RU2093862C1 - Индуктивный способ определения вариаций электросопротивления геологической среды - Google Patents

Индуктивный способ определения вариаций электросопротивления геологической среды Download PDF

Info

Publication number
RU2093862C1
RU2093862C1 RU95103366A RU95103366A RU2093862C1 RU 2093862 C1 RU2093862 C1 RU 2093862C1 RU 95103366 A RU95103366 A RU 95103366A RU 95103366 A RU95103366 A RU 95103366A RU 2093862 C1 RU2093862 C1 RU 2093862C1
Authority
RU
Russia
Prior art keywords
compensation
frame
receiving frame
field
receiving
Prior art date
Application number
RU95103366A
Other languages
English (en)
Other versions
RU95103366A (ru
Inventor
В.С. Титлинов
Р.В. Улитин
А.И. Человечков
Original Assignee
Институт геофизики Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт геофизики Уральского отделения РАН filed Critical Институт геофизики Уральского отделения РАН
Priority to RU95103366A priority Critical patent/RU2093862C1/ru
Publication of RU95103366A publication Critical patent/RU95103366A/ru
Application granted granted Critical
Publication of RU2093862C1 publication Critical patent/RU2093862C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Использование: при электромагнитных методах исследования земли, для изучения вариаций электросопротивления земли при неэлектропроводном поверхностном слое (мерзлота, скальный грунт и т.п.). Сущность изобретения: после установки приемной рамки в положение, соответствующее регистрации малой оси эллипса поляризации, дополнительно используют соосную с приемной компенсирующую рамку, ток с которой формируют пропорциональным вертикальной составляющей магнитного поля, изменяют силу компенсирующего тока до величины, при которой достигается максимальная компенсация малой оси эллипса поляризации, и по величине изменения компенсирующего тока определяют вариацию электросопротивления геологической среды. 2 ил.

