RU2013153905A - Способ и устройство для уменьшения пассивации батареи в модуле считывания показаний измерителя - Google Patents

Способ и устройство для уменьшения пассивации батареи в модуле считывания показаний измерителя Download PDF

Info

Publication number
RU2013153905A
RU2013153905A RU2013153905/07A RU2013153905A RU2013153905A RU 2013153905 A RU2013153905 A RU 2013153905A RU 2013153905/07 A RU2013153905/07 A RU 2013153905/07A RU 2013153905 A RU2013153905 A RU 2013153905A RU 2013153905 A RU2013153905 A RU 2013153905A
Authority
RU
Russia
Prior art keywords
fictitious
activation
battery
activations
ambient temperature
Prior art date
Application number
RU2013153905/07A
Other languages
English (en)
Other versions
RU2594354C2 (ru
Inventor
Николас ХИТ
Original Assignee
СЕНСУС ЮЭсЭй ИНК.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by СЕНСУС ЮЭсЭй ИНК. filed Critical СЕНСУС ЮЭсЭй ИНК.
Publication of RU2013153905A publication Critical patent/RU2013153905A/ru
Application granted granted Critical
Publication of RU2594354C2 publication Critical patent/RU2594354C2/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5044Cells or batteries structurally combined with cell condition indicating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5088Initial activation; predischarge; Stabilisation of initial voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

1. Способ предотвращения чрезмерной пассивации батареи в электронном модуле считывания показаний измерителя, который питается от батареи, содержащий:сбор данных измерения от соединенного измерителя на постоянной основе, используя относительно маломощную схему, которая извлекает первый ток из батареи;передачу данных измерения удаленному узлу по беспроводной сети связи в определенные периоды передачи, используя относительно высокомощный приемопередатчик связи, который также питается от батареи и активируется на некоторое время в течение периодов передачи; ивыполнение фиктивных активаций приемопередатчика связи в дополнительные периоды, отличные от определенных периодов передачи, не для передачи данных измерения, а для того, чтобы извлечь второй ток из батареи, который больше, чем первый ток и уменьшает наращивание пассивирующего слоя в батарее.2. Способ по п.1, в котором выполнение упомянутых фиктивных активаций содержит выполнение одной или более фиктивных активаций в каждом интервале времени между периодическими передачами данных.3. Способ по п.1, в котором выполнение упомянутых фиктивных активаций включает в себя принятие решения выполнить или пропустить любую заданную фиктивную активацию в зависимости от одного или более из: времени прошедшего с момента последней передачи данных или фиктивной активации; значения окружающей температуры или значения времени выдержки при температуре; или минимального наблюдаемого напряжения батареи, измеренного в процессе последней передачи данных или фиктивной активации.4. Способ по п.1, дополнительно включающий согласование выполнения упомянутых фиктивных ак

Claims (18)

