RU2038131C1 - Способ обработки отходящего газа с примесями оксидов азота и серы - Google Patents

Способ обработки отходящего газа с примесями оксидов азота и серы Download PDF

Info

Publication number
RU2038131C1
RU2038131C1 SU915001661A SU5001661A RU2038131C1 RU 2038131 C1 RU2038131 C1 RU 2038131C1 SU 915001661 A SU915001661 A SU 915001661A SU 5001661 A SU5001661 A SU 5001661A RU 2038131 C1 RU2038131 C1 RU 2038131C1
Authority
RU
Russia
Prior art keywords
exhaust gas
irradiation
electron beam
irradiated
gas
Prior art date
Application number
SU915001661A
Other languages
English (en)
Inventor
Намба Хидеки
Токунага Окихиро
Сато Соити
Аоки Синджи
Сузуки Риоджи
Изутсу Масахиро
Окамото Коити
Original Assignee
Ибара Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ибара Корпорейшн filed Critical Ибара Корпорейшн
Application granted granted Critical
Publication of RU2038131C1 publication Critical patent/RU2038131C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • B01J19/085Electron beams only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/812Electrons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

Использование: очистка отходящих газов от NOx и SOx. Сущность изобретения: отходящий газ обрабатывают многокаскадным облучением пучком электронов при последовательном пропускании через несколько зон облучения и необлучаемые зоны, расположенные между соседними зонами облучения. До или после облучения добавляют NH3 . Ускоряющее напряжение 300 - 3000 кВ. Скорость потока отходящего газа не более 30 м/с, температура не ниже точки росы и не выше 100°С. Время пребывания отходящего газа в каждой необлучаемой зоне составляет 0,01 - 0,5 с. Твердые продукты взаимодействия удаляют в пылесборнике. 7 ил., 4 табл.