Description

Предполагаемое изобретение относится к наземным электромагнитным методам исследования вещества и структур верхней части земной коры в диапазоне частот 30-1000 Гц. Оно может быть использовано при изучении процессов современной геодинамики, при которых изменяется во времени электросопротивление горных массивов. Область преимущественного применения предлагаемого технического решения наблюдение и изучение изменений электросопротивления геологической среды с периодом 1-15 суток в особенности на территориях, закрытых ледниками, многолетнемерзлыми, скальными и сыпучими грунтами.
Известен электромагнитный способ определения изменения во времени электрического сопротивления горных массивов, основанный на пропускании электрического тока между двумя заземлениями и измерении разности потенциалов между двумя заземлениями приемными электродами [1]
Этот способ имеет существенный недостаток, заключающий в сложности создания хороших заземлений в условиях скальных, мерзлых и сыпучих грунтов. Поэтому при изучении вариации электросопротивления геологической среды электрометрический способ применяют лишь в условиях стационарных геофизических обсерваторий. Указанный недостаток преодолевается с применением индуктивного способа возбуждения и приема геосигнала.
Известен индуктивный способ определения электросопротивления ρк геологической среды с возбуждающим вертикальным магнитным диполем и определением при малых параметрах поля малой оси эллипса поляризации магнитного поля, в котором измеряют при звуковых частотах напряжение на выходе приемной рамки при установке ее в вертикальной плоскости по минимуму выходного сигнала [2]
Достоинство этого способа возможность выполнять измерения без перемещения возбуждающего диполя в любом азимуте от него, в том числе по двум взаимно перпендикулярным радиусам-лучам, что дает возможность характеризовать анизотропию геологической среды в горизонтальной плоскости.
Недостаток этого способа низкая точность определения ρк вследствие его малой чувствительности к изменению электросопротивления исследуемой среды. Известно, что напряженность магнитного поля, соответствующего малой оси эллипса поляризации, в лучшем случае пропорциональна 1/ρк. Так как погрешность измерения малой оси эллипса в способе [2] обычно превосходит 3-5% то с такой же погрешностью определяется и ρк. Указанная точность приемлема в решении задач, обычных для геоэлектроразведки, где данный способ и применяется. Но такая точность (3-5%) совершенно недостаточна для наблюдений вариаций ρк во времени, поскольку такие изменения могут быть значительно меньше 1% Более высокая чувствительность и точность определения ρк достигаются с применением компенсационных способов измерений, в которых большая часть исследуемого поля, пропорционального 1/ ρк, компенсируется полем, пропорциональным первичному полю источника, и измеряется лишь нескомпенсированный остаток поля.
Известен компенсационный индуктивный способ определения электросопротивления геологической среды, в котором выходной сигнал приемной рамки компенсируется опорным напряжением до величины, меньшей порога чувствительности применяемого измерителя напряжений, выполняющего функции индикатора нуля. В компенсационном способе, принятом нами за прототип [3] опорное напряжение снимается с вторичной обмотки трансформатора, первичная обмотка которого включена последовательно в цепь генераторной рамки, и вместе с измеряемым напряжением подается на компенсационный мост, содержащий переменный аттенюатор и фазовращатель; по показанию этих устройств в момент полной компенсации, определяемой по нуль-индикатору, находится электросопротивление ρк изучаемой среды.
Недостаток этого компенсационного способа связан с тем, что для передачи опорного напряжения от трансформатора к компенсационному мосту используется проводная линия связи. Ее распределенная электроемкость, емкость относительно земли и потери на излучение могут создавать трудно контролируемые помехи, снижающие точность измерений. Поэтому способ-прототип применяется лишь в варианте с соцентричными, свободно лежащими на земной поверхности генераторной и приемной рамками либо при аэроэлектроразведке в односамолетном варианте, т.к. в обоих вариантах можно обойтись линией связи наименьшей длины (несколько метров) и помехами от нее можно пренебречь.