1. Способ предотвращения чрезмерной пассивации батареи в электронном модуле считывания показаний измерителя, который питается от батареи, содержащий:
сбор данных измерения от соединенного измерителя на постоянной основе, используя относительно маломощную схему, которая извлекает первый ток из батареи;
передачу данных измерения удаленному узлу по беспроводной сети связи в определенные периоды передачи, используя относительно высокомощный приемопередатчик связи, который также питается от батареи и активируется на некоторое время в течение периодов передачи; и
выполнение фиктивных активаций приемопередатчика связи в дополнительные периоды, отличные от определенных периодов передачи, не для передачи данных измерения, а для того, чтобы извлечь второй ток из батареи, который больше, чем первый ток и уменьшает наращивание пассивирующего слоя в батарее.
2. Способ по п.1, в котором выполнение упомянутых фиктивных активаций содержит выполнение одной или более фиктивных активаций в каждом интервале времени между периодическими передачами данных.
3. Способ по п.1, в котором выполнение упомянутых фиктивных активаций включает в себя принятие решения выполнить или пропустить любую заданную фиктивную активацию в зависимости от одного или более из: времени прошедшего с момента последней передачи данных или фиктивной активации; значения окружающей температуры или значения времени выдержки при температуре; или минимального наблюдаемого напряжения батареи, измеренного в процессе последней передачи данных или фиктивной активации.
4. Способ по п.1, дополнительно включающий согласование выполнения упомянутых фиктивных активаций по окружающей температуре, так что упомянутые фиктивные активации выполняют, когда значение окружающей температуры или значение времени выдержки при температуре превышает предварительно определенное пороговое значение, и не выполняют в противном случае
5. Способ по п.1, в котором выполнение упомянутых фиктивных активаций включает в себя мониторинг окружающей температуры и выполнение фиктивных активаций более часто при более высоких температурах и выполнение фиктивных активаций менее часто или не выполнение их вовсе при более низких температурах.
6. Способ по п.1, в котором выполнение упомянутых фиктивных активаций включает в себя инициирование фиктивной активации, в ответ на определение того, что окружающая температура электронного модуля считывания показаний измерителя возрастает на предварительно определенное значение в предварительно определенный период времени.
7. Способ по п.1, в котором выполнение упомянутых фиктивных активаций включает в себя инициирование фиктивной активации перед следующей передачей данных в ответ на определение чрезмерного снижения напряжения батареи в сочетании с выполнением предшествующей передачи данных или предшествующей фиктивной активации.
8. Способ по п.1, в котором выполнение упомянутых фиктивных активаций содержит для каждой упомянутой фиктивной активации выполнение программы депассивации батареи, которая включает в себя одну или более фиктивных активаций усилителя мощности в приемопередатчике связи.
9. Способ по п.8, в котором упомянутая программа депассивация батареи содержит итеративную программу, которая при определенных условиях выполняет более чем одну активацию усилителя мощности в зависимости от окружающей температуры или времени выдержки при температуре и/или в зависимости от наблюдаемого поведения напряжения батареи в сочетании с каждой такой активацией усилителя мощности.
10. Электронный модуль считывания показаний измерителя, выполненный с возможностью работы с батарейным питанием от батареи, включающий в себя:
контроллер, выполненный с возможностью получать данные измерения от схемы интерфейса, соединенной с измерителем; и
приемопередатчик связи, выполненный с возможностью соединять с возможностью связи модуль с удаленным узлом, досягаемым по беспроводной сети связи; и
