RU2042609C1 - Способ переработки щелочного сульфат-тиосульфатного раствора - Google Patents

Способ переработки щелочного сульфат-тиосульфатного раствора Download PDF

Info

Publication number
RU2042609C1
RU2042609C1 SU5044934A RU2042609C1 RU 2042609 C1 RU2042609 C1 RU 2042609C1 SU 5044934 A SU5044934 A SU 5044934A RU 2042609 C1 RU2042609 C1 RU 2042609C1
Authority
RU
Russia
Prior art keywords
stage
thiosulfate
solution
sodium
concentration
Prior art date
Application number
Other languages
English (en)
Inventor
Б.П. Середа
Б.А. Пахомов
Л.В. Коминова
Б.А. Попов
Т.Б. Голубева
С.В. Смирнов
Н.Ф. Селиверстов
А.И. Исаев
В.Ф. Окатьев
В.Э. Горяйнов
Original Assignee
Первоуральское производственное объединение "Хромпик"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Первоуральское производственное объединение "Хромпик" filed Critical Первоуральское производственное объединение "Хромпик"
Priority to SU5044934 priority Critical patent/RU2042609C1/ru
Application granted granted Critical
Publication of RU2042609C1 publication Critical patent/RU2042609C1/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paper (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Изобретение относится к переработке щелочных сульфатно-тиосульфатных растворов, образующихся при обезвреживании хром (VI)-содержащих хроматных шламов заводов хромовых соединений, с получением сульфата и тиосульфата натрия по безотходной технологии. Изобретение позволяет упростить процесс, улучшить условия труда и получить в качестве товарных продуктов сульфат и тиосульфат натрия путем сернокислотной обработки щелочных сульфатно-тиосульфатных растворов и последующего двухстадийного концентрирования их с отделением сульфата натрия на каждой стадии, причем сульфат натрия после второй стадии возвращают в начало процесса, а маточный раствор направляют на кристаллизацию тиосульфата натрия. Серно-кислотная обработка исходного раствора осуществляется введением серной кислоты со средней скоростью 1-2,2 л H2SO4 / кг NaOH ч, предпочтительнее 1,3-1,7 до конечного значения pH среды 6,5-8,5, а концентрирование нейтрализованного раствора на первой стадии ведется до содержания тиосульфата натрия 12,5-14,5, предпочтительнее 13-14. 1 з.п.ф-лы.