Description

Изобретение относится к способу десульфурации и/или денитрации отходящего газа многокаскадным облучением электронным лучом.
Известен способ обработки отходящего газа многокаскадным облучением электронным лучом. В отходящий газ согласно этому способу до или после облучения добавляют аммиак. Отходящий газ последовательно пропускают через несколько зон облучения и необлучаемые зоны, расположенные между соседними зонами облучения. Образовавшиеся твердые продукты взаимодействия аммиака с оксидами азота и серы удаляют в пылесборнике, после чего отходящий газ выпускают в атмосферу.
Однако не было известно, как точно должны быть установлены многочисленные генераторы электронного луча. Например, считалось, что время пребывания в необлучаемой зоне (зонах) составляет от нескольких секунд до нескольких десятков секунд. Поэтому предполагалось, что бетонное сооружение, которое экранирует камеру облучения и генераторы электронного луча, должно быть очень большим.
Задача настоящего изобретения определить условия для установки множества генераторов электронного луча и тем самым обеспечить эффективное облучение электронным лучом и экономичную обработку отходящего газа.
Это достигается с помощью устройства многокаскадного обучения электронным лучом для обработки отходящего газа, имеющего камеру облучения электронным лучом, содержащую множество генераторов электронного луча, у которого ускоряющее напряжение электронного луча составляет 300-3000 кВ, скорость потока отходящего газа не более 30 м/с и температура указанного отходящего газа, который должен быть обработан, не ниже точки росы, но не выше 100оС, а расстояние между центрами соседних генераторов электронного луча не менее величины Х, вычисленной по следующей формуле:
Х 2 α + tv, где Х расстояние между центрами двух соседних генераторов электронного луча, м;
2 α расстояние, на которое распространяется в отходящем газе поглощенная доза облучения, м (направление этого расстояния пересекается с направлением потока отходящего газа и направлением, противоположном этому; это расстояние относится к расстоянию вплоть до точки, где реакция электронного луча не имеет места, и изменяется в зависимости от ускоряющего напряжения генераторов электронного луча, температуры и состава отходящего газа);
v скорость потока отходящего газа, м/с;
t время пребывания отходящего газа в необлучаемой зоне, с (это время составляет около 0,01-0,5 с).
В вышеуказанной формуле t составляет 0,1-0,5 с и относится к времени пребывания в том месте (необлучаемой зоне), где реакция электронного луча не имеет места. Это значение основано на результатах испытания двухкаскадного облучения, показанного в примерах.
Предлагаемое изобретение предусматривает процесс обработки отходящего газа облучением электронным лучом, который включает введение отходящего газа, содержащего оксиды серы и/или оксиды азота, в камеру облучения электронным лучом и облучение отходящего газа, добавление аммиака в отходящий газ до и/или после облучения электронным лучом, удаление результирующего побочного продукта посредством пылесборника, затем выпуск отходящего газа в атмосферу. Время пребывания отходящего газа в необлучаемой зоне между двумя соседними зонами облучения электронными лучами составляет 0,1-0,5 с, отходящий газ проходит через каждую зону облучения последовательно.
В указанной формуле расстояние α на которое распространяется поглощенная доза, изменяется в зависимости от ускоряющего напряжения ускорителя электронного луча, температуры и состава отходящего газа. В табл. 1 приведены справочные данные напряжения, α и Х. Это данные для случая, когда температура отходящего газа составляет 80оС, а скорость отходящего газа v 10 м/с.
На фиг. 1 изображена схема устройства многокаскадного облучения электронным лучом, облучения с одной стороны); на фиг. 2 то же, облучения с обеих сторон; на фиг. 3 диаграмма, показывающая соотношение между временем пребывания отходящего газа в необлучаемой зоне и концентрацией ΔNOx удаляемых оксидов азота NOx; на фиг. 4 диаграмма, показывающая соотношение между дозой, Мрад, поглощаемой отходящим газом, и концентрацией ΔNOx удаляемых оксидов азота NOx; на фиг. 5 диаграмма, показывающая соотношение между поглощаемой дозой, Мрад, и эффективностью десульфуризации; на фиг. 6 диаграмма, показывающая соотношение между временем отсутствия облучения и межцентровым расстоянием Х двух соседних генераторов электронного луча и соотношение между временем отсутствия облучения и общей длиной камеры облучения; на фиг. 7 диаграмма, показывающая соотношение между временем отсутствия облучения и общей стоимостью сооружения камер облучения и экранирующего здания.
Описываемое изобретение подтверждает, что эффективность удаления оксида азота может быть повышена устройством необлучаемой зоны (зон) между резервуарами облучения электронным лучом.
Предлагается, что реакция денитрации в зоне (зонах) облучения электронным лучом протекает так, как показано уравнениями реакций (2)-(8), в которых радикалы ОН, О и НО2, генерируемые облучением электронным лучом, как показано в уравнении (1), действуют как реактивные вещества:
O2, H2O ___→ OH″, O″, HO
Figure 00000001
(1)
(OH″, O″ и H2O радикалы)
NO+OH ___→HNO2 (2)
HNO2+ 1/2 O2+ HN3 ___→ NH4NH3 (3)
NO + O″ __→ NO2 (4)
