Дж/импульс фокусируется так, чтобы на поглощающем слое, нанесенном на металлическую поверхность, создать плотность потока энергии от 60 до 200 Дж/см2. Над поглощающим слоем протекает слой воды, используемой в качестве уплотнения. Поглощение лазерного излучения вызывает образование плазмы и, следовательно, создает ударную волну, которая индуцирует в металле глубокое остаточное сжимающее напряжение. Изобретение позволяет изготавливать детали большой кривизны для толстостенных металлических секций. 3 с. и 23 з.п. ф-лы, 6 ил.

Description

Область изобретения
Настоящее изобретение относится к лазерной обработке импульсным ударом, и конкретнее, к способам профилирования металла посредством лазерной проковки.
Уровень техники
Одним из наиболее важных промышленных применений лазеров является использование лазеров высокой мощности для улучшения свойств материалов. Лазеры могут генерировать управляемые пучки излучения высокой энергии для обработки металлов. Прежде всего, лазер может генерировать высокую плотность мощности, которая локализуется и управляется в пределах малой области. Тем самым достигаются низкие затраты и эффективное использование энергии, минимизируются искажения в окружающих областях и упрощается обработка материала. Поскольку лазерный импульс включает подачу высокой мощности за короткие временные интервалы, то такой процесс можно адаптировать для высокоскоростного промышленного производства. Тот факт, что пучком можно управлять, позволяет осуществлять обработку деталей, имеющих сложную форму. Такой системе также присуща точность, согласованность и воспроизводимость.
Несомненно в нашей цивилизации увеличение прочности металлов посредством холодной обработки было обнаружено очень давно, поскольку древний человек изготовлял свое оружие и инструменты отбиванием. Начиная с 1950-х, дробеструйная проковка использовалась как средство улучшить свойства металла в отношении усталости. Другой способ ударной обработки включает использование высокоэффективных взрывчатых веществ в контакте с металлической поверхностью.
Начиная с 1970-х годов хорошо известно использование высокоинтенсивного лазерного излучения для генерации механических ударных волн с целью обрабатывать поверхности металлов. Лазерная обработка импульсным ударом может использоваться для генерации в металлических поверхностях сжимающих напряжений, увеличивая прочность и сопротивление коррозионному разрушению.
Лазеры с импульсными мощностями от 10 до 100 Дж и длительностями импульсов от 10 до 100 нс подходят для генерации инерционно удерживаемой плазмы на поверхности металлов. Такая плазма создает давление в диапазоне от 10000 до 100000 атмосфер, а результирующее давление импульсного удара может превышать предел упругости металла, таким образом производя сжимающее напряжение в поверхностном слое металлов на глубину 1 мм или более. В настоящее время становятся доступными лазеры со средней выходной мощностью, пригодной для использования скоростных способов, подходящих для промышленного производства.
В процессе лазерной обработки импульсным ударом металлическую поверхность, подлежащую обработке, закрашивают или, иначе, делают “черной”, то есть сильно поглощающей лазерное излучение. Черный слой действует одновременно и как поглотитель энергии лазерного излучения и защищает поверхность детали от лазерной абляции, а также от плавления вследствие высокой температуры плазмы. По этой черной поверхности протекает тонкий слой воды, обычно от 1 до 2 мм. Вода действует так, чтобы инерционно удерживать или, как говорят, уплотнять плазму, генерируемую при поглощении энергии лазерного излучения в течение короткого времени длительности импульса, обычно равного 30 нс. Возможно также использование других подходящих материалов, которые действуют как уплотнители. Ограничением полноценности процесса является способность передавать энергию лазерного излучения к металлической поверхности в пространственно однородном пучке. Если пучок неоднородный, область с наибольшей интенсивностью излучения может вызвать пробой в воде, что блокирует доступ полезной энергии к закрашенной металлической поверхности. Известный способ подводить лазерное излучение к поверхности состоит в том, чтобы использовать простую линзу так, чтобы сжать выходное лазерное излучение до плотности мощности приблизительно от 100 до 200 Дж на квадратный сантиметр. Такой метод сжатия имеет то ограничение, что на поверхности не получается действительного “изображения” профиля интенсивности ближнего поля лазерного излучения. Скорее формируется интенсивность поля, представляющая что-то среднее между интенсивностью ближнего и дальнего полей. Дифракция лазерного пучка, когда он фокусируется на поверхность, дает очень сильную пространственную модуляцию и “горячие пятна”.
Любые фазовые аберрации, сгенерированные в пределах пучка, особенно те, которые связаны с функционированием лазера в режиме высокой средней мощности, могут распространяться таким образом, чтобы в пределах пучка создавать области с более высокой интенсивностью. Такие участки с высокой пиковой интенсивностью вызывают пробой в слое воды, препятствуя эффективной подаче энергии лазерного излучения к поверхности, подлежащей обработке. Другая потенциальная причина пробоя в уплотняющем материале состоит в генерации нелинейных эффектов, таких как оптический пробой и стимулированное рассеяние. При нормальной генерации в лазере импульса длительностью от 10 до 100 нс выходное излучение медленно создается в течение периода времени, превышающего несколько длительностей импульсов. Эта медленная слабая интенсивность помогает вызывать нелинейные процессы, для которых требуются времена нарастания в десятки наносекунд. При использовании известных способов выходное импульсное излучение лазера “обрезается” с помощью внешнего средства, такого как, например, электрооптический переключатель с быстрым временем включения или взрывающаяся фольга. Такие способы могут быть дорогими и могут ограничивать надежность.
