RU2218242C2 - Method for making medical implants from biologically compatible materials - Google Patents

Method for making medical implants from biologically compatible materials Download PDF

Info

Publication number
RU2218242C2
RU2218242C2 RU99102751/02A RU99102751A RU2218242C2 RU 2218242 C2 RU2218242 C2 RU 2218242C2 RU 99102751/02 A RU99102751/02 A RU 99102751/02A RU 99102751 A RU99102751 A RU 99102751A RU 2218242 C2 RU2218242 C2 RU 2218242C2
Authority
RU
Russia
Prior art keywords
powder
titanium
medical implants
implants
mixture
Prior art date
Application number
RU99102751/02A
Other languages
Russian (ru)
Other versions
RU99102751A (en
Inventor
Д.М. Гуреев
А.Л. Петров
И.В. Шишковский
Original Assignee
Физический институт им. П.Н. Лебедева РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Физический институт им. П.Н. Лебедева РАН filed Critical Физический институт им. П.Н. Лебедева РАН
Priority to RU99102751/02A priority Critical patent/RU2218242C2/en
Publication of RU99102751A publication Critical patent/RU99102751A/en
Application granted granted Critical
Publication of RU2218242C2 publication Critical patent/RU2218242C2/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Process efficiency
    • Y02P10/25Process efficiency by increasing the energy efficiency of the process
    • Y02P10/29Additive manufacturing
    • Y02P10/295Additive manufacturing of metals

Abstract

FIELD: processes of laser synthesis of three-dimensional articles, namely methods for rapid making of powder materials porous medical precise biologically compatible implants for prosthesis, for example with internal voids by selective laser sintering of powder compositions. SUBSTANCE: method for making medical implants of predetermined individual shapes of biologically compatible materials by selective laser sintering of powder compositions comprises steps of successively layer by layer applying powder mixture; treating each layer by means of scanning laser irradiation while using as initial powder composition mixture of metallic powders on base of nickel and titanium at their mass relation 1 : 1; realizing reaction of self-propagating high-temperature synthesis of porous intermetallide phase, namely titanium nickelide (NiTi) in shield gas under control of laser irradiation; in order to enhance biological compatibility of synthesized medical implants, using initial powder mixture containing in addition hydroxy-appatite(-acrylate); in order to accelerate adaptation, infiltrating to pores of implants biostimulating additives. EFFECT: possibility for realizing rapid synthesis of preset individual shapes of porous functional medical implants by means of selective laser sintering from offered powder composition. 3 cl, 2 ex

Description

Изобретение относится к технологии лазерного синтеза объемных изделий (ЛСОИ), в том числе к способам скоростного изготовления из порошковых материалов точных биосовместимых пористых медицинских имплантатов для протезирования, в том числе с внутренними пустотами, методом селективного лазерного спекания (СЛС) порошковых композиций. The invention relates to laser fusion bulk products (LSOI), including methods of manufacture of high-speed powder materials accurate porous biocompatible medical prosthetic implants, including internal voids, by selective laser sintering (SLS) powder compositions.

Известны результаты многочисленных работ /см. Announced the results of numerous studies / cm. например труды Всесоюзной научной конференции "Сверхупругость, эффект памяти формы и их применение в новой технике". such as the works of All-Union Scientific Conference "Hyperelasticity, the shape memory effect and their application in new technology." Тезисы докладов, Томск, 1985/, в которых раскрываются широкие перспективы по использованию в качестве биосовместимого материала для медицинских имплантатов интерметаллида - никелида титана (NiTi), обладающего даже в пористом состоянии крайне полезным для медицины свойством памяти формы. Abstracts, Tomsk 1985 /, which revealed broad prospects for use as biocompatible material for medical implants intermetallic compound - NiTi (NiTi), having even in the porous state is very useful for medicine shape memory. Традиционно никелид титана получают как минимум двойным переплавом расходуемого электрода в вакуумно-дуговой печи или в режиме самораспространяющегося высокотемпературного синтеза (СВС) горения порошковой смеси Ni и Ti. Traditionally titanium nikelid receive at least double remelting the consumable electrode to vacuum arc furnace or a mode of self-propagating high-temperature synthesis (SHS) combustion Ni powder and a mixture of Ti. Использование данных методик получения этого материала для нужд медицины имеет существенный недостаток - трудоемкость процесса создания функциональных медицинских имплантатов с заранее заданными индивидуальными форморазмерами. Using these techniques produce this material for medical purposes has a significant drawback - the complexity of the process of creating functional medical implants with predetermined individual formorazmerami. Сам материал также оказывается загрязнен примесями из-за выгорания и ликвации компонентов, что ухудшает параметры формовосстановления и другие свойства этого интерметаллида. The material itself is also contaminated with impurities because of burnout and segregation of components, which deteriorates the shape recovery parameters, and other properties of the intermetallic compound.