Аэроэлектроразведочная система из-за навигационных ошибок неприменима для высокоточных наблюдений за изменением ρк земли во времени; наземная же компенсационная система с совмещенными (соцентричными) приемно-генераторными рамками, обладая целым рядом достоинств, имеет и существенный недостаток. Реальные изменения электросопротивления могут происходить, например, по горизонтальным осям тензора электропроводности. Для наблюдения таких изменений ρк необходима система с разнесенными по земной поверхности источником и приемником поля.
Цель предполагаемого изобретения повышение чувствительности и точности измерений временных вариаций электросопротивления геологической среды с использованием разнесенных по поверхности земли горизонтальной генераторной и вертикальной приемных рамок.
Поставленная цель достигается тем, что в способе определения электросопротивления геологической среды, основанном на возбуждении в земле электрических токов вертикальным гармоническим магнитным диполем и измерении малой оси эллипса поляризации магнитного поля, дополнительно используется соосная с приемной рамкой компенсационная рамка, ток в которой формируют пропорциональным вертикальной составляющей магнитного поля, изменяют силу компенсирующего тока до полной компенсации малой оси эллипса поляризации и по величине приращения компенсирующего тока во времени определяют вариацию электросопротивления геологической среды.
На фиг. 1 приведена схема измерительной установки, реализующей предлагаемый способ. Установка (фиг. 1) содержит горизонтальную генераторную рамку вертикальный магнитный диполь М; приемную рамку 1, находящуюся в положении, близком к вертикальному; компенсационную рамку, имеющую горизонтальное звено 2, соцентричное с приемной рамкой, и звено 3, соосное с приемной рамкой (звено 3 практически выполнено из привода, намотанного по периметру приемной рамки, что обеспечивает сильное и жесткое потокосцепление между ними); калиброванный резистор 4; выключатель 5, разрывающий цепь компенсационной рамки отключением звена 2 от звена 3; переключатель 6 полярности соединения звеньев 2 и 3 (переключает направление компенсирующего тока в звене 3); нуль-индикатор 7 с регулируемой чувствительностью. Приемная рамка снабжена также штативом (на фиг. 1 не показан), удерживающим ее в положении, близком к вертикальному, и снабженным поворотным устройством для плавного изменения угла наклона в вертикальной плоскости.
Сущность реализуемого схемой фиг.1 компенсационного способа состоит в следующем. В горизонтальном звене 2 компенсационной рамки под действием вертикального магнитного поля Hz возникает электроток, который, протекая по звену 3, создает в центре приемной рамки добавочное магнитное поле Hк, направленное противоположно исследуемому полю
Figure 00000002
. Изменяя резистором 4 величину компенсирующего тока, можно по минимуму выходного сигнала приемной рамки добиться равенства синфазных составляющих полей Hв и Hк. Оставшуюся часть поля Hв, находящуюся в квадратуре с Hк, компенсируют частью поля Hz, непосредственно воздействующей на приемную рамку и численно равной ΔHz = Hzsinα где α угол между вертикальной осью Z и плоскостью приемной рамки.
Работа по предлагаемому способу выполняется в следующей последовательности.
1. Вначале переключателем 5 разрывают цепь компенсационной рамки и на выбранной рабочей частоте, изменяя наклон приемной рамки, устанавливают ее в положение минимума выходного сигнала (Uвых).
2. Действуя переключателями 5 и 6, подключают звено 2 к звену 3 компенсационной рамки в такой последовательности, чтобы Uвых уменьшилось.
3. Изменяя величину резистора 4 и увеличивая чувствительность индикатора 7, добиваются нового, более глубокого, минимума Uвых.
4. Остаточный сигнал компенсируют изменением наклона приемной рамки.
5. Операции 3 и 4 повторяют до тех пор, пока при нулевых показаниях индикатора 7 не будет исчерпан весь запас его чувствительности.
При достижении полной компенсации снимают показания калиброванного резистора 4 и их считают мерой электросопротивления исследуемой геологической среды. Объясняется это следующим образом. При достижении максимальной компенсации напряжение на выходе приемной рамки
Figure 00000003
представимо в виде
Figure 00000004
,
где
Figure 00000005
напряжение в приемной рамке, возникающее под действием поля Hв;
Figure 00000006
напряжение в приемной рамке, возникающее под действием вертикальной составляющей поля генераторного диполя;
Figure 00000007
напряжение в приемной рамке, возникающее за счет взаимоиндукции приемной рамки и звена 3 компенсационной рамки.
Перечисленные напряжения, как и поля Hв и Hz, в общем случае являются комплексными величинами, но в области малых параметров поля (при низких частотах) они выражаются в виде
Figure 00000008