Управляемое приложение сжимающего напряжения, приложенного к одной стороне металлической поверхности, заставит эту поверхность расширяться предсказуемым способом и, следовательно, может искривлять металл в хорошо управляемом режиме. При искривлении выпуклая поверхность остается с остаточным сжимающим напряжением, которое является очень желательным для увеличения сопротивления к усталости и коррозионной стойкости детали при функционировании. Хорошо известен и широко используется метод индуцирования такого сжимающего напряжения посредством дробеструйной проковки. Однако дробеструйная проковка ограничена по глубине интенсивного сжимающего напряжения, которое может индуцироваться без выполнения значительной и нежелательной холодной обработки поверхностного слоя. Вследствие требуемой сферической формы дроби, используемой для проковки, процесс придает металлу неравномерное давление в зависимости от времени в течение каждого отдельного удара дроби. Давление инициируется в первой контактной точке сферы, а затем распространяется поперек области удара по мере того, как металлы деформируются и все поперечное сечение дроби входит в контакт с металлом. Такое неравномерное приложение давления приводит к локальной экструзии металла, потоку металла от центра к внешней области зоны удара. Следовательно, поскольку материал выдавливается вследствие клинообразного фронта давления, созданного ударом дроби, на металле выполняется больше холодной обработки.
Патент США № 4694672, озаглавленный “Method And Apparatus For Imparting A Simple Contour To A Workpiece,” нацелен на использование известного способа и устройства для придания оболочке самолета простого профиля. Камера обработки имеет конвейер с обрабатываемым изделием, прикрепленным к конвейеру, и включает модуль дробеструйной проковки для обработки изделия. Обеспечивается система управления для ориентирования обрабатываемого изделия и модуля дробемета таким образом, чтобы проковка выполнялась только по узким полоскам вдоль размаха крыла и только по линиям хорды обрабатываемого изделия. Следовательно, такие способ и устройство создают в обрабатываемом изделии простую хордовидную кривизну в виде хорд, при этом минимизируя эффекты сложной кривизны (см. также патент США № 3668912).
В патенте США № 4329862, озаглавленном “Shot Peen Forming Of Compound Contours”, плоская металлическая листовая деталь обычно обрабатывается дробеструйной проковкой с обеих сторон. Деталь обрабатывается дробеструйной проковкой с одной стороны с интенсивностью, запрограммированной таким образом, чтобы изменяться по конфигурации для подгонки детали к хордовидной кривизне, и деталь принимает сложную кривизну поверхности крыла самолета.
Было бы желательно, чтобы лазерный процесс мог создавать в детали интенсивное напряжение намного глубже и, таким образом, достигать большей кривизны более толстых деталей. Было бы еще желательно, чтобы лазерный процесс мог производить пренебрежимо малую холодную обработку и, таким образом, оставлять очень гладкую законченную поверхность.
Сущность изобретения
Задача настоящего изобретения заключается в том, чтобы обеспечить процесс лазерный проковки, который может достигать интенсивного напряжения в детали намного глубже и, таким образом, достигать большей кривизны для более толстых металлических секций.
Изобретение представляет способ и устройство создания форм и профилей в металлических секциях, генерируя индуцированное лазерным излучением сжимающее напряжение на поверхности металлического обрабатываемого изделия. Лазерный процесс может производить глубокие сжимающие напряжения для формования даже толстых компонентов без индуцирования на металлической поверхности нежелательного растягивающего напряжения. Прецизионность индуцированного лазерным излучением напряжения обеспечивает возможность точного прогнозирования и последующего профилирования деталей.
В настоящем изобретении световой пучок с энергией от 10 до 100 Дж/импульс фокусируется так, чтобы на поглощающем слое, нанесенном на металлическую поверхность, создать плотность потока энергии от 60 до 200 Дж/см2. Обычно по поглощающему слою протекает вода. Поглощение лазерного излучения вызывает образование плазмы и, следовательно, создает ударную волну, которая индуцирует в металле глубокое остаточное сжимающее напряжение. Металл отвечает на это остаточное напряжение изгибом.
Хорошо известна концепция, состоящая в том, чтобы для профилирования тонких металлических компонентов использовать механическое средство. Концепция использования лазера для генерации ударных волн, которые индуцируют сжимающее напряжение в металлах, довольно широко практикуется для улучшения противодействия металлических компонентов к образованию усталостных трещин и коррозии. В настоящем изобретении на одну сторону металлического обрабатываемого изделия наносят индуцированный лазерным излучением удар, чтобы произвести точную локальную кривизну. Нанося удар по более широкой области или же много раз в одну и ту же область, можно достичь кривизны большего масштаба. Настоящее изобретение использует высокую энергию, высокую среднюю мощность лазера, устанавливаемые, чтобы действовать при специфических параметрах для достижения прецизионного формования компонентов. Такой процесс формования лазерной проковкой особенно полезен для толстого (толщиной более 3/4 дюйма) материала, который трудно формовать или профилировать.
Металл покрывают слоем материала, который поглощает лазерный свет. Тонкий слой воды протекает по поглощающему материалу и освещается лазером. При последовательной подаче лазерных импульсов в режиме растровой развертки на освещенной поверхности будет индуцироваться сжимающее напряжение. Напряжение в свою очередь произведет деформацию верхнего слоя металла и придаст материалу кривизну. Интенсивность и глубина сжимающего напряжения, приложенного к каждой локальной области, могут управляться путем выбора энергии лазерного излучения, отпечатка и перекрытия лазерного импульса, длительности импульса и числа импульсов, поданных к каждой области. Деталь может быть точно профилирована на большей площади посредством систематической подачи на нее импульсов локального напряжения. Дополнительное управление двухмерной кривизной может быть достигнуто посредством специфической плотности, с которой импульсы располагаются на поверхности, которая становится выпуклой, посредством подачи компенсирующих импульсов на поверхность, которая становится вогнутой, и, пользуясь преимуществом увеличивающегося механического момента инерции, генерированного внутри детали, по мере того, как компонент принимает изогнутую форму.