Наиболее близкими к заявляемому изобретению прототипом является способ изготовления объемных изделий из порошковой композиции (Шишковский И. В., Куприянов Н. Л. Патент РФ 2145269, B 22 F 3/105), включающий последовательное послойное размещение порошковой композиции в станке для СЛС, обработку каждого слоя лазерным излучением (ЛИ) по заданному контуру и извлечение полученного изделия из станка с удалением порошковой композиции, не принявшей участия в формировании объемного изделия. The closest prior art to the claimed invention is a method for manufacturing bulky articles from a powder composition (Shishkovsky IV, Kuprijanov NL patent RF 2145269, B 22 F 3/105), comprising the sequential layering powder composition in placement machine for SLS processing each layer of the laser radiation (LI) on a predetermined contour and recovering the product from the machine to remove the powder composition does not take part in the formation of bulk products. По этому способу возможно изготовление изделий из металлполимерных порошковых композиций путем реализации процесса жидкофазного спекания. By this method, products can be manufactured of metal-powder compositions of implementation by liquid phase sintering process.

Следующим логичным шагом является синергетическое совмещение процессов СЛС и СВС новых интерметаллидных фаз в контролируемом ЛИ пространстве. The next logical step is a synergistic combination of SLS and SHS processes new intermetallic phases in the test whether the space. Формирование из порошков Ni и Ti в едином технологическом процессе интерметаллидной фазы - пористого никелид титана позволяет рекомендовать такой процесс для создания медицинских имплантатов заданных индивидуальных форм с использованием методов трехмерного компьютерного моделирования. Formation of the Ni and Ti powders in a single technological process intermetallic phases - a porous titanium nickel alloy allows to recommend such a process to create a medical implant predetermined individual forms by using three-dimensional computer modeling techniques.

Задачей заявляемого изобретения является реализация скоростного синтеза пористых функциональных медицинских имплантатов заданных индивидуальных форм методом СЛС из предлагаемой порошковой композиции Ni - Ti. The object of the claimed invention is to realize high-speed functional synthetic porous medical implants predetermined individual forms proposed method of SLS powder composition Ni - Ti.

Поставленная задача достигается тем, что в способе изготовления медицинских имплантатов заданных индивидуальных форм из биосовместимых материалов методом селективного лазерного спекания порошковых композиций, включающем последовательное послойное размещение порошковой смеси, обработку каждого слоя сканирующим лазерным излучением, в качестве исходной порошковой композиции используют смеси металлических порошков на основе никеля и титана при их весовом соотношении 1:1 с реализацией контролируемой лазерным излучением реакции самор The objective is achieved in that in the process of manufacturing medical implants predetermined individual forms of biocompatible materials by selective laser sintering powder compositions comprising successive layerwise placing the powder mixture, the processing of each layer of a scanning laser beam, as the starting powder composition using a mixture of metallic powders based on nickel and titanium at a weight ratio of 1: 1 with a implementation of controlled laser radiation Samore reaction аспространяющегося высокотемпературного синтеза пористой интерметаллидной фазы - никелида титана (NiTi) в защитной газовой среде. asprostranyayuschegosya high-temperature synthesis of porous intermetallic phase - nickel-titanium (NiTi) using protective gas.

