RU2134440C1 - Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации - Google Patents

Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации Download PDF

Info

Publication number
RU2134440C1
RU2134440C1 RU95114208A RU95114208A RU2134440C1 RU 2134440 C1 RU2134440 C1 RU 2134440C1 RU 95114208 A RU95114208 A RU 95114208A RU 95114208 A RU95114208 A RU 95114208A RU 2134440 C1 RU2134440 C1 RU 2134440C1
Authority
RU
Russia
Prior art keywords
modulator
liquid crystal
systems
optical information
information processing
Prior art date
Application number
RU95114208A
Other languages
English (en)
Other versions
RU95114208A (ru
Inventor
Наталия Владимировна Каманина
Наталия Александровна Василенко
Original Assignee
Наталия Владимировна Каманина
Наталия Александровна Василенко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Наталия Владимировна Каманина, Наталия Александровна Василенко filed Critical Наталия Владимировна Каманина
Priority to RU95114208A priority Critical patent/RU2134440C1/ru
Publication of RU95114208A publication Critical patent/RU95114208A/ru
Application granted granted Critical
Publication of RU2134440C1 publication Critical patent/RU2134440C1/ru

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

Изобретение относится к области оптического приборостроения, в частности к конструкции светоуправляемых жидкокристаллических пространственно-временных модуляторов света для систем ввода и обработки оптической информации, например для голографии и внутрирезонаторного считывания изображения. Устройство представляет собой многослойную систему, состоящую из пленки полимерного фотопроводника и слоя нематического жидкого кристалла. Для ориентации молекул ЖК используется специальное ориентирующее покрытие. При функционировании данного устройства предлагается использовать напряжение питания в виде прямоугольных импульсов переменной полярности и импульсный режим записи. Улучшенное быстродействие прибора, являющееся необходимым условием его применения в высокоскоростных система обработки оптической информации, позволило достичь повышения частоты цикла запись - считывание в 25 раз. 2 ил., 1 табл.

