RU2012105680A - Трехфазный источник бесперебойного питания большой мощности - Google Patents

Трехфазный источник бесперебойного питания большой мощности Download PDF

Info

Publication number
RU2012105680A
RU2012105680A RU2012105680/07A RU2012105680A RU2012105680A RU 2012105680 A RU2012105680 A RU 2012105680A RU 2012105680/07 A RU2012105680/07 A RU 2012105680/07A RU 2012105680 A RU2012105680 A RU 2012105680A RU 2012105680 A RU2012105680 A RU 2012105680A
Authority
RU
Russia
Prior art keywords
input
power converter
negative
electric power
positive
Prior art date
Application number
RU2012105680/07A
Other languages
English (en)
Other versions
RU2529017C2 (ru
Inventor
Хеннинг Р. НИЛЬСЕН
Original Assignee
Американ Пауэр Конвершен Корпорейшен
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Американ Пауэр Конвершен Корпорейшен filed Critical Американ Пауэр Конвершен Корпорейшен
Publication of RU2012105680A publication Critical patent/RU2012105680A/ru
Application granted granted Critical
Publication of RU2529017C2 publication Critical patent/RU2529017C2/ru

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • H02J9/063Common neutral, e.g. AC input neutral line connected to AC output neutral line and DC middle point
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

1. Схема преобразователя электроэнергии, содержащая:вход, включающий множество входных линий, каждая из которых предназначена для соединения с фазой многофазного источника электроэнергии переменного тока, имеющей синусоидальный сигнал,множество шин постоянного тока, включающее первую положительную шину постоянного тока, имеющую первое номинальное напряжение постоянного тока; вторую положительную шину постоянного тока, имеющую второе номинальное напряжение постоянного тока; первую отрицательную шину постоянного тока, имеющую третье номинальное напряжение постоянного тока; и вторую отрицательную шину постоянного тока, имеющую четвертое номинальное напряжение постоянного тока,первый преобразователь электроэнергии, соединенный с входом и сконфигурированный для подачи электроэнергии из многофазного источника электроэнергии переменного тока на множество шин постоянного тока во время первого положительного участка синусоидального сигнала и первого отрицательного участка синусоидального сигнала, ивторой преобразователь электроэнергии, соединенный с входом и сконфигурированный для подачи электроэнергии из многофазного источника электроэнергии переменного тока в по меньшей мере некоторые из множества шин постоянного тока во время второго положительного участка синусоидального сигнала и второго отрицательного участка синусоидального сигнала.2. Схема по п.1, отличающаяся тем, что первый положительный участок и второй положительный участок включают разные участки синусоидального сигнала, и первый отрицательный участок и второй отрицательный участок включают разные участки синусоидального с

Claims (20)