причем упомянутый контроллер извлекает первый ток из батареи и выполнен с возможностью:
активировать на некоторое время приемопередатчик связи в определенные периоды передачи, для передачи упомянутых данных измерения или другой информации; и
выполнять фиктивные активации передатчика в упомянутом приемопередатчике связи в дополнительные периоды, отличные от упомянутых определенных периодов, не для передачи данных измерения, а чтобы извлекать второй ток из батареи, который больше, чем первый ток и уменьшает наращивание пассивирующего слоя в батарее.
11. Модуль по п.10, в котором упомянутый контроллер выполнен с возможностью выполнять упомянутые фиктивные активации посредством выполнения одной или более фиктивных активаций в каждом интервале времени между периодическими передачами данных.
12. Модуль по п.10, в котором упомянутый контроллер выполнен с возможностью принимать решение выполнять или пропускать любую заданную фиктивную активацию в зависимости от одного или более из: времени, прошедшего с момента последней передачи данных или фиктивной активации; значения окружающей температуры или значения времени выдержки при температуре; или минимального наблюдаемого напряжения батареи, измеренного контроллером, для последней передачи данных или фиктивной активации.
13. Модуль по п.10, в котором упомянутый контроллер выполнен с возможностью согласовывать выполнение упомянутой фиктивной активации по окружающей температуре, таким образом, что упомянутые фиктивные активации выполняют, когда значение окружающей температуры или значение времени выдержки при температуре превышает предварительно определенное пороговое значение, а в противном случае не выполняют.
14. Модуль по п.10, в котором упомянутый контроллер выполнен с возможностью выполнять упомянутые фиктивные активации на основании мониторинга окружающей температуры, и выполняя упомянутые фиктивные активации более часто при более высоких температурах и менее часто или не выполняя их совсем при более низких температурах.
15. Модуль по п.10, в котором упомянутый контроллер выполнен с возможностью инициировать фиктивную активацию в ответ на определение того, что окружающая температура электронного модуля считывания показаний измерителя увеличивается на предварительно определенное значение в течение предварительно определенного периода времени.
16. Модуль по п.10, в котором упомянутый контроллер выполнен с возможностью инициировать фиктивную активацию перед следующей передачей данных в ответ на определение чрезмерного снижения напряжения батареи в сочетании с выполнением предшествующей передачи данных или предшествующей фиктивной активации.
17. Модуль по п.10, в котором упомянутый контроллер выполнен с возможностью выполнять упомянутые фиктивные активации для каждой упомянутой фиктивной активации на основании выполнения программы депассивации батареи, которая включает в себя включение на некоторое время усилителя мощности в приемопередатчике связи один или более раз.
18. Способ по п.17, в котором упомянутая программа депассивации содержит итеративную программу, причем упомянутый контроллер выполнен с возможностью при определенных условиях выполнять более чем одну активацию усилителя мощности в зависимости от окружающей температуры или времени выдержки при температуре, и/или в зависимости от наблюдаемого поведения напряжения батареи в сочетании с каждой такой активацией усилителя мощности.
RU2013153905/07A 2011-05-05 2012-05-01 Способ и устройство для уменьшения пассивации батареи в модуле считывания показаний измерителя RU2594354C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/101,203 US8847785B2 (en) 2011-05-05 2011-05-05 Method and apparatus for reducing battery passivation in a meter-reading module
US13/101,203 2011-05-05
PCT/US2012/035948 WO2012151185A1 (en) 2011-05-05 2012-05-01 Method and apparatus for reducing battery passivation in a meter-reading module

