RU2001135557A - METHOD AND DEVICE OF SCREENING USING TRANSVERSE CROSSS - Google Patents

METHOD AND DEVICE OF SCREENING USING TRANSVERSE CROSSS

Info

Publication number
RU2001135557A
RU2001135557A RU2001135557/28A RU2001135557A RU2001135557A RU 2001135557 A RU2001135557 A RU 2001135557A RU 2001135557/28 A RU2001135557/28 A RU 2001135557/28A RU 2001135557 A RU2001135557 A RU 2001135557A RU 2001135557 A RU2001135557 A RU 2001135557A
Authority
RU
Russia
Prior art keywords
support
housing
strip
longitudinal axis
antenna
Prior art date
Application number
RU2001135557/28A
Other languages
Russian (ru)
Other versions
RU2219569C2 (en
Inventor
Жан СЕДУ
Ричард А. РОСТАЛ
Дзеват Омераджик
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/746,927 external-priority patent/US6566881B2/en
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2001135557A publication Critical patent/RU2001135557A/en
Application granted granted Critical
Publication of RU2219569C2 publication Critical patent/RU2219569C2/en

Links

Claims (19)

1. Устройство для применения с удлиненной опорой, выполненной с возможностью расположения внутри ствола скважины, причем упомянутая опора имеет продольную ось, при этом устройство содержит корпус (10), выполненный с возможностью образования цилиндрической поверхности, причем упомянутый корпус выполнен с возможностью установки на опоре, отличающееся тем, что упомянутый корпус имеет, по меньшей мере, одну щель (12’), сформированную в нем таким образом, что упомянутая щель перпендикулярна упомянутой продольной оси, когда упомянутый корпус установлен на упомянутой опоре, при этом упомянутый корпус обеспечивает предварительно определенное затухание составляющей электромагнитного поля, когда упомянутое поле взаимодействует с упомянутым корпусом.1. A device for use with an elongated support configured to be located inside the wellbore, said support having a longitudinal axis, the device comprising a housing (10) configured to form a cylindrical surface, said housing being adapted to be mounted on a support, characterized in that said housing has at least one slot (12 ') formed therein such that said gap is perpendicular to said longitudinal axis when said housing is anovlen on said support, wherein said enclosure provides a predetermined damping component of an electromagnetic field when said field interacts with said housing. 2. Устройство по п.1, отличающееся тем, что упомянутый корпус включает в себя множество щелей (12’), сформированных в нем таким образом, что каждая щель перпендикулярна упомянутой продольной оси, когда упомянутый корпус (10) установлен на упомянутой опоре.2. The device according to claim 1, characterized in that said housing includes a plurality of slots (12 ’) formed therein such that each slot is perpendicular to said longitudinal axis when said housing (10) is mounted on said support. 3. Устройство по п.1, дополнительно отличающееся тем, что упомянутый корпус имеет, по меньшей мере, одну щель, которая параллельна (34) упомянутой продольной оси, когда упомянутый корпус (10) установлен на упомянутой опоре.3. The device according to claim 1, further characterized in that said housing has at least one slit that is parallel (34) to said longitudinal axis when said housing (10) is mounted on said support. 4. Устройство по п.1, отличающееся тем, что упомянутый корпус (10) является металлическим и, по меньшей мере, одна щель заполнена материалом с потерями.4. The device according to claim 1, characterized in that the said housing (10) is metal and at least one slot is filled with lossy material. 5. Устройство по п.1, отличающееся тем, что упомянутому корпусу придана форма, образующая полый правильный круговой цилиндр.5. The device according to claim 1, characterized in that said body is shaped to form a hollow regular circular cylinder. 6. Устройство по п.5, отличающееся тем, что упомянутый корпус (10) содержит две половины, выполненные с возможностью образования упомянутого цилиндра.6. The device according to claim 5, characterized in that said housing (10) comprises two halves configured to form said cylinder. 7. Устройство, предназначенное для применения с удлиненной опорой, выполненной с возможностью расположения внутри ствола скважины, причем упомянутая опора имеет продольную ось, отличающееся тем, что содержит гибкую полосу (20), выполненную с возможностью окружения опоры, причем упомянутая полоса сформирована из непроводящего материала, и по меньшей мере, один проводящий элемент (22’), расположенный на упомянутой полосе таким образом, что упомянутый элемент перпендикулярен упомянутой продольной оси, когда упомянутая полоса окружает упомянутую опору, при этом упомянутая полоса обеспечивает предварительно определенное затухание составляющей электромагнитного поля, когда упомянутое поле взаимодействует с упомянутой полосой.7. A device intended for use with an elongated support configured to be located inside the wellbore, said support having a longitudinal axis, characterized in that it comprises a flexible strip (20) configured to surround the support, said strip being formed of a non-conductive material and at least one conductive element (22 ') located on said strip so that said element is perpendicular to said longitudinal axis when said strip surrounds said a support, wherein said strip provides a predetermined attenuation of the electromagnetic field component when said field interacts with said strip. 8. Устройство по п.7, отличающееся тем, что упомянутый, по меньшей мере, один поводящий элемент (22) расположен на упомянутой полосе (20), образуя разомкнутый контур вокруг упомянутой опоры, когда упомянутая полоса окружает упомянутую опору.8. The device according to claim 7, characterized in that said at least one driving element (22) is located on said strip (20), forming an open loop around said support when said strip surrounds said support. 