RU2108612C1 - Адаптивная система управления с идентификатором и неявной эталонной моделью - Google Patents

Адаптивная система управления с идентификатором и неявной эталонной моделью Download PDF

Info

Publication number
RU2108612C1
RU2108612C1 RU94033714A RU94033714A RU2108612C1 RU 2108612 C1 RU2108612 C1 RU 2108612C1 RU 94033714 A RU94033714 A RU 94033714A RU 94033714 A RU94033714 A RU 94033714A RU 2108612 C1 RU2108612 C1 RU 2108612C1
Authority
RU
Russia
Prior art keywords
input
matrix
output
control
controller
Prior art date
Application number
RU94033714A
Other languages
English (en)
Other versions
RU94033714A (ru
Inventor
В.Н. Буков
С.П. Круглов
Original Assignee
Круглов Сергей Петрович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Круглов Сергей Петрович filed Critical Круглов Сергей Петрович
Priority to RU94033714A priority Critical patent/RU2108612C1/ru
Publication of RU94033714A publication Critical patent/RU94033714A/ru
Application granted granted Critical
Publication of RU2108612C1 publication Critical patent/RU2108612C1/ru

Links

Abstract

Изобретение относится к системам автоматического управления динамическими объектами широкого класса с неизвестными переменными параметрами и неконтролируемыми возмущениями. Технический результат заключается в упрощении условий и сокращении времени для достижения цели адаптации замкнутой системы управления, а также в расширении области применения системы на класс существенно нестационарных (нелинейных с текущей линеаризацией) объектов управления с неконтролируемыми внешними возмущениями. Технический результат достигается за счет того, что система содержит сумматор, первый и второй регуляторы, фильтр низких частот, объект управления, блок текущей идентификации, блок априорной информации о матрице эффективности управления и блок настройки регуляторов. 1 ил.

Description

Изобретение относится к системам автоматического управления динамическими объектами широкого класса с неизвестными переменными параметрами и неконтролируемыми возмущениями.
Прототипом изобретения является беспоисковая адаптивная система управления с непрямым адаптивным управлением и неявной эталонной моделью, описанная в работе [1, с. 492]. Структурная схема адаптивной системы управления для объектов с неконтролируемыми возмущениями включает в себя сумматор, два регулятора (один в прямой и один в обратной связи), объект управления и контур адаптации. Последний в свою очередь состоит из блока текущей идентификации, блока настройки регуляторов и логического блока, осуществляющего переключение работы контура адаптации с цикла идентификации на цикл настройки регуляторов и наоборот.
Рассмотрим построение такой системы управления для следующей задачи. Пусть объект управления (ОУ) описывается следующим матричным дифференциальным уравнением
Figure 00000002
,
где
x∈Rn - непосредственно измеряемый вектор состояния ОУ;
x∈Rm - вектор управления (в дальнейшем - закон управления); f - вектор неконтролируемых внешних возмущений, ограниченный по норме; A, B и D - матрицы неизвестных параметров ОУ с соответствующими размерностями, в общем случае переменные;
Figure 00000003
- непосредственно измеряется или аналитически вычисляется по x.
Адаптивная система должна формировать такой закон управления, чтобы ОУ вел себя подобно эталонной модели, которая задана неявным образом в виде следующего дифференциального уравнения:
Figure 00000004

где
xм - вектор состояния модели;
uм - ограниченное по норме входное воздействие модели; размерности соответствуют уравнению (1); Aм и Bм - матрицы параметров модели в общем случае переменные, причем Aм - гурвицева матрица (вещественные части собственных ее чисел строго отрицательны).
Точный закон управления можно найти только тогда, когда выполнено условие полного соответствия моделей [2].
rankB = rank(B, Aм - A) = rank(B, Bм) = rank(B, D)
или, что тождественно
BB+(Aм - A) = Aм - A; BB+Bм = Bм; BB+D = D, (3)
где
B+ - псевдообратная матрица к B. В дальнейшем будем считать, что условие (3) выполнено, тогда управление, которое назовем точным
u* = B+[(Aм - A)x + Bмuм - Df],
обеспечит асимптотические свойства ошибки адаптации:
Figure 00000005
. Действительно, подставляя (4) в уравнение (1), учитывая (3) и (2), получим уравнение ошибки адаптации
Figure 00000006

Однако по условию матрицы A, B и D неизвестны и внешние возмущения неизмеряемы, поэтому вместо (4) используется закон управления
Figure 00000007
,
где
Figure 00000008
- оценки матриц A и B, доставляемые блоком текущей идентификации. Обновление параметров в законе управления производится циклически по управлению с логического блока. Блок текущей идентификации может быть построен на основе одного из известных алгоритмов идентификации.
Таким образом, замкнутая адаптивная система управления описывается уравнениями (1), (2), (5) при условии (3), а также включает алгоритм текущей идентификации и алгоритм переключения режимов работы контура адаптации.
В работах [1, 3, 4] указывается, что для достижения цели адаптации: с течением времени e _→ 0 - требуется отсутствие неизвестных возмущений, а также необходимо иметь асимптотические оценки
Figure 00000009
в конце цикла идентификации. Такое достаточно жесткое требование порождает ряд недостатков системы [3, 4]:
- необходимость обеспечения процесса управления стойким возбуждающим входным сигналом порядка не менее n;
- невозможность точной оценки параметров ОУ в замкнутой системе управления на некоторых режимах, например, на режиме стабилизации, когда uм = 0, что объясняется линейной зависимостью компонент вектор-функций x(t) и u(t), где t - текущее время;
- большое влияние на качество идентификации и управления неконтролируемых внешних возмущений;
- невысокая скорость адаптации, поскольку параметры закона управления корректируются только в конце цикла идентификации.
Следует также отметить, что затянутость по времени процесса оценивания неизвестных параметров ОУ обусловливает известное мнение о том, что указанная система на практике может обеспечить приемлемое качество управления только для линейных стационарных или квазистационарных ОУ.
Целью изобретения является упрощение условий и сокращение времени для достижения цели адаптации замкнутой системы управления, а также расширение области применения системы на класс существенно нестационарных (нелинейных с текущей линеаризацией) объектов управления с неконтролируемыми внешними возмущениями.
Для теоретического обоснования достижения цели рассмотрим вопрос адаптации в непрерывной постановке при отсутствии возмущений (Df ≡ O). В качестве алгоритма текущей идентификации будем использовать алгоритм типа стохастической апроксимации, который в непрерывной постановке описывается следующим образом [5]:
Figure 00000010
,
где
C = [A, B];
Figure 00000011
- ошибка идентификации; x т р = [xт,uт] - расширенный вектор состояния ОУ; Г - в общем случае переменная положительно определенная квадратная матрица размерностью (n + m), или скаляр; норма матрицы
Figure 00000012
- ограничена. Из теории идентификации известно, что алгоритм (6) обладает более простыми и лучшими свойствами сходимости к нулю ε по сравнению со сходимостью оценок параметров. Действительно, если назначить функцию Ляпунова вида V = εтε , то ее производная на уравнении (6) имеет вид
Figure 00000013