При этом для повышения биосовместимости синтезированных медицинских имплантатов исходная смесь порошков никеля и титана дополнительно содержит гидроксиаппатит (-акрилат). In order to increase the biocompatibility of medical implants synthesized starting mixture of powders of nickel and titanium additionally contains hydroxyapatite (acrylate).

При этом для ускорения процесса вживления в поры синтезированных медицинских имплантатов инфильтруют биостимулирующие добавки. Here, for the acceleration process of implantation in the pores of the synthesized medical implants infiltrated biostimulating additives.

Защитная среда позволяет избежать окисления частиц титана. Protective media particles of titanium avoids oxidation. Предварительное просеивание смешиваемых порошков необходимо для усреднения гранулометрического состава, что улучшает однородность материала изготавливаемого имплантата. Pre-sieving the mixed powders necessary for averaging granulometric composition that improves the homogeneity of the manufactured implant material. При этом важно выбирать размер фракции (дисперсность) обрабатываемого порошка так, чтобы она была соизмерима или меньше диаметра пятна ЛИ. It is important to choose a size fraction (dispersibility) of powder processed so that it was comparable or less than the diameter DO spots. Этим достигается одновременное воздействие ЛИ на несколько частиц порошковой смеси, что обеспечивает их надежное сцепление в процессе реакции контролируемого горения. This is achieved by simultaneous action on several LEE particles of the powder mixture, which ensures a secure grip during the controlled combustion reaction. С другой стороны, соотношение размеров каждой фракции в смеси предпочтительно подбирать так, чтобы частицы титана несколько превосходили по размеру частицы никеля. On the other hand, the aspect ratio of each fraction in the mixture is preferably chosen so that titanium particles are somewhat superior to the size of the nickel particles. Это связано с тем, что диффузия из более мелких частиц Ni в сторону частиц Ti происходит активней в контролируемой ЛИ реакции СВС интерметаллида, поскольку коэффициент диффузии Ni больше чем соответствующий коэффициент диффузии Ti. This is due to the fact that the diffusion of smaller particles towards Ni Ti particles takes place actively in a controlled LEE intermetallic SHS reaction because the diffusion coefficient of Ni is more than the corresponding diffusion coefficient Ti. Крупно зернистость частиц Ti по сравнению с частицами Ni минимизирует также его неблагоприятную химическую активность со следами остатков газов - О 2 , N 2 , Н 3 , которые могут оказаться в защитной среде по тем или иным причинам. Coarse grit particles in comparison with Ti Ni particles minimizes its adverse reactivity with traces of residual gases - O 2, N 2, N 3, which may be a protective environment for one reason or another. Использование хорошо апробированной СВС композиции Ni:Ti стехиометрического состава 1:1 позволяет обеспечить не просто спекание порошинок друг с другом, но и одновременно синтезировать интерметаллидную фазу - никелид титана NiTi. Using well-proven of SHS compositions of Ni: Ti stoichiometry 1: 1 allows not only sintering powder particles with each other, but at the same time to synthesize the intermetallic phase - nikelid titanium NiTi. Его высокая биосовместимость и возможность использования в медицине достоверно доказана в многочисленных публикациях. Its high biocompatibility and the ability to use in medicine reliably proven in numerous publications. Экзотермичность реакции горения СВС композиции вносит дополнительный энерговклад в зону лазерного воздействия (ЛВ). The exothermicity of the reaction composition SHS combustion contributes additional energy input to the laser exposure (LP) zone. С учетом высокой поглощательной способности металлических систем на длинах волн технологических лазерных установок, интервал оптимальных режимов комбинированного процесса СЛС и СВС практически не смещается в область более высоких плотностей мощности ЛИ, что позволяет уменьшить деформации формы имплантата и избежать его расслоения. Because of the high absorptivity metal systems at wavelengths of laser processing plants range of optimal regimes combined process of SLS and SHS hardly shifted to the higher power densities LEE, reducing shape deformation of the implant and to avoid stratification.