Для прецизионного выпрямления компонентов, которые имеют нежелательную кривизну, также может использоваться метод лазерной проковки. Важный пример включает механические ведущие валы, которые могут приобретать нежелательный изгиб в результате механической обработки, термообработки, закалки или других процессов изготовления. Деталь можно систематически выпрямлять, селективно прикладывая сжимающее напряжение к вогнутой стороне нежелательной кривизны.
В отличие от дробеструйной проковки существенно однородный профиль интенсивности лазерного излучения (при использовании специального пучка с плоским верхним профилем и при фокусировке такого профиля на деталь) ударяет металл равномерно по всей области удара, приводя к “тупой” силе, которая вызывает небольшое выдавливание металла и небольшую холодную обработку. Таким образом, процесс формования лазерной проковкой может производить больший объем напряженного металла с незначительной холодной обработкой. Относительно большие кривизны могут быть вдавлены в толстые металлические секции без серьезного искажения металлической поверхности.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием конкретных вариантов его воплощения со ссылками на сопровождающие чертежи, на которых:
фиг.1А изображает плоскую металлическую пластину,
фиг.1Б изображает кривизну, произведенную в металлической пластине после применения процесса лазерной проковки к ее верхней стороне,
фиг.2 иллюстрирует конфигурацию лазерного пучка и уплотняющего слоя относительно металлической подложки и поглощающего слоя,
фиг.3А изображает профиль интенсивности вида “шляпы типа цилиндр” отдельного импульса, направленного на поверхность металла, и конфигурацию зависимости деформации от напряжения, производимого в металле после проковки,
фиг.3Б изображает профиль интенсивности вида “шляпы типа цилиндр” многократных импульсов в режиме растровой развертки, прецизионно разнесенных, чтобы произвести равномерную деформацию в результате проковки и конфигурацию зависимости равномерной деформации от напряжения в металле после проковки с помощью пучка в режиме растровой развертки,
фиг.4 изображает средство для фокусировки изображения ближнего поля лазера на поглощающий слой на металлической поверхности,
фиг.5 иллюстрирует удаление нежелательной кривизны в ведущем вале посредством лазерной проковки,
фиг.6А иллюстрирует производство преимущественно одномерной кривизны путем расположения на поверхности плотных рядов дважды прокованных областей с большим разнесением между ними,
фиг.6Б изображает панель типа изображенной на фиг.6А, которая дополнительно выпрямляется проковкой в направлении координаты у плотно по ортогональному γ-измерению на задней или вогнутой стороне изогнутой секции.
Подробное описание предпочтительных вариантов воплощения
Методы лазерной проковки раскрыты в одновременно рассматриваемом патентном описании США № 09/133590, озаглавленном “Laser Beam Temporal And Spatial Tailoring For Laser Shock Processing”, включенном здесь ссылкой. Лазерная технология, применимая в настоящем изобретении, описана в патенте США № 5285310, озаглавленном “High Power Regenerative Laser Amplifier”, включенном здесь ссылкой, а также в патенте США № 5239408, озаглавленном “High Power, High Beam Quality Regenerative Amplifier”, также включенном здесь ссылкой. Вариант воплощения лазерных систем, применимых в настоящем изобретении, описан в патенте США № 5689363, озаглавленном “Long Pulse Width, Narrow-Bandwidth Solid State Laser”, включенном здесь ссылкой.
Процесс создания форм и профилей в металлических секциях включает использование индуцированного лазерным излучением сжимающего напряжения, генерируемого на поверхности металла. Лазерный процесс может генерировать глубокие сжимающие напряжения, которые в большой степени содействуют формованию толстых компонентов, без индуцирования нежелательного растягивающего напряжения в металлической поверхности. Прецизионность индуцированного лазерным излучением напряжения обеспечивает возможность точного прогнозирования и последующего профилирования деталей.
Прецизионное формирование и формование металлических компонентов без индуцирования нежелательного растягивающего напряжения важно в применениях Министерства обороны (DOD) и коммерческих применениях, особенно в компонентах авиационных и космических летательных аппаратов. Способность формировать толстые металлические секции (от 3/4 дюйма до 1 дюйма или более) произведет коренные изменения, поскольку эти толстые секции формуют для компонентов самолетов, таких как, например, обшивки крыльев. Такой метод обеспечит возможность формировать детали, которые по-другому вообще нельзя сделать.
Для тех, кому необходимо, здесь раскрыто подробное описание предпочтительных вариантов воплощения. Однако должно быть понятно, что раскрытые варианты воплощения являются просто иллюстративными для настоящего изобретения, которое может быть воплощено в различных системах. Поэтому раскрытые здесь специфические детали не должны интерпретироваться как ограничение, но скорее как основа для формулы изобретения и как демонстрационная основа для обучения специалистов в практическом осуществлении настоящего изобретения.
Хорошо известна концепция, состоящая в том, чтобы для профилирования и формования тонких металлических компонентов использовать механическое средство, такое как молоток для проковки или более современное - метод дробеструйной проковки. Сжимающее напряжение “вносится посредством удара” в металл, и впоследствии металл расширяется на одной стороне, чтобы снять это напряжение. Дифференциальное расширение заставляет поверхность металла изгибаться. Хорошо известна концепция использования лазера для генерации ударных волн, которые индуцируют сжимающее напряжение в металлах, концепция, которая довольно широко практикуется для улучшения противодействия металлических компонентов к образованию усталостных трещин и коррозии.
