NZ724351B2 - Lyophilized factor ix formulations - Google Patents

Lyophilized factor ix formulations Download PDF

Info

Publication number
NZ724351B2
NZ724351B2 NZ724351A NZ72435115A NZ724351B2 NZ 724351 B2 NZ724351 B2 NZ 724351B2 NZ 724351 A NZ724351 A NZ 724351A NZ 72435115 A NZ72435115 A NZ 72435115A NZ 724351 B2 NZ724351 B2 NZ 724351B2
Authority
NZ
New Zealand
Prior art keywords
formulation
lyophilization
fix
vial
concentration
Prior art date
Application number
NZ724351A
Other versions
NZ724351A (en
Inventor
Brandon W Leveille
Lang Cherie Parkhurst
Brian M Thome
Original Assignee
Bioverativ Therapeutics Inc
Filing date
Publication date
Application filed by Bioverativ Therapeutics Inc filed Critical Bioverativ Therapeutics Inc
Priority claimed from PCT/US2015/022141 external-priority patent/WO2015148444A1/en
Publication of NZ724351A publication Critical patent/NZ724351A/en
Publication of NZ724351B2 publication Critical patent/NZ724351B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4846Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21022Coagulation factor IXa (3.4.21.22)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Abstract

The present invention provides pre-lyophilization formulations, reconstituted formulations, and lyophilate powder compositions comprising a Factor IX (FIX) polypeptide. Also provided are methods for producing lyophilate powder comprising a FIX polypeptide. The pre-lyophilization formulation comprises: (a) a FIX polypeptide having FIX coagulation activity; (b) a buffering agent; (c) a stabilizing agent; (d) a bulking agent; and (e) a surfactant, wherein the formulation has a fill volume of less than about 5 mL, and wherein each of (a) - (e) are at an amount per vial (mg/vial) sufficient to allow improved stability of the FIX polypeptide when lyophilized.

Description

LYOPHILIZED FACTOR IX FORMULATIONS BACKGROUND The t invention relates generally to the ?eld of therapeutics for hemostatic disorders. ilia B (also known as Christmas disease) is one of the most common inherited bleeding disorders in the world. It s in sed in vivo and in vitro blood clotting activity and requires extensive medical monitoring throughout the life of the affected individual. In the absence of intervention, the af?icted dual will suffer from neous bleeding in the joints, which produces severe pain and debilitating immobility; bleeding into muscles results in the accumulation of blood in those tissues; spontaneous bleeding in the throat and neck can cause asphyxiation if not immediately treated; renal bleeding; and severe bleeding following surgery, minor accidental injuries, or dental extractions also are prevalent.
Normal in vivo blood coagulation at minimum es the serine proteases Factors II (prothrombin), VII, IX, X and XI (soluble plasma proteins); cofactors including the transmembrane protein tissue factor and the plasma proteins Factors V and VIII; f1brinogen, the transglutaminase Factor XIII, phospholipid (including ted platelets), and calcium. Additional proteins including kallikrein, high molecular weight kininogen, and Factor XII are required for some in vitro clotting tests, and can play a role in vivo under pathologic conditions.
In hemophilia, blood ng is disturbed by a lack of certain plasma blood clotting factors. Hemophilia B is caused by a de?ciency in Factor IX that can result from either the sed synthesis of the Factor IX protein or a defective molecule with reduced activity. The treatment of hemophilia occurs by replacement of the missing clotting factor by exogenous factor concentrates highly enriched in Factor IX. r, generating such a concentrate from blood is fraught with technical dif?culties, as is described below.
Purification of Factor IX from plasma (plasma derived Factor IX; deIX) almost exclusively yields active Factor IX. However, such purification of Factor IX from plasma is very lt because Factor IX is only present in low concentration in plasma (5 ug/mL. Andersson, Thrombosis Research 7: 451 459 (1975). Further, purif1cation from blood requires the l or inactivation of infectious agents such as HIV and HCV. In addition, deIX has a short half-life and therefore es frequent dosing. Recombinant factor IX (rFIX) is also available, but suffers from the same short half-life and need for frequent dosing (e.g., 2-3 times per week for prophylaxis) as deIX. rFIX also has a lower incremental ry (K value) compared to deIX, which necessitates the use of higher doses of rFIX than those for deIX.
