RU2000103444A - IMPLANTED MEDICAL DEVICES FROM ALLOY WITH MEMORY MEMORY - Google Patents

IMPLANTED MEDICAL DEVICES FROM ALLOY WITH MEMORY MEMORY

Info

Publication number
RU2000103444A
RU2000103444A RU2000103444/02A RU2000103444A RU2000103444A RU 2000103444 A RU2000103444 A RU 2000103444A RU 2000103444/02 A RU2000103444/02 A RU 2000103444/02A RU 2000103444 A RU2000103444 A RU 2000103444A RU 2000103444 A RU2000103444 A RU 2000103444A
Authority
RU
Russia
Prior art keywords
medical device
state
temperature
martensitic
configuration
Prior art date
Application number
RU2000103444/02A
Other languages
Russian (ru)
Other versions
RU2196188C2 (en
Inventor
Джозеф ФЛОМЕНБЛИТ
Натали БУДИДЖИНА
Original Assignee
Литана Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IL12131697A external-priority patent/IL121316A/en
Application filed by Литана Лтд filed Critical Литана Лтд
Publication of RU2000103444A publication Critical patent/RU2000103444A/en
Application granted granted Critical
Publication of RU2196188C2 publication Critical patent/RU2196188C2/en

Links

Claims (19)

1. Медицинское устройство, включающее часть из сплава с запоминанием формы (СЗФ), имеющую аустенитное и мартенситное состояние с различной конфигурацией в каждом из этих состояний, причем СЗФ способен к переходу из мартенситного в аустенитное состояние с помощью аустенитного перехода, происходящего в диапазоне температуры от As, начальной температуры аустенитного перехода, до Af, конечной температуры аустенитного перехода, и способен к переходу из аустенитного состояния в мартенситное состояние с помощью мартенситного перехода, происходящего в диапазоне температуры ниже температуры тела от Ms, начальной температуры мартенситного перехода, до Mf, конечной температуры мартенситного перехода, причем As ниже температуры тела в недеформированном состоянии, отличающееся тем, что: часть СЗФ может деформироваться из недеформированной первой конфигурации, принятой им в аустенитном состоянии, в деформированную вторую конфигурацию так, что деформация превращает его в вызванное механическим напряжением мартенситное или частичное мартенситное состояние с увеличением As от его первоначальной температуры Аso до температуры A's, и тем, что при нагревании части СЗФ, находящейся в указанной второй конфигурации, до температуры, выше, чем A's, она переходит в, по меньшей мере, частичное аустенитное состояние, причем переход приводит к изменению конфигурации из деформированной второй конфигурации в направлении недеформированной первой конфигурации и к снижению As с A's до Aso так, что часть СЗФ устойчива в, по меньшей мере, частичном аустенитном состоянии при температуре тела.1. A medical device comprising a part from a shape-memory alloy (SPF) having an austenitic and martensitic state with a different configuration in each of these states, and the SPF is capable of transitioning from martensitic to austenitic state using an austenitic transition occurring in a temperature range from a s, the initial temperature of the austenitic transformation, to a f, a final austenite transition temperature, and is able to transition from the austenitic state to a martensitic state by a martensitic transition proish dyaschego in the temperature range below body temperature by M s, the initial martensitic transition temperature to M f, a final martensitic transition temperature, wherein A s below body temperature in an undeformed state, characterized in that: the SMA portion is deformable from an undeformed first configuration adopted in the austenitic state, into a deformed second configuration so that the deformation turns it into a martensitic or partial martensitic state caused by mechanical stress with an increase in A s from its the initial temperature And s o to the temperature A ' s , and the fact that when the part of the NWF located in the specified second configuration is heated to a temperature higher than A' s , it goes into an at least partial austenitic state, and the transition leads to a configuration change from the deformed second configuration in the direction of the undeformed first configuration and to a decrease in A s from A ' s to A s o so that part of the NWP is stable in at least partial austenitic state at body temperature. 2. Медицинское устройство по п.1, отличающееся тем, что сплав с запоминанием формы представляет собой нитинол. 2. The medical device according to claim 1, characterized in that the shape memory alloy is nitinol. 3. Медицинское устройство по п.1, отличающийся тем, что, по меньшей мере, одна часть СЗФ может деформироваться до более высокого механического напряжения, чем остальной СЗФ так, что указанная, по меньшей мере, одна часть имеет температуру A's t2, которая выше, чем температура A's остального СЗФ, t1.3. The medical device according to claim 1, characterized in that at least one part of the SPF can be deformed to a higher mechanical stress than the rest of the SPF so that the specified at least one part has a temperature A ' s t 2 , which is higher than the temperature A ' s of the rest of the NWF, t 1 . 4. Медицинское устройство по п.3, отличающееся тем, что подлежит размещению в теле с помощью нагревания СЗФ до температуры, превышающей t1, но ниже, чем t2, посредством чего указанная, по меньшей мере, одна часть остается в мартенситном состоянии во время размещения, а остальной СЗФ переходит в аустенитное состояние.4. The medical device according to claim 3, characterized in that it must be placed in the body by heating the NWF to a temperature exceeding t 1 but lower than t 2 , whereby said at least one part remains in a martensitic state in placement time, and the rest of the NWF goes into an austenitic state. 5. Медицинское устройство по пп. 1-4, отличающееся тем, что A's выше температуры тела.5. The medical device according to paragraphs. 