9. Устройство по п.8, отличающееся тем, что также содержит переключающее средство, соединенное с упомянутым, по меньшей мере, одним проводящим элементом, причем упомянутое переключающее средство выполнено с возможностью приведения в действие с обеспечением избирательного замыкания упомянутого разомкнутого контура для образования замкнутого контура.9. The device according to claim 8, characterized in that it also includes switching means connected to said at least one conductive element, said switching means being operable to selectively close said open loop to form a closed loop . 10. Способ экранирования источника или датчика, расположенного на удлиненной опоре, имеющей продольную ось и выполненной с возможностью расположения внутри ствола скважины, заключающийся в том, что устанавливают корпус (10), выполненный с возможностью образования цилиндрической поверхности, на упомянутой опоре для покрытия упомянутого источника или датчика, отличающийся тем, что упомянутый корпус имеет, по меньшей мере, одну щель (12’), сформированную в нем таким образом, что упомянутая щель перпендикулярна упомянутой продольной оси, при этом упомянутый корпус обеспечивает предварительно определенное затухание составляющей электромагнитного поля, когда упомянутое поле взаимодействует с упомянутым корпусом.10. A method of shielding a source or sensor located on an elongated support having a longitudinal axis and configured to be located inside the wellbore, which consists in installing a body (10) configured to form a cylindrical surface on said support to cover said source or a sensor, characterized in that the said housing has at least one slot (12 ') formed in it in such a way that said gap is perpendicular to said longitudinal axis, when om said housing provides a predetermined damping component of an electromagnetic field when said field interacts with said housing. 11. Способ по п.10, отличающийся тем, что упомянутый источник или датчик содержит антенну, имеющую магнитный дипольный момент и выполненную с возможностью передачи и/или приема электромагнитной энергии.11. The method according to claim 10, characterized in that said source or sensor comprises an antenna having a magnetic dipole moment and configured to transmit and / or receive electromagnetic energy. 12. Способ по п.11, отличающийся тем, что располагают упомянутую антенну на упомянутой опоре таким образом, что упомянутый магнитный дипольный момент наклонен или перпендикулярен относительно упомянутой продольной оси упомянутой опоры.12. The method according to claim 11, characterized in that said antenna is placed on said support in such a way that said magnetic dipole moment is tilted or perpendicular to said longitudinal axis of said support. 13. Способ по п.12, отличающийся тем, что устанавливают упомянутый корпус (10) на упомянутой опоре таким образом, что упомянутая, по меньшей мере, одна щель (12’) расположена поверх упомянутой антенны.13. A method according to claim 12, characterized in that said body (10) is mounted on said support in such a way that said at least one slot (12 ’) is located on top of said antenna. 14. Способ по п.13, отличающийся тем, что упомянутая антенна содержит салазкообразную катушку.14. The method according to p. 13, characterized in that said antenna comprises a sled-like coil. 15. Способ экранирования источника или датчика, расположенного на удлиненной опоре, имеющей продольную ось и выполненной с возможностью расположения внутри ствола скважины, отличающийся тем, что устанавливают гибкую полосу (20) на упомянутой опоре для покрытия упомянутого источника или датчика, при этом упомянутая полоса имеет, по меньшей мере, один проводящий элемент (22), расположенный в ней таким образом, что упомянутый элемент перпендикулярен упомянутой продольной оси, при этом упомянутая полоса обеспечивает предварительно определенное затухание составляющей электромагнитного поля, когда упомянутое поле взаимодействует с упомянутой полосой.15. A method of shielding a source or sensor located on an elongated support having a longitudinal axis and configured to be located inside the wellbore, characterized in that a flexible strip (20) is installed on said support to cover said source or sensor, wherein said strip has at least one conductive element (22) located therein in such a way that said element is perpendicular to said longitudinal axis, wherein said strip provides predetermined e the attenuation of the electromagnetic field component when said field interacts with said strip. 16. Способ по п.15, отличающийся тем, что упомянутый источник или датчик содержит антенну, имеющую магнитный дипольный момент и выполненную с возможностью передачи и/или приема электромагнитной энергии.16. The method according to clause 15, wherein said source or sensor comprises an antenna having a magnetic dipole moment and configured to transmit and / or receive electromagnetic energy. 17. Способ по п.16, отличающийся тем, что располагают упомянутую антенну на упомянутой опоре таким образом, что упомянутый магнитный дипольный момент наклонен или перпендикулярен относительно упомянутой продольной оси упомянутой опоры.17. The method according to clause 16, characterized in that said antenna is placed on said support in such a way that said magnetic dipole moment is inclined or perpendicular to said longitudinal axis of said support. 18. Способ по п.17, отличающийся тем, что устанавливают упомянутую полосу (20) на упомянутой опоре таким образом, что упомянутый, по меньшей мере, один проводящий элемент (22) расположен поверх упомянутой антенны.18. A method according to claim 17, characterized in that said strip (20) is mounted on said support in such a way that said at least one conductive element (22) is located on top of said antenna. 19. Способ по п.18, отличающийся тем, что упомянутая антенна содержит салазкообразную катушку.19. The method according to p. 18, characterized in that the said antenna contains a sled-like coil.
RU2001135557/28A 2000-12-22 2001-12-21 Method and screening device with use of lateral slots RU2219569C2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/746,927 US6566881B2 (en) 1999-12-01 2000-12-22 Shielding method and apparatus using transverse slots
US09/746,927 2000-12-22
US09/746.927 2000-12-22