Reduced ity, prevention of joint damage and improved quality of life have been important achievements due to the development of -derived and inant Factor IX. Prolonged tion from bleeding would represent another key advancement in the treatment of hemophilia B subjects. However, to date, no products that allow for prolonged protection have been ped. Therefore, there remains a need for improved methods of treating ilia due to Factor IX def1ciency that are more tolerable and more effective than current therapies.
In particular, there remains a need for improved lyophilized FIX formulations with higher drug product strength, longer shelf life, reduced lyophilization process time, and shorter reconstitution time.
BRIEF SUMMARY OF THE INVENTION The present invention is directed to a pre-lyophilization formulation comprising: (a) a Factor IX (FIX) polypeptide having FIX coagulation activity; (b) a buffering agent; (c) a stabilizing agent; (d) a bulking agent; and (e) a surfactant, wherein the formulation has a ?ll volume of less than about 5 mL, less than about 4mL, or less than about 3 mL and wherein each of (a) — (e) are at an amount per vial (mg/vial) suf?cient to allow (1) improved stability of the FIX polypeptide when lyophilized; (2) reduced reconstitution time when lized; (3) reduced ing onto a stopper comprising the formulation; (4) reduced lyophilization cycle time; (5) increased shelf-life of a lyophilate prepared from the pre-lyophilization formulation at room temperature; or (6) any combinations thereof, compared to a reference pre-lyophilization formulation, wherein the reference formulation comprises (a) — (e) at the amount per vial identical to the pre- lyophilization formulation, but has at least a 5mL ?ll volume. In a particular embodiment, the ?ll volume of the formulation is about 2.65mL. [0008a] In an aspect of the ion, there is provided a pre-lyophilization ation comprising: (a) a Factor IX (FIX) ptide having FIX coagulation activity comprising FIX and an FcRn binding partner at a concentration from 100 IU/vial to about 10,000 IU/vial; (b) L-histidine at a concentration from 3 mg/mL to 15 mg/mL; (c) sucrose at a concentration from 10 mg/mL to 50 mg/mL; (d) mannitol at a concentration from 20 mg/mL to 100 mg/mL; and (e) polysorbate 20 at a concentration from 0.01 mg/mL to 5 mg/mL, wherein the formulation has a fill volume of 2 mL to 3 mL.
In some embodiments, the pre-lyophilization formulation comprises at least 100 IU/vial of the FIX polypeptide. In some embodiments, the pre-lyophilization formulation comprises about 200 IU/vial to about 10,000 l of the FIX polypeptide.
In some embodiments, the FIX polypeptide comprises ype FIX. In some embodiments, the FIX ptide further comprises a logous moiety fused to wildtype FIX. In one embodiment, the heterologous moiety is a moiety extending half-life of FIX. In another embodiment, the logous moiety comprises a polypeptide or a nonpolypeptide moiety. In one embodiment, the moiety extending half-life of FIX comprises an FcRn binding partner or an Fc region. In one embodiment, the FIX polypeptide is at least about 80%, at least about 85%, at least about 90%, at least about 95%, or 100% identical to SEQ ID NO: 2.
In some embodiments, the fill volume is about 4 mL, about 3.5 mL, about 3.0 mL, about 2.9 mL, about 2.8 mL, about 2.7 mL, about 2.65 mL, about 2.6mL, about 2.5 mL, about 2.4 mL, about 2.3 mL, about 2.2 mL, about 2.1 mL, or about 2.0 mL.
In some embodiments, the reduced reconstitution time is less than 1.5 minute, less than 1 minute, less than 50 seconds, less than 40 seconds, less than 30 seconds, less than seconds, or less than 10 seconds.