1-4, characterized in that A ' s is higher than body temperature. 6. Медицинское устройство по пп. 1-4, отличающееся тем, что A's ниже температуры тела, a A'f выше температуры тела.6. The medical device according to paragraphs. 1-4, characterized in that A ' s is lower than body temperature, and A' f is higher than body temperature. 7. Способ размещения медицинского устройства внутри тела человека, причем медицинское устройство включает часть из сплава с запоминанием формы (СЗФ), имеющую аустенитное и мартенситное состояние с различной конфигурацией в каждом из этих состояний и имеющую взаимосвязанные температуры Ms, Mf, As и Af, являющиеся соответственно начальными и конечными температурами мартенситного перехода СЗФ и начальными и конечными температурами аустенитного перехода СЗФ, причем As имеет величину A ° s , которая меньше температуры тела, когда медицинское устройство находится в недеформированном состоянии, при котором осуществляют деформирование медицинского устройства с помощью перевода его из недеформированной первой конфигурации, принимаемой им в аустенитном состоянии, в деформированную вторую конфигурацию, причем указанное деформирование приводит к увеличению Аs от A ° s до A's, причем часть СЗФ находится в вызванном механическим напряжением мартенситом или частичном мартенситом состоянии после указанного деформирования, размещают медицинское устройство в целевое расположение внутри тела, причем часть СЗФ остается в указанном вызванном механическим напряжением мартенситом или частичном мартенситом состоянии во время указанного размещения, и переводят часть СЗФ из указанного мартенситного или частичного мартенситного состояния в, по меньшей мере, частичное аустенитное состояние с помощью нагревания ее до температуры, превышающей A's, причем указанный переход приводит к изменению конфигурации части СЭФ из деформированной второй конфигурации в сторону недеформированной первой конфигурации, причем изменение конфигурации приводит к снижению As с A's до A ° s так, что медицинское устройство устойчиво в, по меньшей мере, частично аустенитном состоянии при размещении в теле.7. A method of placing a medical device inside a person’s body, the medical device comprising a shape memory alloy (SPF) part having an austenitic and martensitic state with a different configuration in each of these conditions and having interconnected temperatures M s , M f , A s and A f , which are respectively the initial and final temperatures of the martensitic transition of the NWP and the initial and final temperatures of the austenitic transition of the NWF, and A s has the value A ° s which is lower than the body temperature when the medical device is in an undeformed state, in which the medical device is deformed by transferring it from the undeformed first configuration, which it accepts in the austenitic state, to the deformed second configuration, and this deformation leads to an increase in A s from A ° s to A ' s , where part of the NWP is in a state caused by mechanical stress martensite or partial martensitic state after said deformation, the medical device is placed in the target location inside the body, and part of the NWF remains in the specified state induced by mechanical stress martensite or partial martensitic state during said placement, and transfer part of the NWF from said martensitic or partial martensitic state to at least a partial austenitic state by heating to a temperature greater than A 's, wherein said transition leads to a change in the configuration of the portion SEF deformed second configuration towards the undeformed first configuration, wherein the configuration change results in a decrease in A s from A' s to A ° s so that the medical device is stable in at least partially austenitic state when placed in the body. 8. Способ размещения медицинского устройства внутри тела человека, причем медицинское устройство включает часть из сплава с запоминанием формы (СЗФ), имеющую аустенитное и мартенситное состояние с различной конфигурацией в каждом из этих состояний и имеющую взаимосвязанные температуры Ms, Mf, As и Af, являющиеся соответственно начальными и конечными температурами мартенситного перехода СЗФ и начальными и конечными температурами аустенитного перехода СЗФ, причем As имеет величину A ° s , которая меньше температуры тела, когда медицинское устройство находится в недеформированном состоянии, a Ms меньше, чем As, при котором: нагревают СЗФ до температуры, превышающей As, посредством чего размещают СЗФ, по меньшей мере, в частичном аустенитном состоянии, охлаждают медицинское устройство до температуры между As и Мs, деформируют медицинское устройство из недеформированной первой конфигурации, принимаемой им в аустенитном состоянии, в деформированную вторую конфигурацию, причем указанное деформирование приводит к увеличению As от A ° s до A's, причем часть СЗФ находится в мартенситном или частичном мартенситном состоянии после указанного деформирования, размещают медицинское устройство в целевое расположение внутри тела, причем часть СЗФ остается в мартенситном или частичном мартенситном состоянии во время указанного размещения, и переводят часть СЗФ из мартенситного или частичного мартенситного состояния в, по меньшей мере, частичное аустенитное состояние с помощью нагревания его до температуры, превышающей А's, причем указанный переход приводит к изменению конфигурации части СЗФ из деформированной второй конфигурации в сторону недеформированной первой конфигурации, причем изменение конфигурации приводит к снижению As с A's до A ° s так, что медицинское устройство устойчиво в, по меньшей мере, частично аустенитном состоянии при размещении в теле.8. A method of placing a medical