1. Схема преобразователя электроэнергии, содержащая:
вход, включающий множество входных линий, каждая из которых предназначена для соединения с фазой многофазного источника электроэнергии переменного тока, имеющей синусоидальный сигнал,
множество шин постоянного тока, включающее первую положительную шину постоянного тока, имеющую первое номинальное напряжение постоянного тока; вторую положительную шину постоянного тока, имеющую второе номинальное напряжение постоянного тока; первую отрицательную шину постоянного тока, имеющую третье номинальное напряжение постоянного тока; и вторую отрицательную шину постоянного тока, имеющую четвертое номинальное напряжение постоянного тока,
первый преобразователь электроэнергии, соединенный с входом и сконфигурированный для подачи электроэнергии из многофазного источника электроэнергии переменного тока на множество шин постоянного тока во время первого положительного участка синусоидального сигнала и первого отрицательного участка синусоидального сигнала, и
второй преобразователь электроэнергии, соединенный с входом и сконфигурированный для подачи электроэнергии из многофазного источника электроэнергии переменного тока в по меньшей мере некоторые из множества шин постоянного тока во время второго положительного участка синусоидального сигнала и второго отрицательного участка синусоидального сигнала.
2. Схема по п.1, отличающаяся тем, что первый положительный участок и второй положительный участок включают разные участки синусоидального сигнала, и первый отрицательный участок и второй отрицательный участок включают разные участки синусоидального сигнала.
3. Схема по п.1, отличающаяся тем, что первый преобразователь электроэнергии включает положительную вольтодобавочную схему и отрицательную вольтодобавочную схему, причем положительная вольтодобавочная схема соединена с каждой из входных линий и сконфигурирована для потребления тока во время первого положительного участка синусоидального сигнала каждой фазы многофазного сигнала электроэнергии переменного тока, а отрицательная вольтодобавочная схема соединена с каждой из входных линий и сконфигурирована для потребления тока во время первого отрицательного участка синусоидального сигнала каждой фазы многофазного сигнала электроэнергии переменного тока.
4. Схема по п.3, отличающаяся тем, что второй преобразователь электроэнергии включает множество положительных вольтодобавочных схем и множество отрицательных вольтодобавочных схем, причем второй преобразователь электроэнергии сконфигурирован для потребления тока во время второго положительного участка с использованием каждой из множества положительных вольтодобавочных схем для потребления тока из одной отдельной входной линии многофазного источника электроэнергии переменного тока, а второй преобразователь электроэнергии сконфигурирован для потребления тока во время второго отрицательного участка с использованием каждой из множества отрицательных вольтодобавочных схем для потребления тока из одной отдельной входной линии многофазного источника электроэнергии переменного тока.
5. Схема по п.1, отличающаяся тем, что она выполнена с возможностью управления таким образом, что суммарный ток, потребляемый ею на входе, представляет собой, по существу, синусоидальный ток при всех фазовых углах синусоидального сигнала.
6. Схема по п.1, отличающаяся тем, что первый положительный участок включает фазовые углы синусоидального сигнала вблизи фазового угла пиковой положительной амплитуды синусоидального сигнала, первый отрицательный участок включает фазовые углы синусоидального сигнала вблизи фазового угла пиковой отрицательной амплитуды синусоидального сигнала, а второй положительный участок и второй отрицательный участок включают фазовые углы синусоидального сигнала вблизи прохождения через ноль синусоидального сигнала.
7. Схема по п.1, отличающаяся тем, что второй преобразователь электроэнергии сконфигурирован для подачи электроэнергии, потребляемой из многофазного источника электроэнергии переменного тока, в по меньшей мере некоторые из множества шин постоянного тока по меньшей мере при фазовых углах в диапазоне ±30° вблизи каждого прохождения через ноль синусоидального сигнала.
8. Схема по п.1, отличающаяся тем, что содержит выпрямитель, соединенный с входом и включающий выход, соединенный с входом первого преобразователя электроэнергии.
9. Схема по п.8, отличающаяся тем, что содержит первый переключатель, сконфигурированный для электрической изоляции выпрямителя от каждой фазы многофазного источника электроэнергии переменного тока, и второй переключатель, сконфигурированный для электрической изоляции второго преобразователя электроэнергии от каждой фазы многофазного источника электроэнергии переменного тока.
10. Способ подачи выходной электроэнергии переменного тока из источника бесперебойного питания (ИБП), причем ИБП содержит многофазный вход переменного тока; множество шин постоянного тока, включающее первую положительную шину постоянного тока, вторую положительную шину постоянного тока, первую отрицательную шину постоянного тока и вторую отрицательную шину постоянного тока; схему преобразователя электроэнергии, включающую первый преобразователь электроэнергии и второй преобразователь электроэнергии, каждый из которых соединен с входом переменного тока и по меньшей мере одной из множества шин постоянного тока; содержащий следующие действия:
подачу электроэнергии с многофазного входа переменного тока на вход первого преобразователя электроэнергии и подачу электроэнергии на множество шин постоянного тока с выхода первого преобразователя электроэнергии во время первого положительного участка синусоидального сигнала, подаваемого с многофазного входа переменного тока, и во время первого отрицательного участка синусоидального сигнала,