In some embodiments, the buffering agent is L-histidine. In one embodiment, the buffering agent is at a tration (mg/mL) between about 3 mg/mL and about 15 mg/mL. In another embodiment, the ing agent is at a concentration between about 8 mg and about 39 mg per vial.
In some embodiments, the stabilizing agent is sucrose. In one embodiment, the stabilizing agent is at a concentration (mg/mL) between 10 mg/mL and about 50 mg/mL. - 3a - In r embodiment, the stabilizing agent is at a concentration between about 27 mg and about 132 mg per vial.
In some ments, the bulking agent is mannitol. In one embodiment, the bulking agent is at a concentration (mg/mL) between 20 mg/mL and about 100 mg/mL. In another embodiment, the bulking agent is at a concentration between about 53 mg per vial and about 265 mg per vial.
In some embodiments, the surfactant is polysorbate 20. In one embodiment, the surfactant is at a concentration (mg/mL) between 0.01 mg/mL and about 5 mg/mL. In another embodiment, the surfactant is at a concentration between about 0.03 mg and about 13 mg per vial.
In one aspect, the invention is directed to ophilization formulation comprising: (a) about 80 to about 2,750 IU/mL of rFIXFc; (b) about 7.76 mg/mL of L- histidine; (c) about 47.6 mg/mL of mannitol; (d) about 23.8 mg/mL of sucrose; and, (e) about 0.2 mg/mL of polysorbate-20.
The present invention is further directed to a lyophilate powder comprising a FIX polypeptide, a buffering agent, a stabilizing agent, a bulking agent, a surfactant, or any combinations f In some embodiment, the residual moisture level of the late powder is below 1%.
In one embodiment, the lyophilate powder comprises: (a) a FIX polypeptide at an amount between about 2 mg per vial and about 150 mg per vial; (b) a ing agent at an amount between 10 mg per vial and about 30 mg per vial; (c) a bulking agent at an amount between 70 mg vial and about 200 mg per vial; (d) a stabilizing agent at an amount between 30 mg per vial and 100 mg per vial; and (e) a surfactant at an amount between 0.05 mg per vial and about 5 mg per vial.
In another embodiment, the lyophilate powder comprises: (a) the lyophilized FIX ptide at an amount between about 2.2 mg per vial and about 125 mg per vial; (b) the buffering agent at an amount between about 12.5 mg per vial and 25 mg per vial; (c) the stabilizing agent at an amount between about 32.5 mg per vial and 80 mg per vial; (d) the bulking agent at an amount between about 75 mg per vial and 150 mg per vial; and (e) the surfactant at an amount between about 0.1 mg/mL and about 2 mg/mL.
In another ment, the lyophilate powder comprises: (a) about 2.2 to about 125 mg/vial of the FIX polypeptide; (b) about 20.6 mg/vial of idine; (c) about 126.1 mg/vial of mannitol; (d) about 63.1 l of sucrose; and, (e) about 0.53 mg/vial of polysorbate-20; The present invention is also directed to a reconstituted formulation comprising the late powder described herein reconstituted by a reconstitution buffer.
In one embodiment, the reconstituted formulation comprises: (a) the FIX polypeptide at a concentration between about 0.9 mg/mL and about 50 mg/mL; (b) the buffering agent at a concentration between 1.5 mg/mL and about 7.5 mg/mL; (c) the bulking agent at a concentration between 10 mg/mL and about 50 mg/mL; (d) the stabilizing agent at a concentration between 5 mg/mL and 25 mg/mL per vial; and (e) the surfactant at a concentration n 0.005 mg/mL and about 2.5 mg/mL.
In another embodiment, the reconstituted formulation comprises: (a) the FIX polypeptide at a concentration between about 0.9 mg/mL and about 50 mg/mL; (b) the buffering agent at a concentration of about 3.88 mg/mL; (c) the g agent at a concentration of about 23.8 mg/mL; (d) the stabilizing agent at a concentration of about 11.9 mg/mL; (e) the surfactant at a tration of about 0.1 mg/mL; and (f) the reconstitution buffer.