device inside the human body, the medical device comprising a shape memory alloy (SPF) part having an austenitic and martensitic state with a different configuration in each of these conditions and having interconnected temperatures M s , M f , A s and A f , which are respectively the initial and final temperatures of the martensitic transition of the NWP and the initial and final temperatures of the austenitic transition of the NWF, and A s has the value A ° s which is lower than body temperature when the medical device is in an undeformed state, a M s is less than A s , in which: the SZF is heated to a temperature higher than A s , whereby the SZP is placed in at least a partial austenitic state, cooled the medical device to a temperature between A s and M s , the medical device is deformed from the undeformed first configuration, which it receives in the austenitic state, into the deformed second configuration, and this deformation leads to an increase A s from A ° s to A ' s , where part of the NWF is in a martensitic or partial martensitic state after said deformation, the medical device is placed in the target location inside the body, and some of the NWF remains in the martensitic or partial martensitic state during the indicated placement, and a part of the NWF is transferred from martensitic or partial martensitic state to at least a partial austenitic state by heating it to a temperature greater than a 's, wherein said transition leads to a change confi uracil SMA portion from the deformed second configuration towards the undeformed first configuration, wherein the configuration change results in a decrease in A s from A 's to A ° s so that the medical device is stable in at least partially austenitic state when placed in the body. 9. Способ по п.8, отличающийся тем, что сплав с запоминанием формы представляет собой нитинол. 9. The method according to claim 8, characterized in that the shape memory alloy is nitinol. 10. Способ по п.8 или 9, отличающийся тем, что, по меньшей мере, одна часть СЗФ может деформироваться до более высокого механического напряжения, чем остальной СЭФ во время указанного деформирования так, что указанная, по меньшей мере, одна часть имеет температуру A's t2, которая выше, чем температура A's остального СЗФ, t1.10. The method according to claim 8 or 9, characterized in that at least one part of the SZF can be deformed to a higher mechanical stress than the rest of the SEF during the specified deformation so that the specified at least one part has a temperature A ' s t 2 , which is higher than the temperature A' s of the rest of the NWF, t 1 . 11. Способ по п.10, отличающийся тем, что СЗФ нагревается до температуры, превышающей t1, но ниже, чем t2, так, что, по меньшей мере, одна часть остается в мартенситном состоянии, а остальной СЗФ превращается в аустенит.11. The method according to claim 10, characterized in that the NWP is heated to a temperature exceeding t 1 but lower than t 2 , so that at least one part remains in the martensitic state, and the rest of the NWF is converted to austenite. 12. Способ по п.11, отличающийся тем, что кроме того включает нагревание СЗФ до температуры, превышающей t2, после указанного этапа перехода, переводя таким образом, по меньшей мере, одну часть из мартенситного состояния в аустенитное состояние.12. The method according to claim 11, characterized in that it further includes heating the NWP to a temperature exceeding t 2 after the indicated transition step, thus translating at least one part from the martensitic state to the austenitic state. 13. Способ по п.11, отличающийся тем, что кроме того включает удаление медицинского устройства из тела с помощью захвата, по меньшей мере, одной части, имеющей более высокое механическое напряжение, которая была преобразована во время нагревания до температуры приблизительно t2.13. The method according to claim 11, characterized in that it further includes removing the medical device from the body by capturing at least one part having a higher mechanical stress, which was converted during heating to a temperature of approximately t 2 . 14. Медицинское устройство по любому из пп.1-6, отличающееся тем, что представляет собой медицинский стент. 14. The medical device according to any one of claims 1 to 6, characterized in that it is a medical stent. 15. Медицинское устройство по любому из пп.1-6, отличающееся тем, что представляет собой зубной имплантат. 15. The medical device according to any one of claims 1 to 6, characterized in that it is a dental implant. 16. Медицинское устройство по любому из пп.1-6, отличающееся тем, что представляет собой устройство для сращивания переломов костей. 16. A medical device according to any one of claims 1 to 6, characterized in that it is a device for splicing bone fractures. 17. Медицинское устройство по любому из пп.1-6, отличающееся тем, что представляет собой сердечный имплантат. 17. The medical device according to any one of claims 1 to 6, characterized in that it is a heart implant. 18. Медицинское устройство по любому из пп.1-6, отличающееся тем, что представляет собой костную пластинку. 18. The medical device according to any one of claims 1 to 6, characterized in that it is a bone plate. 19. Медицинское устройство по любому из пп.1-6, отличающееся тем, что представляет собой внутриматочное противозачаточное устройство. 19. A medical device according to any one of claims 1 to 6, characterized in that it is an intrauterine contraceptive device.
RU2000103444/02A 1997-07-15 1998-04-29 Implanted medical devices from shape-metal alloy RU2196188C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL12131697A IL121316A (en) 1997-07-15 1997-07-15 Implantable medical device of shape memory alloy
IL121316 1997-07-15