где μo = 4π•10-7 Гн/м магнитная постоянная;
ω = 2πf круговая частота поля;
r расстояние между центрами генераторной и приемной рамок;
Sn произведение площади на число витков приемной рамки;
S3 площадь горизонтального звена 2 компенсационной рамки;
M(1-2) коэффициент взаимной индукции приемной рамки и звена компенсационной рамки;
R числовое значение сопротивления резистора 4;
Lк полная индуктивность компенсирующей рамки;
Mи магнитный момент генераторной рамки.
В выражениях (2) (4) учтено, что при малых параметрах напряженность поля малой оси численно равна горизонтальной составляющей поля Hr, а вертикальная составляющая Hz равна первичному полю генераторного диполя, т.е.
Figure 00000009
.
По условию компенсации (1), приравнивая реальные части выражения (2) и (4), получаем окончательно
Figure 00000010

Из выражения (5) видно, что величина сопротивления R переменного резистора 4 действительно является мерой электросопротивления исследуемой среды. Из формулы (5) следует также, что, подбирая площадь S3 горизонтальной секции 2 компенсационной рамки и меняя коэффициент M(1-2) взаимной индукции подбором числа витков компенсирующей секции 3, можно добиться, чтобы на избранной рабочей частоте числовое значение R (в омах) было равно числу ρк (в омметрах), определенному в том же самом пункте по измерениям малой оси эллипса поляризации обычным способом или другим аналогичным методом. Тогда изменение R во времени будет и численно равно изменению ρк.
Повышение чувствительности к изменению ρ в предлагаемом способе достигается за счет того, при выполнении условия (1) приращение сигнала раскомпенсации Deo, вызываемое приращением Δρ, значительно больше, чем приращение поля Hr, вызванное тем же самым приращением Dr. Так, при экспериментальной проверке способа изменение rк(R) на 1% создавало изменение εo более чем на 10% и более. При непосредственном же измерении малой оси приращения Δ Hr примерно равно 1/Δρ.
Достоинством предлагаемого способа является также и то, что при сохранении неизменной во времени геометрии приемно-генераторной установки точность определения Dr зависит только от точности калибровки сопротивления R, регулирующего величину компенсирующего тока. Повышенная точность достигается при применении прецизионных магазинов сопротивлений.
Проверка предлагаемого способа выполнена в районе г. Красноуральска Свердловской области при режимных наблюдениях rк в июле-августе 1983 г. Источником поля была проволочная петля размером 250х250 м, питаемая переменным током в диапазоне частот 30-1000 Гц от генгруппы электроразведочной станции ЭРС-67. Пункт измерения находился на расстоянии 500 м от центра генераторной петли в специальном шурфе, защищенном от действия ветра, солнца и осадков. Использовали приемную рамку Hr и измеритель сигналов аппаратуры частотного зондирования АЧЗ-78. Горизонтальное звено компенсационной рамки имело размеры 50х50 м; в качестве резистора R использовался магазин сопротивлений типа Р-33.
Наблюдения выполняли в интервале 21-22 ч местного времени ежедневно с 7 июля по 12 августа. Результаты наблюдений приведены на фиг. 2. На ней индексами 1 3 обозначены:
1 средние значения [R] [ρк] в течение ежедневного наблюдательного часа;
2 осредненный график изменения ρк за весь период наблюдения с 7 июля по 12 августа;
3 график изменения силы тяжести Δg на меридиане нашего эксперимента в 21 ч местного времени по данным обсерватории "Обнинск".
Из фиг.2 видно, что по большинству измерений ежесуточная величина ρк меняется в пределах 1420-1470 Ом. В трех случаях 20, 28 июля и 10 августа - прошли сильные грозовые дожди, чем, вероятно, и объясняются резкие глубокие минимумы ρк в эти дни. Если исключить эти аномальные точки, то, как видно по графику 2, хорошо выделяется гармоническая составляющая вариации ρк с периодом, равным 14-15 сут. Максимальная относительная амплитуда этой вариации составляет
Figure 00000011
.
Из сравнения графиков 2 и 3 на фиг. 2 видно, что гармоническая составляющая вариации ρк коррелирует с аналогичным изменением силы тяжести в том же интервале и с тем же периодом Т 15 сут. Это является косвенным подтверждением правильности определения ρк по предлагаемому способу, а с другой стороны, позволяет объяснить гармоническую составляющую вариации ρк периодическими деформациями земной коры под действием приливных сил Луны и Солнца.
Отметим, что параллельно с опробованием предлагаемого способа в том же самом пункте и с той же самой аппаратурой АЧЗ-78 выполнялись определения ρк путем измерения модуля вертикального импеданса. В пределах достигнутой точности измерения импеданса, равной 1-1,5% гармонических вариаций не зарегистрировано. Таким образом, предлагаемый компенсационный способ определения вариации ρк является чувствительным по сравнению с импедансным.

Claims (1)

  1. Индуктивный способ определения вариаций электросопротивления геологической среды, основанный на возбуждении в земле электрических токов вертикальным гармоническим магнитным диполем и измерении малой оси эллипса поляризации магнитного поля, отличающийся тем, что в нем дополнительно используется соосная с приемной рамкой компенсационная рамка, ток в которой формируют пропорциональным вертикальной составляющей магнитного поля, изменяют силу компенсирующего тока до полной компенсации малой оси эллипса поляризации и по величине приращения компенсирующего тока во времени определяют вариацию электросопротивления геологической среды.
RU95103366A 1995-03-06 1995-03-06 Индуктивный способ определения вариаций электросопротивления геологической среды RU2093862C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95103366A RU2093862C1 (ru) 1995-03-06 1995-03-06 Индуктивный способ определения вариаций электросопротивления геологической среды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95103366A RU2093862C1 (ru) 1995-03-06 1995-03-06 Индуктивный способ определения вариаций электросопротивления геологической среды