In another ment, the reconstituted formulation comprises: (a) the FIX polypeptide at a concentration between about 80 IU/mL and about 2,750 IU/mL; (b) the buffering agent at a concentration of about 25 mM; (c) the bulking agent at a concentration of about 131 mM; (d) the stabilizing agent at a concentration of about 35 mM; (e) the surfactant at a concentration of 0.01 % (w/v); and (f) the reconstitution buffer.
The present invention further pertains to a method of administering a FIX polypeptide to a hemophilia B patient in need thereof, or a method of preventing, treating, ameliorating, or ng hemophilia B in a patient in need f, comprising administering to the patient the reconstituted formulations described herein.
The present invention is also directed to a method of producing a lyophilate powder comprising a FIX polypeptide comprising lyophilizing the pre-lyophilization formulations described .
In one aspect, the present invention is directed to a method of lyophilizing a FIX polypeptide comprising: (a) a "freezing step" comprising freezing a pre-lyophilization formulation comprising the FIX polypeptide and an aqueous t; (b) a m step" comprising reducing the pressure of the frozen pre-lyophilization formulation by an amount effective to remove the aqueous solvent from the frozen pre-lyophilization formulation; and, (c) a single "drying step" comprising increasing the temperature of the frozen pre-lyophilization formulation above the collapse ature, thereby producing a lyophilate powder. In some embodiments, the pre-lyophilization formulation is aseptically ?ltered and aseptically ?lled into a vial prior to step (a).
In another aspect, the present invention is directed to methods of producing a lyophilate powder comprising a FIX polypeptide, sing: (a) a "freezing step" comprising freezing a pre-lyophilization formulation comprising a FIX polypeptide by ramping down the temperature for about 2 hours to a freezing temperature of about -55oC, and holding the freezing temperature for about 2 hours; (a') an "annealing step" comprising ramping up for about 1.5 hours the temperature of the frozen pre-lyophilization formulation of step (a) to an annealing temperature of about -6oC, holding the annealing temperature for about 3 hours, and ramping down the ature for about 1.5 hours to about -55oC; (b) a "vacuum step" comprising holding the frozen pre-lyophilization formulation of step (a') at about -55oC for two hours at atmospheric pressure and ramping down the pressure for about 2 hours to about 0.33 mbar; and, (c) a single "drying step" comprising ramping up for 3 hours the temperature of the frozen prelyophilization formulation of step (b) to about 40oC, while holding the pressure at about 0.33 mbar, and holding the temperature of the frozen pre-lyophilization formulation at about 40oC for about 25 hours, while holding the pressure at about 0.33 mbar, thereby ing the lyophilate . [0030a] In another aspect of the invention, there is provided a method of producing a lyophilized FIX polypeptide from the ophilization formulation described herein, the method sing: (a) a ing step" comprising freezing a pre-lyophilization formulation comprising the FIX polypeptide and an aqueous solvent to a freezing temperature of -65°C to -40°C; (b) a "vacuum step" sing reducing the pressure of the frozen philization formulation by an amount effective to remove the aqueous solvent from the frozen ophilization formulation; and, (c) a single "drying step" comprising increasing the temperature of the frozen pre-lyophilization formulation above a collapse temperature of -1.5°C, thereby producing a lyophilate powder. - 6a - In a further aspect, the lyophilate powder has one or more characteristics selected from the group consisting of: (1) improved stability of the FIX polypeptide when lized; (2) reduced reconstitution time when lyophilized; (3) reduced splashing onto a stopper comprising the formulation; (4) reduced lyophilization cycle time; (5) increased shelf-life of a lyophilate prepared from the pre-lyophilization formulation at room temperature; or (6) any ations thereof, In one aspect, the disclosure provides a method of stabilizing a lyophilate powder comprising a FIX polypeptide, comprising lyophilizing a prelyophilization formulation according to the methods described herein, wherein the lyophilate powder is stabilized as measured by Size Exclusion Chromatography (SEC) with respect to a late powder prepared by using a lyophilization method comprising more than one drying step.