Нанося соответствующим образом индуцированный лазерным излучением удар на одну сторону металла, можно достичь точной локальной кривизны, а нанося удар вообще по более широкой области, можно достичь кривизны большего масштаба. Настоящее изобретение использует высокую энергию, высокую среднюю мощность лазера, устанавливаемые для действования при специфических параметрах для достижения прецизионного формования компонентов. Такой процесс формования лазерной проковкой особенно полезен для толстого (толщиной более 3/4 дюйма) материала, который трудно формовать или профилировать. Фиг.1А изображает плоскую металлическую пластину 10. После применения процесса лазерной проковки к верхней стороне 12 металлическая пластинка достигает требуемой кривизны, как показано на фиг.1Б.
В одном варианте воплощения настоящего изобретения, иллюстрируемого на фиг. 2, используют лазер 25 Дж на импульс (подходящий диапазон от 25 до 100 Дж на импульс), с длительностью импульса от 10 до 20 нс и длительностью переднего фронта импульса менее 1 нс. Ближнее поле фокусируется в пятно (в диапазоне от 6 × 6 мм до 3 × 3 мм), дающее на поверхности металла плотность потока энергии в диапазоне от 60 до 200 Дж/см2. Металл покрывают слоем материала 22 (обычно поливинилацетатная пластмасса толщиной приблизительно 200 мкм), который поглощает лазерный свет. Уплотняющий слой, обычно тонкий слой воды 24 из мерного сопла 26, толщиной приблизительно 1 мм обычно протекает по поглощающему материалу 22 и освещается лазерным пучком 28. При последовательной подаче лазерных импульсов в режиме растровой развертки на освещенной поверхности будет индуцироваться сжимающее напряжение. Для достижения растровой конфигурации можно перемещать лазерный пучок 28 или металлический компонент 30. Напряжение, в свою очередь, будет генерировать деформацию в верхнем слое металла 30 и произведет кривизну материала. Интенсивность и глубина сжимающего напряжения, приложенного к каждой локальной области, могут управляться путем выбора энергии лазерного излучения, следа и перекрытия лазерного импульса, длительности импульсов и числа импульсов, поданных в каждую область. Двухмерная кривизна может быть достигнута посредством селективного управления областью, подвергнутой проковке, а также интенсивностью и числом импульсов, используемых в направлении каждой координаты. Дополнительно деформация в любом желательном направлении может быть увеличена посредством механического индуцирования изгибающего момента (хотя ниже предела текучести металла) в этом направлении во время подачи лазерных импульсов формования проковкой.
Из-за того, что локально приложенное напряжение будет непосредственно влиять на локальную кривизну, деталь может быть точно профилирована на большей площади посредством систематической подачи импульсов локального напряжения на большой площади. Фиг.3А изображает поверхность 40 металла, профиль 42 интенсивности вида “шляпы типа цилиндр” отдельного импульса, направленного на поверхность 40 металла, и конфигурацию 44 зависимости деформации от напряжения в металле после проковки. Фиг.3Б изображает поверхность 50 металла и профиль интенсивности вида “шляпы типа цилиндр” многократных импульсов 52, 54 и 56 в режиме растровой развертки, прецизионно разнесенных, чтобы произвести равномерную деформацию в результате проковки. Фигура изображает конфигурацию 58 зависимости равномерной деформации от напряжения в металле после проковки с помощью пучка в режиме растровой развертки. Прецизионное перекрытие профилей многочисленных импульсов, объединенных с прямоугольным профилем лазерного пучка и равномерным профилем интенсивности вида “шляпы типа цилиндр”, производит гладкую завершенную поверхность после формования проковкой.
Фиг.4 изображает оптическую установку, которую можно использовать для фокусировки ближнего поля на абляционный слой. Ближнее поле 60 расширяется в рассеивающей линзе 62, коллимируется первой собирающей линзой 64 и фокусируется собирающей линзой 66 на абляционный слой 68 на металлической детали 70. Фокусировка ближнего поля лазерного пучка на поглощающий слой формирует равномерный профиль интенсивности и предотвращает создание интенсивных горячих пятен за счет фазового искажения.
Аналогично для достижения требуемых форм в номинально плоском металле метод лазерной проковки может использоваться для прецизионного выпрямления компонентов с нежелательной кривизной. Важный пример включает механические ведущие валы, которые могут приобретать нежелательный изгиб в результате механической обработки, термообработки, закалки или других процессов изготовления. Деталь можно систематически выпрямлять, селективно прикладывая сжимающее напряжение к вогнутой стороне нежелательной кривизны. Как изображено на фиг.5, нежелательная кривизна ведущего вала 80 удаляется посредством формования проковкой на короткой стороне ведущего вала. Ведущий вал 80 обеспечивается поглощающим абляционным слоем 82 и уплотняющим слоем 84. Лазерный пучок 86 направляется на короткую сторону вала, и вал выпрямляется по мере подачи многочисленных импульсов.
На фиг.6А преимущественно одномерная кривизна достигается путем расположения на поверхности плотных рядов дважды прокованных областей с большим разнесением между ними. Одномерная природа проковки приводит к одномерной кривизне. На фиг.6Б панель типа изображенной на фиг.6А дополнительно выпрямляется плотной проковкой в направлении координаты у по ортогональному γ-измерению на задней или вогнутой стороне изогнутой секции. Наконец, как установлено, механический момент инерции или жесткость относительно оси, содержащей кривизну (в нашем примере ось x), возрастает при изгибе детали. При применении двух вышеупомянутых методов увеличенный момент инерции содействует в создании предпочтения одномерной кривизне. Исходная конфигурация проковки применяется к детали симметрично и равномерно так, чтобы кривизна и моменты инерции развивались симметрично.
Предшествующее описание изобретения было представлено с целью иллюстрации, и оно не предназначено, чтобы быть исчерпывающим или ограничивать изобретение точной раскрытой формой. В свете вышеупомянутого изложения возможно много модификаций и вариаций. Варианты реализации изобретения были выбраны и описаны с целью лучшего пояснения принципов изобретения и его практического применения, чтобы таким образом позволить специалистам лучше использовать изобретение в различных вариантах реализации и с различными модификациями, подходящими для частного предполагаемого использования. Рамки изобретения должны быть определены следующей формулой изобретения.