NO2+ 1/2 H2O + 1/4 O2+NH3 __→ NH4NO3 (5)
NO + HO
Figure 00000002
___→ HNO
Figure 00000003
(6)
NO2+ OH″ ___→ HNO3 (7)
HNO3+NH3___→ NH4NO3 (8)
Необходимо обратить особое внимание на реакции радикала О. Радикал О вырабатывается в зоне (зонах) облучения электронным лучом в соответствии с уравнением (1) и этот радикал О также вырабатывает озон в соответствии с уравнением (9). Этот озон окисляет NO и преобразует его в NO2 в соответствии с уравнением (10), а NO2 фиксируется в виде нитрата аммония в соответствии с уравнением (5):
O2+O″ __→ O3 (9)
N+O3___→ NO2+O2 (10)
NO2+1/2H2O + 1/4 O2+NH3 __→ NH4NO3 (5)
Одновременно с этими реакциями возникают реакции, показанные уравнениями (11) и (12), в которых радикал О израсходован. Реакции, показанные уравнениями (11) или (12), являются реакциями, которые расходуют радикал О, и, следовательно, не предпочтительны
NO2+O″ __→ NO+O2 (11)
O3+O″__→ 2O2 (12)
Как упомянуто выше, реакция денитрации основана на радикалах. Реакция денитрации в большой степени разделена на реакции (6), (7), (8), в которых NOx окисляется радикалами и преобразуется в NH4NO3, и реакции (4), (5). Было найдено, что имеют также место реакции (9), (10), в которых генерируется NO2.
Было найдено также, что одновременно с этими реакциями имеет место реакция (11), в которой NO2, генерированный по уравнению (4) или (10), реагирует с радикалом О и превращается в NO, и реакция (12), в которой озон и радикал ОН исчезают. В соответствии с реакциями (11) и (12) становится ясно, что протяженный электронный луч не дает повышения концентрации удаляемого NOx, а выражается просто в расходе энергии.
Уравнения (5) и (11) описывают конкурирующие реакции. Однако реакция (11) вызывается радикалом и более быстрая. Поэтому, пока действует облучение (т.е. пока радикал поступает) реакция (5) едва происходит.
Если возможно обеспечить, чтобы происходила реакция (5) без возникновения реакций (11) и (12), можно получить максимальный эффект при минимальной затрате энергии облучающего электронного луча. Устройство для достижения этого должно остановить генерирование радикалов, т.е. прекратить излучение электронного луча. Путем прекращения облучения реакции (11) и (12) не происходят, а денитрация идет в соответствии с уравнением (5). Если облучение электронным лучом, когда NO2 и О3 в обрабатываемом отходящем газе в соответствии с (5) и (10) исчезли (в это время непрореагировавший NO все еще существует), денитрация может эффективно выполняться реакциями, происходящими главным образом по уравнениям (1) (8).
Важным фактором является момент, когда в отходящем газе, обрабатываемом по уравнению реакции (5) исчезает газ NO2. Обычно термическая реакция газа с газом, показанная уравнением (5), является медленной и считается, что она занимает от нескольких секунд до нескольких десятков секунд. Однако неожиданно авторами было найдено, что, когда в качестве побочного продукта облучения электронным лучом используют нитрат аммония, на поверхностях вышеуказанных продуктов невероятно быстро происходит реакция по уравнению (5). Различные тесты показали, что при остановке облучения электронным лучом по меньшей мере на 0,01 с реакция происходит в соответствии с формулой (5), и эти продукты и NO2 по существу исчезают из обрабатываемого отходящего газа. Таким образом, основные условия, необходимые для конструирования многокаскадного устройства облучения, которые было невозможно предсказать при обычном способе, стали более ясными. Стало ясно также, что в противоположность нашему предположению, время пребывания отходящего газа в необлучаемой зоне (зонах) может быть таким коротким, как 0,01-0,5 с, и экономичным.
При использовании 250-киловаттной угольной электростанции (объем газа 900000 Нм3/ч) устанавливается время пребывания отходящего газа в необлучаемой зоне (зонах) рабочего блока.
Из примера 1 найдено, что нижний предел времени пребывания газа составляет 0,01 с. На фиг. 6 показано соотношение между временем отсутствия облучения и межцентровым расстоянием Х двух соседних генераторов электронного луча по 800 кВ при скорости 10 м/с и температуре газа 80оС. Требуемое расстояние Х зависит от времени отсутствия облучения. Для времени отсутствия облучения 0,01 с требуется расстояние 2,1 м, для времени 0,5 с 7 м, а для 0,6 с 8 м. Чтобы обработать 900000 Нм3/ч отходящего газа с концентрацией SO2 1500 миллионных долей и концентрацией NOx 250 миллионных долей и достичь эффективности десульфуризации 96% и эффективности денитрации 80% может потребоваться использование 8 генераторов электронных лучей, имеющих мощность 800 кВ х 500 мА (400 кВт).
При времени отсутствия облучения только 0,01 с общая длина камеры облучения, требуемая для установки 8 блоков ускорителей, составляет около 20 м (2,1 м х 7 необлучаемых зон + 5,3 м). Величина 5,3 м представляет объединенную длину требуемых каналов впуска и выпуска газа. Для времени отсутствия облучения 0,5 с общая длина составляет около 54,3 м (7 м х 7 необлучаемых зон + 5,3 м), что является очень большой длиной (см. фиг. 6).
Известно, что генерирование электронных лучей сопровождается очень интенсивным рентгеновским излучением, которое, хотя и имеет малую мощность, требует тщательного экранирования генераторов электронного луча и камеры облучения. Требуется бетонная оболочка толщиной около 1 м. Следовательно, повышается не только непосредственная стоимость камеры облучения, но также весьма повышается общая стоимость сооружения, включающего экран.