In r aspect, the disclosure es a method of increasing the shelflife of a lyophilate powder comprising a FIX polypeptide, comprising lyophilizing a pre-lyophilization formulation ing to the methods bed herein, wherein the shelf-life of the lyophilate powder is increased as measured by SEC and/or FIX clotting activity assay with respect to the shelf-life of a lyophilate powder prepared by using a lyophilization method comprising more than one drying step.
This disclosure also provides a method to se the reconstitution time of a lyophilate powder comprising a FIX polypeptide, comprising lyophilizing a pre- lyophilization formulation according to the methods described herein, wherein the reconstitution time of the lyophilate powder is decreased with respect to the titution time of a lyophilate powder prepared by using a lyophilization method comprising more than one drying step.
This disclosure further provides a method to reduce lyophilization process time of producing a lyophilate powder sing a FIX polypeptide, comprising lyophilizing a pre-lyophilization formulation according to the methods bed herein, wherein the lyophilization process time of the pre-lyophilization formulation is reduced with respect to the lyophilization process time of producing a lyophilate powder using a lyophilization method comprising more than one drying step.
BRIEF PTION OF THE FIGURES Figure 1 shows the vial loading n for each lyophilization cycle. The numbers 1, 2, and 3 indicate the thermocouple ons.
Figure 2 shows the prediction profller from the DOE is of residual moisture as a function of the lyophilization ters — temperature, vacuum, and time.
Figure 3 shows the prediction pro?ler from the DOE analysis of product temperature during sublimation as a function of the lyophilization parameters — temperature and vacuum.
Figure 4 shows the tion pro?ler from the DOE analysis of vial mass flow during sublimation as a function of the lyophilization parameters — temperature and vacuum.
Figure 5 shows the lyophilization data from DOE Run 8 in Example 2, which is similar to the proposed -ZG lyophilization cycle (shelf temperature of 40 °C, a chamber vacuum of 250 mTorr (0.33 mBar) and a drying time of 25 hours). _ 8 _ DETAILED DESCRIPTION This disclosure provides, among other things, pre-lyophilization formulations, reconstituted formulations, and lyophilate powder compositions comprising a Factor IX (FIX) polypeptide. The disclosure also provides lyophilization methods for producing lyophilate powder comprising a FIX polypeptide. Also provided are methods of stabilizing a lyophilate powder sing a FIX polypeptide, method to increase the shelf-life of a lyophilate powder comprising a FIX polypeptide, method to decrease the reconstitute time of a lyophilate powder comprising a FIX polypeptide, and method to reduce lyophilization process time of a ophilization formulation comprising a FIX polypeptide. In addition, the disclosure provides methods of preventing, treating, ameliorating, or managing hemophilia B in a patient in need of by administering a reconstituted formulation comprising a FIX polypeptide.
De?nitions Throughout this sure, the term H H a or "an" entity refers to one or more of that entity; for example, "a polynucleotide," is tood to represent one or more polynucleotides. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.
Furthermore, "and/or" where used herein is to be taken as speci?c disclosure of each of the two specif1ed features or components with or without the other. Thus, the term "and/or" as used in a phrase such as "A and/or B" herein is intended to include "A and B," "A or B," "A" (alone), and "B" (alone). Likewise, the term "and/or" as used in a phrase such as "A, B, and/or C" is ed to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).
It is understood that er aspects are described herein with the language "comprising," ise ous aspects described in terms of "consisting of" and/or "consisting essentially of" are also provided.
Unless def1ned otherwise, all technical and scienti?c terms used herein have the same g as commonly understood by one of ordinary skill in the art to which this disclosure is d. For example, the Concise nary of Biomedicine and Molecular Biology, Juo, Pei-Show, 2nd ed., 2002, CRC Press; The Dictionary of Cell and Molecular y, 3rd ed., 1999, ic Press; and the Oxford Dictionary Of Biochemistry And Molecular Biology, Revised, 2000, Oxford University Press, provide one of skill with a general nary of many of the terms used in this disclosure.