подачу электроэнергии с многофазного входа переменного тока на вход второго преобразователя электроэнергии и подачу электроэнергии в по меньшей мере некоторые из множества шин постоянного тока с выхода второго преобразователя электроэнергии во время второго положительного участка синусоидального сигнала и во время второго отрицательного участка синусоидального сигнала, и
преобразование электроэнергии, подаваемой из множества шин постоянного тока, в выходную электроэнергию переменного тока, подаваемую на выход переменного тока ИБП.
11. Способ по п.10, отличающийся тем, что содержит подачу электроэнергии на множество шин постоянного тока с выхода первого преобразователя электроэнергии при фазовых углах синусоидального сигнала вблизи фазового угла пиковой положительной амплитуды синусоидального сигнала и вблизи фазового угла пиковой отрицательной амплитуды синусоидального сигнала.
12. Способ по п.11, отличающийся тем, что содержит подачу электроэнергии в по меньшей мере некоторые из множества шин постоянного тока с выхода второго преобразователя электроэнергии при фазовых углах синусоидального сигнала вблизи прохождения через ноль синусоидального сигнала.
13. Способ по п.10, отличающийся тем, что содержит управление первым преобразователем электроэнергии и вторым преобразователем электроэнергии таким образом, что суммарный ток, потребляемый на входе переменного тока, представляет собой, по существу, синусоидальный ток при всех фазовых углах синусоидального сигнала.
14. Способ по п.10, отличающийся тем, что содержит генерацию сигнала, представляющего синусоидальный входной ток ИБП, генерацию первого эталонного сигнала, относящегося к величине тока, потребляемого вторым преобразователем электроэнергии при фазовых углах вблизи прохождения через ноль сигнала, представляющего синусоидальный входной ток, генерацию первого эталонного сигнала тока путем комбинирования первого эталонного сигнала и сигнала, представляющего синусоидальный входной ток, причем первый эталонный сигнал тока используется в управлении работой второго преобразователя электроэнергии, и генерацию второго эталонного сигнала тока путем комбинирования первого эталонного сигнала тока и сигнала, представляющего синусоидальный входной ток, для управления работой первого преобразователя электроэнергии.
15. Способ подачи выходной электроэнергии переменного тока из источника бесперебойного питания (ИБП), причем ИБП включает вход переменного тока; первый преобразователь электроэнергии, соединенный с входом переменного тока; второй преобразователь электроэнергии, соединенный с входом переменного тока; источник электроэнергии постоянного тока и шину постоянного тока; содержащий следующие действия:
подачу электроэнергии с входа переменного тока на вход первого преобразователя электроэнергии и подачу электроэнергии в шину постоянного тока с выхода первого преобразователя электроэнергии в первом рабочем состоянии ИБП,
подачу электроэнергии с входа переменного тока на вход второго преобразователя электроэнергии и подачу электроэнергии в шину постоянного тока с выхода второго преобразователя электроэнергии в каждом из первого рабочего состояния ИБП и второго рабочего состояния ИБП,
подачу электроэнергии из источника электроэнергии постоянного тока на вход первого преобразователя электроэнергии и подачу электроэнергии в шину постоянного тока с выхода первого преобразователя электроэнергии во втором рабочем состоянии ИБП, и
преобразование электроэнергии, подаваемой с шины постоянного тока, в выходную электроэнергию переменного тока, подаваемую на выход переменного тока ИБП, в каждом из первого рабочего состояния и второго рабочего состояния.
16. Способ по п.15, отличающийся тем, что содержит подачу электроэнергии из шины постоянного тока в источник электроэнергии постоянного тока для зарядки источника постоянного тока в первом рабочем состоянии ИБП.
17. Способ по п.16, отличающийся тем, что содержит подачу электроэнергии с выхода первого преобразователя электроэнергии на множество шин постоянного тока, включенных в шину постоянного тока, причем множество шин постоянного тока включает первую положительную шину постоянного тока, имеющую первое номинальное напряжение постоянного тока, вторую положительную шину постоянного тока, имеющую второе номинальное напряжение постоянного тока, первую отрицательную шину постоянного тока, имеющую третье номинальное напряжение постоянного тока, и вторую отрицательную шину постоянного тока, имеющую четвертое номинальное напряжение постоянного тока.
18. Способ по п.17, отличающийся тем, что содержит подачу большей части электроэнергии, поступающей на выход переменного тока, из источника электроэнергии постоянного тока во втором рабочем состоянии.
19. Способ по п.18, отличающийся тем, что содержит подачу большей части электроэнергии, поступающей на выход переменного тока, с выхода второго преобразователя электроэнергии во время перехода из второго рабочего состояния в первое рабочее состояние.
20. Способ по п.15, отличающийся тем, что подача электроэнергии с входа переменного тока включает подачу электроэнергии из каждой фазы многофазного входа переменного тока.
RU2012105680/07A 2009-08-20 2010-08-16 Трехфазный источник бесперебойного питания большой мощности RU2529017C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/544,815 US8385091B2 (en) 2009-08-20 2009-08-20 3-phase high-power UPS
US12/544,815 2009-08-20
PCT/US2010/045587 WO2011022320A1 (en) 2009-08-20 2010-08-16 3-phase high power ups