Description

Изобретение относится к области оптического приборостроения, в частности к конструкции светоуправляемых жидкокристаллических пространственно-временных модуляторов света (ЖК-ПВМС) для систем ввода и обработки оптической информации, например для голографии и внутрирезонаторного считывания изображения.
Модулятор является одним из основных элементов оптических схем регистрации, преобразования и отображения оптической информации, позволяющих выполнять операции в реальном масштабе времени [1]. В нем происходит запись изображения, создание потенциального рельефа для передачи информации на электрооптический слой, а также считывание изображения. Динамические характеристики ЖК-ПВМС определяются как особенностями их конструкции и физико-химической природой используемых материалов (различные типы фотопроводников, разные классы жидких кристаллов, виды ориентирующих покрытий), так и возможностью оптимизации параметров с помощью специфических условий работы (использование лазерного излучения для записи и считывания, импульсный режим питания и другие аспекты).
Известна конструкция светоуправляемого ЖК-ПВМС, выбранная в качестве аналога [2] , содержащего полимерный фотопроводник в качестве светочувствительного слоя, нематический жидкий кристалл в качестве модулирующей среды и окись кремния в качестве ориентирующего слоя. Последний обеспечивал планарную ориентацию молекул жидкого кристалла. Полимерные модуляторы обладают комплексом ценных технических параметров: высоким разрешением, характерным для молекулярных систем, высоким контрастом и чувствительностью. По разрешающей способности полимерные модуляторы имеют лучшие показатели среди широкого класса светоуправляемых ЖК-ПВМС [3]. Однако временные характеристики полимерных модуляторов хуже, чем у приборов с другими фотослоями. Недостатком известной конструкции модулятора является низкое быстродействие. Известная разработка полимерного ЖК-ПВМС [2] имеет следующие временные параметры: время включения - 200 мс, время выключения - 700 мс при условии работы прибора на постоянном напряжении питания и при постоянной засветке сине-зеленым участком спектра лампы накаливания. На том же устройстве авторы работы [4], применив импульсную запись с помощью лазерного интерференционного резольвометра, получили время включения ≈ 15 мс. Структура работала на постоянном напряжении питания.
Известна конструкция полимерного модулятора, выбранная в качестве прототипа, содержащего полимерный фотопроводник в качестве светочувствительного слоя, нематический жидкий кристалл в качестве модулирующей среды и окись кремния в качестве ориентирующего слоя [5]. Прибор работал в условиях сочетания импульсной записи с импульсным однополярным напряжением питания и показал следующие временные параметры: время включения - 5 мс, время выключения - 120 мс. Недостатком данной конструкции модулятора явилось большое время выключения прибора, что снижает его быстродействие и затрудняет применение этого устройства в высокоскоростных оптических системах. Те же авторы, применив для питания структуры прямоугольные импульсы переменной полярности, получили время выключения ≈ 80 мс, что позволило повысить частоту цикла запись-считывание с 0,2 Гц до 1 Гц (см. результаты, представленные в таблице).
Техническим результатом изобретения является дальнейшее повышение быстродействия полимерного ЖК-ПВМС. Указанный результат достигается тем, что в известном устройстве, конструкция которого включает полимерный фотопроводник и нематический жидкий кристалл, используют ориентант на основе тонких пленок аморфного углерода, полученных в плазме тлеющего разряда [6]. Замена ориентирующего слоя с окиси кремния на пленки аморфного углерода изменяет условия для подвижности носителей заряда на границе раздела сред с разными физико-химическими параметрами и обеспечивает существенно лучшее быстродействие (см. табл.). При работе предлагаемой конструкции ЖК-ПВМС использовалось напряжение питания в виде прямоугольных импульсов переменной полярности и импульсный режим записи.
Сравнительный анализ с прототипом показывает, что заявляемый ЖК-ПВМС отличается тем, что для ориентации молекул жидкого кристалла используют ориентант другого состава, а именно: тонкие пленки аморфного углерода. Таким образом, заявляемое устройство соответствует критерию изобретения "новизна".
Изобретение поясняется чертежом, на котором представлена конструкция модулятора (фиг. 1), и оптической схемой измерения характеристик (фиг. 2).
Предлагаемый ЖК-ПВМС (фиг. 1) представляет собой многослойную систему, состоящую из слоя нематического жидкого кристалла (1) толщиной 5 мкм и пленки полимерного фотопроводника (2) толщиной 1 мкм. Толщина ЖК задавалась тефлоновыми прокладками (6). Структура заключалась между двумя стеклянными подложками (4) диаметром 35 мм с прозрачными проводящими электродами (5), полученными методом лазерного напыления окиси индия с добавкой окиси олова. На граничную с ЖК поверхность наносились пленки аморфного углерода (3) толщиной 500
Figure 00000002
полученные из паров толуола в плазме тлеющего разряда. Начальная ориентация ЖК - планарная, использовался S-эффект.
Измерения динамических характеристик ЖК-ПВМС проводились по голографической методике [7] по схеме, представленной на фиг. 2, где представлены неодимовый лазер (1), преобразователь второй гармоники (2), телескоп (3), диафрагма (4), поворотное зеркало (5), делительное зеркало (6), призма (7), ПВМС (8), He- Ne-лазер (9), линза (10), фотоумножитель (II).
Модулятор работал следующим образом.
Вторая гармоника моноимпульсного неодимового лазера (1) ( λ 0,52 мкм, длительность импульса 20 нс) использовалась для записи дифракционной решетки. Пространственная частота, на которой велись исследования, составляла 100 лин/мм. Диаметр пятна на фотослое ≈ 5 мм, плотность энергии записи поддерживалась на уровне 400 мкВт/см2. Для питания модулятора использовалось импульсное напряжение питания с амплитудой прямого импульса 30 B и амплитудой импульса обратной полярности 10 В. Длительность импульса питания составляла 30 мс, частота следования - 5 Гц. Импульсное питание прибора было синхронизовано с импульсами генерации лазера. Задержка между импульсом генерации лазера и передним фронтом импульса питания составляла 50 мкс. Для считывания "на просвет" использовалось непрерывное линейно - поляризованное излучение He-Ne-лазера (9) ( λ = 0,63 мкм). При записи и считывании ориентация вектора решетки и поля считывающего излучения совпадала с ориентацией директора ЖК-молекул, то есть выполнялась следующая векторная комбинация
Figure 00000003
Дифракционный отклик регистрировался в первом порядке дифракции в фокальной плоскости линзы (10), расположенной за ЖК-ПВМС (8). Регистрация велась с помощью электронного фотоумножителя (II). Время включения, определенное по времени нарастания дифракционного отклика от уровня 0,1 до уровня 0,9, в предлагаемом устройстве составило 3 мс, время выключения, соответствующее времени спада дифракционного отклика от максимального значения до уровня 0,1, составило 20 мс.
Использование в качестве ориентанта тонких пленок аморфного углерода позволило сократить время выключения модулятора и существенно снизить время релаксации, что улучшило время выключения прибора в 4 раза. Улучшенное быстродействие прибора, являющееся необходимым условием его применения в высокоскоростных системах обработки оптической информации, позволило достичь повышения частоты цикла запись-считывание полимерных модуляторов с 0,2 Гц [5] до 5 Гц. Указанное функциональное совершенствование прибора позволит расширить область применения полимерных модуляторов света.
Источники информации:
1. Васильев А.А. и др. Пространственные модуляторы света. - М.: Радио и связь. 1987, 320 с.
2. Мыльников В.С. и др. Пространственно-временная модуляция света структурой органический полимерный фотопроводник - жидкий кристалл. ЖТФ. - 1985, т. 55, вып. 4, с. 749-751.
3. Слюсарь А.В., Мыльников B.C. Пространственно-временная модуляция света структурой жидкий кристалл - полимерный фотопроводник с сопряженными связями. ЖТФ.-1991, т. 61, вып.11, с. 201-2ОЗ.
4. Мыльников В. С. и др. Эффективная реверсивная фазовая запись оптической информации структурой органический полимерный фотопроводник - жидкий кристалл. Письма в ЖТФ. - 1985, т. 11, вып. 1, с. 38-41.
5. Василенко Н.А., Каманина Н.В., Онохов А.П. Особенности работы ПВМС с полимерным фотослоем при импульсной записи и импульсном напряжении питания. Письма в ЖТФ. - 1992, т. 18, вып. 13, с. 27-30.
6. Коншина Е.А., Баранов А.В., Яковлев В.Б. Колебательные спектры углеродных пленок, полученных из ацетиленовой плазмы. ЖПС. - 1988, т. 48, N 6, с. 957-962.
7. Кольер P., Баркхарт К., Лин. Оптическая голография. - М.: Мир, 1973, 686 с.