Units, pre?xes, and s are denoted in their Systeme International de Unites (SI) accepted form. Numeric ranges are inclusive of the numbers de?ning the range.
Unless otherwise indicated, amino acid sequences are written left to right in amino to carboxy orientation. The headings provided herein are not limitations of the various aspects of the disclosure, which can be had by reference to the speci?cation as a whole.
Accordingly, the terms de?ned immediately below are more fully de?ned by reference to the speci?cation in its entirety.
The term "about" is used herein to mean approximately, roughly, , or in the s of, and the value will depend on how limitations of the measuring system. When the term "about" is used in conjunction with a numerical range, it modi?es that range by extending the boundaries above and below the numerical values set forth. In general, the term "about" can modify a numerical value above and below the stated value by a variance of, e.g., 10 percent or 20 percent, up or down (higher or lower). Unless otherwise stated, the g of "about" should be assumed to be within an acceptable error range for the particular value for the formulation or composition.
The term "polypeptide," "peptide" and in" are used interchangeably and refer to a polymeric compound comprised of covalently linked amino acid residues.
The term "polynucleotide" and "nucleic acid" are used interchangeably and refer to a polymeric compound sed of ntly linked nucleotide residues. cleotides can be DNA, cDNA, RNA, single stranded, or double ed, vectors, plasmids, phage, or viruses.
The term "administering," as used herein, means to, e.g., prescribe or give a pharmaceutical composition comprising an FIX polypeptide to a subject. Examples of routes of administration include, but are not limited to, intravenous, e.g., intravenous injection and intravenous infusion, e.g., via central venous access. Additional routes of administration include subcutaneous, intramuscular, oral, nasal, and pulmonary administration. A pharmaceutical composition sing an FIX polypeptide can comprise one or more excipients, as described herein. Advantages of the s, compositions, and pharmaceutical kits provided herein include: improved regimen compliance; reduced break through bleeds; increased protection of joints from bleeds; prevention of joint ; d morbidity; reduced mortality; prolonged protection from bleeding; decreased otic events; and improved quality of life. stering includes parenteral administration. In some embodiments, the parenteral administration is intravenous or subcutaneous administration.
The term "treatment" or "treating" as used herein means ration or reduction of one or more symptoms of bleeding diseases or disorders including, but not limited to, ilia B. In one embodiment, "treatment of" or "treating" a bleeding disease or disorder includes prevention of one or more symptoms of a bleeding disease or disorder.
In a ng disease or disorder caused by a FIX de?ciency (e.g., a low baseline FIX activity), the term "treatment" or ing" can mean FIX replacement therapy. By administering a FIXFc polypeptide to a subject, the subject can achieve and/or maintain a plasma trough level of a FIX ty at about 1 IU/dl or above 1 IU/dl. In other embodiments, "treatment" or "treating" means reduction of the frequency of one or more symptoms of bleeding diseases or disorders, e.g., spontaneous or uncontrollable bleeding episodes. "Treatment," however, need not be a cure.
"Patient" as used herein includes an individual who is known to have at least one incidence of uncontrolled bleeding episodes, who has been sed with a disease or disorder associated with uncontrolled bleeding episodes, e.g., a ng disease or disorder, e.g., hemophilia B, who are susceptible to uncontrolled bleeding episodes, e.g., hemophilia, or any combinations thereof. Patients can also include an individual who is in danger of one or more uncontrollable bleeding episodes prior to a n activity, e.g., a surgery, a sport activity, or any strenuous activities. The patient can have a baseline FIX activity less than 1%, less than 0.5%, less than 2%, less than 2.5%, less than 3%, or less than 4%. Patients also include pediatric humans. Pediatric patients are birth to 20 years, preferably birth to 18 years, birth to 16 years, birth to 15 years, birth to 12 years, birth to 11 years, birth to 6 years, birth to 5 years, birth to 2 years, and 2 to 11 years of age. ine," as used herein, is the lowest measured plasma Factor IX level in a subject prior to administering a dose. The Factor IX plasma levels can be measured at two time points prior to dosing: at a screening visit and immediately prior to dosing.