Publications (2)

Publication Number Publication Date
RU2001135557A true RU2001135557A (en) 2003-09-10
RU2219569C2 RU2219569C2 (en) 2003-12-20

Family

ID=25002939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001135557/28A RU2219569C2 (en) 2000-12-22 2001-12-21 Method and screening device with use of lateral slots

Country Status (8)

Country Link
US (2) US6566881B2 (en)
AU (1) AU766363B2 (en)
BR (1) BRPI0105757B1 (en)
CA (1) CA2363534C (en)
CO (1) CO5290323A1 (en)
GB (1) GB2374936B (en)
NO (2) NO337553B1 (en)
RU (1) RU2219569C2 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163155A (en) 1999-01-28 2000-12-19 Dresser Industries, Inc. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations
US7659722B2 (en) 1999-01-28 2010-02-09 Halliburton Energy Services, Inc. Method for azimuthal resistivity measurement and bed boundary detection
US7059428B2 (en) 2000-03-27 2006-06-13 Schlumberger Technology Corporation Monitoring a reservoir in casing drilling operations using a modified tubular
US6614229B1 (en) 2000-03-27 2003-09-02 Schlumberger Technology Corporation System and method for monitoring a reservoir and placing a borehole using a modified tubular
US6727705B2 (en) 2000-03-27 2004-04-27 Schlumberger Technology Corporation Subsurface monitoring and borehole placement using a modified tubular equipped with tilted or transverse magnetic dipoles
US6995684B2 (en) * 2000-05-22 2006-02-07 Schlumberger Technology Corporation Retrievable subsurface nuclear logging system
US6577244B1 (en) * 2000-05-22 2003-06-10 Schlumberger Technology Corporation Method and apparatus for downhole signal communication and measurement through a metal tubular
US6836218B2 (en) * 2000-05-22 2004-12-28 Schlumberger Technology Corporation Modified tubular equipped with a tilted or transverse magnetic dipole for downhole logging
ATE350766T1 (en) * 2000-08-21 2007-01-15 Infineon Technologies Ag DEVICE FOR PROTECTING AN INTEGRATED CIRCUIT
CN1278135C (en) * 2001-08-03 2006-10-04 贝克休斯公司 Method and apparatus for a multi-component induction instrument measuring system for geosteering and formation resistivity data interpretation in horizontal, vertical and deviated wells
US6998844B2 (en) * 2002-04-19 2006-02-14 Schlumberger Technology Corporation Propagation based electromagnetic measurement of anisotropy using transverse or tilted magnetic dipoles
US7382135B2 (en) * 2003-05-22 2008-06-03 Schlumberger Technology Corporation Directional electromagnetic wave resistivity apparatus and method
US7202670B2 (en) * 2003-08-08 2007-04-10 Schlumberger Technology Corporation Method for characterizing a subsurface formation with a logging instrument disposed in a borehole penetrating the formation
US7138897B2 (en) 2003-10-15 2006-11-21 Schlumberger Technology Corporation Induction measurements with reduced borehole effects
US20050083061A1 (en) * 2003-10-17 2005-04-21 Tabanou Jacques R. Methods and systems for estimating formation resistivity that are less sensitive to skin effects, shoulder-bed effects and formation dips
US7091877B2 (en) * 2003-10-27 2006-08-15 Schlumberger Technology Corporation Apparatus and methods for determining isotropic and anisotropic formation resistivity in the presence of invasion
US7514930B2 (en) * 2003-12-02 2009-04-07 Schlumberger Technology Corporation Apparatus and method for addressing borehole eccentricity effects
US7027923B2 (en) * 2003-12-12 2006-04-11 Schlumberger Technology Corporation Method for determining sonde error for an induction or propagation tool with transverse or triaxial arrays
US7386430B2 (en) * 2004-03-19 2008-06-10 Schlumberger Technology Corporation Method of correcting triaxial induction arrays for borehole effect
US7239145B2 (en) 2004-03-29 2007-07-03 Schlumberger Technology Center Subsurface electromagnetic measurements using cross-magnetic dipoles
US7525315B2 (en) * 2004-04-01 2009-04-28 Schlumberger Technology Corporation Resistivity logging tool and method for building the resistivity logging tool