Уравнение (7) показывает, что при ограниченных нормах
Figure 00000014
(это справедливо для подавляющего большинства прикладных задач) и при достаточно большой норме матрицы Г с течением времени ε _→ 0 , причем без каких-либо дополнительных условий. Также можно указать, что уравнение (6) описывает динамическую систему с матрицей собственного движения xpx т p Г , которая имеет единственное ненулевое собственное число x Т p Гxp , равное собственной частоте системы, или собственной частоте алгоритма идентификации (ωa) .
В связи с указанным найдем зависимость ошибки адаптации от ошибки идентификации. Для этого вычтем из уравнения (1) уравнение (2), получим
Figure 00000015

Прибавляя и вычитая из правой части полученного Aмx, комбинируя слагаемые и учитывая (3), (4), найдем
Figure 00000016

Для поиска зависимости невязки B(u - u*) от ε уравнение (5) с учетом равенств (3), (4), (6) и (1) запишем в виде
Figure 00000017

Последнее слагаемое вынесено за скобки в силу очевидного равенства
Figure 00000018
. Отсюда следует, что
Figure 00000019

Уравнение (9) показывает, что его выражение в квадратных скобках всегда ортогонально строкам матрицы
Figure 00000020
, или, согласно свойствам псевдообратной матрицы, - столбцам матрицы
Figure 00000021
[6]. В связи с этим общее решение уравнения (9) будет иметь вид
B(u-u*)-ε = Ψξ, (10), ,
где
Ψ - матрица такая, что
Figure 00000022
; ξ - произвольный вектор соответствующей размерности. Уравнения (8) и (10) описывают искомый результат.
Очевидно, наиболее важным является случай, когда в уравнении (10) невязка B(u - u*) не зависит от неопределенного член Ψξ . Одним из возможных вариантов этого является случай, когда выполняется условие [7]
Figure 00000023

Для того чтобы доказать это утверждение, предположим, что rankB = k ≤ min (n, m). Тогда матрицу B можно представить через скелетное разложение в виде [6]
Figure 00000024
,
где
F и L - матрицы размерностью n • k и k • m соответственно такие, что rankF = rankL = k. В этом случае равенство (11) влечет за собой выполнения условия
Figure 00000025
, или, согласно свойствам псевдообратной матрицы,
Figure 00000026
. Последнее обуславливает то, что
Figure 00000027
, где Ek - единичная k • k матрица [6]. Следовательно, умножение уравнения (10) слева на матрицу
Figure 00000028
ограниченной нормы дает
Figure 00000029
.
В свою очередь, частным к условию (11) является случай, когда столбцы матрицы B линейно зависимы со столбцами
Figure 00000030
, т.е.
Figure 00000031

Действительно, в этом случае строки матрицы B+ линейно зависимы со строками матрицы
Figure 00000032
, и на основании (10) B+Ψ = 0 . В результате умножение уравнения (10) слева на матрицу BB+
Figure 00000033
дает вместо (12)
B(u-u*) = BB+ε. .
Таким образом, если выполнено хотя бы одно из условий: (11) или (13), то уравнение ошибки адаптации описывается простым линейным дифференциальным уравнением
Figure 00000034
,
где
матрица K имеет ограниченную норму, т.е. при ε _→ 0 достигается цель адаптации.
Следует однако отметить, что для выполнения условия ε _→ 0 требуется
Figure 00000035
, но последнее согласно свойствам уравнений (6) и (7) приводит к увеличению скорости изменения оценок, возрастанию норм
Figure 00000036
, что препятствует сходимости ошибки идентификации и может привести к возникновению высокочастотных резонансных явлений. Для устранения этого неблагоприятного факта примем во внимание, что, как правило, рабочие частоты ОУ находятся в низкочастотной области. Поэтому достаточно управление (5) пропускать через фильтр низких частот с частотой среза (ωф) меньшей, чем ωa , но превышающей диапазон рабочих частот ОУ. Действительно, фильтрация управления соответствует устранению высокочастотной составляющей оценки
Figure 00000037
с сохранением ее низкочастотной части
Figure 00000038
. Последняя образует низкочастотную составляющую ошибки идентификации:
Figure 00000039
. Поскольку выбором матрицы Г обеспечено стремление к нулю ошибки идентификации, то стремится к нулю и указанная ее низкочастотная часть. Следовательно, в области рабочих частот ОУ будут наблюдаться асимптотические свойства ошибки адаптации.
Из изложенного следует ряд выводов:
- требование асимптотической точности оценок параметров ОУ является лишь частным случаем достижения цели адаптации;
- цель адаптации можно достигнуть, если наложить довольно слабые ограничения (11) или (13) на оценку матрицы эффективности управления объекта (если B - скаляр, то достаточно
Figure 00000040
; эти ограничения не основаны на собственных динамических свойствах ОУ и могут быть получены из небольшой априорной информации об управляемом объекте; для выполнения условия (11) или (13) в структурную схему системы целесообразно ввести блок априорной информации о матрице эффективности управления объекта; по сигналам с этого блока будет производиться коррекция текущей оценки
Figure 00000041
;
- выбором матрицы Г алгоритма идентификации (6) можно всегда добиться требуемой скорости сходимости ошибки идентификации ε , что дает, во-первых, увеличение скорости адаптации замкнутой системы, а, во-вторых, - возможность: организации непрерывной подстройки закона управления по текущим оценкам параметров ОУ, устранения цикличности работы контура адаптации, а следовательно, и устранения логического блока;
- нет никаких дополнительных требований к входному сигналу ОУ, кроме u ≢ 0 , и поэтому адаптивная система управления может функционировать на фоне естественных управляющих сигналов;
- возможно расширение области применения адаптивной системы на класс существенно нестационарных (нелинейных с текущей линеаризацией) ОУ, у которых скорость изменения параметров ограничена;
- в связи с тем, что качество адаптации явно не зависит от качества оценок, доставляемых идентификатором, возможно использование системы при воздействии на ОУ неконтролируемых внешних возмущений, ограниченных по норме; действительно, в этом случае ошибка идентификации будет иметь вид
Figure 00000042
, а уравнение (7) - соответственно
Figure 00000043
,
остальные уравнения останутся прежними; в области рабочих частот ОУ норма матрицы
Figure 00000044
ограничена, и поэтому выбором матрицы Г всегда возможно в указанной области частот добиться сходимости ε и e .
Следует отметить, что если алгоритм идентификации дискретный, то требованиями сходимости ε являются: во-первых, все собственные числа матрицы Гi должны находится в пределах
Figure 00000045
, а, во-вторых, период дискретизации алгоритма должен быть достаточно малым (i - текущий момент времени). Это следует из рассмотрения уравнения (6) в разностном виде
Figure 00000046
,
где
Figure 00000047
- определяется дискретным алгоритмом идентификации. Умножим последнее равенство справа на xpi, получим
Figure 00000048