Claims (1)

  1. Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации, содержащий полимерный фотопроводник в качестве светочувствительного слоя, нематический жидкий кристалл в качестве модулирующей среды и ориентирующий слой, отличающийся тем, что этот слой выполнен в виде тонких пленок аморфного углерода.
RU95114208A 1995-08-07 1995-08-07 Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации RU2134440C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95114208A RU2134440C1 (ru) 1995-08-07 1995-08-07 Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95114208A RU2134440C1 (ru) 1995-08-07 1995-08-07 Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации

Publications (2)

Publication Number Publication Date
RU95114208A RU95114208A (ru) 1997-08-20
RU2134440C1 true RU2134440C1 (ru) 1999-08-10

Family

ID=20171144

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95114208A RU2134440C1 (ru) 1995-08-07 1995-08-07 Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации

Country Status (1)

Country Link
RU (1) RU2134440C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Мыльников В.С. и др. Пространственно-временная модуляция света структурой органический полимерный фотопроводник - жидкий кристалл. ЖТФ. - 1985, т. 55, вып. 4, с. 749 - 751. Василенко Н.А. и др. Особенности работы с полимерным фотослоем при импульсной записи и импульсном напряжении питания. Письма в ЖТФ. - 1992, т. 18, вып. 13, с.27 - 30. *

Similar Documents

Publication Publication Date Title
US3980476A (en) Imaging system
US3744879A (en) Liquid crystal optical processor
Armitage et al. Photoaddressed liquid crystal spatial light modulators
US3732429A (en) Liquid crystal device
US4023969A (en) Deformable elastomer imaging member employing an internal opaque deformable metallic layer
Wick et al. Deformed-helix ferroelectric liquid-crystal spatial light modulator that demonstrates high diffraction efficiency and 370-line pairs/mm resolution
EP1580592B1 (en) Image projection apparatus with ELECTRO-OPTICAL TRANSDUCER AND JELLY LAYER THEREFOR, METHOD FOR PRODUCING A JELLY LAYER AND A COMPOUND FOR CARRYING OUT SAID METHOD
Moddel et al. Photoaddressing of high speed liquid crystal spatial light modulators
JP2705308B2 (ja) 記録方法
RU2134440C1 (ru) Жидкокристаллический пространственно-временной модулятор света для систем оптической обработки информации
US5153759A (en) Optically addressed light valve system
US5309262A (en) Optically addressed light valve system with two dielectric mirrors separated by a light separating element
Mao et al. Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators
JPH084308B2 (ja) コヒーレント光画像発生装置
RU2184988C2 (ru) Жидкокристаллический пространственно-временной модулятор света на основе фуллеренсодержащего полиимида для голографической записи информации
Kamanina et al. Effect of various alignment films on dynamic characteristics of LC spatial light modulators
US5416620A (en) Pockels cell with AC driving voltage at frequency of periodic variation of writing light source
EP0403307A2 (en) Method for operating photo-to-photo transducer
JPH04226427A (ja) 光伝導性ポリマーをベースとした空間光変調器
US4285576A (en) Light gating methods and apparatus
JP2811468B2 (ja) 光書込み型液晶ライトバルブ及び液晶ライドバルブ装置
Casasent Materials and devices for coherent optical computing
JP3289641B2 (ja) 映像表示装置およびその駆動方法
Bitou et al. High-speed and high-contrast incoherent-to-coherent converter that uses a GaAs single crystal
RU1803900C (ru) Пространственно-временной модул тор света