Publications (2)

Publication Number Publication Date
RU2000103444A true RU2000103444A (en) 2001-12-10
RU2196188C2 RU2196188C2 (en) 2003-01-10

Family

ID=11070392

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000103444/02A RU2196188C2 (en) 1997-07-15 1998-04-29 Implanted medical devices from shape-metal alloy

Country Status (17)

Country Link
US (1) US5876434A (en)
EP (1) EP1017868B1 (en)
JP (1) JP2001510084A (en)
KR (1) KR20010021843A (en)
CN (1) CN1091169C (en)
AT (1) ATE248933T1 (en)
AU (1) AU7076898A (en)
CA (1) CA2296317C (en)
DE (1) DE69817846T2 (en)
DK (1) DK1017868T3 (en)
ES (1) ES2206914T3 (en)
HK (1) HK1031900A1 (en)
IL (1) IL121316A (en)
PT (1) PT1017868E (en)
RU (1) RU2196188C2 (en)
TW (1) TW519550B (en)
WO (1) WO1999004053A1 (en)

Families Citing this family (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106642A (en) 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US7452371B2 (en) * 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
WO1999062432A1 (en) 1998-06-04 1999-12-09 New York University Endovascular thin film devices and methods for treating and preventing stroke
US6312461B1 (en) * 1998-08-21 2001-11-06 John D. Unsworth Shape memory tubular stent
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
IL126505A0 (en) 1998-10-09 1999-08-17 Ultra Cure Ltd A method and device for hair removal
US8092514B1 (en) 1998-11-16 2012-01-10 Boston Scientific Scimed, Inc. Stretchable anti-buckling coiled-sheet stent
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US7150680B2 (en) 1999-05-14 2006-12-19 Precimed S.A. Drive shaft coupling
US6257593B1 (en) 1999-05-14 2001-07-10 Patrick Michel White Stress induced interposed connector
US6435519B1 (en) 1999-05-14 2002-08-20 Patrick Michel White Stress-induced gasket
FR2797275B1 (en) * 1999-08-04 2001-11-23 Mat Inov METHOD FOR STORING TWO GEOMETRIC STATES OF A PRODUCT MADE IN A SHAPE MEMORY ALLOY AND APPLICATIONS OF THIS PROCESS TO PRODUCTS IN THE MEDICAL, DENTAL, VETERINARY OR OTHER AREAS
US6749606B2 (en) 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US7815590B2 (en) * 1999-08-05 2010-10-19 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US7022088B2 (en) * 1999-08-05 2006-04-04 Broncus Technologies, Inc. Devices for applying energy to tissue
DE60008072T2 (en) 1999-08-05 2004-08-05 Broncus Technologies, Inc., Mountain View METHOD AND DEVICES FOR PRODUCING COLLATERAL CHANNELS IN THE LUNG
US20030130657A1 (en) * 1999-08-05 2003-07-10 Tom Curtis P. Devices for applying energy to tissue
US7175644B2 (en) * 2001-02-14 2007-02-13 Broncus Technologies, Inc. Devices and methods for maintaining collateral channels in tissue
US6712812B2 (en) 1999-08-05 2004-03-30 Broncus Technologies, Inc. Devices for creating collateral channels
US20050060044A1 (en) * 1999-08-05 2005-03-17 Ed Roschak Methods and devices for maintaining patency of surgically created channels in a body organ
US20050137715A1 (en) * 1999-08-05 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
AU3441001A (en) * 1999-12-01 2001-06-12 Advanced Cardiovascular Systems Inc. Nitinol alloy design and composition for vascular stents
US6637995B1 (en) 2000-02-09 2003-10-28 Patrick Michel White Super-elastic rivet assembly
DE10010073B4 (en) * 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
US6652576B1 (en) * 2000-06-07 2003-11-25 Advanced Cardiovascular Systems, Inc. Variable stiffness stent
US7632303B1 (en) 2000-06-07 2009-12-15 Advanced Cardiovascular Systems, Inc. Variable stiffness medical devices
US6722360B2 (en) * 2000-06-16 2004-04-20 Rajiv Doshi Methods and devices for improving breathing in patients with pulmonary disease
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US7976648B1 (en) 2000-11-02 2011-07-12 Abbott Cardiovascular Systems Inc. Heat treatment for cold worked nitinol to impart a shape setting capability without eventually developing stress-induced martensite
US6602272B2 (en) 2000-11-02 2003-08-05 Advanced Cardiovascular Systems, Inc. Devices configured from heat shaped, strain hardened nickel-titanium
US20100125329A1 (en) * 2000-11-02 2010-05-20 Zhi Cheng Lin Pseudoelastic stents having a drug coating and a method of producing the same
US6855161B2 (en) * 2000-12-27 2005-02-15 Advanced Cardiovascular Systems, Inc. Radiopaque nitinol alloys for medical devices
AU2002256376B2 (en) * 2001-04-26 2006-08-10 Vascular Innovation, Inc. Endoluminal device and method for fabricating same
US6551341B2 (en) * 2001-06-14 2003-04-22 Advanced Cardiovascular Systems, Inc. Devices configured from strain hardened Ni Ti tubing
US7115136B2 (en) 2001-06-20 2006-10-03 Park Medical Llc Anastomotic device
JP4201702B2 (en) * 2001-06-20 2008-12-24 パーク メディカル リミテッド ライアビリティ カンパニー Anastomosis device
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US20030074075A1 (en) * 2001-08-27 2003-04-17 Thomas James C. Expandable implant for partial disc replacement and reinforcement of a disc partially removed in a discectomy and for reduction and maintenance of alignment of cancellous bone fractures and methods and apparatuses for same
US7708712B2 (en) * 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20050137611A1 (en) * 2001-09-04 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US20030050648A1 (en) 2001-09-11 2003-03-13 Spiration, Inc. Removable lung reduction devices, systems, and methods
US6592594B2 (en) * 2001-10-25 2003-07-15 Spiration, Inc. Bronchial obstruction device deployment system and method
US6929637B2 (en) 2002-02-21 2005-08-16 Spiration, Inc. Device and method for intra-bronchial provision of a therapeutic agent
US20030181922A1 (en) * 2002-03-20 2003-09-25 Spiration, Inc. Removable anchored lung volume reduction devices and methods