При достаточно малом шаге дискретизации
Figure 00000049
,
и поэтому можно записать εi+1≈ εi(1-x T pi Гixpi). . Сходимость дискретной ошибки ε будет иметь место, если выражение в круглых скобках последнего равенства будет по модулю меньше единицы, или 0 < x T pi Гixpi< 2. . Поделив это неравенство на x T pi xpi и используя отношение Релея [6], найдем указанные требования к матрице Гi. Для дискретной формы алгоритма ωa= x T pi Гixpi/H , где H - шаг дискретизации.
Полученные выводы, в частности, подтверждаются численными исследованиями, результаты которых приведены в работе [7].
На чертеже представлена структурная схема дискретной адаптивной системы управления с идентификатором и неявной эталонной моделью.
Структурная схема содержит сумматор 1, первый 2 и второй 3 регуляторы, фильтр 4 низких частот, объект 5 управления, блок 6 текущей идентификации, блок 7 априорной информации о матрице эффективности управления объект, блок 8 настройки регуляторов.
Адаптивная система работает следующим образом.
Задающее воздействие в виде [BмUм]t подается на первый вход сумматора 1. На второй вход сумматора поступает сигнал с выхода второго регулятора 3. Выход сумматора связан с первым входом первого регулятора 2, этот регулятор окончательно формирует управление в соответствии с зависимостью
Figure 00000050

Выход первого регулятора связан со входом фильтра 4 низких частот, пропускающего рабочие частоты ОУ. Выход фильтра связан со входом объекта 5 управления и с первым входом блока 6 текущей идентификации. Выход объекта управления связан с первым входом второго регулятора 3, преобразующего входной сигнал xi в виде
Figure 00000051
,
и со вторым входом блока текущей идентификации. Выход блока 7 априорной информации о матрице эффективности управления объекта подключен к третьему входу блока текущей идентификации. Блок текущей идентификации по входным сигналам с объекта управления:
Figure 00000052
- формирует текущие оценки параметров ОУ. Вектор
Figure 00000053
может либо непосредственно измеряться, либо аналитически вычисляться в блоке текущей идентификации по текущим значениям x, например, на основе полиномиальной или тригономтрической аппроксимации на скользящем интервале /8/. Алгоритм текущей идентификации блока 6 относится к классу алгоритмов типа стохастической аппроксимации, в качестве которого можно использовать алгоритм, описанный в работе /9/
Figure 00000054

Здесь ωa= H-1 - выбирается из условия ωa> ωф . Для выполнения требований (11) или (13) на каждом шаге идентификации в блоке 6 производится коррекция оценки
Figure 00000055
. Такая коррекция должна быть с "минимальным" изменением исходной матрицы и может быть организована следующим образом. Блок 7 выдает в блок текущей идентификации информацию о матрице B0 размерностью n • m. Эта матрица учитывает априорную информацию о матрице эффективности управления объекта в виде соблюдения равенства
rank(B T o B) = rankB, (14) ,
Предположим, что
Figure 00000056
,
где
Gi - какая-то матрица размерностью m • m. Оценку
Figure 00000057
определим как
Figure 00000058
,
где
Δi - минимальная по норме добавка до невырожденности матрицы
Figure 00000059
. Эта добавка может быть получена, например, на основе разложения квадратной матрицы
Figure 00000060
на треугольные сомножители [6] с минимальной коррекцией последовательной процедуры разложения с целью устранения нулевых диагональных элементов сомножителей. Полученные сомножители в дальнейшем перемножаются, формируя
Figure 00000061
. Скорректированная оценка будет иметь вид
Figure 00000062
. Тогда
Figure 00000063
,
что следует из равенства (14) и утверждения о том, что умножение любой матрицы на невырожденную соответствующей размерности не изменяет ранга исходной матрицы /6/. Оценка
Figure 00000064
используется при формировании управления и заменяет оценку
Figure 00000065
для следующего шага алгоритма идентификации.
Выход блока текущей идентификации, через который выдаются оценки
Figure 00000066
, связан с блоком 8 настройки регуляторов. Этот блок вычисляет
Figure 00000067
. Для реализации псевдообращения матриц можно использовать последовательный метод Гревилля [6]. Первый выход блока 8 связан со вторым входом первого регулятора, по нему передается информация о
Figure 00000068
. Второй выход блока 8 связан со вторым входом второго регулятора, по нему передается информация о матрице
Figure 00000069
.
Литература:
1. Справочник по теории автоматического управления./Под ред. А.А.Красовского. - М.: Наука, Гл. ред. физ. - мат. лит., 1987. - 712 с. (прототип).
2. Уткин В.Н. Скользящие режимы в задачах оптимизации и управления. - М. : Наука, 1981.
3. Изерман Р. Цифровые системы управления: Пер. с англ. - М.: Мир, 1984, 541 с.
4. Острем К.И. Адаптивное управление с обратной связью//ТИИЭР - 1987, N 2, т. 75, с. 4 - 45.
5. Цыпкин Я.З. Основы информационной теории идентификации. - М.: Наука. Гл. ред. фиг.-мат. лит., 1984. 320 с.
6. Гантмахер Ф.Р. Теория матриц. - М.: Наука, Гл. ред. физ.-мат. лит., 1988, с. 552.
7. Буков В.Н., Круглов С.П., Решетняк Е.П. Адаптируемость линейной динамической системы с идентификатором и эталонной моделью//Автоматика и телемеханика - 1994, N 3, с. 99 - 107.
8. Пашковский И.М., Леонов В.А., Поплавский Б.К. Летные испытания самолетов и обработка результатов испытаний. - М.: Машиностроение, с. 416, 1985.
9. Гроп Д. Методы идентификации систем: Пер. с англ. - М.: Мир, 1979, с. 302.