Description

Изобретение относится к переработке растворов, образующихся в производстве хромовых соединений, в частности при обезвреживании хроматных шламов крупнотоннажных отходов производства хромата натрия, и может быть использовано на заводах хромовых соединений.
Образующиеся в процессе обезвреживания хроматного шлама щелочные сульфатно-тиосульфатные растворы в зависимости от природы и количества восстановителя содержат (кг/м3): 40-95 Na3SO4; 40-60 Na2S2O; 40-60 NaOH и 3-3,5 NaCO3. Сущность процесса обезвреживания хроматных шламов заключается в переводе водорастворимых соединений шестивалентного хрома шламов в водонерастворимые соединения трехвалентного хрома путем восстановления хрома (VI) серосодержащими соединениями (сера, сульфид, сульфит натрия), продуктами окисления которых являются тиосульфат натрия и каустическая щелочь.
В качестве серосодержащих восстановителей используют отход производства сернистого натрия содержащий, кроме восстановителей, до 26-30% Na2SO4, который переходит в раствор.
Известен ряд способов переработки растворов [1-4] содержащих, кроме тиосульфата и сульфата натрия, другие примесные соединения, причем содержание как примесных, так и основных соединений сильно колеблется: например, перерабатываемые растворы могут отличаться значительным (более, чем в 2-5 раз) содержанием тиосульфата натрия и меньшим свободной щелочи, а также наличием сульфидов и сульфитов; известен способ, предусматривающий переработку раствора в основном тиосульфатом натрия с небольшой примесью сульфата и сульфита.
Раствор после отделения обезвреженного шлама при 95-98оС обрабатывают серной кислотой до рН≈3. Кроме реакции разложения тиосульфата натрия:
3Na2S2O3 + H2SO4
3NaSO4 + 4S + H2O (1) и нейтрализации свободной щелочи (каустической и кальцинированной):
2NaOH + H2SO4 Na2SO4 + 2H2O (2)
Na2CO3 + H2SO4
Na2SO4 + CO2 + H2O, (3) протекают, особенно в условиях локального перекисления, реакции разложения тиосульфата натрия с образованием диоксида серы и сероводорода:
Na2S2O3 + H2SO4 S + SO2 + Na2SO4 + H2O (4)
2Na2S2O3 + H2SO4
H2S + Na2S3O6 + Na2SO4 (5) Суспензию серы в растворе сульфата натрия подщелачивают пульпой обезвреженого шлама, доводя рН среды ее до 9, а затем отделяют осадок шлама и серы, который направляют на обезвреживание исходного хроматного шлама, полученный очищенный раствор сульфата натрия состава (кг/м3): 140-25- Na2SO4 м 3-5 Na2S2O3; плотность 1135-1210 кг/м3 концентрируют до содержания 53-55 мас. Na2SO4 и 0,6-2 мас. Na2S2O3. Получившуюся суспензию сульфата натрия с Ж:Т 1,8-2,0 фильтруют. Фильтрат возвращают на стадию серийно-кислотного разложения, а кристаллы сульфата натрия сушат и выдают как товарный продукт.
К недостаткам способа можно отнести ухудшение условий труда и усложнение технологической схемы переработки растворов, обусловленные образованием диоксида серы и сероводорода и необходимостью их улавливания, а также введение стадии подщелачивания серы. Кроме того, дефицитный тиосульфат натрия переводится в менее ценный и менее дефицитный сульфат натрия.
Известен способ переработки щелочных тиосульфатно-сульфатных растворов, являющихся отходом производства оксида хрома (III) и содержащих, кроме того, сульфид (полисульфиды), сульфит и сульфат натрия (кг/м3): 13044230 Na2S2O3; до 12 Na2SO3; до 8 полисульфидов и сульфидов, в пересчете на Na2S; 30-80 Na2SO4 и 10-24 NaOH. Способ включает следующие стадии:
обработку раствора серной кислотой до рН≈6 для нейтрализации свободной щелочи и разрушения сульфидов:
Na2S + H2SO4 H2S + Na2SO4 (6)
Na2S2 + H2SO4 S + H2S + Na2SO4 (7)
В результате протекания реакций (2, 6, 7) и частично (1, 4, 5) молярное отношение Na2SO4 Na2S2O3 в обрабатываемом растворе изменяется в пределах 0,37-1,3, составляя в среднем ≈ 0,6;
отделение выпавшей серы путем отстаивания или фильтрации раствора;
обработку раствора кальцинированной содой;
последующее концентрирование раствора до 750-800 кг/м3 Na2S2O4. Выпадающий при этом в осадок сульфат натрия отделяют отстаиванием при 60оС и сбрасывают в отвал, а раствор тиосульфата натрия подвергают кристаллизации при 25-30оС, получая товарный продукт пентагидрат тиосульфата натрия марки "фото".
К недостаткам этого способа следует также отнести образование в процессе переработки сероводорода, причем в больших количествах, усложнение процесса введением стадий улавливания сероводорода, отделения выпадающей серы и нейтрализации раствора с одновременным расходованием дефицитной кальцинированной соды. Кроме того, способ дает отходы.
Предлагаемое изобретение обеспечивает упрощение процесса, улучшение условий труда, получение в качестве целевого продукта сульфата и тиосульфата натрия по безотходному способу.