Как известно, процесс СВС может протекать либо в режиме неконтролируемого теплового взрыва, либо в поддающемся контролю диффузионном режиме горения, характеризующемся стационарным распространением волны синтеза. As is known, the SHS process may either uncontrolled thermal explosion mode, either uncontrollable diffusion combustion mode, characterized by the proliferation stationary wave synthesis. Поскольку ЛСОИ требует прецизионного селективного воздействия на порошковую композицию с целью послойного синтеза строго заданной формы имплантата, принципиальным является выбор параметров ЛВ (плотность мощности ЛИ, скорость сканирования луча, диаметр пятна фокусировки, коэффициент его перекрытия) такими, чтобы имел место именно диффузионный режим. Since LSOI requires precision selective action on the powder composition for the purpose of synthesis layered strictly predetermined shape of the implant, it is a fundamental parameter selection LP (LEE power density, beam scanning velocity, the diameter of the focal spot, its overlap coefficient) such as to place it had the diffusive regime. В условиях экзотермичности реакции СВС это достигается экспериментальным подбором, например, скорости сканирования ЛИ, при прочих фиксированных параметрах ЛВ. In conditions exothermicity SHS reaction is achieved experimental selection, e.g., the scanning speed LEE, other fixed parameters LP. Визуально реакция горения при оптимальной скорости сканирования должна наблюдаться лишь в зоне прохода лазерного луча. Visually, the combustion reaction at the optimum scan rate should be observed only in the laser beam passage zone.

Для заявляемого изобретения характерен следующий отличительный признак. For the claimed invention is characterized by the following feature. Формирование биосовместимых функциональных медицинских пористых имплантатов заданных индивидуальных форм реализуется путем синергетического совмещения СЛС и СВС процессов. Forming Biocompatible porous medical implants functional predetermined individual forms realized by a synergistic combination of SLS and SHS processes. Управление этим сложным комбинированным процессом надежно осуществляется необходимым изменением параметров ЛВ. The management of this complex combined process reliability make necessary adjustments LP parameters. Никелид титана, в том числе и в пористом виде, обладает известным свойством памяти формы. NiTi, including in the form of porous, has a known shape memory. Наличие этого свойства при синтезе методом СЛС медицинских имплантатов позволяет перевести на качественно новый уровень ортопедию путем создания самосрабатывающих, самофиксирующихся, саморазворачивающихся протезных элементов при температуре живого организма. If present in the synthesis method of SLS medical implants allows transfer to a new level by creating orthopedics extinguisher, automatic, self-locking, self-extracting prosthetic elements at the living body temperature. Наличие пористости здесь может оказаться еще одним положительным фактором, так как позволяет обеспечить прорастание мягких тканей в имплантат, инфильтровать поры стерилизующими препаратами, способствовать повышению биологической совместимости и активизировать процесс заживления. Presence of porosity may here be a further positive factor, since it allows to provide a soft tissue implant germination infiltrated pore sterilizing agents, enhance biocompatibility and to enhance the healing process.

Предлагаемый способ реализован следующим образом. The proposed method is implemented as follows.

Пример 1. Порошки предварительно просеивались на системе сит 005-05 (ГОСТ 3584-73). Example 1. Powders previously sieved on a system of sieves 005-05 (GOST 3584-73). Наплавочный порошок ПГ-СР4 на основе (Ni, Cr, В, Si сплава) с размером фракции <50 мкм смешивали механически с порошком титана марки ПТОМ с размером фракции <40 мкм в весовой пропорции 1:1 до равномерного распределения. Surfacing Powder PG-CF4-based (Ni, Cr, In, Si alloy) with a grain size <50 microns was mixed with the powder mechanically ptomu brand titanium size fraction <40 microns in a weight ratio of 1: 1 to the uniform distribution. Совмещение СЛС и СВС процессов осуществлялось в операционном поле лазерной установки КВАНТ-60 при параметрах ЛИ: мощность ЛВ Р=10,8-14,7 Вт, скорость сканирования лазерного луча v=2-3 см/с, диаметр пятна ЛИ d=50 мкм. The combination of SLS and SHS processes carried out in the operative field laser unit QUANT-60 DID with the parameters: Power = P LP 10,8-14,7 W, the scanning speed of the laser beam v = 2-3 cm / s, spot diameter d = 50 LI um. ЛСОИ на основе интерметаллида NiTi реализовывался в среде защитного газа Аr при компьютерном управлении процессом. LSOI based intermetallic NiTi implemented in a protective gas atmosphere of Ar under computer control process.