AU2003221744A1 (en) * 2002-04-19 2003-11-03 Broncus Technologies, Inc. Devices for maintaining surgically created openings
US6830638B2 (en) 2002-05-24 2004-12-14 Advanced Cardiovascular Systems, Inc. Medical devices configured from deep drawn nickel-titanium alloys and nickel-titanium clad alloys and method of making the same
AU2002952691A0 (en) 2002-11-15 2002-11-28 Sunshine Heart Company Pty Ltd Heart assist device utilising aortic deformation
US6923829B2 (en) 2002-11-25 2005-08-02 Advanced Bio Prosthetic Surfaces, Ltd. Implantable expandable medical devices having regions of differential mechanical properties and methods of making same
US7100616B2 (en) * 2003-04-08 2006-09-05 Spiration, Inc. Bronchoscopic lung volume reduction method
US7942892B2 (en) * 2003-05-01 2011-05-17 Abbott Cardiovascular Systems Inc. Radiopaque nitinol embolic protection frame
US10646229B2 (en) 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
US7491227B2 (en) * 2003-06-16 2009-02-17 Boston Scientific Scimed, Inc. Coiled-sheet stent with flexible mesh design
US20040260377A1 (en) * 2003-06-17 2004-12-23 Medinol, Ltd. Shape memory alloy endoprosthesis delivery system
US8002740B2 (en) * 2003-07-18 2011-08-23 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US7533671B2 (en) 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
US20050059994A1 (en) * 2003-09-17 2005-03-17 Steven Walak Fatigue resistant medical devices
US7955386B2 (en) * 2003-09-19 2011-06-07 Clarity Corporation Middle ear prosthesis
EP1677872B1 (en) 2003-10-31 2015-12-02 Sunshine Heart Company Pty Ltd Synchronisation control system
US7955248B2 (en) 2003-11-11 2011-06-07 Sunshine Heart Company Pty Ltd Actuator for a heart assist device
US20050245932A1 (en) * 2004-04-16 2005-11-03 Fanton Gary S Apparatus and methods for securing tissue to bone
US20060282081A1 (en) * 2004-04-16 2006-12-14 Fanton Gary S Apparatus and method for securing tissue to bone with a suture
WO2005118019A1 (en) * 2004-05-28 2005-12-15 Cook Incorporated Implantable bioabsorbable valve support frame
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US7735492B2 (en) * 2004-12-08 2010-06-15 Ventus Medical, Inc. Nasal respiratory devices
US7806120B2 (en) 2004-12-08 2010-10-05 Ventus Medical, Inc. Nasal respiratory devices for positive end-expiratory pressure
US9833354B2 (en) 2004-12-08 2017-12-05 Theravent, Inc. Nasal respiratory devices
US10610228B2 (en) 2004-12-08 2020-04-07 Theravent, Inc. Passive nasal peep devices
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
FR2881946B1 (en) * 2005-02-17 2008-01-04 Jacques Seguin DEVICE FOR THE TREATMENT OF BODILY CONDUIT AT BIFURCATION LEVEL
US7988722B2 (en) * 2005-03-25 2011-08-02 Gordon Richard F Method for producing strain induced austenite
EP1871292B1 (en) 2005-04-04 2019-10-23 Flexible Stenting Solutions, Inc. Flexible stent
FR2884406B1 (en) 2005-04-14 2008-10-17 Memometal Technologies Soc Par INTRAMEDULAR OSTEOSYNTHESIS DEVICE OF TWO BONE PARTS, IN PARTICULAR HAND AND / OR FOOT
US7862552B2 (en) * 2005-05-09 2011-01-04 Boston Scientific Scimed, Inc. Medical devices for treating urological and uterine conditions
WO2006130873A2 (en) * 2005-06-01 2006-12-07 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) * 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
JP5214586B2 (en) 2006-03-22 2013-06-19 シーツーエム メディカル インコーポレーティッド Bone anchor installer and usage
US7691151B2 (en) 2006-03-31 2010-04-06 Spiration, Inc. Articulable Anchor
JP2009538194A (en) 2006-05-23 2009-11-05 ヴェンタス・メディカル・インコーポレーテッド Nasal respiratory system
GB0610171D0 (en) 2006-05-23 2006-06-28 Robitaille Jean Pierre Valved nasal canula
AU2007258524B2 (en) * 2006-06-07 2012-05-03 Ventus Medical, Inc. Layered nasal devices
US20110203598A1 (en) * 2006-06-07 2011-08-25 Favet Michael L Nasal devices including layered nasal devices and delayed resistance adapters for use with nasal devices
US20090145441A1 (en) * 2007-12-06 2009-06-11 Rajiv Doshi Delayed resistance nasal devices and methods of use
US8728010B2 (en) * 2006-08-24 2014-05-20 Boston Scientific Scimed, Inc. Elongate medical device including deformable distal end
US20080058927A1 (en) * 2006-08-30 2008-03-06 Robert Brosnahan Ossicular Prostheses Fabricated From Shape Memory Polymers
US8721646B2 (en) 2006-10-10 2014-05-13 William Casey Fox Methods and apparatus for a staple
US20080097602A1 (en) * 2006-10-23 2008-04-24 Robert Brosnahan Otologic Prostheses with Compressive Ossicular Engagement by a Superelastic Structure and Method of Implanting the Same
US20080097603A1 (en) * 2006-10-23 2008-04-24 Robert Brosnahan Otologic Prostheses With Compressive Ossicular Engagement By An Elastic Structure And Method Of Implanting The Same
WO2008061250A2 (en) * 2006-11-16 2008-05-22 Ventus Medical, Inc. Adjustable nasal devices
US7630087B2 (en) * 2006-11-22 2009-12-08 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US8191220B2 (en) * 2006-12-04 2012-06-05 Cook Medical Technologies Llc Method for loading a medical device into a delivery system
WO2008109087A1 (en) * 2007-03-05 2008-09-12 C2M Medical, Inc. Tack anchor systems, bone anchor systems,and method of use
TW200836781A (en) * 2007-03-07 2008-09-16 Ventus Medical Inc Nasal devices
FR2913876B1 (en) 2007-03-20 2009-06-05 Memometal Technologies Soc Par OSTEOSYNTHESIS DEVICE
WO2008118896A1 (en) * 2007-03-26 2008-10-02 Dynamic Flowform Corp. Proximally self-locking long bone prosthesis
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
EP2150210B1 (en) 2007-05-15 2016-10-12 JenaValve Technology, Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US9023094B2 (en) * 2007-06-25 2015-05-05 Microvention, Inc. Self-expanding prosthesis
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