Publications (2)

Publication Number Publication Date
RU2012105680A true RU2012105680A (ru) 2013-09-27
RU2529017C2 RU2529017C2 (ru) 2014-09-27

Family

ID=43242627

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012105680/07A RU2529017C2 (ru) 2009-08-20 2010-08-16 Трехфазный источник бесперебойного питания большой мощности

Country Status (8)

Country Link
US (2) US8385091B2 (ru)
EP (1) EP2467928B1 (ru)
CN (1) CN102577068B (ru)
AU (1) AU2010284414B2 (ru)
BR (1) BR112012003835A2 (ru)
DK (1) DK2467928T3 (ru)
RU (1) RU2529017C2 (ru)
WO (1) WO2011022320A1 (ru)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688048B2 (en) 2007-02-21 2010-03-30 American Power Conversion Corporation 3-phase high power UPS
FR2927201B1 (fr) * 2008-01-31 2010-02-12 Airbus France Circuit et systemes redresseurs de puissance, procede associe, aeronef comprenant de tels circuit ou systemes
WO2010124987A1 (de) * 2009-04-27 2010-11-04 Conti Temic Microelectronic Gmbh Steuervorrichtung zum spannungsfreien schalten eines schaltelements eines spannungswandlers
US8385091B2 (en) 2009-08-20 2013-02-26 Electric IT Corporation 3-phase high-power UPS
FR2952483B1 (fr) * 2009-11-06 2012-12-07 Mge Ups Systems Dispositif convertisseur et alimentation sans interruption equipee d'un tel dispositif.
US8391036B2 (en) * 2009-12-29 2013-03-05 International Business Machines Corporation Selective enablement of power supply sections for improving efficiency
US20120218795A1 (en) * 2011-02-28 2012-08-30 Siemens Corporation Pulse width modulated control for hybrid inverters
EP2719062B1 (en) * 2011-06-08 2018-02-28 General Electric Technology GmbH High voltage dc/dc converter with cascaded resonant tanks
EP2740204B1 (en) 2011-08-01 2020-09-30 General Electric Technology GmbH A dc to dc converter assembly
EP2557675A1 (en) 2011-08-08 2013-02-13 Siemens Aktiengesellschaft Direct electrical heating arrangement comprising a transformer and an indirect voltage link a.c. converter
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
CN103959634B (zh) 2011-11-17 2017-09-01 通用电气技术有限公司 用于hvdc应用的混合ac/dc转换器
CN104011987B (zh) * 2011-12-19 2016-03-30 安辛可公司 用于多相交流电机的低速控制的系统和方法
EP2815495B1 (en) * 2012-02-15 2017-06-14 Schneider Electric IT Corporation A modular three-phase online ups
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
DE112012000487T5 (de) * 2012-04-10 2014-01-23 Fuji Electric Co., Ltd Leistungsumwandlungseinrichtung
US9444320B1 (en) * 2012-04-16 2016-09-13 Performance Controls, Inc. Power controller having active voltage balancing of a power supply
US9413268B2 (en) * 2012-05-10 2016-08-09 Futurewei Technologies, Inc. Multilevel inverter device and method
WO2013179463A1 (ja) 2012-05-31 2013-12-05 東芝三菱電機産業システム株式会社 電力変換装置
WO2013187883A1 (en) * 2012-06-12 2013-12-19 Schneider Electric It Corporation Apparatus and method for providing uninterruptible power
US9484770B2 (en) * 2012-12-07 2016-11-01 Keme, Inc. System and method of charging a chemical storage device
US9077255B2 (en) * 2013-01-11 2015-07-07 Futurewei Technologies, Inc. Resonant converters and methods
EP2763276A1 (de) * 2013-01-31 2014-08-06 Siemens Aktiengesellschaft Umrichter und Verfahren zum Betrieb eines solchen
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
GB2516414A (en) * 2013-05-28 2015-01-28 Meb Engineering & Commercial Services Ltd Residential Domestic Uninterruptable Power Supply
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10797490B2 (en) * 2014-03-26 2020-10-06 Intersil Americas LLC Battery charge system with transition control that protects adapter components when transitioning from battery mode to adapter mode
US9621067B2 (en) * 2014-06-24 2017-04-11 Phoebus-Power Technology Co., Ltd. Hybrid power supply device of air-conditioner
GB2528894B (en) * 2014-08-01 2017-05-10 Eisergy Ltd Power factor correction stages in power conversion