Пример 2. Процесс реализовывался по примеру 1 с использованием в качестве исходных компонент порошка никеля ПНК 1 с размером фракции <40 мкм и порошка титана марки ПТХ с размером фракции <45 мкм, смешиваемых механически в весовой пропорции 1:1. EXAMPLE 2 The process of Example 1 was realized using nickel powder as starting component 1 with PNA size fractions <40 mm and PTH brand titanium powder with a grain size <45 micron, mechanically mixed in a weight ratio of 1: 1.

Изменение марок исходных порошковых компонент смеси отражается на полноте протекания реакции синтеза основного продукта - никелида титана. The change marks the starting powder mixture components reflected on the completeness of the reaction of synthesis of the main product - TiNi. Так в примере 1 синтез NiTi достигал практически 100%, тогда как при исходном составе порошков в примере 2 в спеченном 3-х мерном изделии рентгенофазовым анализом выявляется образование и других интерметаллидных фаз - NiTi 2 , Ni 3 Ti. Thus in Example 1 Synthesis NiTi reached almost 100%, whereas the initial composition powders in Example 2 in the sintered three-dimensional X-ray diffraction analysis of the product revealed the formation of intermetallic and other phases - NiTi 2, Ni 3 Ti.

Claims (3)

1. Способ изготовления медицинских имплантатов заданных индивидуальных форм из биосовместимых материалов методом селективного лазерного спекания порошковых композиций, включающий последовательное послойное размещение порошковой смеси, обработку каждого слоя сканирующим лазерным излучением, отличающийся тем, что в качестве исходной порошковой композиции используют смеси металлических порошков на основе никеля и титана при их весовом соотношении 1:1 с реализацией контролируемой лазерным излучением реакции самораспространяющегося 1. A method for producing medical implants predetermined individual forms of biocompatible materials by selective laser sintering powder compositions comprising placing successive layering of the powder mixture, the processing of each layer with a scanning laser beam, characterized in that as the starting powder composition using a mixture of metallic powders based on nickel and titanium at a weight ratio of 1: 1 reaction implementing a controlled self-propagating laser radiation ысокотемпературного синтеза пористой интерметаллидной фазы - никелида титана (NiTi) в защитной газовой среде. ysokotemperaturnogo porous intermetallic phase synthesis - nickel-titanium (NiTi) using protective gas.
2. Способ изготовления медицинских имплантатов по п.1, отличающийся тем, что для повышения биосовместимости синтезированных медицинских имплантатов исходная смесь порошков никеля и титана дополнительно содержит гидроксиаппатит (-акрилат). 2. The method of manufacturing a medical implant according to claim 1, characterized in that to improve the biocompatibility of medical implants synthesized starting mixture of powders of nickel and titanium additionally contains hydroxyapatite (acrylate).
3. Способ изготовления медицинских имплантатов по п.1, отличающийся тем, что для ускорения процесса вживления в поры синтезированных медицинских имплантатов инфильтруют биостимулирующие добавки. 3. The method of manufacturing a medical implant according to claim 1, characterized in that to accelerate the process of implanting a medical implant synthesized pores infiltrated biostimulating additives.
RU99102751/02A 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials RU2218242C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99102751/02A RU2218242C2 (en) 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99102751/02A RU2218242C2 (en) 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials

Publications (2)

Publication Number Publication Date
RU99102751A RU99102751A (en) 2000-12-27
RU2218242C2 true RU2218242C2 (en) 2003-12-10

Family

ID=32065126

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99102751/02A RU2218242C2 (en) 1999-02-11 1999-02-11 Method for making medical implants from biologically compatible materials

Country Status (1)

Country Link
RU (1) RU2218242C2 (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1800700A2 (en) * 2005-12-06 2007-06-27 Howmedica Osteonics Corp. Implant with laser-produced porous surface
US7241313B2 (en) * 2001-08-11 2007-07-10 Stanmore Implants Worldwide Limited Surgical implant
WO2008017028A3 (en) * 2006-08-02 2008-04-03 Boston Scient Scimed Inc Endoprosthesis with three-dimensional disintegration control
WO2009032475A3 (en) * 2007-09-06 2009-08-13 Boston Scient Ltd Endoprostheses having porous claddings prepared using metal hydrides
CN101906572A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in-situ formed ceramic particle reinforced iron-aluminum-based composites by laser combustion
CN101906564A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in situ authigene ceramic phase strengthened Al-Cu matrix composite through laser combustion
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
RU2443506C2 (en) * 2010-04-05 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (УдГУ) Method of coating article by laser layer-by-layer synthesis
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8142886B2 (en) 2007-07-24 2012-03-27 Howmedica Osteonics Corp. Porous laser sintered articles
US8147861B2 (en) 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
RU2459686C2 (en) * 2010-07-15 2012-08-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Method of making titanium nickelide-based porous biocompatible materials
US8268100B2 (en) 2002-11-08 2012-09-18 Howmedica Osteonics Corp. Laser-produced porous surface
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
WO2013113249A1 (en) * 2012-01-31 2013-08-08 重庆润泽医药有限公司 Method for preparing porous tantalum medical implant material through selective laser sintering forming
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9364896B2 (en) 2012-02-07 2016-06-14 Medical Modeling Inc. Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9456901B2 (en) 2004-12-30 2016-10-04 Howmedica Osteonics Corp. Laser-produced porous structure
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9668863B2 (en) 2009-08-19 2017-06-06 Smith & Nephew, Inc. Porous implant structures
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ШИШКОВСКИЙ И.В. и др. Условия послойного селективного спекания по контуру металлополимерных композиций при лазерном воздействии. - Физика и химия обработки материалов, 1995, № 3, с.89. *