На фиг. 7 показано соотношение между временем отсутствия облучения и общей стоимостью конструкции камеры облучения и экранирующего сооружения. При увеличении времени отсутствия облучения стоимость увеличивается.
Предпочтительно, чтобы время пребывания в необлучаемой зоне (зонах) рабочего участка было ограничено максимум до 0,5 с, при котором стоимость сооружения все еще держится ниже двукратной стоимости для минимума времени отсутствия облучения 0,01 с.
Устройство многокаскадного облучения электронным лучом содержит генератор 1 электронного луча, камеру 2 облучения электронным лучом, зону 3 облучения и необлучаемую зону 4. Межцентровое расстояние двух соседних генераторов электронного луча составляет по меньшей мере Х м, определяемое формулой, приведенной выше, за счет чего время пребывания отходящего газа в необлучаемой зоне (зонах) может быть отрегулировано до 0,01-0,5 с.
П р и м е р 1. К отходящему газу, имеющему скорость потока 15 Nl/мин с первоначальной концентрацией NOx 400 миллионных долей и первоначальной концентрацией SO2 1720 миллионных долей добавляют газ аммиак, так что его концентрация в смешанном газе стала 3460 миллионных долей. Затем смешанный газ подвергают проверочному облучению электронным лучом, используя два каскада облучения. Были установлены шесть условий, так что время пребывания в необлучаемой зоне между облучающим резервуаром первого каскада и облучающим резервуаром второго каскада стало 0 с (проверка однокаскадного облучения), 0,005 с, 0,05 с, 0,1 или 0,4 с. Время пребывания в необлучаемой зоне устанавливают путем изменения внутреннего диаметра или длины трубопровода между облучающими резервуарами первого каскада и второго каскада.
Результаты представлены в табл. 2, в которой время пребывания время пребывания в необлучаемой зоне, а Δ NOx концентрация удаляемого газа NOx. Соотношение между временем пребывания и Δ NOx показано на диаграмме фиг. 3. В соответствии с результатами Δ NOx (концентрация удаляемого NOx) для всех времен пребывания при двухкаскадной проверке (за исключением 0,005 с) одна и та же и больше, чем концентрация для нулевого времени пребывания (при проверке однокаскадного облучения). Кроме того, температура реакции поддерживалась около 80оС.
На диаграмме фиг. 4 показано соотношение между дозой, поглощенной отходящим газом, и концентрацией Δ NOx удаляемого газа Δ NOx. Из диаграммы можно видеть, что для того, чтобы удалить 300 ч NOx на тысячу (эффективность денитрации 75%) при однокаскадном облучении требовалась доза 2,1 Мрад, тогда как при двухкаскадном облучении 1,3 Мрад. Соответственно, доза при двухкаскадном облучении уменьшается до 0,8 Мрад (38%). Результаты десульфуризации показаны на диаграмме фиг. 5, из которой видно, что и однокаскадное и двухкаскадное облучение одинаково приемлемы.
П р и м е р 2. К отходящему газу, имеющему скорость потока 1200 N м3/ч первоначальную концентрацию NOx около 350 миллионных долей и первоначальную концентрацию SO2 1600 миллионных долей, добавляют газ аммиак, так что средняя концентрация аммиака в смешанном газе стала около 3200 миллионных долей. Затем смешанный газ подвергают облучению электронным лучом при температуре реакции около 70оС, используя однокаскадный и двухкаскадный резервуары облучения. Время пребывания отходящего газа в необлучаемой зоне составляет 0,5 с.
Чтобы достичь денитрации 80% (Δ NOx 280 миллионных долей) требуется доза облучения 1,5 Мрад при двухкаскадном облучении и доза 2,0 Мрад (на 33% выше предыдущей) при однокаскадном облучении.
Десульфуризация при однокаскадном и двухкаскадном облучении дает одинаковые результаты и ее эффективность составляет около 94% Результаты приведены в табл. 3.
В изобретении установлено, что скорость газового потока должна быть не более 30 м/с. При больших скоростях происходит укрупнение и осаждение продуктов взаимодействия на внутренних стенках реактора и вертикального газохода, что делает затруднительной долговременную и устойчивую работу.
Температура отходящего газа должна быть не ниже точки росы и не выше 100оС. При более низкой температуре продукты взаимодействия находятся во влажном состоянии, что может привести к коррозии оборудования. Более высокая температура приводит к снижению степени очистки. Желательная температура не превышает 90оС при использовании электростатического пылеосадителя и не превышает 100оС при использовании мешочного фильтра.
Согласно предлагаемому изобретению отходящий газ облучают электронным лучом через один или два экрана из титановой фольги (первый для ускорителя электронно-лучевого прожектора, а второй для реактора). Толщина фольги от 30 до 50 мкм. Соотношение между потерей энергии при прохождении через два экрана из татановой фольги толщиной 30 мкм и расстоянием от электронного луча в отходящем газе при ускоряющем напряжении в пределах от 300 до 3000 кВ показано в табл. 4.
Интервал 300-3000 кВ выбран для сохранения оптимального соотношения между потерей энергии и толщиной экранирующего сооружения.
Предлагаемый способ позволяет эффективно использовать энергии облучения, для получения максимальных результатов при минимальном облучении.