CN104333122B (zh) * 2014-11-18 2018-05-11 华为技术有限公司 供电总线电路
CN105743085B (zh) * 2014-12-12 2019-11-26 通用电气公司 向至少一个负载供电的系统及方法
WO2016167896A1 (en) 2015-04-15 2016-10-20 Liebert Corporation Method for balancing power in paralleled converters
RU2671947C1 (ru) * 2015-06-23 2018-11-08 Ниссан Мотор Ко., Лтд. Инвертор с возможностью заряда
JP6348460B2 (ja) * 2015-07-08 2018-06-27 東芝三菱電機産業システム株式会社 電力変換システム
CN105226693B (zh) * 2015-10-13 2017-08-18 辽宁立德电力电子股份有限公司 一种基于igbt技术的四象限双向储能逆变装置
US10355617B2 (en) 2015-11-13 2019-07-16 Siemens Aktiengesellschaft Medium voltage transformerless multilevel converter and method for controlling a medium voltage transformerless multilevel converter
US10502470B2 (en) 2016-03-22 2019-12-10 Vertiv Corporation System and method to maintain evaporator superheat during pumped refrigerant economizer operation
US20210006178A1 (en) * 2016-09-29 2021-01-07 Transportation Ip Holdings, Llc Harmonic distortion reduction system for converters connected to a common bus
US9900942B1 (en) 2016-10-21 2018-02-20 Semiconductor Components Industries, Llc Apparatus, systems and methods for average current and frequency control in a synchronous buck DC/DC LED driver
US9887614B1 (en) * 2016-10-21 2018-02-06 Semiconductor Components Industries, Llc Apparatus, systems and methods for average current control in a buck DC/DC LED driver
US10527952B2 (en) * 2016-10-25 2020-01-07 Kla-Tencor Corporation Fault discrimination and calibration of scatterometry overlay targets
EP3349357A1 (en) * 2017-01-13 2018-07-18 Siemens Aktiengesellschaft Power switching assembly and method
US10637279B2 (en) 2017-02-22 2020-04-28 Vertiv Corporation Method of mitigating effects of AC input voltage surge in a transformer-less rectifier uninterruptible power supply system
CN107425596B (zh) * 2017-03-29 2020-03-31 华为技术有限公司 电子设备、电子设备控制方法及装置
DE102017212543A1 (de) * 2017-07-21 2019-01-24 Robert Bosch Gmbh Sende-/Empfangseinrichtung für ein Bussystem und Verfahren zur Reduktion von leitungsgebundenen Emissionen
RU184526U1 (ru) * 2018-01-29 2018-10-30 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") Автономный источник электропитания
DE102018108737B3 (de) 2018-04-12 2019-08-14 Fujitsu Limited Verfahren zum Ermitteln einer Konfiguration von mehreren Stromversorgungseinheiten eines Computersystems
US20190354154A1 (en) * 2018-05-18 2019-11-21 Hewlett Packard Enterprise Development Lp Inductors
CN108880311B (zh) * 2018-07-05 2020-08-25 华为技术有限公司 一种多电平逆变器的箝位调制方法、装置及逆变器
CN110858727A (zh) * 2018-08-24 2020-03-03 台达电子工业股份有限公司 不断电电源供应器及其操作方法
EP3672054B1 (en) * 2018-12-21 2021-06-16 Eltek AS Power converter and method of controlling a power converter
CN111510001B (zh) * 2019-01-30 2021-11-30 华为技术有限公司 电源整流的方法和装置
KR102594977B1 (ko) * 2019-04-09 2023-10-30 에스케이하이닉스 주식회사 신호전달회로 및 이를 포함하는 반도체 장치
US11711003B2 (en) * 2019-05-31 2023-07-25 MagniX USA, Inc. High voltage converter for use as electric power supply
RU193830U1 (ru) * 2019-07-11 2019-11-18 Общество с ограниченной ответственностью "Научно-производственное предприятие "ЭГО" Источник электропитания измерительной и регистрирующей аппаратуры от сети высокого напряжения
RU2740796C1 (ru) * 2019-12-23 2021-01-21 Публичное акционерное общество "Газпром" Система и способ бесперебойного электроснабжения постоянного тока
US20230163994A1 (en) * 2020-04-01 2023-05-25 Jack Ivan Jmaev Method and apparatus for providing infrastructure processing and communications
AU2021284271A1 (en) 2020-06-01 2023-01-19 Moxion Power Co. All-electric mobile power unit with variable outputs
EP4030585A1 (en) * 2021-01-14 2022-07-20 Schneider Electric IT Corporation Intelligent load control to support peak load demands in electrical circuits
US11955833B2 (en) 2021-01-14 2024-04-09 Schneider Electric It Corporation Intelligent load control to support peak load demands in electrical circuits
TWI779846B (zh) * 2021-09-24 2022-10-01 國立清華大學 並聯轉換器之載波同步方法及其系統