Сущность предлагаемого способа переработки щелочных сульфатно-тиосульфатных растворов состоит в том, что обработку раствора серной кислотой ведут до конечного значения рН среды 7-8,5, вводя ее со скоростью 1-2,2 л H2SO4/кг NaOH. ч, предпочтительнее 1,3-1,7 л/кг NaOH.ч, а раствор после обработки подвергают двухстадийному концентрированию с отделением фильтрацией сульфата натрия на каждой стадии, причем концентрирование на первой стадии ведут до содержания тиосульфата натрия 12,5-14,5 мас. кристаллы сульфата натрия после первой стадии концентрирования выдают как товарный продукт, а после второй возвращают в начало процесса, маточный раствор после второй стадии концентрирования и отделения сульфата натрия направляют на кристаллизацию продукционного тиосульфата натрия Na2S2O3 . 5H2O.
Таким образом, существенными признаками предполагаемого изобретения являются:
конечное значение рН среды обрабатываемого серной кислотой сульфатно-тиосульфатного раствора;
скорость введения серной кислоты до предлагаемого интервала рН;
двухстадийное концентрирование сульфатно-тиосульфатного раствора с получением в качестве целевого продукта кристаллических сульфата на первой и тиосульфата натрия на второй стадиях концентрирования;
концентрация тиосульфата натрия в суспензии после первой стадии концентрирования.
Предлагаемый способ реализуется следующим образом.
Щелочные сульфатно-тиосульфатные растворы со стадии фильтрации обезвреженного шлама для нейтрализации свободной щелочи (каустической и карбонатной) подают на серно-кислотную обработку, которая осуществляется при 40-60оС (близкой к температуре поступающего раствора) серной кислотой, вводимой со скоростью 1-2,2 л H2SO4/кг NaOH . ч, предпочтительнее 1,3-1,7 л H2SO4/кг NaOH . ч. Конечную величину рН поддерживают в пределах 7-8,5.
Выбор параметров процесса подтверждается данными реализации предлагаемого изобретения в лабораторных условиях, приведенными в примере 1.
Таким образом, при повышении скорости подачи серной кислоты выше верхнего предела (понижение ниже нижнего нецелесообразно из-за непроизводительного увеличения продолжительности процесса) и понижение величины рН ниже нижнего (повышение выше верхнего не будет обеспечивать полноты нейтрализации свободной щелочи) приводит к разложению тиосульфата натрия и загрязнению растворов выделяющейся серой. При предлагаемых параметрах процесса исключается разложение тиосульфата натрия и соответственно обеспечивается получение чистых растворов. Кроме того, пределы рН способствуют устойчивости тиосульфата натрия при последующем концентрировании растворов.
По достижении заданного уровня рН сульфатно-тиосульфатные растворы поступают в смеситель, где смешиваются с суспензией сульфата натрия после второй стадии концентрирования и фильтрации кристаллов сульфата натрия. Полученный раствор с содержанием 4-5 мас. Na2S2O3 и 13-15 мас. Na2SO4 подают на первую стадию концентрирования, которая осуществляется с трехкорпусных вакуум-выпарных установках. Для получения кристаллизующегося при концентрировании растворов сульфата натрия с минимальным содержанием примесного тиосульфата натрия и в хорошо фильтрующейся форме, концентрирование ведут до содержания тиосульфата натрия в образующейся суспензии сульфата натрия 12,5-14,5 мас. Na2S2O3 (понижение ниже нижнего предела приводит к уменьшению выхода сульфата натрия; повышение выше верхнего к получению мелкокристаллического, труднофильтруемого и прочно удерживаемого маточник сульфат натрия). Выпавшие кристаллы сульфата натрия отделяют на центрифуге, получая влажный осадок, который затем подвергают сушке и выдают как товарный продукт с содержанием (мас.): 98-98-5 Na2SO4 и 0,7-1,5 Na2S2O3.
Маточный раствор (фильтрат), содержащий 18-20 мас. Na2S2O3 и 17-18 мас. Na2SO4, направляют на вторую стадию концентрирования; туда же поступают и маточные растворы со стадии фильтрации кристаллов тиосульфата натрия. Концентрирование ведут до содержания 40-42 мас. Na2S2O3, что обеспечивает достаточно полное выделение кристаллов сульфата натрия, которые отделяют фильтрацией, репульпируют в оборотных растворах и возвращают в начало процесса на смешение с исходным сульфатно-тиосульфатным раствором.
Тиосульфатные растворы после отделения кристаллов сульфата натрия подвергают кристаллизации при 25-30оС; кристаллы пентагидрата тиосульфата натрия отделяют фильтрацией на центрифуге, сушат и выдают как товарный продукт Na2S2O3 .5H2O, а маточный раствор (фильтрат) возвращают на вторую стадию концентрирования.
Таким образом, в процессе переработки щелочных сульфатно-тиосульфатных растворов получают два товарных продукта сульфат и тиосульфат натрия.
Следовательно, предлагаемый способ обеспечивает достижение технического результата:
конечное значение рН раствора после обработки серной кислотой в пределах 7-8,5 исключает разложение тиосульфата натрия и, следовательно, упрощает процесс, так как отпадает необходимость стадии фильтрации;