US7719282B2 (en) * 2004-04-14 2010-05-18 Baker Hughes Incorporated Method and apparatus for mulit-component induction instrument measuring system for geosteering and formation resistivity data interpretation in horizontal, vertical and deviated wells
US8030935B2 (en) * 2004-10-15 2011-10-04 Halliburton Energy Services, Inc. Minimizing the effect of borehole current in tensor induction logging tools
US7323996B2 (en) * 2005-08-02 2008-01-29 International Business Machines Corporation RFID reader having antenna with directional attenuation panels for determining RFID tag location
EP1917543A2 (en) * 2005-08-03 2008-05-07 Shell Internationale Research Maatschappij B.V. Method and system for determining an electromagnetic response from an earth formation and method of drilling a borehole and method of producing a hydrocarbon fluid
KR20090055553A (en) 2006-07-11 2009-06-02 핼리버튼 에너지 서비시즈 인코퍼레이티드 Modular geosteering tool assembly
WO2008008346A2 (en) * 2006-07-12 2008-01-17 Halliburton Energy Services, Inc. Method and apparatus for building a tilted antenna
US8593147B2 (en) 2006-08-08 2013-11-26 Halliburton Energy Services, Inc. Resistivity logging with reduced dip artifacts
US8274289B2 (en) * 2006-12-15 2012-09-25 Halliburton Energy Services, Inc. Antenna coupling component measurement tool having rotating antenna configuration
AU2007349251B2 (en) * 2007-03-16 2011-02-24 Halliburton Energy Services, Inc. Robust inversion systems and methods for azimuthally sensitive resistivity logging tools
US7759940B2 (en) * 2007-04-04 2010-07-20 Baker Hughes Incorporated Mutual shielding of collocated induction coils in multi-component induction logging instruments
CA2686215C (en) * 2007-05-08 2015-09-08 Schlumberger Canada Limited Determining borehole corrected formation properties
AU2008272905B2 (en) * 2007-07-03 2011-05-19 Shell Internationale Research Maatschappij B.V. System and method for measuring a time-varying magnetic field and method for production of a hydrocarbon fluid
US8129993B2 (en) 2007-07-10 2012-03-06 Schlumberger Technology Corporation Determining formation parameters using electromagnetic coupling components
US7723989B2 (en) * 2007-08-31 2010-05-25 Schlumberger Technology Corporation Transducer assemblies for subsurface use
US7839149B2 (en) * 2008-01-11 2010-11-23 Baker Hughes Incorporated Multi-component resistivity logging tool with multiple antennas using common antenna grooves
CA2680869C (en) 2008-01-18 2011-07-12 Halliburton Energy Services, Inc. Em-guided drilling relative to an existing borehole
CN102439260A (en) 2008-12-16 2012-05-02 哈利伯顿能源服务公司 Azimuthal at-bit resistivity and geosteering methods and systems
US8786287B2 (en) * 2009-03-04 2014-07-22 Baker Hughes Incorporated Collocated tri-axial induction sensors with segmented horizontal coils
US8089268B2 (en) * 2009-03-24 2012-01-03 Smith International, Inc. Apparatus and method for removing anisotropy effect from directional resistivity measurements
US8207738B2 (en) * 2009-03-24 2012-06-26 Smith International Inc. Non-planar antennae for directional resistivity logging
US9134449B2 (en) * 2009-05-04 2015-09-15 Schlumberger Technology Corporation Directional resistivity measurement for well placement and formation evaluation
US8368403B2 (en) 2009-05-04 2013-02-05 Schlumberger Technology Corporation Logging tool having shielded triaxial antennas
US7990153B2 (en) * 2009-05-11 2011-08-02 Smith International, Inc. Compensated directional resistivity measurements
US8159227B2 (en) * 2009-05-11 2012-04-17 Smith International Inc. Methods for making directional resistivity measurements
US8614578B2 (en) * 2009-06-18 2013-12-24 Schlumberger Technology Corporation Attenuation of electromagnetic signals passing through conductive material
US8497673B2 (en) * 2009-09-28 2013-07-30 Schlumberger Technology Corporation Directional resistivity antenna shield
US8466682B2 (en) * 2009-09-29 2013-06-18 Schlumberger Technology Corporation Apparatus and method for downhole electromagnetic measurement while drilling