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239140A (en) 1975-09-22 1977-03-26 Mitsubishi Electric Corp Non-interrupted powe source
AU2296677A (en) 1976-03-10 1978-09-14 Westinghouse Electric Corp Load balancing system for ups rectifiers
US4564747A (en) 1983-09-30 1986-01-14 Chevron Research Company Methods and apparatus for detecting abnormalities in proximity effect heat-tracing circuits
SE444493B (sv) * 1984-08-24 1986-04-14 Asea Ab Forfarande for styrning av en stromriktare och stromriktare for kraftoverforing med hjelp av hogspend likstrom
JPH038038Y2 (ru) 1984-11-05 1991-02-27
FR2648612B1 (fr) * 1989-06-15 1991-10-11 Optis Elevator Cy Transformateur diphase-triphase
US5017800A (en) 1989-09-29 1991-05-21 Wisconsin Alumni Research Foundation AC to DC to AC power conversion apparatus with few active switches and input and output control
FR2684250B1 (fr) 1991-11-27 1994-04-01 Merlin Gerin Systeme de distribution d'energie electrique de haute qualite.
US6069412A (en) 1993-03-29 2000-05-30 Powerware Corporation Power factor corrected UPS with improved connection of battery to neutral
US5684686A (en) 1994-01-12 1997-11-04 Deltec Electronics Corporation Boost-input backed-up uninterruptible power supply
US5644483A (en) 1995-05-22 1997-07-01 Lockheed Martin Energy Systems, Inc. Voltage balanced multilevel voltage source converter system
US5710504A (en) 1996-05-20 1998-01-20 The Board Of Trustees Of The University Of Illinois Switched capacitor system for automatic battery equalization
US6031738A (en) 1998-06-16 2000-02-29 Wisconsin Alumni Research Foundation DC bus voltage balancing and control in multilevel inverters
DE19845903A1 (de) * 1998-10-05 2000-04-06 Aloys Wobben Elektrische Energieübertragungsanlage
US6075716A (en) * 1999-04-06 2000-06-13 Lucent Technologies Inc. Two-stage, three phase boost converter with reduced total harmonic distortion
US6040989A (en) * 1999-05-06 2000-03-21 Emerson Electric Co Device and method for generating three-phase sine waves using two pulse-width modulators
JP2000324711A (ja) 1999-05-17 2000-11-24 Canon Inc 組み電池装置
US6184593B1 (en) 1999-07-29 2001-02-06 Abb Power T&D Company Inc. Uninterruptible power supply
BR9907351A (pt) 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Método e circuito de controle para retificador do tipo elevador trifásico de três nìveis
AU2001241559A1 (en) 2000-02-18 2001-08-27 Liebert Corporation Modular uninterruptible power supply
AU2001238620A1 (en) 2000-02-29 2001-09-12 Powerware Corporation Power converters with ac and dc operating modes and methods of operation thereof
US6459596B1 (en) 2000-08-18 2002-10-01 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for a Reduced parts-counts multilevel rectifier
US20020133728A1 (en) 2000-11-14 2002-09-19 Sanjay Agarwal Network traffic based adaptive power management system for computer networks
US6577106B2 (en) 2000-11-30 2003-06-10 Honeywell International Inc. Multi-functional AC/DC converter
DK174494B1 (da) 2001-01-26 2003-04-22 American Power Conversion Denm Kombineret AC-DC til DC konverter
US6631080B2 (en) * 2001-06-06 2003-10-07 Hybrid Power Generation Systems Llc Systems and methods for boosting DC link voltage in turbine generators
JP3858893B2 (ja) 2001-10-01 2006-12-20 サンケン電気株式会社 電圧バランス回路、電圧検出用回路、電圧バランス方法及び電圧検出方法
US20030076696A1 (en) 2001-10-18 2003-04-24 Delta Electronics, Inc. Device of uninterruptible power supply
US7106607B2 (en) * 2002-01-22 2006-09-12 American Power Conversion Denmark Aps Combined AC-DC to DC converter