Publications (2)

Publication Number Publication Date
RU2013153905A true RU2013153905A (ru) 2015-06-10
RU2594354C2 RU2594354C2 (ru) 2016-08-20

Family

ID=46085203

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013153905/07A RU2594354C2 (ru) 2011-05-05 2012-05-01 Способ и устройство для уменьшения пассивации батареи в модуле считывания показаний измерителя

Country Status (13)

Country Link
US (1) US8847785B2 (ru)
EP (1) EP2705565B1 (ru)
JP (1) JP6196965B2 (ru)
CN (1) CN103828120B (ru)
AU (1) AU2012250910B2 (ru)
BR (1) BR112013028172B1 (ru)
CA (1) CA2834576C (ru)
ES (1) ES2544469T3 (ru)
HK (1) HK1198398A1 (ru)
IL (1) IL229027B (ru)
MX (1) MX2013012812A (ru)
RU (1) RU2594354C2 (ru)
WO (1) WO2012151185A1 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8819661B2 (en) * 2011-11-28 2014-08-26 Echostar Technologies L.L.C. Systems and methods for determining times to perform software updates on receiving devices
WO2014114331A1 (en) * 2013-01-23 2014-07-31 Abb Technology Ltd A method for depassivation of lithium batteries, a battery back-up arrangement and a robot system therefor
GB2510179C (en) * 2013-01-28 2019-08-28 Enevo Oy Sensor device for remote monitoring
EP2804248A1 (de) 2013-05-17 2014-11-19 VEGA Grieshaber KG Sicherstellung der Funktionsbereitschaft von Batterien
US9801137B2 (en) * 2013-10-08 2017-10-24 At&T Intellectual Property I, L.P. Low power sensor network
US9570934B2 (en) 2013-12-16 2017-02-14 Honeywell International Inc. Lithium battery auto-depassivation system and method
KR101809787B1 (ko) * 2015-03-10 2017-12-15 엘에스산전 주식회사 배터리 전력 공급 시스템을 포함하는 전력 공급 시스템
CN105140576B (zh) * 2015-07-22 2017-05-17 北京嘉捷恒信能源技术有限责任公司 一种防止锂亚电池钝化的系统和方法
DE102016100341A1 (de) * 2016-01-11 2017-07-13 Wincor Nixdorf International Gmbh Verfahren und Vorrichtung zur Depassivierung einer Batterie eines Wertbehälters
US9929771B2 (en) 2016-02-05 2018-03-27 Apana Inc. Low power, centralized data collection
AU2017285210B2 (en) * 2016-06-14 2023-03-30 John E. Waters Battery modules and systems for remote command and control of same
FR3062729B1 (fr) * 2017-02-03 2019-03-22 Sagemcom Energy & Telecom Sas Procede de gestion d'une alimentation auxiliaire d'un compteur
US10210762B1 (en) * 2017-09-27 2019-02-19 Denso International America, Inc. Vehicle-to-vehicle communications management for disabled vehicle
CN109768294A (zh) * 2017-11-09 2019-05-17 天津市赛英斯电池有限公司 一种高安全性防止高温锂亚圆柱电池钝化系统
US11387527B2 (en) 2018-01-27 2022-07-12 Phase Iv Engineering Inc. Battery passivation management system
WO2020180318A1 (en) * 2019-03-06 2020-09-10 Johnson Controls Fire Protection LP Lithium battery activation and long-term maintenance
WO2020180317A1 (en) 2019-03-06 2020-09-10 Johnson Controls Fire Protection LP Lithium battery passivation detection
US11532826B2 (en) * 2019-12-19 2022-12-20 Roche Diabetes Care, Inc. Apparatus and method for battery passivation compensation in a medical device
CN111736495B (zh) * 2020-02-25 2021-05-11 济南沛华信息科技有限公司 智能仪表控制方法及装置
CN113675486B (zh) * 2021-06-25 2023-01-06 浙江八达电子仪表有限公司 一种电能表锂电池去钝化的方法
CN114552031B (zh) * 2022-01-13 2024-04-02 深圳卡特加特智能科技有限公司 防钝化电路、存储介质、防钝化系统以及控制方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932819B2 (ja) * 1992-03-11 1999-08-09 日本電気株式会社 バッテリメンテナンス装置
JP2989076B2 (ja) 1992-03-24 1999-12-13 シャープ株式会社 端末網制御装置
US5438329A (en) 1993-06-04 1995-08-01 M & Fc Holding Company, Inc. Duplex bi-directional multi-mode remote instrument reading and telemetry system
GB2292249A (en) * 1994-08-04 1996-02-14 Gec Alsthom Ltd A method of activating batteries subject to electrode passivation prior to connection to feed current to a primary load
JP3426768B2 (ja) * 1995-02-15 2003-07-14 富士通株式会社 充放電制御装置および該装置を用いたシステムの充放電方法
US5677612A (en) * 1996-08-02 1997-10-14 The United States Of America As Represented By The Secretary Of The Army Lead-acid battery desulfator/rejuvenator
ATE201939T1 (de) 1996-08-19 2001-06-15 Siemens Ag Oesterreich Verfahren und schaltungsanordnung zum depassivieren einer batterie
US5900808A (en) 1997-02-21 1999-05-04 Lebo; Michael E. Low pressure warning system
US6118251A (en) 1999-01-27 2000-09-12 The United States Of America As Represented By The Secretary Of The Army Battery depassivation and conditioning method and apparatus
CA2314573C (en) * 2000-01-13 2009-09-29 Z.I. Probes, Inc. System for acquiring data from a facility and method
JP2002040063A (ja) * 2000-07-19 2002-02-06 Yazaki Corp 電圧低下判定装置
JP2002071420A (ja) * 2000-08-31 2002-03-08 Yazaki Corp 電圧低下判定装置
GB0029644D0 (en) * 2000-12-06 2001-01-17 Koninkl Philips Electronics Nv Method of powering-up battery powered apparatus
AU2003269912A1 (en) * 2002-07-18 2004-02-09 The Johns Hopkins University Embeddable corrosion rate meters for remotely monitoring structures
US7947109B2 (en) 2005-10-06 2011-05-24 3M Innovative Properties Company Powered air purifying respirator with battery passivation sensing/correction and method therefor
RU2326473C1 (ru) * 2006-12-18 2008-06-10 Виктор Александрович Дзензерский Электрический способ контроля качества аккумуляторных батарей
JP2009063502A (ja) * 2007-09-07 2009-03-26 Seiko Epson Corp 電池残容量管理システム及びその制御方法
US20090248100A1 (en) 2008-03-28 2009-10-01 Defibtech, Llc System and Method for Conditioning a Lithium Battery in an Automatic External Defibrillator
US9083065B2 (en) * 2009-08-02 2015-07-14 Revision Electronics & Power Systems Incorporated Self heating battery system