Claims (1)

  1. Адаптивная система управления с идентификатором и неявной эталонной моделью, содержащая объект управления и сумматор, первый вход которого подключен к задающему воздействию, а выход - к первому входу первого регулятора, выход объекта управления подключен к первому входу второго регулятора и к первому входу блока текущей идентификации, выход второго регулятора подключен к второму входу сумматора, выход блока текущей идентификации подключен к входу блока настройки регуляторов, первый выход которого подключен к второму входу первого регулятора, а второй выход - к второму входу второго регулятора, отличающаяся тем, что она дополнительно содержит фильтр низких частот, вход которого подключен к выходу первого регулятора, а выход подключен к входу объекта управления и к второму входу блока текущей идентификации, блок априорной информации о матрице эффективности управления объекта, выход которого подключен к третьему входу блока текущей идентификации.
RU94033714A 1994-09-14 1994-09-14 Адаптивная система управления с идентификатором и неявной эталонной моделью RU2108612C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94033714A RU2108612C1 (ru) 1994-09-14 1994-09-14 Адаптивная система управления с идентификатором и неявной эталонной моделью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94033714A RU2108612C1 (ru) 1994-09-14 1994-09-14 Адаптивная система управления с идентификатором и неявной эталонной моделью

Publications (2)

Publication Number Publication Date
RU94033714A RU94033714A (ru) 1996-07-20
RU2108612C1 true RU2108612C1 (ru) 1998-04-10

Family

ID=20160498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94033714A RU2108612C1 (ru) 1994-09-14 1994-09-14 Адаптивная система управления с идентификатором и неявной эталонной моделью

Country Status (1)