CN1333506C (zh) 2002-08-14 2007-08-22 艾默生网络能源有限公司 带母线均压功能的不间断电源系统
US7786616B2 (en) 2003-02-07 2010-08-31 Cummins Power Generation Inc. Generator with DC boost and split bus bidirectional DC-to-DC converter for uninterruptible power supply system or for enhanced load pickup
US6914415B2 (en) 2003-02-14 2005-07-05 Motorola, Inc. Battery adaptor to facilitate reconditioning in a smart charger
US7545120B2 (en) 2003-07-29 2009-06-09 Dell Products L.P. AC-DC adapter and battery charger integration for portable information handling systems
US7259477B2 (en) * 2003-08-15 2007-08-21 American Power Conversion Corporation Uninterruptible power supply
US6903537B2 (en) 2003-10-22 2005-06-07 Aimtron Technology Corp. Switching DC-to-DC converter with multiple output voltages
WO2005041384A1 (ja) 2003-10-27 2005-05-06 Mitsubishi Denki Kabushiki Kaisha 電源装置
US7446433B2 (en) 2004-01-23 2008-11-04 American Power Conversion Corporation Methods and apparatus for providing uninterruptible power
US7432615B2 (en) 2004-01-29 2008-10-07 American Power Conversion Corporation Uninterruptable power supply system and method
US7050312B2 (en) 2004-03-09 2006-05-23 Eaton Power Quality Corporation Multi-mode uninterruptible power supplies and methods of operation thereof
US7684222B2 (en) 2004-03-24 2010-03-23 Eaton Corporation Power conversion apparatus with DC bus precharge circuits and methods of operation thereof
WO2005109590A1 (en) * 2004-04-09 2005-11-17 Smc Electrical Products, Inc. Inverter bridge short-circuit protection scheme
EP1800382B1 (en) 2004-08-31 2011-10-05 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7456518B2 (en) 2004-08-31 2008-11-25 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
JP4181104B2 (ja) 2004-10-06 2008-11-12 日本無線株式会社 蓄電器の電圧制御装置及びそれを備えた蓄電器モジュール
US7402921B2 (en) 2005-04-21 2008-07-22 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7352083B2 (en) 2005-09-16 2008-04-01 American Power Conversion Corporation Apparatus for and method of UPS operation
US7456524B2 (en) 2006-03-31 2008-11-25 American Power Conversion Corporation Apparatus for and methods of polyphase power conversion
US7705489B2 (en) 2006-09-08 2010-04-27 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
WO2008032425A1 (fr) 2006-09-15 2008-03-20 Mitsubishi Electric Corporation Appareil convertisseur de courant cc/cc
CN101237191A (zh) * 2007-01-30 2008-08-06 刘丛伟 交流到交流变流器
US7688048B2 (en) 2007-02-21 2010-03-30 American Power Conversion Corporation 3-phase high power UPS
US7639520B1 (en) * 2007-02-26 2009-12-29 Network Appliance, Inc. Efficient power supply
JP5049637B2 (ja) 2007-04-12 2012-10-17 三菱電機株式会社 Dc/dc電力変換装置
US7619907B2 (en) 2007-04-12 2009-11-17 Mitsubishi Electric Corporation DC/DC power conversion device
ES2378616T3 (es) * 2008-04-18 2012-04-16 Abb Research Ltd. Aparato y procedimiento para el control de una línea de transmisión
US8385091B2 (en) 2009-08-20 2013-02-26 Electric IT Corporation 3-phase high-power UPS
US8488345B2 (en) * 2010-12-01 2013-07-16 Rockwell Automation Technologies, Inc. Pulse width modulation control method and system for mitigating reflected wave effects in over-modulation region
CN202475260U (zh) * 2012-01-06 2012-10-03 无锡联动太阳能科技有限公司 高升压比变换器、太阳能逆变器与太阳能电池系统
EP2672621B1 (en) * 2012-06-07 2019-01-23 ABB Research Ltd. Method for zero-sequence damping and voltage balancing in a three-level converter with split dc-link capacitors and virtually grounded LCL filter