BRPI1013305B1 (en) 2010-01-22 2019-09-10 Halliburton Energy Services Inc system for measuring resistivity of a formation, method for determining resistivity, and instrumented drill bit
CA2797683A1 (en) 2010-04-29 2011-11-10 Schlumberger Canada Limited Gain-corrected measurements
US8536871B2 (en) 2010-11-02 2013-09-17 Schlumberger Technology Corporation Method of correcting resistivity measurements for toll bending effects
US8626446B2 (en) 2011-04-01 2014-01-07 Schlumberger Technology Corporation Method of directional resistivity logging
US20120325359A1 (en) * 2011-06-27 2012-12-27 3M Innovative Properties Company Flexible magnetic core electronic marker
EP2726911A4 (en) * 2011-06-28 2015-12-23 Services Petroliers Schlumberger Modified triaxial antenna array
EP3836477A1 (en) * 2011-10-28 2021-06-16 Danmarks Tekniske Universitet Dynamic encryption method
US9540922B2 (en) 2012-03-29 2017-01-10 Schlumberger Technology Corporation Electromagnetic method for obtaining dip azimuth angle
MX342269B (en) 2012-06-25 2016-09-22 Halliburton Energy Services Inc Tilted antenna logging systems and methods yielding robust measurement signals.
CN102866428A (en) * 2012-09-12 2013-01-09 中国海洋石油总公司 Transverse coil for logging instrument and forming method thereof
CA2895022A1 (en) * 2012-12-31 2014-07-03 Halliburton Energy Services, Inc. Formation imaging with multi-pole antennas
BR112015013271A2 (en) 2012-12-31 2017-07-11 Halliburton Energy Services Inc deep azimuth system with multi-pole sensors
US9389332B2 (en) 2013-04-01 2016-07-12 Oliden Technology, Llc Method and tool for directional electromagnetic well logging
AU2013390825B2 (en) * 2013-05-31 2017-03-30 Halliburton Energy Services, Inc. Method and apparatus for generating seismic pulses to map subterranean fractures
US9048127B2 (en) 2013-09-25 2015-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Three dimensional circuit including shielded inductor and method of forming same
EP3033487A1 (en) * 2013-10-03 2016-06-22 Halliburton Energy Services, Inc. Compensated borehole and pipe survey tool with conformable sensors
US20150268372A1 (en) * 2014-03-20 2015-09-24 Schlumberger Technology Corporation Method and apparatus for determining formation properties using collocated triaxial antennas with non-planar sinusoidal coils
US9506342B2 (en) * 2014-06-06 2016-11-29 Baker Hughes Incorporated Downhole communications arrangement and downhole system
CN104407386B (en) * 2014-12-05 2017-03-08 中国石油天然气集团公司 A kind of electromagnetic survey data collection and processing method and system
CA2995209C (en) * 2015-10-12 2021-07-13 Halliburton Energy Services, Inc. Electromagnetically transmissive directional antenna shield
AU2017392499A1 (en) 2017-01-10 2019-06-20 Halliburton Energy Services, Inc. Stacked soft magnetic inserts and slotted shield designs for tilted coil antennas
BR112019012412A2 (en) * 2017-01-10 2020-02-27 Halliburton Energy Services, Inc. ANTENNA SET AND METHOD
US10690799B2 (en) * 2017-12-22 2020-06-23 Halliburton Energy Services, Inc. Antenna shield design for optimized EM wave propagation in resistivity logging tools
WO2020055417A1 (en) 2018-09-14 2020-03-19 Halliburton Energy Services, Inc. Cross-slot bobbin and antenna shield for co-located antennas
US11125902B2 (en) 2018-09-14 2021-09-21 Halliburton Energy Services, Inc. Antenna shields for co-located antennas
US11339650B2 (en) 2019-03-22 2022-05-24 Halliburton Energy Services, Inc. Compact logging while drilling look around and look ahead tool
CN110098489B (en) * 2019-05-16 2021-07-20 哈尔滨工业大学 Adjustable ultra-narrow-band absorber based on four nano-column coupled vibrators
CN112065362B (en) * 2020-09-24 2023-03-31 东北石油大学 Anti-interference type natural potential logging device and method
US11953639B2 (en) * 2022-03-17 2024-04-09 Halliburton Energy Services, Inc. Cross-component response interpolation for coaxially oriented antennas in an electromagnetic tool