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US7241313B2 (en) * 2001-08-11 2007-07-10 Stanmore Implants Worldwide Limited Surgical implant
US8268099B2 (en) 2002-11-08 2012-09-18 Howmedica Osteonics Corp. Laser-produced porous surface
US8992703B2 (en) 2002-11-08 2015-03-31 Howmedica Osteonics Corp. Laser-produced porous surface
US8268100B2 (en) 2002-11-08 2012-09-18 Howmedica Osteonics Corp. Laser-produced porous surface
US9456901B2 (en) 2004-12-30 2016-10-04 Howmedica Osteonics Corp. Laser-produced porous structure
EP1800700A2 (en) * 2005-12-06 2007-06-27 Howmedica Osteonics Corp. Implant with laser-produced porous surface
EP1800700A3 (en) * 2005-12-06 2007-10-10 Howmedica Osteonics Corp. Implant with laser-produced porous surface
US8556981B2 (en) 2005-12-06 2013-10-15 Howmedica Osteonics Corp. Laser-produced porous surface
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9913734B2 (en) 2006-02-27 2018-03-13 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US10206695B2 (en) 2006-02-27 2019-02-19 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9700329B2 (en) 2006-02-27 2017-07-11 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US10206697B2 (en) 2006-06-09 2019-02-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9993344B2 (en) 2006-06-09 2018-06-12 Biomet Manufacturing, Llc Patient-modified implant
WO2008017028A3 (en) * 2006-08-02 2008-04-03 Boston Scient Scimed Inc Endoprosthesis with three-dimensional disintegration control
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8147861B2 (en) 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8142886B2 (en) 2007-07-24 2012-03-27 Howmedica Osteonics Corp. Porous laser sintered articles
WO2009032475A3 (en) * 2007-09-06 2009-08-13 Boston Scient Ltd Endoprostheses having porous claddings prepared using metal hydrides
US7883736B2 (en) 2007-09-06 2011-02-08 Boston Scientific Scimed, Inc. Endoprostheses having porous claddings prepared using metal hydrides
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US9839433B2 (en) 2009-08-13 2017-12-12 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US10052110B2 (en) 2009-08-13 2018-08-21 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9668863B2 (en) 2009-08-19 2017-06-06 Smith & Nephew, Inc. Porous implant structures
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
RU2443506C2 (en) * 2010-04-05 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (УдГУ) Method of coating article by laser layer-by-layer synthesis
RU2459686C2 (en) * 2010-07-15 2012-08-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Method of making titanium nickelide-based porous biocompatible materials
CN101906572A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in-situ formed ceramic particle reinforced iron-aluminum-based composites by laser combustion
CN101906564A (en) * 2010-08-31 2010-12-08 辽宁工程技术大学 Method for synthesizing in situ authigene ceramic phase strengthened Al-Cu matrix composite through laser combustion
US10098648B2 (en) 2010-09-29 2018-10-16 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9743935B2 (en) 2011-03-07 2017-08-29 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9743940B2 (en) 2011-04-29 2017-08-29 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9687261B2 (en) 2011-06-13 2017-06-27 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9668747B2 (en) 2011-07-01 2017-06-06 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9603613B2 (en) 2011-08-31 2017-03-28 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9439659B2 (en) 2011-08-31 2016-09-13 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9936962B2 (en) 2011-10-27 2018-04-10 Biomet Manufacturing, Llc Patient specific glenoid guide
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
WO2013113249A1 (en) * 2012-01-31 2013-08-08 重庆润泽医药有限公司 Method for preparing porous tantalum medical implant material through selective laser sintering forming
US9827106B2 (en) 2012-02-02 2017-11-28 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9364896B2 (en) 2012-02-07 2016-06-14 Medical Modeling Inc. Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9597201B2 (en) 2012-12-11 2017-03-21 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9700325B2 (en) 2013-03-12 2017-07-11 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs

Similar Documents

Publication Publication Date Title
Porter et al. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics
Gu et al. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF)
Paital et al. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies
Roy et al. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants
Webster et al. Design and evaluation of nanophase alumina for orthopaedic/dental applications
Li et al. New developments of Ti-based alloys for biomedical applications
JP4444587B2 (en) Method of the porous metal layer deposited on a substrate of metal
Ponader et al. In vivo performance of selective electron beam‐melted Ti‐6Al‐4V structures
Herzog et al. Additive manufacturing of metals
Ng et al. Layer manufacturing of magnesium and its alloy structures for future applications
Murr et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications
Lacefield Hydroxyapatite coatings
US4437192A (en) Implants of biologically active glass or glass ceramic containing titania
AU2005247021B2 (en) Laser-produced porous structure
JP5452840B2 (en) Laser manufacturing porous surface
Narayan Biomedical materials
US5370692A (en) Rapid, customized bone prosthesis
Sallica-Leva et al. Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting
Murr et al. Next generation orthopaedic implants by additive manufacturing using electron beam melting
Alvarez et al. Metallic scaffolds for bone regeneration
KR100929133B1 (en) Implants comprising biodegradable metals and method for manufacturing the same
US20020183417A1 (en) Calcium phosphate bone graft material, process for making same and osteoimplant fabricated from same
Hedberg et al. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting
Khor et al. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti–6Al–4V composite coatings
JP3457675B2 (en) Biocompatible materials and bone implants for replacement and bone repair

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080212

NF4A Reinstatement of patent

Effective date: 20100420

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170212