Also Published As

Publication number Publication date
US20130188403A1 (en) 2013-07-25
EP2467928A1 (en) 2012-06-27
US8842452B2 (en) 2014-09-23
AU2010284414B2 (en) 2015-06-18
WO2011022320A1 (en) 2011-02-24
RU2529017C2 (ru) 2014-09-27
EP2467928B1 (en) 2019-08-07
BR112012003835A2 (pt) 2016-03-22
CN102577068B (zh) 2015-12-16
US8385091B2 (en) 2013-02-26
WO2011022320A8 (en) 2011-04-28
AU2010284414A1 (en) 2012-03-15
CN102577068A (zh) 2012-07-11
DK2467928T3 (da) 2019-10-28
US20110044077A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
RU2012105680A (ru) Трехфазный источник бесперебойного питания большой мощности
EA201170523A1 (ru) Устройство аварийного электропитания
RU2009120104A (ru) Система генерирования, преобразования, распределения электроэнергии и запуска на борту самолета
RU2009145979A (ru) Конфигурации модульной многоуровневой подводной энергетической установки
JP6262887B2 (ja) 電源バス回路
ATE526715T1 (de) Wechselrichter zur einspeisung elektrischer energie in ein energieversorgungsnetz
Hafez et al. Medium voltage power distribution architecture with medium frequency isolation transformer for data centers
JP2004282802A (ja) 分電盤
CN103597694B (zh) 太阳能发电系统的运行控制装置
WO2013000185A1 (zh) 并网逆变装置
WO2009004613A3 (en) Method and circuitry for improving the magnitude and shape of the output current of switching power converters
CN103608996A (zh) 不间断电源系统
RU2009140152A (ru) Устройство и способ для подачи энергии к критичной нагрузке
Rao et al. A three phase five-level inverter with fault tolerant and energy balancing capability for photovoltaic applications
KR101267803B1 (ko) 이종 전력망간 인터페이스를 위한 경제형 계통연계 pcs
CN101521394B (zh) 在线式不间断电源装置
CN101521391B (zh) 脱机式不间断电源装置
Loh et al. Compact integrated solar energy generation systems
RU2540966C1 (ru) Статический преобразователь
RU2399140C1 (ru) Устройство для электроснабжения подводного объекта с борта судна-носителя
CN206313674U (zh) 一种多重母排电源
KR100740764B1 (ko) 부스터 기능과 병렬 컨버터 기능을 가지는 계통연계형무정전 하이브리드 인버터 장치
GB201110932D0 (en) Eelctrical connection apparatus
Beck et al. Connecting an alternative energy source to the power grid by a DSP controlled DC/AC inverter
KR200416152Y1 (ko) 부스터 기능과 병렬 컨버터 기능을 가지는 계통연계형무정전 하이브리드 인버터 장치