Claims (26)

1. Способ формирования форм и профилей в металле, содержащий следующие этапы: обеспечение металлического обрабатываемого изделия, которое должно формоваться; формирование индуцированного лазерным излучением сжимающего напряжения на поверхности упомянутого металлического обрабатываемого изделия до тех пор, пока в нем не будет создана требуемая форма, осуществление увеличения величины изгиба, создаваемого в упомянутом металлическом обрабатываемом изделии посредством использования механического изгибающего момента во время формирования индуцированного лазерным излучением сжимающего напряжения на указанном металлическом обрабатываемом изделии.
2. Способ по п.1, отличающийся тем, что этап формирования индуцированного лазерным излучением сжимающего напряжения дополнительно содержит выбор энергии лазерного излучения, отпечатку лазерного импульса, перекрытие лазерного импульса, длительность импульса и количество импульсов, приложенных к каждой области упомянутого металлического обрабатываемого изделия, к управлению интенсивностью и глубиной сжимающего напряжения, прикладываемого к каждой упомянутой локальной области упомянутого металлического обрабатываемого изделия.
3. Способ по п.2, отличающийся тем, что этап выбора энергии лазерного излучения содержит выбор энергии лазерного излучения в диапазоне 10 - 100 Дж на импульс.
4. Способ по п.2, отличающийся тем, что этап выбора длительности импульса содержит выбор длительности импульса в диапазоне 10 - 20 нc.
5. Способ по п.4, отличающийся тем, что упомянутый импульс содержит длительность переднего фронта импульса менее 1 нc.
6. Способ по п.1, отличающийся тем, что этап формирования индуцированного лазерным излучением сжимающего напряжения содержит покрытие упомянутого обрабатываемого изделия слоем материала, который поглощает лазерное излучение.
7. Способ по п.2, отличающийся тем, что дополнительно содержит фокусировку изображения ближнего поля упомянутого лазера в пятно на упомянутом металлическом обрабатываемом изделии.
8. Способ по п.2, отличающийся тем, что дополнительно содержит фокусировку изображения ближнего поля упомянутого лазера в пятно такого размера, чтобы на поверхности упомянутого металлического обрабатываемого изделия обеспечить плотность потока энергии в диапазоне 60 - 200 Дж/см2.
9. Способ по п.6, отличающийся тем, что упомянутый материал содержит пластмассу.
10. Способ по п.9, отличающийся тем, что упомянутая пластмасса выбирается из группы, состоящей из поливинилацетатной пластмассы и поливинилхлоридной пластмассы.
11. Способ по п.10, отличающийся тем, что упомянутая пластмасса имеет толщину приблизительно 200 мкм.
12. Способ по п.6, отличающийся тем, что этап формирования индуцированного лазерным излучением сжимающего напряжения дополнительно содержит этап протекания тонкого слоя воды по упомянутому материалу, в котором упомянутый тонкий слой воды действует в качестве уплотняющего слоя.
13. Способ по п.12, отличающийся тем, что упомянутый тонкий слой воды имеет толщину, равную приблизительно 1 мм.
14. Способ по п.1, отличающийся тем, что этап формирования индуцированного лазерным излучением сжимающего напряжения содержит этап последовательной подачи лазерных импульсов в режиме растровой развертки по поверхности упомянутого металлического обрабатываемого изделия, в котором сжимающее напряжение будет индуцироваться по упомянутой поверхности, в которой упомянутое сжимающее напряжение, в свою очередь, создаст деформацию в верхнем слое упомянутого металлического обрабатываемого изделия и создаст кривизну в упомянутом металлическом обрабатываемом изделии.
15. Способ по п.1, отличающийся тем, что этап формирования индуцированного лазерным излучением сжимающего напряжения содержит этап селективного приложения сжимающего напряжения к вогнутой стороне металлического обрабатываемого изделия, имеющего нежелательную кривизну, для систематического выправления детали.
16. Способ по п.1, отличающийся тем, что дополнительно содержит управляемую проковку по двум координатам посредством селективной подачи импульсов на двумерную область и посредством управления количеством импульсов, поданных в каждое пятно, и интенсивностью каждого импульса.
17. Способ по п.1, отличающийся тем, что дополнительно содержит управляемую проковку по двум координатам посредством селективной подачи импульсов на двумерную область и посредством управления количеством импульсов, поданных в каждое пятно, и интенсивностью каждого импульса, посредством подачи компенсирующих импульсов на поверхность, которая становится вогнутой и, пользуясь преимуществом увеличивающегося механического момента инерции, генерированного внутри детали, по мере того, как компонент принимает изогнутую форму.
18. Способ по п.1, отличающийся тем, что этап формирования индуцированного лазерным излучением сжимающего напряжения включает генерацию индуцированного лазерным излучением сжимающего напряжения на поверхности упомянутого металлического обрабатываемого изделия до тех пор, пока у него не образуется требуемая форма, без индуцирования нежелательного растягивающего напряжения на поверхности упомянутого металлического обрабатываемого изделия.
19. Устройство для создания форм и профилей в металлическом обрабатываемом изделии, содержащее лазерную систему, способную генерировать последовательность лазерных импульсов на слое материала, поглощающего излучение света, прочно прикрепленного к металлическому обрабатываемому изделию, во время протекания слоя воды по указанному слою материала, при этом каждый лазерный импульс из упомянутой последовательности лазерных импульсов имеет энергию в диапазоне 10 - 100 Дж на импульс, в котором каждый упомянутый лазерный импульс имеет длительность импульса в диапазоне 10 - 20 нc и длительность переднего фронта импульса менее 1 нc, и средство для фокусировки изображения ближнего поля упомянутого лазера в пятно на упомянутом слое материала, в котором упомянутая последовательность лазерных импульсов будет формировать сжимающее напряжение на поверхности упомянутого металлического обрабатываемого изделия до тех пор, пока у него не образуется требуемая форма, без индуцирования нежелательного растягивающего напряжения на поверхности упомянутого металлического обрабатываемого изделия.
20. Устройство по п.19, отличающееся тем, что упомянутое средство для фокусировки изображения ближнего поля каждого из упомянутых лазерных импульсов фокусирует изображение излучения каждого упомянутого лазерного импульса в пятно такого размера, чтобы на поверхности упомянутого металлического обрабатываемого изделия обеспечить плотность потока энергии в диапазоне 60 - 200 Дж/см2.
21. Устройство по п.19, отличающееся тем, что упомянутый материал содержит пластмассу.
22. Устройство по п.19, отличающееся тем, что упомянутая пластмасса выбрана из группы, состоящей из поливинилацетатной пластмассы и поливинилхлоридной пластмассы.
23. Устройство по п.22, отличающееся тем, что упомянутый акрилонитрил-бутадиенстироловый пластик (ABS) имеет толщину приблизительно 200 мкм.
24. Устройство по п.19, отличающееся тем, что упомянутый тонкий слой воды имеет толщину приблизительно 1 мм.
25. Устройство по п.19, отличающееся тем, что дополнительно содержит средство для последовательной подачи лазерных импульсов в режиме растровой развертки на поверхность упомянутого металлического обрабатываемого изделия, в котором сжимающее напряжение будет индуцироваться по освещенной поверхности, на которой упомянутое сжимающее напряжение, в свою очередь, сформирует деформацию в верхнем слое упомянутого металлического обрабатываемого изделия и сформирует кривизну в упомянутом металлическом обрабатываемом изделии.
26. Способ формирования форм и профилей в металле, содержащий следующие этапы: обеспечивают металлическое обрабатываемое изделие, прочно прикрепляют слой материала, обеспечивающий поглощение излучения света, к металлическому обрабатываемому изделию, обеспечивают протекание тонкого слоя воды по указанному слою материала, обеспечивают последовательность лазерных импульсов, при этом каждый лазерный импульс из упомянутой последовательности лазерных импульсов имеет энергию в диапазоне 10 - 100 Дж на импульс, а длительность импульса в диапазоне 10 - 20 нc и длительность переднего фронта импульса менее 1 нc, и обеспечивают изображение ближнего поля указанного каждого лазерного импульса в пятно на указанном слое материала до формирования требуемой формы на указанном металлическом обрабатываемом изделии.
RU2002104019/02A 1999-07-19 2000-06-26 Профильное формование металлов посредством лазерной проковки RU2228234C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14459499P 1999-07-19 1999-07-19
US60/144,594 1999-07-19