Publications (2)

Publication Number Publication Date
RU95103366A RU95103366A (ru) 1997-01-10
RU2093862C1 true RU2093862C1 (ru) 1997-10-20

Family

ID=20165469

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95103366A RU2093862C1 (ru) 1995-03-06 1995-03-06 Индуктивный способ определения вариаций электросопротивления геологической среды

Country Status (1)

Country Link
RU (1) RU2093862C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544260C2 (ru) * 2012-05-04 2015-03-20 Федеральное государственное бюджетное учреждение науки Институт геофизики им. Ю.П. Булашевича Уральского отделения Российской академии наук Способ геоэлектроразведки

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Барсуков О.М. Явление изменения удельного электрического сопротивления горных массивов перед местным землетрясением, открытие. Диплом N 216, заявка ОТ-8997 от 26 мая 1975 г. - ОИПОТЗ, 1979, N 43, с.3. 2. Авторское свидетельство CCCР N 133537, кл. G 01 J 3/10, 1960. 3. Бездверный А.Г. Частотное зондирование по способу компенсации при поисках подземных вод в слоистых средах, теория и практика электромагнитных методов исследования вещества и структур Земли. - Свердловск, УНЦ АН СССР, 1985, с.49-55. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544260C2 (ru) * 2012-05-04 2015-03-20 Федеральное государственное бюджетное учреждение науки Институт геофизики им. Ю.П. Булашевича Уральского отделения Российской академии наук Способ геоэлектроразведки

Also Published As

Publication number Publication date
RU95103366A (ru) 1997-01-10

Similar Documents

Publication Publication Date Title
US6534985B2 (en) Modular electromagnetic sensing apparatus having improved calibration
Spies et al. Electromagnetic sounding
Mogi et al. Development of grounded electrical source airborne transient EM (GREATEM)
US4070612A (en) Method and apparatus for measuring terrain resistivity
US8400159B2 (en) Casing correction in non-magnetic casing by the measurement of the impedance of a transmitter or receiver
US20040140811A1 (en) Method and apparatus for measuring characteristics of geological formations
CN101382599B (zh) 一种确定储层孔隙各向异性的瞬变电磁方法
US5606260A (en) Microdevice for measuring the electromagnetic characteristics of a medium including a shield
US7492168B2 (en) Systems and methods for resistivity measurement
CN108802832B (zh) 一种用于大地电磁探测的磁传感器
Poliakov et al. The range of induction-coil magnetic field sensors for geophysical explorations
US6710599B2 (en) Apparatus for measuring terrain conductivity
Benech et al. Optimum depth of investigation and conductivity response rejection of the different electromagnetic devices measuring apparent magnetic susceptibility
Cattach et al. Sub-Audio Magnetics (SAM)—A High Resolution Technique for Simultaneously Mapping Electrical and Magnetic Properties1
Austin et al. A Compact, Low‐Cost Circuit for Reading Four‐Electrode Salinity Sensors
RU2093862C1 (ru) Индуктивный способ определения вариаций электросопротивления геологической среды
US2730673A (en) Magnetometer
GB2148012A (en) Induced magnetic field borehole surveying method and probe
RU2152058C1 (ru) Способ индукционного частотного зондирования
RU2059270C1 (ru) Способ определения фазы геоэлектрического импеданса
RU2158940C2 (ru) Устройство для геоэлектроразведки
RU2156986C2 (ru) Индуктивный способ электромагнитного мониторинга процесса оттайки грунта
RU2230341C1 (ru) Способ индукционного вертикального зондирования
SU840781A1 (ru) Способ диэлектрического каротажа
SU1393902A1 (ru) Пластовый индукционный наклономер