EP2197362B1 (en) 2007-08-24 2016-01-06 C2M Medical, Inc. Bone anchor comprising a shape memory element
US8834551B2 (en) * 2007-08-31 2014-09-16 Rex Medical, L.P. Vascular device with valve for approximating vessel wall
WO2009049261A1 (en) * 2007-10-12 2009-04-16 Spiration, Inc. Valve loader method, system, and apparatus
US8043301B2 (en) * 2007-10-12 2011-10-25 Spiration, Inc. Valve loader method, system, and apparatus
DE102007050666A1 (en) 2007-10-24 2009-04-30 Biotronik Vi Patent Ag Nitinol stent with improved axial flexural rigidity and associated manufacturing process
US8020700B2 (en) 2007-12-05 2011-09-20 Ventus Medical, Inc. Packaging and dispensing nasal devices
EP2249907B1 (en) * 2008-02-01 2013-09-04 Theravent Inc Cpap interface and backup devices
US9044318B2 (en) * 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8317858B2 (en) * 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
WO2009117012A1 (en) 2008-03-17 2009-09-24 Ventus Medical, Inc. Adhesive nasal respiratory devices
EP2420213B1 (en) * 2008-04-23 2014-01-15 Cook Medical Technologies LLC Method of loading a medical device into a delivery system
US20090308398A1 (en) * 2008-06-16 2009-12-17 Arthur Ferdinand Adjustable resistance nasal devices
US9005274B2 (en) * 2008-08-04 2015-04-14 Stentys Sas Method for treating a body lumen
US8808294B2 (en) * 2008-09-09 2014-08-19 William Casey Fox Method and apparatus for a multiple transition temperature implant
FR2935601B1 (en) 2008-09-09 2010-10-01 Memometal Technologies INTRAMEDULLARY IMPLANT RESORBABLE BETWEEN TWO BONE OR TWO BONE FRAGMENTS
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
AU2010238636A1 (en) * 2009-04-24 2011-11-17 Flexible Stenting Solutions, Inc. Flexible devices
US20100292779A1 (en) * 2009-05-15 2010-11-18 Helmut Straubinger Device for compressing a stent and a system as well as a method for loading a stent into a medical delivery system
US8047844B2 (en) 2009-07-16 2011-11-01 Rodo Medical, Inc. Dental rentention systems
US8491303B2 (en) * 2009-07-16 2013-07-23 Rodo Medical, Inc. Oral appliance activation devices and methods
US8317515B2 (en) * 2009-07-16 2012-11-27 Rodo Medical, Inc. Shape memory dental retention systems
US20110108041A1 (en) * 2009-11-06 2011-05-12 Elliot Sather Nasal devices having a safe failure mode and remotely activatable
EP2501299B1 (en) 2009-11-16 2016-03-23 Tornier, Inc. Bone implant with convertible suture attachment
WO2011123789A1 (en) 2010-04-02 2011-10-06 Sunshine Heart Company Pty Ltd Combination heart assist systems, methods, and devices
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US10856978B2 (en) 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
US8875711B2 (en) 2010-05-27 2014-11-04 Theravent, Inc. Layered nasal respiratory devices
US9724140B2 (en) 2010-06-02 2017-08-08 Wright Medical Technology, Inc. Tapered, cylindrical cruciform hammer toe implant and method
US8608785B2 (en) 2010-06-02 2013-12-17 Wright Medical Technology, Inc. Hammer toe implant with expansion portion for retrograde approach
US9498273B2 (en) 2010-06-02 2016-11-22 Wright Medical Technology, Inc. Orthopedic implant kit
ES2671716T3 (en) * 2010-11-29 2018-06-08 Air Products And Chemicals, Inc. Method and apparatus for measuring the true content of a gas cylinder under pressure
US9168111B2 (en) 2011-02-04 2015-10-27 Rodo Medical, Inc. Abutment devices and methods for natural teeth
EP2706940B1 (en) 2011-05-13 2016-12-14 Broncus Medical, Inc. Methods and devices for ablation of tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US8795241B2 (en) 2011-05-13 2014-08-05 Spiration, Inc. Deployment catheter
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US9011468B2 (en) 2011-09-13 2015-04-21 Abbott Cardiovascular Systems Inc. Independent gripper
US9861413B2 (en) 2013-11-11 2018-01-09 Arthrex, Inc. Screws for generating and applying compression within a body
WO2015168311A1 (en) * 2011-09-22 2015-11-05 Mx Orthopedics, Corp Controlling the unloading stress of nitinol devices and/or other shape memory material devices
WO2013046013A1 (en) 2011-09-29 2013-04-04 Trudell Medical International Nasal insert and cannula and methods for the use thereof
JP6005168B2 (en) 2011-10-21 2016-10-12 イエナバルブ テクノロジー インク Catheter system for introducing an expandable heart valve stent into a patient's body, insertion system equipped with a catheter system, and medical device for treating heart valve defects
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9488241B2 (en) 2011-12-15 2016-11-08 GM Global Technology Operations LLC Energy absorbers including shape memory alloy particles
US20130310629A1 (en) * 2012-03-13 2013-11-21 Sunshine Heart Company Pty Ltd Methods, Systems, and Devices Relating to Wireless Power Transfer
JP5225482B1 (en) * 2012-04-09 2013-07-03 修 小坂 Dental implant
US9168122B2 (en) 2012-04-26 2015-10-27 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
JP6227632B2 (en) 2012-05-16 2017-11-08 イェーナヴァルヴ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Catheter delivery system for introducing expandable heart substitute valve and medical device for treatment of heart valve defects
EP2676622B1 (en) 2012-06-18 2015-12-30 Biedermann Technologies GmbH & Co. KG Bone anchor
EP2740428B1 (en) 2012-12-05 2019-05-08 Biedermann Technologies GmbH & Co. KG Dynamic bone anchor and method of manufacturing a dynamic bone anchor
US8945232B2 (en) 2012-12-31 2015-02-03 Wright Medical Technology, Inc. Ball and socket implants for correction of hammer toes and claw toes
GB2509530B (en) * 2013-01-07 2015-11-11 Kidde Tech Inc Optical fibre distributed LHD with SMA element for discrete alarm
US9687346B2 (en) * 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