Country Link
RU (1) RU2108612C1 (ru)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184688A1 (en) * 2012-06-04 2013-12-12 Brain Corporation Stochastic apparatus and methods for implementing generalized learning rules
WO2014028855A1 (en) * 2012-08-17 2014-02-20 Brain Corporation Apparatus and methods for spiking neuron network learning
US8793205B1 (en) 2012-09-20 2014-07-29 Brain Corporation Robotic learning and evolution apparatus
RU2542910C1 (ru) * 2014-03-19 2015-02-27 Общество с ограниченной ответственностью "Объединённая Компания "Сибшахтострой" Система регулирования объекта с рециклом
US8983216B2 (en) 2010-03-26 2015-03-17 Brain Corporation Invariant pulse latency coding systems and methods
US8990133B1 (en) 2012-12-20 2015-03-24 Brain Corporation Apparatus and methods for state-dependent learning in spiking neuron networks
US8996177B2 (en) 2013-03-15 2015-03-31 Brain Corporation Robotic training apparatus and methods
US9008840B1 (en) 2013-04-19 2015-04-14 Brain Corporation Apparatus and methods for reinforcement-guided supervised learning
US9014416B1 (en) 2012-06-29 2015-04-21 Brain Corporation Sensory processing apparatus and methods
US9015092B2 (en) 2012-06-04 2015-04-21 Brain Corporation Dynamically reconfigurable stochastic learning apparatus and methods
US9047568B1 (en) 2012-09-20 2015-06-02 Brain Corporation Apparatus and methods for encoding of sensory data using artificial spiking neurons
US9070039B2 (en) 2013-02-01 2015-06-30 Brian Corporation Temporal winner takes all spiking neuron network sensory processing apparatus and methods
US9082079B1 (en) 2012-10-22 2015-07-14 Brain Corporation Proportional-integral-derivative controller effecting expansion kernels comprising a plurality of spiking neurons associated with a plurality of receptive fields
US9092738B2 (en) 2011-09-21 2015-07-28 Qualcomm Technologies Inc. Apparatus and methods for event-triggered updates in parallel networks
US9098811B2 (en) 2012-06-04 2015-08-04 Brain Corporation Spiking neuron network apparatus and methods
US9104973B2 (en) 2011-09-21 2015-08-11 Qualcomm Technologies Inc. Elementary network description for neuromorphic systems with plurality of doublets wherein doublet events rules are executed in parallel
US9111226B2 (en) 2012-10-25 2015-08-18 Brain Corporation Modulated plasticity apparatus and methods for spiking neuron network
US9117176B2 (en) 2011-09-21 2015-08-25 Qualcomm Technologies Inc. Round-trip engineering apparatus and methods for neural networks
US9123127B2 (en) 2012-12-10 2015-09-01 Brain Corporation Contrast enhancement spiking neuron network sensory processing apparatus and methods
US9122994B2 (en) 2010-03-26 2015-09-01 Brain Corporation Apparatus and methods for temporally proximate object recognition
US9129221B2 (en) 2012-05-07 2015-09-08 Brain Corporation Spiking neural network feedback apparatus and methods
RU2562362C2 (ru) * 2013-12-26 2015-09-10 Общество с ограниченной ответственностью "Объединённая Компания "Сибшахтострой" Система регулирования объекта с рециклом
US9146546B2 (en) 2012-06-04 2015-09-29 Brain Corporation Systems and apparatus for implementing task-specific learning using spiking neurons
US9147156B2 (en) 2011-09-21 2015-09-29 Qualcomm Technologies Inc. Apparatus and methods for synaptic update in a pulse-coded network
US9152915B1 (en) 2010-08-26 2015-10-06 Brain Corporation Apparatus and methods for encoding vector into pulse-code output
US9156165B2 (en) 2011-09-21 2015-10-13 Brain Corporation Adaptive critic apparatus and methods
US9165245B2 (en) 2011-09-21 2015-10-20 Qualcomm Technologies Inc. Apparatus and method for partial evaluation of synaptic updates based on system events
US9183493B2 (en) 2012-10-25 2015-11-10 Brain Corporation Adaptive plasticity apparatus and methods for spiking neuron network
US9186793B1 (en) 2012-08-31 2015-11-17 Brain Corporation Apparatus and methods for controlling attention of a robot
US9189730B1 (en) 2012-09-20 2015-11-17 Brain Corporation Modulated stochasticity spiking neuron network controller apparatus and methods
US9195934B1 (en) 2013-01-31 2015-11-24 Brain Corporation Spiking neuron classifier apparatus and methods using conditionally independent subsets
US9213937B2 (en) 2011-09-21 2015-12-15 Brain Corporation Apparatus and methods for gating analog and spiking signals in artificial neural networks
US9218563B2 (en) 2012-10-25 2015-12-22 Brain Corporation Spiking neuron sensory processing apparatus and methods for saliency detection
US9224090B2 (en) 2012-05-07 2015-12-29 Brain Corporation Sensory input processing apparatus in a spiking neural network
US9239985B2 (en) 2013-06-19 2016-01-19 Brain Corporation Apparatus and methods for processing inputs in an artificial neuron network
US9242372B2 (en) 2013-05-31 2016-01-26 Brain Corporation Adaptive robotic interface apparatus and methods
US9248569B2 (en) 2013-11-22 2016-02-02 Brain Corporation Discrepancy detection apparatus and methods for machine learning
US9256823B2 (en) 2012-07-27 2016-02-09 Qualcomm Technologies Inc. Apparatus and methods for efficient updates in spiking neuron network
US9256215B2 (en) 2012-07-27 2016-02-09 Brain Corporation Apparatus and methods for generalized state-dependent learning in spiking neuron networks
US9275326B2 (en) 2012-11-30 2016-03-01 Brain Corporation Rate stabilization through plasticity in spiking neuron network
US9296101B2 (en) 2013-09-27 2016-03-29 Brain Corporation Robotic control arbitration apparatus and methods
US9311594B1 (en) 2012-09-20 2016-04-12 Brain Corporation Spiking neuron network apparatus and methods for encoding of sensory data
US9311596B2 (en) 2011-09-21 2016-04-12 Qualcomm Technologies Inc. Methods for memory management in parallel networks
US9311593B2 (en) 2010-03-26 2016-04-12 Brain Corporation Apparatus and methods for polychronous encoding and multiplexing in neuronal prosthetic devices
US9314924B1 (en) 2013-06-14 2016-04-19 Brain Corporation Predictive robotic controller apparatus and methods
US9346167B2 (en) 2014-04-29 2016-05-24 Brain Corporation Trainable convolutional network apparatus and methods for operating a robotic vehicle
US9358685B2 (en) 2014-02-03 2016-06-07 Brain Corporation Apparatus and methods for control of robot actions based on corrective user inputs
US9367798B2 (en) 2012-09-20 2016-06-14 Brain Corporation Spiking neuron network adaptive control apparatus and methods
US9364950B2 (en) 2014-03-13 2016-06-14 Brain Corporation Trainable modular robotic methods
US9373038B2 (en) 2013-02-08 2016-06-21 Brain Corporation Apparatus and methods for temporal proximity detection
US9384443B2 (en) 2013-06-14 2016-07-05 Brain Corporation Robotic training apparatus and methods
US9405975B2 (en) 2010-03-26 2016-08-02 Brain Corporation Apparatus and methods for pulse-code invariant object recognition
US9412064B2 (en) 2011-08-17 2016-08-09 Qualcomm Technologies Inc. Event-based communication in spiking neuron networks communicating a neural activity payload with an efficacy update
US9426946B2 (en) 2014-12-02 2016-08-30 Brain Corporation Computerized learning landscaping apparatus and methods
US9436909B2 (en) 2013-06-19 2016-09-06 Brain Corporation Increased dynamic range artificial neuron network apparatus and methods
US9440352B2 (en) 2012-08-31 2016-09-13 Qualcomm Technologies Inc. Apparatus and methods for robotic learning
US9463571B2 (en) 2013-11-01 2016-10-11 Brian Corporation Apparatus and methods for online training of robots
US9489623B1 (en) 2013-10-15 2016-11-08 Brain Corporation Apparatus and methods for backward propagation of errors in a spiking neuron network
US9533413B2 (en) 2014-03-13 2017-01-03 Brain Corporation Trainable modular robotic apparatus and methods
US9552546B1 (en) 2013-07-30 2017-01-24 Brain Corporation Apparatus and methods for efficacy balancing in a spiking neuron network
US9566710B2 (en) 2011-06-02 2017-02-14 Brain Corporation Apparatus and methods for operating robotic devices using selective state space training
US9579789B2 (en) 2013-09-27 2017-02-28 Brain Corporation Apparatus and methods for training of robotic control arbitration
US9579790B2 (en) 2014-09-17 2017-02-28 Brain Corporation Apparatus and methods for removal of learned behaviors in robots
US9597797B2 (en) 2013-11-01 2017-03-21 Brain Corporation Apparatus and methods for haptic training of robots
US9604359B1 (en) 2014-10-02 2017-03-28 Brain Corporation Apparatus and methods for training path navigation by robots
US9613308B2 (en) 2014-04-03 2017-04-04 Brain Corporation Spoofing remote control apparatus and methods
US9630317B2 (en) 2014-04-03 2017-04-25 Brain Corporation Learning apparatus and methods for control of robotic devices via spoofing
US9713982B2 (en) 2014-05-22 2017-07-25 Brain Corporation Apparatus and methods for robotic operation using video imagery
US9764468B2 (en) 2013-03-15 2017-09-19 Brain Corporation Adaptive predictor apparatus and methods
US9792546B2 (en) 2013-06-14 2017-10-17 Brain Corporation Hierarchical robotic controller apparatus and methods
US9821470B2 (en) 2014-09-17 2017-11-21 Brain Corporation Apparatus and methods for context determination using real time sensor data
US9840003B2 (en) 2015-06-24 2017-12-12 Brain Corporation Apparatus and methods for safe navigation of robotic devices
US9848112B2 (en) 2014-07-01 2017-12-19 Brain Corporation Optical detection apparatus and methods
US9849588B2 (en) 2014-09-17 2017-12-26 Brain Corporation Apparatus and methods for remotely controlling robotic devices
US9860077B2 (en) 2014-09-17 2018-01-02 Brain Corporation Home animation apparatus and methods
US9870617B2 (en) 2014-09-19 2018-01-16 Brain Corporation Apparatus and methods for saliency detection based on color occurrence analysis
US9881349B1 (en) 2014-10-24 2018-01-30 Gopro, Inc. Apparatus and methods for computerized object identification
US9939253B2 (en) 2014-05-22 2018-04-10 Brain Corporation Apparatus and methods for distance estimation using multiple image sensors
US9987743B2 (en) 2014-03-13 2018-06-05 Brain Corporation Trainable modular robotic apparatus and methods
US10057593B2 (en) 2014-07-08 2018-08-21 Brain Corporation Apparatus and methods for distance estimation using stereo imagery
US10194163B2 (en) 2014-05-22 2019-01-29 Brain Corporation Apparatus and methods for real time estimation of differential motion in live video
US10197664B2 (en) 2015-07-20 2019-02-05 Brain Corporation Apparatus and methods for detection of objects using broadband signals
US10210452B2 (en) 2011-09-21 2019-02-19 Qualcomm Incorporated High level neuromorphic network description apparatus and methods
US10295972B2 (en) 2016-04-29 2019-05-21 Brain Corporation Systems and methods to operate controllable devices with gestures and/or noises
US10376117B2 (en) 2015-02-26 2019-08-13 Brain Corporation Apparatus and methods for programming and training of robotic household appliances
US11831955B2 (en) 2010-07-12 2023-11-28 Time Warner Cable Enterprises Llc Apparatus and methods for content management and account linking across multiple content delivery networks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120047482A1 (en) * 2010-08-18 2012-02-23 Lioudmila Dyer Use of Structures/Statistics in Software Optimization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Справочник по теории автоматического управления. / Под ред. Красовского А.А. - М.: Наука, с. 492 - 495, рис. 10.5.1. *