Publications (2)

Publication Number Publication Date
RU2002104019A RU2002104019A (ru) 2003-09-27
RU2228234C2 true RU2228234C2 (ru) 2004-05-10

Family

ID=22509280

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002104019/02A RU2228234C2 (ru) 1999-07-19 2000-06-26 Профильное формование металлов посредством лазерной проковки

Country Status (13)

Country Link
US (1) US6410884B1 (ru)
EP (2) EP1627929B1 (ru)
JP (2) JP4215981B2 (ru)
KR (1) KR100650118B1 (ru)
CN (1) CN1228460C (ru)
AT (2) ATE478160T1 (ru)
AU (1) AU1323901A (ru)
CA (1) CA2379959C (ru)
DE (2) DE60024840T2 (ru)
ES (2) ES2253271T3 (ru)
PL (1) PL195102B1 (ru)
RU (1) RU2228234C2 (ru)
WO (1) WO2001005549A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475322C1 (ru) * 2011-05-31 2013-02-20 Открытое акционерное общество "Комсомольское-на-Амуре авиационное производственное объединение имени Ю.А. Гагарина" Способ формообразования деталей
RU2699881C2 (ru) * 2014-11-28 2019-09-11 АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД Способ производства компонента с использованием процесса аддитивного производства

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US6670578B2 (en) 1999-07-19 2003-12-30 The Regents Of The University Of California Pre-loading of components during laser peenforming
SE0000570L (sv) * 2000-02-22 2001-08-23 Avesta Sheffield Ab Ämnesstyrd formning
US6818854B2 (en) * 2001-09-14 2004-11-16 The Regents Of The University Of California Laser peening with fiber optic delivery
US7097720B2 (en) * 2003-04-30 2006-08-29 General Electric Company Lower fluence boundary laser shock peening
US8049137B2 (en) * 2004-02-13 2011-11-01 Boston Scientific Scimed, Inc. Laser shock peening of medical devices
US20050205529A1 (en) * 2004-03-22 2005-09-22 The Regents Of The University Of California Calibration system for laser peening
JP4605700B2 (ja) * 2004-07-28 2011-01-05 武蔵精密工業株式会社 歯車の歯面における歯すじの修正方法
US7750266B2 (en) * 2004-11-17 2010-07-06 Metal Improvement Company Llc Active beam delivery system for laser peening and laser peening method
JP4690895B2 (ja) * 2005-01-11 2011-06-01 新日本製鐵株式会社 金属物体のレーザピーニング処理方法およびレーザピーニング処理方法で製造した金属物体
US7723643B2 (en) * 2005-04-06 2010-05-25 Lawrence Livermore National Security, Llc Laser peening for reducing hydrogen embrittlement
US7412300B2 (en) * 2005-07-27 2008-08-12 General Electric Company Thermal forming
JP4658832B2 (ja) * 2006-03-06 2011-03-23 新日本製鐵株式会社 金属物体のレーザピーニング処理方法と金属物体
US8330070B2 (en) 2006-05-11 2012-12-11 Kabushiki Kaisha Toshiba Laser shock hardening method and apparatus
WO2008155783A1 (en) * 2007-06-18 2008-12-24 Donadon Safety Discs And Devices S.R.L. Method for production of safety /rupture discs having pre -calculated breaking threshold
WO2009111774A2 (en) * 2008-03-07 2009-09-11 The Ohio State University Low-temperature spot impact welding driven without contact
JP5654219B2 (ja) * 2009-07-14 2015-01-14 富士重工業株式会社 摩擦攪拌接合用回転ツール
CN101920397B (zh) * 2010-04-16 2013-01-23 江苏大学 一种基于衍射微光学元件的强激光无模成形方法及装置
US10072971B2 (en) 2010-04-16 2018-09-11 Metal Improvement Company, Llc Flexible beam delivery system for high power laser systems
DE102010019258B4 (de) * 2010-05-03 2014-12-11 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung maßgeschneiderter, warm umzuformender Stahlblechprodukte und Stahlblechprodukt
CN102513697A (zh) * 2011-12-29 2012-06-27 江苏大学 一种仿生表面的制备方法
CN103302406B (zh) * 2013-06-20 2015-03-11 江苏大学 一种光内送水激光冲击强化的方法和装置
US9539690B2 (en) 2013-09-19 2017-01-10 The Boeing Company Control feedback loop for real-time variable needle peen forming
US10576523B1 (en) 2013-09-19 2020-03-03 The Boeing Company Method and apparatus for impacting metal parts
US8997545B1 (en) 2013-09-19 2015-04-07 The Boeing Company Method and apparatus for impacting metal parts for aerospace applications
US10239155B1 (en) * 2014-04-30 2019-03-26 The Boeing Company Multiple laser beam processing
CN104164554A (zh) * 2014-07-16 2014-11-26 江苏大学 一种大面积激光冲击强化金属表面的方法
US20160016255A1 (en) * 2014-07-17 2016-01-21 Siemens Energy, Inc. Laser correction of metal deformation
CN104480476B (zh) * 2014-11-12 2017-02-22 江苏大学 一种金属损伤件激光热力组合再制造方法
US20160236296A1 (en) * 2015-02-13 2016-08-18 Gold Nanotech Inc Nanoparticle Manufacturing System
CN104911329A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超短脉冲激光制备不锈钢超疏水耐腐蚀表面的方法
CN104911520B (zh) * 2015-05-28 2017-12-05 湖北工业大学 一种利用短脉冲激光制备铝合金超疏水自清洁表面的方法
CN105290617B (zh) * 2015-11-13 2017-05-31 中国科学院力学研究所 一种使金属玻璃产生拉伸塑性的加工处理方法
US10406583B2 (en) 2015-12-10 2019-09-10 The Boeing Company Apparatus, system, and method for forming metal parts
CA3027477A1 (en) 2016-06-13 2017-12-21 Stylianos MORES Electromagnetic hammer device for the mechanical treatment of materials and method of use thereof
CN106216445B (zh) * 2016-07-12 2018-02-06 广东工业大学 一种具有复杂表面的大型薄壁件激光喷丸矫形方法
CN109661290A (zh) * 2016-09-23 2019-04-19 塔塔钢铁荷兰科技有限责任公司 用于运动钢带的液体辅助激光纹理化的方法和装置
CN109996640B (zh) * 2016-11-18 2021-09-03 Ipg光子公司 用于处理材料的激光系统和方法
CN106694724B (zh) * 2016-12-19 2019-04-19 上海交通大学 用于大型壁板工件喷丸成形的柔性预应力夹具
US10989512B2 (en) 2017-09-26 2021-04-27 Apex Brands, Inc. Measuring tape with improved standout
CN111133271B (zh) * 2017-09-26 2021-01-29 艾沛克斯品牌公司 具有增加的杯突的卷尺
JP7096000B2 (ja) * 2018-01-30 2022-07-05 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
CN110653484A (zh) * 2018-06-28 2020-01-07 大族激光科技产业集团股份有限公司 提高玻璃纤维增强塑料表面抗划伤能力的方法、电子装置及激光打标机
US11413729B2 (en) * 2018-08-20 2022-08-16 Milwaukee Electric Tool Corporation Tool bit
CN109271711B (zh) * 2018-09-25 2023-03-28 重庆大学 一种考虑不均匀特性的渗碳硬化齿轮有限元建模方法
US11433624B2 (en) * 2019-03-28 2022-09-06 Spirit Aerosystems, Inc. Peen-forming of thermoplastic composite material
CN110802218B (zh) * 2019-10-21 2021-02-09 苏州科技大学 一种大曲率波纹板的快速蠕变时效成形方法
CN111975206B (zh) * 2020-07-15 2022-05-20 江苏大学 一种激光冲击曲面压印以及曲面微形貌修复工艺
US20220176495A1 (en) * 2020-12-04 2022-06-09 Lawrence Livermore National Security, Llc System and method for radius of curvature modification of optical plates and lenses by irradiation with optical energy
WO2022144809A1 (ru) * 2020-12-31 2022-07-07 Дмитрий ЧУХЛАНЦЕВ Способ лазерного ударного упрочнения деталей
CN113305420A (zh) * 2021-06-09 2021-08-27 广东工业大学 一种复杂双曲扭转曲面无模成形方法及装置
CN114378448A (zh) * 2021-12-15 2022-04-22 深圳市裕展精密科技有限公司 金属件的制作方法、金属件及金属制品
CN114700627B (zh) * 2022-05-13 2023-06-06 西安交通大学 一种激光冲击液体约束层厚度控制系统
CN115090751B (zh) * 2022-07-14 2024-04-05 中国航空制造技术研究院 一种提高带筋整体壁板喷丸成形极限的方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694672A (en) * 1984-01-05 1987-09-22 Baughman Davis L Method and apparatus for imparting a simple contour to a workpiece