Claims (1)

  1. СПОСОБ ОБРАБОТКИ ОТХОДЯЩЕГО ГАЗА С ПРИМЕСЯМИ ОКСИДОВ АЗОТА И СЕРЫ многокаскадным облучением пучком электронов, включающий добавление аммиака в отходящий газ до или после облучения, последовательное пропускание отходящего газа через несколько зон облучения и необлучаемые зоны, расположенные между соседними зонами облучения, удаление образовавшихся твердых продуктов взаимодействия оксидов азота и серы с аммиаком в пылесборнике и выпуск отходящего газа в атмосферу, отличающийся тем, что процесс ведут при ускоряющем напряжении пучка электронов в интервале 300 3000 кВ, скорости потока отходящего газа не более 30 м/с, температуре отходящего газа не ниже точки росы и не выше 100oС и времени пребывания отходящего газа в необлучаемой зоне между двумя соседними зонами облучения в интервале 0,01 - 0,5 с.
SU915001661A 1989-12-22 1991-08-21 Способ обработки отходящего газа с примесями оксидов азота и серы RU2038131C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP331050/89 1989-12-22
JP33105089 1989-12-22
PCT/JP1990/001693 WO1991009665A1 (fr) 1989-12-22 1990-12-25 Procede et appareil de traitement de gaz d'echappement par irradiation en plusieurs etapes de faisceaux d'electrons

Publications (1)

Publication Number Publication Date
RU2038131C1 true RU2038131C1 (ru) 1995-06-27

Family

ID=18239287

Family Applications (1)

Application Number Title Priority Date Filing Date
SU915001661A RU2038131C1 (ru) 1989-12-22 1991-08-21 Способ обработки отходящего газа с примесями оксидов азота и серы

Country Status (14)