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9311593B2 (en) 2010-03-26 2016-04-12 Brain Corporation Apparatus and methods for polychronous encoding and multiplexing in neuronal prosthetic devices
US8983216B2 (en) 2010-03-26 2015-03-17 Brain Corporation Invariant pulse latency coding systems and methods
US9405975B2 (en) 2010-03-26 2016-08-02 Brain Corporation Apparatus and methods for pulse-code invariant object recognition
US9122994B2 (en) 2010-03-26 2015-09-01 Brain Corporation Apparatus and methods for temporally proximate object recognition
US11831955B2 (en) 2010-07-12 2023-11-28 Time Warner Cable Enterprises Llc Apparatus and methods for content management and account linking across multiple content delivery networks
US9193075B1 (en) 2010-08-26 2015-11-24 Brain Corporation Apparatus and methods for object detection via optical flow cancellation
US9152915B1 (en) 2010-08-26 2015-10-06 Brain Corporation Apparatus and methods for encoding vector into pulse-code output
US9566710B2 (en) 2011-06-02 2017-02-14 Brain Corporation Apparatus and methods for operating robotic devices using selective state space training
US9412064B2 (en) 2011-08-17 2016-08-09 Qualcomm Technologies Inc. Event-based communication in spiking neuron networks communicating a neural activity payload with an efficacy update
US9165245B2 (en) 2011-09-21 2015-10-20 Qualcomm Technologies Inc. Apparatus and method for partial evaluation of synaptic updates based on system events
US9311596B2 (en) 2011-09-21 2016-04-12 Qualcomm Technologies Inc. Methods for memory management in parallel networks
US9156165B2 (en) 2011-09-21 2015-10-13 Brain Corporation Adaptive critic apparatus and methods
US9460387B2 (en) 2011-09-21 2016-10-04 Qualcomm Technologies Inc. Apparatus and methods for implementing event-based updates in neuron networks
US9092738B2 (en) 2011-09-21 2015-07-28 Qualcomm Technologies Inc. Apparatus and methods for event-triggered updates in parallel networks
US9213937B2 (en) 2011-09-21 2015-12-15 Brain Corporation Apparatus and methods for gating analog and spiking signals in artificial neural networks
US9104973B2 (en) 2011-09-21 2015-08-11 Qualcomm Technologies Inc. Elementary network description for neuromorphic systems with plurality of doublets wherein doublet events rules are executed in parallel
US9147156B2 (en) 2011-09-21 2015-09-29 Qualcomm Technologies Inc. Apparatus and methods for synaptic update in a pulse-coded network
US10210452B2 (en) 2011-09-21 2019-02-19 Qualcomm Incorporated High level neuromorphic network description apparatus and methods
US9117176B2 (en) 2011-09-21 2015-08-25 Qualcomm Technologies Inc. Round-trip engineering apparatus and methods for neural networks
US9129221B2 (en) 2012-05-07 2015-09-08 Brain Corporation Spiking neural network feedback apparatus and methods
US9224090B2 (en) 2012-05-07 2015-12-29 Brain Corporation Sensory input processing apparatus in a spiking neural network
US9146546B2 (en) 2012-06-04 2015-09-29 Brain Corporation Systems and apparatus for implementing task-specific learning using spiking neurons
US9104186B2 (en) 2012-06-04 2015-08-11 Brain Corporation Stochastic apparatus and methods for implementing generalized learning rules
US9098811B2 (en) 2012-06-04 2015-08-04 Brain Corporation Spiking neuron network apparatus and methods
US9015092B2 (en) 2012-06-04 2015-04-21 Brain Corporation Dynamically reconfigurable stochastic learning apparatus and methods
WO2013184688A1 (en) * 2012-06-04 2013-12-12 Brain Corporation Stochastic apparatus and methods for implementing generalized learning rules
US9014416B1 (en) 2012-06-29 2015-04-21 Brain Corporation Sensory processing apparatus and methods
US9412041B1 (en) 2012-06-29 2016-08-09 Brain Corporation Retinal apparatus and methods
US9256215B2 (en) 2012-07-27 2016-02-09 Brain Corporation Apparatus and methods for generalized state-dependent learning in spiking neuron networks
US9256823B2 (en) 2012-07-27 2016-02-09 Qualcomm Technologies Inc. Apparatus and methods for efficient updates in spiking neuron network
WO2014028855A1 (en) * 2012-08-17 2014-02-20 Brain Corporation Apparatus and methods for spiking neuron network learning
US9446515B1 (en) 2012-08-31 2016-09-20 Brain Corporation Apparatus and methods for controlling attention of a robot
US11867599B2 (en) 2012-08-31 2024-01-09 Gopro, Inc. Apparatus and methods for controlling attention of a robot
US11360003B2 (en) 2012-08-31 2022-06-14 Gopro, Inc. Apparatus and methods for controlling attention of a robot
US9186793B1 (en) 2012-08-31 2015-11-17 Brain Corporation Apparatus and methods for controlling attention of a robot
US10545074B2 (en) 2012-08-31 2020-01-28 Gopro, Inc. Apparatus and methods for controlling attention of a robot
US10213921B2 (en) 2012-08-31 2019-02-26 Gopro, Inc. Apparatus and methods for controlling attention of a robot
US9440352B2 (en) 2012-08-31 2016-09-13 Qualcomm Technologies Inc. Apparatus and methods for robotic learning
US9189730B1 (en) 2012-09-20 2015-11-17 Brain Corporation Modulated stochasticity spiking neuron network controller apparatus and methods
US8793205B1 (en) 2012-09-20 2014-07-29 Brain Corporation Robotic learning and evolution apparatus
US9047568B1 (en) 2012-09-20 2015-06-02 Brain Corporation Apparatus and methods for encoding of sensory data using artificial spiking neurons
US9367798B2 (en) 2012-09-20 2016-06-14 Brain Corporation Spiking neuron network adaptive control apparatus and methods
US9311594B1 (en) 2012-09-20 2016-04-12 Brain Corporation Spiking neuron network apparatus and methods for encoding of sensory data
US9082079B1 (en) 2012-10-22 2015-07-14 Brain Corporation Proportional-integral-derivative controller effecting expansion kernels comprising a plurality of spiking neurons associated with a plurality of receptive fields
US9218563B2 (en) 2012-10-25 2015-12-22 Brain Corporation Spiking neuron sensory processing apparatus and methods for saliency detection
US9111226B2 (en) 2012-10-25 2015-08-18 Brain Corporation Modulated plasticity apparatus and methods for spiking neuron network
US9183493B2 (en) 2012-10-25 2015-11-10 Brain Corporation Adaptive plasticity apparatus and methods for spiking neuron network
US9275326B2 (en) 2012-11-30 2016-03-01 Brain Corporation Rate stabilization through plasticity in spiking neuron network
US9123127B2 (en) 2012-12-10 2015-09-01 Brain Corporation Contrast enhancement spiking neuron network sensory processing apparatus and methods
US8990133B1 (en) 2012-12-20 2015-03-24 Brain Corporation Apparatus and methods for state-dependent learning in spiking neuron networks
US9195934B1 (en) 2013-01-31 2015-11-24 Brain Corporation Spiking neuron classifier apparatus and methods using conditionally independent subsets
US9070039B2 (en) 2013-02-01 2015-06-30 Brian Corporation Temporal winner takes all spiking neuron network sensory processing apparatus and methods
US9373038B2 (en) 2013-02-08 2016-06-21 Brain Corporation Apparatus and methods for temporal proximity detection
US11042775B1 (en) 2013-02-08 2021-06-22 Brain Corporation Apparatus and methods for temporal proximity detection
US8996177B2 (en) 2013-03-15 2015-03-31 Brain Corporation Robotic training apparatus and methods
US9764468B2 (en) 2013-03-15 2017-09-19 Brain Corporation Adaptive predictor apparatus and methods