скорость введения серной кислоты в пределах 1-2,2 л H2SO4/кг.NaOH . ч исключает образование локальных зон перекисления и разложения тиосульфата натрия, а следовательно, отпадает необходимость стадий очистки газов и фильтрации;
двухстадийное концентрирование раствора обеспечивает получение продукционных сульфата и тиосульфата натрия по безотходной технологии.
Ниже приводятся примеры реализации предлагаемого способа, выполненные в лабораторных условиях.
П р и м е р 1. Используют щелочной сульфатно-тиосульфатный раствор состава (кг/м3): 54 Na2SO4; 48,9 Na2S2O3 и 49,6 NaOH; молярное отношение Na2SO4
Na2S2O3 ≈ 1,23.
2 .10-4 м3 исходного раствора нагревают до 40оС и при интенсивном перемешивании со скоростью 1 л H2SOO4/кг NaOH . ч в течение 43 мин вводят 92,5% -ную серную кислоту до конечного значения рН среды 6,5. Получают раствор чуть опалесцирующий; молярное отношение Na2SO4 Na2S2O3 ≈ 3,23.
Аналогичным образом поступают в примерах 2-7, изменяя скорость подачи кислоты в пределах 1,1-2,4 л H2SO4/кг NaOH . ч и рН среды 6,5-8,5. Получают растворы, характеристика которых приведена в таблице.
П р и м е р 8. 2 .10-3 м3 исходного раствора нагревают до 40оС и при интенсивном перемешивании вводят 92,5%-ную серную кислоту со средней скоростью 1,4 л H2SO4/кг NaOH . ч в течение 30 мин до рН среды 7,2. Получают чистый раствор с содержанием (кг/м3): 142 Na2SO4 и 48,9 Na2S2O3 и молярным отношением Na2SO4 Na2S2O3 ≈ 3,23; плотность раствора 1153 кг/м3.
Полученный раствор делят на две части и используют в нижеприведенных примерах.
А. Часть раствора в количестве 1.10-3 м3 упаривают (первая стадия концентрирования) до содержания тиосульфата натрия 13,8 мас. Na2S2O3 и полученную суспензию кристаллов сульфата натрия в тиосульфатно-сульфатном растворе с Ж:Т ≈ 2,3 фильтруют на вакуумной воронке со средней скоростью фильтрования 1,3 т/м2 . ч, получая 0,107 кг влажного осадка сульфата натрия, который сушат и получают 0,101 кг продукта, содержащего 98,1 мас. Na2SO4 и 1,06 мас. Na2S2O3. Фильтрат (маточный раствор) состав: 19,4 мас. Na2S2O3 и 17,0 мас. Na2SO4 в количестве ≈ 0,25 кг направляют на вторую стадию концентрирования.
Концентрирование на второй стадии производят до содержания ≈ 40,8 мас. Na2S2O3. Выпавшие кристаллы сульфата натрия отфильтровывают и влажный осадок в количестве 4,6 .10-2 кг, содержащий ≈ 83 мас. Na2SO4 и 8,5 мас. Na2S2O3, используют на первой стадии концентрирования последующего опыта, а фильтрат охлаждают до 25оС и выделившиеся при кристаллизации кристаллы пентагидрата тиосульфата натрия отфильтровывают. Влажный осадок с содержанием 61% Na2S2O3 подвергают сушке и получают ≈ 4,1.10-2 кг Na2S2O3˙5Н2O; фильтрат в количестве ≈ 3,7 .10-2 с содержанием ≈ 50 мас. Na2S2O3 и 11 мас. Na2SO4 используют в последующем опыте, смешивая его с раствором, поступающим на вторую стадию концентрирования.
Аналогичный результат получают, проводя первую стадию концентрирования до содержания тиосульфата натрия в суспензии 14,5 мас.
Б. В другую часть раствора в количестве 1.10-3 м3 вводят 4,6.10-2 кг влажного осадка сульфата натрия от предыдущего опыта, получая 1,2 кг раствора с содержанием ≈ 15 мас. Na2SO4 и 4,4 мас. Na2S2O3 и молярным отношением Na2SO4 Na2S2O3 3,8, который упаривают (первая стадия концентрирования) до содержания тиосульфата натрия ≈ 13 мас. Na2S2O3.
Суспензию сульфата натрия в тиосульфатно-сульфатном растворе с Ж:Т ≈2,0 фильтруют на вакуумной воронке со средней скоростью фильтрования по осадку ≈1,8 т/м2 . ч, получая 0,130 кг влажного осадка сульфата натрия, который сушат и получают 0,125 кг продукта, содержащего 98,5 мас. Na2SO4 и 0,75 мас. Na2S2O3, и 0,275 кг маточного раствора (фильтрата) состава: 19,0 мас. Na2S2O3 и 17,0 мас. Na2SO4.
Маточный раствор смешивают с 3,7 .10-2 кг фильтрата после отделения кристаллов тиосульфата натрия от предыдущего опыта и полученную смесь упаривают (вторая стадия концентрирования) до ≈41 мас. Na2S2O3. Выпавшие кристаллы сульфата натрия отделяют фильтрацией и используют на первой стадии концентрирования последующего опыта, а фильтрат охлаждают до 25оС и выделившиеся кристаллы пентагидрата и тиосульфата натрия отфильтровывают. Влажный осадок с содержанием ≈60% Na2S2O3 подвергают сушке при ≈45оС и получают 7,6 .10-2 кг Na2S2O3 .5H2O; фильтрат с содержанием ≈45 мас. Na2S2O3 и 3,8 мас.
Na2SO4 используют в последующем опыте, смешивая его с раствором, поступающим на вторую стадию концентрирования.
Аналогичный результат получают, проводя первую стадию концентрирования до содержания тиосульфата натрия в суспензии 12,5 мас.
Таким образом, реализация предлагаемого изобретения позволит, кроме улучшения экологической обстановки, достичь упрощения технологии переработки щелочных сульфат-тиосульфатных растворов и получить в качестве товарных продуктов тиосульфат и сульфат натрия.