Country Link
US (1) US5244552A (ru)
EP (1) EP0460230B1 (ru)
JP (1) JPH0712413B2 (ru)
KR (1) KR0147687B1 (ru)
CN (1) CN1029938C (ru)
AT (1) ATE119801T1 (ru)
CA (1) CA2047759C (ru)
DE (1) DE69017896T2 (ru)
DK (1) DK0460230T3 (ru)
ES (1) ES2072594T3 (ru)
PL (1) PL288355A1 (ru)
RU (1) RU2038131C1 (ru)
UA (1) UA41249C2 (ru)
WO (1) WO1991009665A1 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357291A (en) * 1992-09-08 1994-10-18 Zapit Technology, Inc. Transportable electron beam system and method
US5378898A (en) * 1992-09-08 1995-01-03 Zapit Technology, Inc. Electron beam system
JPH0847618A (ja) * 1994-06-03 1996-02-20 Ebara Corp 排ガス処理用電子線照射方法
JP3431731B2 (ja) * 1994-08-16 2003-07-28 株式会社荏原製作所 電子線照射排ガス処理装置
JP3361200B2 (ja) * 1994-12-12 2003-01-07 日本原子力研究所 電子ビーム照射排ガス処理法及び装置
JP3103027B2 (ja) 1995-11-27 2000-10-23 株式会社荏原製作所 汚水中のアンモニアを用いる排ガスの処理方法と装置
WO1997031702A1 (en) 1996-03-01 1997-09-04 Ebara Corporation Desulfurizing method and apparatus by irradiation of electron beam
PL187298B1 (pl) * 1996-07-25 2004-06-30 Ebara Corp Sposób i urządzenie do oczyszczania gazów techniką napromieniania wiązką elektronową
US6030506A (en) * 1997-09-16 2000-02-29 Thermo Power Corporation Preparation of independently generated highly reactive chemical species
BR9713397A (pt) 1996-11-25 2000-01-25 Ebara Corp Método e aparelho para produzir um fertilizante a partir de um gás que contém óxidos de enxofre.
KR20000009579A (ko) * 1998-07-27 2000-02-15 박진규 기체 레이저와 전자빔을 이용한 유해 가스 정화방법 및 장치
AU6476400A (en) 1999-08-12 2001-03-13 Ebara Corporation Method and apparatus for treating exhaust gas
CN1114465C (zh) * 1999-12-29 2003-07-16 宝山钢铁股份有限公司 电子束处理烟气中硫氧化物和氮氧化物的方法和装置
US7189978B2 (en) * 2000-06-20 2007-03-13 Advanced Electron Beams, Inc. Air sterilizing system
US6623705B2 (en) * 2000-06-20 2003-09-23 Advanced Electron Beams, Inc. Gas conversion system
US20070148060A1 (en) * 2003-09-04 2007-06-28 Scantech Holdings, Llc Stack gas decontamination system
WO2006086645A1 (en) * 2005-02-10 2006-08-17 Northampton Community College Method for the reduction of malodorous compounds
CN103752150B (zh) * 2014-01-02 2015-10-07 上海大学 一种去除大气颗粒物pm2.5中苯甲醛类化合物的方法
CN104474859B (zh) * 2014-12-08 2016-08-17 厦门大学 一种烟气脱硫脱硝的方法、装置及其用途
CN106000039A (zh) * 2016-05-16 2016-10-12 长沙深湘通用机器有限公司 干式氨法脱硫脱硝装置
CN112370952B (zh) * 2020-09-16 2022-11-08 江苏汇能环境工程有限公司 一种工厂用废气脱硫脱硝处理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350054A (en) * 1976-10-19 1978-05-08 Mitsubishi Electric Corp Denitrating apparatus for flue gas with electron beam
JPS5940052B2 (ja) * 1980-06-16 1984-09-27 株式会社荏原製作所 電子ビ−ム多段照射式排ガス脱硫脱硝法および装置
DE3439190A1 (de) * 1984-10-26 1986-04-30 Polymer-Physik GmbH & Co KG, 7400 Tübingen Niederenergetischer elektronenstrahler mit hoher leistung zur entschwefelung und/oder denitrierung von rauchgasen
DE3513633C2 (de) * 1985-04-16 1994-06-16 Polymer Physik Gmbh Vorrichtung zur Entschwefelung und Denitrierung von Rauchgasen durch Elektronenbestrahlung
DE3620673A1 (de) * 1985-10-23 1987-12-23 Licentia Gmbh Verfahren zur bestrahlung von gasfoermigen medien, vorzugsweise rauchgasen, mit elektronenstrahlen
JPS63501142A (ja) * 1985-10-23 1988-04-28 ライセンテイア パテント−フエルヴアルトウンクス−ゲゼルシヤフト ミツト ベシユレンクテル ハフトウンク 廃ガスに電子線を放射することにより廃ガスから有害物質を選択または同時分離する方法
JPH0720535B2 (ja) * 1987-06-04 1995-03-08 株式会社荏原製作所 電子線照射排ガス処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 4435260, кл. C 01B 17/60, 1984. *