US10155310B2 (en) 2013-03-15 2018-12-18 Brain Corporation Adaptive predictor apparatus and methods
US9008840B1 (en) 2013-04-19 2015-04-14 Brain Corporation Apparatus and methods for reinforcement-guided supervised learning
US9821457B1 (en) 2013-05-31 2017-11-21 Brain Corporation Adaptive robotic interface apparatus and methods
US9242372B2 (en) 2013-05-31 2016-01-26 Brain Corporation Adaptive robotic interface apparatus and methods
US9384443B2 (en) 2013-06-14 2016-07-05 Brain Corporation Robotic training apparatus and methods
US9950426B2 (en) 2013-06-14 2018-04-24 Brain Corporation Predictive robotic controller apparatus and methods
US9314924B1 (en) 2013-06-14 2016-04-19 Brain Corporation Predictive robotic controller apparatus and methods
US9792546B2 (en) 2013-06-14 2017-10-17 Brain Corporation Hierarchical robotic controller apparatus and methods
US9436909B2 (en) 2013-06-19 2016-09-06 Brain Corporation Increased dynamic range artificial neuron network apparatus and methods
US9239985B2 (en) 2013-06-19 2016-01-19 Brain Corporation Apparatus and methods for processing inputs in an artificial neuron network
US9552546B1 (en) 2013-07-30 2017-01-24 Brain Corporation Apparatus and methods for efficacy balancing in a spiking neuron network
US9579789B2 (en) 2013-09-27 2017-02-28 Brain Corporation Apparatus and methods for training of robotic control arbitration
US9296101B2 (en) 2013-09-27 2016-03-29 Brain Corporation Robotic control arbitration apparatus and methods
US9489623B1 (en) 2013-10-15 2016-11-08 Brain Corporation Apparatus and methods for backward propagation of errors in a spiking neuron network
US9597797B2 (en) 2013-11-01 2017-03-21 Brain Corporation Apparatus and methods for haptic training of robots
US9463571B2 (en) 2013-11-01 2016-10-11 Brian Corporation Apparatus and methods for online training of robots
US9844873B2 (en) 2013-11-01 2017-12-19 Brain Corporation Apparatus and methods for haptic training of robots
US9248569B2 (en) 2013-11-22 2016-02-02 Brain Corporation Discrepancy detection apparatus and methods for machine learning
RU2562362C2 (ru) * 2013-12-26 2015-09-10 Общество с ограниченной ответственностью "Объединённая Компания "Сибшахтострой" Система регулирования объекта с рециклом
US9789605B2 (en) 2014-02-03 2017-10-17 Brain Corporation Apparatus and methods for control of robot actions based on corrective user inputs
US9358685B2 (en) 2014-02-03 2016-06-07 Brain Corporation Apparatus and methods for control of robot actions based on corrective user inputs
US10322507B2 (en) 2014-02-03 2019-06-18 Brain Corporation Apparatus and methods for control of robot actions based on corrective user inputs
US10391628B2 (en) 2014-03-13 2019-08-27 Brain Corporation Trainable modular robotic apparatus and methods
US9533413B2 (en) 2014-03-13 2017-01-03 Brain Corporation Trainable modular robotic apparatus and methods
US9987743B2 (en) 2014-03-13 2018-06-05 Brain Corporation Trainable modular robotic apparatus and methods
US9862092B2 (en) 2014-03-13 2018-01-09 Brain Corporation Interface for use with trainable modular robotic apparatus
US10166675B2 (en) 2014-03-13 2019-01-01 Brain Corporation Trainable modular robotic apparatus
US9364950B2 (en) 2014-03-13 2016-06-14 Brain Corporation Trainable modular robotic methods
RU2542910C1 (ru) * 2014-03-19 2015-02-27 Общество с ограниченной ответственностью "Объединённая Компания "Сибшахтострой" Система регулирования объекта с рециклом
US9630317B2 (en) 2014-04-03 2017-04-25 Brain Corporation Learning apparatus and methods for control of robotic devices via spoofing
US9613308B2 (en) 2014-04-03 2017-04-04 Brain Corporation Spoofing remote control apparatus and methods
US9346167B2 (en) 2014-04-29 2016-05-24 Brain Corporation Trainable convolutional network apparatus and methods for operating a robotic vehicle
US9713982B2 (en) 2014-05-22 2017-07-25 Brain Corporation Apparatus and methods for robotic operation using video imagery
US9939253B2 (en) 2014-05-22 2018-04-10 Brain Corporation Apparatus and methods for distance estimation using multiple image sensors
US10194163B2 (en) 2014-05-22 2019-01-29 Brain Corporation Apparatus and methods for real time estimation of differential motion in live video
US9848112B2 (en) 2014-07-01 2017-12-19 Brain Corporation Optical detection apparatus and methods
US10057593B2 (en) 2014-07-08 2018-08-21 Brain Corporation Apparatus and methods for distance estimation using stereo imagery
US9860077B2 (en) 2014-09-17 2018-01-02 Brain Corporation Home animation apparatus and methods
US9849588B2 (en) 2014-09-17 2017-12-26 Brain Corporation Apparatus and methods for remotely controlling robotic devices
US9821470B2 (en) 2014-09-17 2017-11-21 Brain Corporation Apparatus and methods for context determination using real time sensor data
US9579790B2 (en) 2014-09-17 2017-02-28 Brain Corporation Apparatus and methods for removal of learned behaviors in robots
US9870617B2 (en) 2014-09-19 2018-01-16 Brain Corporation Apparatus and methods for saliency detection based on color occurrence analysis
US10055850B2 (en) 2014-09-19 2018-08-21 Brain Corporation Salient features tracking apparatus and methods using visual initialization
US10268919B1 (en) 2014-09-19 2019-04-23 Brain Corporation Methods and apparatus for tracking objects using saliency
US10032280B2 (en) 2014-09-19 2018-07-24 Brain Corporation Apparatus and methods for tracking salient features
US9902062B2 (en) 2014-10-02 2018-02-27 Brain Corporation Apparatus and methods for training path navigation by robots
US10105841B1 (en) 2014-10-02 2018-10-23 Brain Corporation Apparatus and methods for programming and training of robotic devices
US10131052B1 (en) 2014-10-02 2018-11-20 Brain Corporation Persistent predictor apparatus and methods for task switching
US9687984B2 (en) 2014-10-02 2017-06-27 Brain Corporation Apparatus and methods for training of robots
US9604359B1 (en) 2014-10-02 2017-03-28 Brain Corporation Apparatus and methods for training path navigation by robots
US9630318B2 (en) 2014-10-02 2017-04-25 Brain Corporation Feature detection apparatus and methods for training of robotic navigation
US11562458B2 (en) 2014-10-24 2023-01-24 Gopro, Inc. Autonomous vehicle control method, system, and medium
US9881349B1 (en) 2014-10-24 2018-01-30 Gopro, Inc. Apparatus and methods for computerized object identification
US10580102B1 (en) 2014-10-24 2020-03-03 Gopro, Inc. Apparatus and methods for computerized object identification
US9426946B2 (en) 2014-12-02 2016-08-30 Brain Corporation Computerized learning landscaping apparatus and methods
US10376117B2 (en) 2015-02-26 2019-08-13 Brain Corporation Apparatus and methods for programming and training of robotic household appliances
US10807230B2 (en) 2015-06-24 2020-10-20 Brain Corporation Bistatic object detection apparatus and methods
US9840003B2 (en) 2015-06-24 2017-12-12 Brain Corporation Apparatus and methods for safe navigation of robotic devices
US9873196B2 (en) 2015-06-24 2018-01-23 Brain Corporation Bistatic object detection apparatus and methods
US10197664B2 (en) 2015-07-20 2019-02-05 Brain Corporation Apparatus and methods for detection of objects using broadband signals
US10295972B2 (en) 2016-04-29 2019-05-21 Brain Corporation Systems and methods to operate controllable devices with gestures and/or noises