Claims (2)

1. СПОСОБ ПЕРЕРАБОТКИ ЩЕЛОЧНОГО СУЛЬФАТ-ТИОСУЛЬФАТНОГО РАСТВОРА, включающий обработку его серной кислотой, упаривание обработанного раствора с выделением осадка сульфата натрия и кристаллизацию тиосульфата натрия из маточного раствора, отличающийся тем, что серную кислоту в исходный раствор вводят со скоростью 1 2,2 л H2SO4/кг NaOH · ч до достижения конечного значения pH среды 6,5-8,5, а упаривание ведут в две стадии с отделением выпавшего осадка сульфата натрия после каждой стадии, причем сульфат натрия после второй стадии возвращают в начало процесса, маточный раствор направляют на кристаллизацию тиосульфата натрия.
2. Способ по п. 1, отличающийся тем, что упаривание на первой стадии ведут до содержания тиосульфата натрия 12,5-14,5 мас.
SU5044934 1992-03-17 1992-03-17 Способ переработки щелочного сульфат-тиосульфатного раствора RU2042609C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5044934 RU2042609C1 (ru) 1992-03-17 1992-03-17 Способ переработки щелочного сульфат-тиосульфатного раствора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5044934 RU2042609C1 (ru) 1992-03-17 1992-03-17 Способ переработки щелочного сульфат-тиосульфатного раствора

Publications (1)

Publication Number Publication Date
RU2042609C1 true RU2042609C1 (ru) 1995-08-27

Family

ID=21605600

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5044934 RU2042609C1 (ru) 1992-03-17 1992-03-17 Способ переработки щелочного сульфат-тиосульфатного раствора

Country Status (1)

Country Link
RU (1) RU2042609C1 (ru)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Авербух Т.Д., Павлов П.Г. Технология соединения хрома. Л., 1967. *
Авторское свидетельство СССР N 244312, кл. C 01B 17/66, 1969. *
Авторское свидетельство СССР N 833481, кл. C 01B 17/64, 1981. *
Авторское свидетельство СССР N 969674, кл. C 01G 37/02, 1982. *

Similar Documents

Publication Publication Date Title
CN114436297B (zh) 一种芒硝制纯碱的方法
EP0424058A1 (en) Method for producing particulate titanium oxides
US3421845A (en) Production of sodium phosphates
US4045340A (en) Method for recovering and exploiting waste of the chromic anhydride production
US4163047A (en) Process for producing sulfuric acid from waste acid and iron sulfate
CN1063730C (zh) 在钛白粉废硫酸液的治理中生产硫酸镁的工艺
RU2042609C1 (ru) Способ переработки щелочного сульфат-тиосульфатного раствора
WO2001077021A1 (en) Production of strontium carbonate from celestite
US4610853A (en) Process for producing purified monoammonium phosphate from wet process phosphoric acid
JPS59164602A (ja) 次亜塩素酸カルシウムの連続的製法
US4610862A (en) Process for producing purified diammonium phosphate from wet process phosphoric acid
US4083930A (en) Method of treating alkali metal sulfide and carbonate mixtures
JPS60171218A (ja) 無水亜硫酸ナトリウムの製造方法
DE2625249A1 (de) Verfahren zur behandlung von calciumchlorid enthaltender fluessigkeit
SU945076A1 (ru) Способ очистки фосфогипса
RU2188794C1 (ru) Способ переработки содосульфатной смеси
SU551248A1 (ru) Способ получени фосфорной кислоты
CN113698323B (zh) 一种减少酸析母液废水产出量的生产吐氏酸的方法
RU2042623C1 (ru) Способ переработки щелочных сульфатно-тиосульфатных растворов
US1511561A (en) Process of making artificial cryolite
RU2372280C1 (ru) Способ получения фосфорной кислоты
US2774665A (en) Production of soluble sulfides
SU947033A1 (ru) Способ получени гидросульфита натри
SU1654259A1 (ru) Способ получени экстракционной фосфорной кислоты
SU1708760A1 (ru) Способ получени тиоцианата одновалентной меди