Also Published As

Publication number Publication date
DE69017896D1 (de) 1995-04-20
KR0147687B1 (ko) 1998-08-17
DK0460230T3 (da) 1995-08-07
EP0460230A4 (en) 1992-06-03
DE69017896T2 (de) 1995-07-27
UA41249C2 (uk) 2001-09-17
CA2047759A1 (en) 1991-06-23
JPH0712413B2 (ja) 1995-02-15
PL288355A1 (en) 1991-09-23
CN1053561A (zh) 1991-08-07
JPH03293016A (ja) 1991-12-24
EP0460230B1 (en) 1995-03-15
CA2047759C (en) 2000-08-29
WO1991009665A1 (fr) 1991-07-11
CN1029938C (zh) 1995-10-11
KR920700743A (ko) 1992-08-10
EP0460230A1 (en) 1991-12-11
US5244552A (en) 1993-09-14
ATE119801T1 (de) 1995-04-15
ES2072594T3 (es) 1995-07-16

Similar Documents

Publication Publication Date Title
RU2038131C1 (ru) Способ обработки отходящего газа с примесями оксидов азота и серы
RU2139753C1 (ru) Способ облучения электронными пучками
RU2113889C1 (ru) Способ удаления so2 и nox из продуктов сгорания топочных газов и устройство для его осуществления
US4650555A (en) Method for corona discharge enhanced flue gas clean-up
RU2145254C1 (ru) Установка для обработки дымовых газов
Namba et al. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler
RU93036552A (ru) Способ удаления so2 и nox из продуктов сгорания топочных газов и устройство для его осуществления
US4525142A (en) Process for treating flue gas with alkali injection and electron beam
EP0408772B1 (en) Exhaust gas cleaning method
CN107497264B (zh) 臭氧联合微波激发可磁性分离催化剂同时脱硫脱硝脱汞的方法及系统
JPH01115440A (ja) 電子線照射排ガス処理における副生物のダクト内付着防止方法
Namba et al. The study of electron beam flue gas treatment for coal-fired thermal plant in Japan
Fuchs et al. Removal of NOx and SO2 by the electron beam process
CN114849434B (zh) 造粒塔系统及尾气治理装置
JPH05237337A (ja) 排ガス処理方法および排ガス処理装置
JPS6359729B2 (ru)
JP2002361034A (ja) Ho2ラジカルをso2酸化のラジカル連鎖反応におけるoh生成反応種とする排ガス中のso2の酸化処理方法および装置
JPH0521609B2 (ru)
KR100304080B1 (ko) 배가스중의탈황/탈질처리방법및그장치
KR19990071259A (ko) 배가스 재활용방법 및 그 장치
RU2064815C1 (ru) Плазмохимический реактор для очистки воздуха от окислов серы и азота
Pei et al. A low cost and high efficient facility for removal of SO/sub 2/and NO/sub x/in the flue gas from coal fire power plant
Chang et al. Pilot plant tests of a corona discharge-electron beam hybrid combustion flue gas cleaning system
KR100496809B1 (ko) 플라즈마방전에의한배가스처리장치
JPS60251917A (ja) 排煙脱硫脱硝方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051226