US10953141B2 (en) 2013-05-23 2021-03-23 S.T.S. Medical Ltd. Shape change structure
US10016192B2 (en) 2013-06-14 2018-07-10 Tornier, Inc. Suture for connecting a human or animal tissue, soft anchor and method for attaching a tissue to a bone
EP3038567B1 (en) 2013-08-30 2022-09-07 JenaValve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9724139B2 (en) 2013-10-01 2017-08-08 Wright Medical Technology, Inc. Hammer toe implant and method
CN106413575B (en) 2013-11-13 2020-09-01 阿特雷克斯公司 Staple for creating and applying compression in vivo
US9474561B2 (en) 2013-11-19 2016-10-25 Wright Medical Technology, Inc. Two-wire technique for installing hammertoe implant
CN104665905B (en) * 2013-11-26 2018-04-06 财团法人工业技术研究院 Bionic fixing device
CN104665913B (en) 2013-11-26 2017-06-06 财团法人工业技术研究院 Bionic fixing device and pulling-out device thereof
CN104665906B (en) 2013-11-26 2017-09-08 财团法人工业技术研究院 Bionic fixing device
US9498266B2 (en) 2014-02-12 2016-11-22 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
US9545274B2 (en) 2014-02-12 2017-01-17 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
US9668861B2 (en) 2014-03-15 2017-06-06 Rex Medical, L.P. Vascular device for treating venous valve insufficiency
DE102014107351A1 (en) * 2014-05-26 2015-11-26 Universität Rostock Enossal implant
JP6235724B2 (en) 2014-09-18 2017-11-22 ライト メディカル テクノロジー インコーポレイテッドWright Medical Technology, Inc. Spider toe implant and tool
WO2016084087A2 (en) 2014-11-26 2016-06-02 S.T.S. Medical Ltd. Shape change structure for treatment of nasal conditions including sinusitis
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
WO2016099550A1 (en) 2014-12-19 2016-06-23 Wright Medical Technology, Inc. Intramedullary anchor for interphalangeal arthrodesis
WO2016123382A1 (en) 2015-01-28 2016-08-04 Mx Orthopedics, Corp. Self-compressing screws for generating and applying compression within a body
US9757168B2 (en) 2015-03-03 2017-09-12 Howmedica Osteonics Corp. Orthopedic implant and methods of implanting and removing same
JP6829692B2 (en) 2015-03-20 2021-02-10 イェーナヴァルヴ テクノロジー インコーポレイテッド Heart valve prosthesis delivery system and method for delivering the heart valve prosthesis through the introducer sheath
WO2016154417A1 (en) 2015-03-24 2016-09-29 Mẍ Orthopedics, Corp. Staples for generating and applying compression within a body
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
JP6767388B2 (en) 2015-05-01 2020-10-14 イェーナヴァルヴ テクノロジー インコーポレイテッド Devices and methods to reduce the proportion of pacemakers in heart valve replacement
EP3352930B1 (en) 2015-09-21 2021-12-29 Confluent Medical Technologies, Inc. Superelastic devices made from nitihf alloys using powder metallurgical techniques
TWI587847B (en) 2015-12-07 2017-06-21 財團法人工業技術研究院 Implant device for osseous integration
CN105434022B (en) * 2015-12-24 2017-09-05 李峰 A kind of memorial alloy internal fixation device external member
CN109475419B (en) 2016-05-13 2021-11-09 耶拿阀门科技股份有限公司 Heart valve prosthesis delivery systems and methods for delivering heart valve prostheses through guide sheaths and loading systems
EP3251621B1 (en) 2016-06-03 2021-01-20 Stryker European Holdings I, LLC Intramedullary implant
JP7008910B2 (en) 2016-06-20 2022-01-25 エバルブ,インコーポレイティド Transapex removal device
RU2648344C2 (en) * 2016-08-24 2018-03-23 Общество с ограниченной ответственностью "Эндоваскулярная исследовательская лаборатория" Method of manufacture of the framework of the aortal heart valve endovascular prosthesis
RU2633639C1 (en) * 2016-12-05 2017-10-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) Method for manufacture of self-expanding peripheral steel from alloy based on titanium nickelide with modified surface
AU2017371223B2 (en) 2016-12-09 2023-04-27 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
KR102119968B1 (en) * 2018-11-08 2020-06-05 김근일 dental implant unit having stable clamping force
CN113766894A (en) 2019-04-30 2021-12-07 米尼翁大学 Dental implant, method of obtaining and use thereof
US11534303B2 (en) 2020-04-09 2022-12-27 Evalve, Inc. Devices and systems for accessing and repairing a heart valve
CA3147583A1 (en) 2019-07-15 2021-01-21 Evalve, Inc. Independent proximal element actuation methods
JP7556014B2 (en) 2019-07-15 2024-09-25 エバルブ,インコーポレイティド Proximal Element Actuator Locking and Release Mechanism
CA3146797A1 (en) 2019-07-15 2021-01-21 Evalve, Inc. Wide clip with nondeformable wings
EP4033970A1 (en) 2019-09-26 2022-08-03 Evalve, Inc. Systems for intra-procedural cardiac pressure monitoring
EP4041136A1 (en) 2019-10-11 2022-08-17 Evalve, Inc. Repair clip for variable tissue thickness
WO2021092107A1 (en) 2019-11-06 2021-05-14 Evalve, Inc. Stabilizer for a medical delivery system
US11622859B2 (en) 2019-11-08 2023-04-11 Evalve, Inc. Medical device delivery system with locking system
US11701229B2 (en) 2019-11-14 2023-07-18 Evalve, Inc. Kit with coaptation aid and fixation system and methods for valve repair
US11801140B2 (en) 2019-11-14 2023-10-31 Evalve, Inc. Catheter assembly with coaptation aid and methods for valve repair
US11890213B2 (en) 2019-11-19 2024-02-06 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra
US12109115B2 (en) 2019-12-18 2024-10-08 Evalve, Inc. Wide clip with deformable width
US12121439B2 (en) 2020-10-15 2024-10-22 Evalve, Inc. Biased distal assemblies with locking mechanism
CN113653737B (en) * 2021-07-28 2022-10-21 人本股份有限公司 Anti-drop bearing of sealing washer
US11317956B1 (en) 2021-08-26 2022-05-03 University Of Utah Research Foundation Active compression bone screw
US12064156B2 (en) 2023-01-09 2024-08-20 John F. Krumme Dynamic compression fixation devices
US12023080B1 (en) 2023-08-26 2024-07-02 University Of Utah Research Foundation Cannulated continuous compression screw