Also Published As

Publication number Publication date
RU94033714A (ru) 1996-07-20

Similar Documents

Publication Publication Date Title
RU2108612C1 (ru) Адаптивная система управления с идентификатором и неявной эталонной моделью
Gunckel et al. A general solution for linear, sampled-data control
Cai et al. A sufficiently smooth projection operator
Vassiliadis Parametric adaptive control and parameter identification of low-dimensional chaotic systems
Liu et al. Non-asymptotic fractional order differentiator for a class of fractional order linear systems
Poubelle et al. Fake algebraic Riccati techniques and stability
US5404289A (en) Controller apparatus having improved transient response speed by means of self-tuning variable set point weighting
GB2212950A (en) Industrial control systems
Sun et al. Robust stabilization and robust performance using model reference control and modeling error compensation
Andrievsky et al. Disturbance observers: methods and applications. I. Methods
Torrico et al. Tuning of a dead-time compensator focusing on industrial processes
Liu Predictive control of high-order fully actuated nonlinear systems with time-varying delays
Queiroz et al. Modular variable structure adaptive backstepping controller: Design and stability analysis
Barbot et al. Discrete-time approximated linearization of SISO systems under output feedback
Shen et al. A novel diffusive representation of fractional calculus to stability and stabilisation of noncommensurate fractional-order nonlinear systems
Fulwani et al. Design of sliding mode controller with actuator saturation
Narendra et al. An adaptive procedure for controlling undefined linear processes
RU2191419C1 (ru) Адаптивная система управления с идентификатором и эталонной моделью
Missaghie et al. Sensitivity reducing observers for optimal feedback control
Lu et al. Discrete-time model reference adaptive control for nonminimum phase systems with disturbances
Chen et al. Robust stabilization in an observer-controller feedback system under nonlinear time-varying perturbations or unmodeled dynamics
JPS5990103A (ja) オ−トチユ−ナ
Åström et al. The self-tuning regulators revisited
Glyzin et al. Diffusion chaos in the reaction–diffusion boundary problem in the dumbbell domain
Hughes Self-tuning and adaptive control-a reviewofsomebasictechniques