US5235838A (en) 1987-07-13 1993-08-17 W. Hegenscheidt Gesellschaft Mbh Method and apparatus for truing or straightening out of true work pieces
JPH01313113A (ja) * 1988-06-13 1989-12-18 Fujitsu Ltd レーザビームによる板金曲げ加工方法
DE3842064A1 (de) * 1988-12-14 1990-06-21 Dornier Gmbh Verfahren zum umformen von ebenen, plattenfoermigen bauteilen in eine zweiachsig gekruemmte form
US4937421A (en) 1989-07-03 1990-06-26 General Electric Company Laser peening system and method
US5522706A (en) 1994-10-06 1996-06-04 General Electric Company Laser shock peened disks with loading and locking slots for turbomachinery
US5492447A (en) 1994-10-06 1996-02-20 General Electric Company Laser shock peened rotor components for turbomachinery
US5846054A (en) 1994-10-06 1998-12-08 General Electric Company Laser shock peened dovetails for disks and blades
US6215097B1 (en) 1994-12-22 2001-04-10 General Electric Company On the fly laser shock peening
US5591009A (en) 1995-01-17 1997-01-07 General Electric Company Laser shock peened gas turbine engine fan blade edges
US5525429A (en) 1995-03-06 1996-06-11 General Electric Company Laser shock peening surface enhancement for gas turbine engine high strength rotor alloy repair
US5620307A (en) 1995-03-06 1997-04-15 General Electric Company Laser shock peened gas turbine engine blade tip
US5584662A (en) 1995-03-06 1996-12-17 General Electric Company Laser shock peening for gas turbine engine vane repair
US5569018A (en) 1995-03-06 1996-10-29 General Electric Company Technique to prevent or divert cracks
US5531570A (en) * 1995-03-06 1996-07-02 General Electric Company Distortion control for laser shock peened gas turbine engine compressor blade edges
US5744781A (en) 1995-08-07 1998-04-28 General Electric Company Method and apparatus for laser shock peening
US6057003A (en) * 1995-10-23 2000-05-02 Lsp Technologies, Inc. Peening process with reduction of dielectric breakdown to increase peak pressure pulse
US5741559A (en) 1995-10-23 1998-04-21 Lsp Technologies, Inc. Laser peening process and apparatus
US5735044A (en) 1995-12-12 1998-04-07 General Electric Company Laser shock peening for gas turbine engine weld repair
US5671628A (en) 1995-12-18 1997-09-30 General Electric Company Laser shock peened dies
US5730811A (en) 1995-12-21 1998-03-24 General Electric Company Cavity dumped laser shock peening process
US5584586A (en) 1996-03-04 1996-12-17 General Electric Company Laser shock peened bearings
JPH09277069A (ja) * 1996-04-12 1997-10-28 Komatsu Ltd 液晶マスク、液晶式レーザマーカ及びそれを用いた刻印方法
US5674328A (en) 1996-04-26 1997-10-07 General Electric Company Dry tape covered laser shock peening
US5674329A (en) 1996-04-26 1997-10-07 General Electric Company Adhesive tape covered laser shock peening
US5742028A (en) 1996-07-24 1998-04-21 General Electric Company Preloaded laser shock peening
JPH10153750A (ja) * 1996-11-25 1998-06-09 Sumitomo Electric Ind Ltd レーザビーム整形光学部品
US6002102A (en) 1997-02-25 1999-12-14 Lsp Technologies, Inc. Hidden surface laser shock processing
US5911890A (en) 1997-02-25 1999-06-15 Lsp Technologies, Inc. Oblique angle laser shock processing
US5910651A (en) * 1997-07-15 1999-06-08 Gerber Systems Corporation Method and apparatus for image nonlinearity compensation in scanning systems
US5852621A (en) * 1997-07-21 1998-12-22 Cymer, Inc. Pulse laser with pulse energy trimmer
US5988982A (en) 1997-09-09 1999-11-23 Lsp Technologies, Inc. Altering vibration frequencies of workpieces, such as gas turbine engine blades
US5911891A (en) 1997-09-11 1999-06-15 Lsp Technologies, Inc. Laser shock peening with tailored multiple laser beams
US5935464A (en) 1997-09-11 1999-08-10 Lsp Technologies, Inc. Laser shock peening apparatus with a diffractive optic element
US5987042A (en) 1997-10-31 1999-11-16 General Electric Company Method and apparatus for shaping a laser pulse
US5980101A (en) 1997-10-31 1999-11-09 General Electric Company Method and apparatus for measuring laser pulse energy
US6144012A (en) 1997-11-05 2000-11-07 Lsp Technologies, Inc. Efficient laser peening
US6021154A (en) 1997-11-21 2000-02-01 General Electric Company Laser shock peening method and reflective laser beam homogenizer
JP3191918B2 (ja) * 1997-11-25 2001-07-23 株式会社小松製作所 微小ドットマークが刻印されてなる半導体ウェハ
US5932120A (en) 1997-12-18 1999-08-03 General Electric Company Laser shock peening using low energy laser
US6005219A (en) 1997-12-18 1999-12-21 General Electric Company Ripstop laser shock peening
US6064035A (en) 1997-12-30 2000-05-16 Lsp Technologies, Inc. Process chamber for laser peening
US6078022A (en) 1997-12-30 2000-06-20 Lsp Technologies, Inc. Laser peening hollow core gas turbine engine blades
US6002706A (en) 1997-12-30 1999-12-14 General Electric Company Method and apparatus for controlling the size of a laser beam
US5987991A (en) 1998-01-02 1999-11-23 General Electric Company Determination of Rayleigh wave critical angle
US6130400A (en) 1998-06-26 2000-10-10 General Electric Company Ballistic momentum apparatus and method for monitoring and controlling laser shock peening
US5951790A (en) * 1998-06-26 1999-09-14 General Electric Company Method of monitoring and controlling laser shock peening using an in plane deflection test coupon
US6198069B1 (en) * 1998-08-13 2001-03-06 The Regents Of The University Of California Laser beam temporal and spatial tailoring for laser shock processing
US5948293A (en) 1998-12-03 1999-09-07 General Electric Company Laser shock peening quality assurance by volumetric analysis of laser shock peened dimple
US6049058A (en) 1998-12-15 2000-04-11 Lsp Technologies, Inc. Laser peening process and apparatus with uniform pressure pulse confinement
US6155789A (en) 1999-04-06 2000-12-05 General Electric Company Gas turbine engine airfoil damper and method for production
US6075593A (en) 1999-08-03 2000-06-13 General Electric Company Method for monitoring and controlling laser shock peening using temporal light spectrum analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Порошковая металлургия и напыленные покрытия. /Под ред. МИТИНА Б.С. - М.: Металлургия, 1987, с.214-215. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475322C1 (ru) * 2011-05-31 2013-02-20 Открытое акционерное общество "Комсомольское-на-Амуре авиационное производственное объединение имени Ю.А. Гагарина" Способ формообразования деталей
RU2699881C2 (ru) * 2014-11-28 2019-09-11 АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД Способ производства компонента с использованием процесса аддитивного производства