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786806A (en) * 1972-11-22 1974-01-22 A Johnson Thermoconstrictive surgical appliance
US4485816A (en) * 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US5067957A (en) * 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
US4505767A (en) * 1983-10-14 1985-03-19 Raychem Corporation Nickel/titanium/vanadium shape memory alloy
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
JPS63238872A (en) * 1987-03-25 1988-10-04 テルモ株式会社 Instrument for securing inner diameter of cavity of tubular organ and catheter equipped therewith
AU623100B2 (en) * 1987-10-08 1992-05-07 Terumo Kabushiki Kaisha Instrument and apparatus for securing inner diameter of lumen of tubular organ
US4881981A (en) * 1988-04-20 1989-11-21 Johnson Service Company Method for producing a shape memory alloy member having specific physical and mechanical properties
US5147370A (en) * 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
CA2079417C (en) * 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
IL105828A (en) * 1993-05-28 1999-06-20 Medinol Ltd Medical stent
US5624508A (en) * 1995-05-02 1997-04-29 Flomenblit; Josef Manufacture of a two-way shape memory alloy and device

Similar Documents

Publication Publication Date Title
RU2000103444A (en) IMPLANTED MEDICAL DEVICES FROM ALLOY WITH MEMORY MEMORY
RU2196188C2 (en) Implanted medical devices from shape-metal alloy
JP2543328B2 (en) Medical instruments
US3987789A (en) Malleable penile prosthesis
AU641556B2 (en) Clip and osteosynthesis plate with dynamic compression and self-retention
EP0977902B1 (en) Manufacture of two-way shape memory devices
US20080274011A1 (en) Shape memory alloy endoprosthesis delivery system
EP0418381A1 (en) Ureter redressing device
KR101752576B1 (en) Microanchors for anchoring devices to body tissues
CN106901881B (en) With improved flexible and durability intraluminal device
JP2003503150A (en) Flexible and stretchable wound stent
JPS62164457A (en) Implanting artificial penis
RU11995U1 (en) DEVICE FOR DYNAMIC STABILIZATION OF THE SPINE
Aalsma et al. The design of a TiNi actuator in an intramedullary leg lengthening device
Aalsma et al. Design of an intramedullary leg lengthening device with a shape memory actuator
GB2387117A (en) Shape memory circlip for fixing elements to a bone
RU40585U1 (en) ANATOMIC DEVICE (OPTIONS)
Ryklina Some medical applications of thermomechanically treated titanium nickelide