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944910A (en) * 1973-08-23 1976-03-16 Schlumberger Technology Corporation Method and apparatus utilizing microwave electromagnetic energy for investigating earth formations
US4319191A (en) 1980-01-10 1982-03-09 Texaco Inc. Dielectric well logging with radially oriented coils
US4536714A (en) 1982-04-16 1985-08-20 Schlumberger Technology Corporation Shields for antennas of borehole logging devices
US4808929A (en) 1983-11-14 1989-02-28 Schlumberger Technology Corporation Shielded induction sensor for well logging
US4689572A (en) * 1984-12-28 1987-08-25 Schlumberger Technology Corp. Electromagnetic logging apparatus with slot antennas
US4873488A (en) 1985-04-03 1989-10-10 Schlumberger Technology Corporation Induction logging sonde with metallic support having a coaxial insulating sleeve member
US4704581A (en) * 1985-12-28 1987-11-03 Schlumberger Technology Corp. Electromagnetic logging apparatus using vertical magnetic dipole slot antennas
FR2600171B1 (en) * 1986-06-17 1990-10-19 Geoservices LARGE DEPTH TRANSMITTER ANTENNA
US4857852A (en) * 1986-06-20 1989-08-15 Schlumberger Technology Corp. Induction well logging apparatus with transformer coupled phase sensitive detector
US4949045A (en) 1987-10-30 1990-08-14 Schlumberger Technology Corporation Well logging apparatus having a cylindrical housing with antennas formed in recesses and covered with a waterproof rubber layer
US5115198A (en) 1989-09-14 1992-05-19 Halliburton Logging Services, Inc. Pulsed electromagnetic dipmeter method and apparatus employing coils with finite spacing
JP2534193B2 (en) 1993-05-31 1996-09-11 石油資源開発株式会社 Directional induction logging method and apparatus
US5757191A (en) 1994-12-09 1998-05-26 Halliburton Energy Services, Inc. Virtual induction sonde for steering transmitted and received signals
US5631563A (en) 1994-12-20 1997-05-20 Schlumbreger Technology Corporation Resistivity antenna shield, wear band and stabilizer assembly for measuring-while-drilling tool
US5767674A (en) * 1996-04-17 1998-06-16 Griffin; Douglas D. Apparatus for protecting a magnetic resonance antenna
WO1998000733A1 (en) 1996-07-01 1998-01-08 Shell Internationale Research Maatschappij B.V. Electrical logging of a laminated earth formation
US6044325A (en) 1998-03-17 2000-03-28 Western Atlas International, Inc. Conductivity anisotropy estimation method for inversion processing of measurements made by a transverse electromagnetic induction logging instrument
US6191586B1 (en) 1998-06-10 2001-02-20 Dresser Industries, Inc. Method and apparatus for azimuthal electromagnetic well logging using shielded antennas
US6297639B1 (en) 1999-12-01 2001-10-02 Schlumberger Technology Corporation Method and apparatus for directional well logging with a shield having sloped slots
US6614229B1 (en) * 2000-03-27 2003-09-02 Schlumberger Technology Corporation System and method for monitoring a reservoir and placing a borehole using a modified tubular
US6788065B1 (en) * 2000-10-12 2004-09-07 Schlumberger Technology Corporation Slotted tubulars for subsurface monitoring in directed orientations