Also Published As

Publication number Publication date
WO2001005549A3 (en) 2001-08-16
CA2379959A1 (en) 2001-01-25
ES2253271T3 (es) 2006-06-01
EP1627929B1 (en) 2010-08-18
CA2379959C (en) 2011-06-07
JP2007175777A (ja) 2007-07-12
EP1212472A2 (en) 2002-06-12
KR100650118B1 (ko) 2006-11-27
DE60024840T2 (de) 2006-08-31
ATE478160T1 (de) 2010-09-15
DE60044856D1 (de) 2010-09-30
ATE312950T1 (de) 2005-12-15
PL354627A1 (en) 2004-02-09
EP1212472B1 (en) 2005-12-14
PL195102B1 (pl) 2007-08-31
EP1627929A1 (en) 2006-02-22
WO2001005549A2 (en) 2001-01-25
JP2003504212A (ja) 2003-02-04
KR20020016001A (ko) 2002-03-02
JP5000323B2 (ja) 2012-08-15
ES2356461T3 (es) 2011-04-08
AU1323901A (en) 2001-02-05
JP4215981B2 (ja) 2009-01-28
DE60024840D1 (de) 2006-01-19
US6410884B1 (en) 2002-06-25
CN1228460C (zh) 2005-11-23
CN1370244A (zh) 2002-09-18

Similar Documents

Publication Publication Date Title
RU2228234C2 (ru) Профильное формование металлов посредством лазерной проковки
US6670578B2 (en) Pre-loading of components during laser peenforming
US6805970B2 (en) Laser peening of components of thin cross-section
EP3229994B1 (en) Additive manufacturing and integrated impact post-treatment
CN100355514C (zh) 中厚板材激光喷丸成形的方法和装置
CN106141425A (zh) 机器人夹持金属板材的激光喷丸成形精度动态自适应控制装置
CN103146893A (zh) 一种激光冲击处理曲面的方法
CN106755945A (zh) 一种基于激光冲击波技术改变裂纹扩展路径的方法及装置
Cao et al. Numerical simulation of residual stress field induced by laser shock processing with square spot
EP3995668A1 (en) A method for extending fatigue life of a turbine blade affected by pitting and product thereof
Ngiejunbwen et al. Experimental investigation of sheet metal forming of Aluminum 2024 using nanosecond pulsed Nd: YAG laser
US6583384B2 (en) UV curable overlays for laser shock processing
CN109234518A (zh) 一种平板件预应力激光冲击强化的方法和装置
EP2855719B1 (en) Deep laser peening
JP2008248270A (ja) レーザ衝撃硬化処理方法およびレーザ衝撃硬化処理装置
Hassan et al. The effect of laser shock peening on fatigue life using pure water and hydrofluoric acid as a confining layer of Al–alloy 7075-T6
US11638970B2 (en) Enhanced material shock using spatiotemporal laser pulse formatting
Tessmann An Experimental Analysis of Thin Sheet Metal Bending by Ultrafast Laser Peen Forming
Hintz et al. XeCl-excimer-laser MOPA chain for shock hardening
Wang et al. Numerical and experimental study on bi-directional deformations of cantilevers by overlapping laser shock micro-adjustment technology
Yang et al. Effect of shot strip interval and shot times on laser shot peen-forming with repetition laser pulse
Zhang et al. Higher Precision Forming by Laser Peening under Pre-Bending Die