Also Published As

Publication number Publication date
AU2012250910A1 (en) 2013-11-28
EP2705565A1 (en) 2014-03-12
JP2014519679A (ja) 2014-08-14
CA2834576A1 (en) 2012-11-08
BR112013028172B1 (pt) 2020-12-08
HK1198398A1 (en) 2015-04-17
IL229027B (en) 2019-01-31
BR112013028172A2 (pt) 2017-01-10
JP6196965B2 (ja) 2017-09-13
CN103828120B (zh) 2016-08-17
US8847785B2 (en) 2014-09-30
EP2705565B1 (en) 2015-07-08
AU2012250910B2 (en) 2016-04-14
US20120280830A1 (en) 2012-11-08
IL229027A0 (en) 2013-12-31
CN103828120A (zh) 2014-05-28
WO2012151185A1 (en) 2012-11-08
CA2834576C (en) 2019-07-30
RU2594354C2 (ru) 2016-08-20
ES2544469T3 (es) 2015-08-31
MX2013012812A (es) 2014-02-10

Similar Documents

Publication Publication Date Title
RU2013153905A (ru) Способ и устройство для уменьшения пассивации батареи в модуле считывания показаний измерителя
JP2014519679A5 (ru)
US10903668B2 (en) Systems and methods for management and monitoring of energy storage and distribution
EP2402721B1 (en) Power management system for wireless autonomous transducer solutions
US10448440B2 (en) Techniques for wireless communication between a terminal computing device and a wearable computing device
RU2015133908A (ru) Совместимость между кбп и тбз
US10931135B2 (en) Energy harvesting sensor
CN102833387A (zh) 移动终端及其处理方法
RU2016110908A (ru) Способ и устройство для зарядки электроэнергией
WO2015180158A1 (zh) 检测设备电量的方法、设备和系统
EP2176968A4 (en) PROCESS FOR REDUCING THE POWER CONSUMPTION OF A USER DEVICE IN THE IDLE MODE OF THE USER DEVICE
US11169216B2 (en) Information processing apparatus, method and non-transitory computer-readable storage medium
Schrader et al. Advertising power consumption of bluetooth low energy systems
Khriji et al. Measuring energy consumption of a wireless sensor node during transmission: Panstamp
JP2015505224A5 (ru)
MX2014009026A (es) Tecnicas para manejo mejorado de ahorros de energia.
EP2560425A4 (en) MOBILE COMMUNICATION SYSTEM, CONTROL DEVICE AND METHOD
Navarro et al. Energy profile for environmental monitoring wireless sensor networks
Guo et al. Battery discharge characteristics of wireless sensors in building applications
Sivagami et al. Estimating the energy consumption of wireless sensor node: Iris
Mikhaylov et al. Experimental evaluation of alkaline batteries's capacity for low power consuming applications
Abdal-Kadhim et al. An investigation of the power consumption of 315 MHz RF ASK transmitter and receiver modules for wireless sensor network node
CN104750141A (zh) 温度控制系统与方法及决定温度数字值的阈值的方法
Antolín et al. Analysis of the operating life for battery-operated wireless sensor nodes
Rukpakavong et al. Lifetime estimation of sensor device with AA NiMH batteries