Similar Documents

Publication Publication Date Title
RU2001135557A (en) METHOD AND DEVICE OF SCREENING USING TRANSVERSE CROSSS
RU2219569C2 (en) Method and screening device with use of lateral slots
FI105421B (en) Planes two frequency antenna and radio device equipped with a planar antenna
DE59905485D1 (en) ELECTROMAGNETIC ACTUATOR WITH SWINGING SPRING-MASS SYSTEM
NO964797D0 (en) Electromagnetic drive with magnetic dipole antenna
KR970063822A (en) Surface Mount Antenna and Communication Equipment Using the Antenna
RU2006116566A (en) ANTENNA COIL AND ANTENNA DEVICE
DE60102574D1 (en) Printed planar dipole antenna with two spiral arms
BR0201918A (en) Antenna for transmitting / receiving radio and air frequency waves
NO20011516L (en) Antenna device with radiant antenna and radome
EP1332535B1 (en) Device by an antenna
AU2002215265A1 (en) An antenna device
SE0100844D0 (en) Antenna device
RU2003130476A (en) IMPROVED LARGE ANTENNA BASED ON NUCLEAR MAGNETIC RESONANCE
ATE522008T1 (en) BEAM ADJUSTMENT DEVICE
AU709954B2 (en) An antenna for a portable radio communication device
AU7966601A (en) Planar antenna with wave guide configuration
DE69212471T2 (en) Omnidirectional, printed cylinder antenna and sea radar response device with such antennas
DE69901647D1 (en) Radio receiving device with improved antenna resolution
SU1106391A1 (en) Member of antenna reflecting phased array
ATA44698A (en) DEVICE FOR RADIATING AN ELECTROMAGNETIC ALTERNATING FIELD
JP3020391U (en) Floating
CA2209019C (en) An antenna for a portable radio communication device
DE69523976D1 (en) Microwave antenna with adjustable radiation characteristics
KR101512996B1 (en) Magnetic resonance antenna for wireless power transmission