Alternatively, (a) the baseline in subjects whose pretreatment FIX activity is <1%, who have no detectable FIX n, and have nonsense genotypes can be de?ned as 0%, (b) the baseline for subjects with pretreatment FIX ty <1% and who have detectable FIX antigen can be set at 0.5%, (c) the baseline for subjects whose pretreatment FIX activity is between 1 — 2% is Cmin (the lowest activity throughout the PK study), and (d) the baseline for subjects whose pretreatment FIX activity is 22% can be set at 2%.
Activity above the baseline pre-dosing can be considered residue drug from prior treatment, and can be decayed to baseline and subtracted from the PK data following rFIXFBP dosing.
"Trough," as used herein, is the lowest plasma Factor IX activity level d after administering a dose of chimeric polypeptide of the invention or another Factor IX molecule and before the next dose is administered, if any. Trough is used interchangeably herein with "threshold." Baseline Factor IX levels are subtracted from measured Factor IX levels to calculate the trough level.
As used herein, the term "half-life" refers to a biological half-life of a particular polypeptide in vivo. Half-life can be represented by the time required for half the quantity administered to a subject to be d from the circulation and/or other tissues in the animal.
The terms "long-acting" and "long-lasting" are used hangeably herein. In one embodiment, the term "long-acting" or "long-lasting" indicates that a FIX activity as a result of stration of the P polypeptide is longer than the FIX activity of a ype FIX (e.g., BENEFIX® or plasma-derived FIX ("deIX")). The "longer" FIX activity can be measured by any known methods in the art, e.g., aPTT assay, chromogenic assay, ROTEM, TGA, and etc. In one embodiment, the "longer" FIX activity can be shown by the T1/2beta ity). In another embodiment, the "longer" FIX activity can be inferred by the level of FIX antigen present in plasma, e.g., by the T1/2beta (antigen).
The terms "lyophilate," ilate powder," "lyophilized product," or "product cake," as used herein, denote a ation which is manufactured by freeze-drying methods. The solvent (e.g. water) is removed by freezing following sublimation under vacuum and desorption of residual water at elevated ature. In the pharmaceutical ?eld, the lyophilate is present as a powder or a physical stable cake. The lyophilate is characterized by a fast dissolution after addition of a titution .
The term "pre-lyophilization formulation" or ilization feedstock" as used herein denotes a liquid formulation before the solvent (e.g., water) is removed by a freeze-drying method. The "fill volume" of a pre-lyophilization formulation is the total volume of the liquid formulation prior to lization.
"Tl/25," or "Tl/2 beta" or "Beta HL," as used herein, is half-life associated with ation phase, t1/2[;=(ln2)/elimination rate constant associated with the al phase.
The Tm beta can be ed by FIX ty or by FIX antigen level in plasma. The Tm beta based on activity is shown as T1/2 beta (activity), and the TM beta based on the FIX antigen level can be shown as Tm beta (antigen). Both Tm beta (activity) and Tm beta (antigen) can be shown as ranges or a geometric mean.
The term "reconstituted formulation" or "post-reconstitution composition" as used herein denotes a formulation which is lyophilized and re-dissolved by addition of a diluent. The diluent can n, without limitation, water for injection (WFI), bacteriostatic water for injection (BWFI), sodium chloride ons (e.g., 0.9% (w/v) NaCl), glucose solutions (e.g., 5% glucose), surfactant containing solutions (e.g., 0.01% polysorbate 20 or polysorbate 80), a fered solution (e.g. phosphate-buffered solutions) and combinations thereof The lyophilization process in general Lyophilization, or freeze-drying, is a process widely used in the pharmaceutical industry for the preservation of biological and pharmaceutical materials. The lyophilization process, also known as the lyophilization cycle, is traditionally d into three distinct stages: freezing, primary drying, and ary drying. "Lyophilizing," as used herein, refers to the entire process of lyophilization, including both the freezing steps and the drying steps.
In lyophilization, water present in a al is converted to ice during a freezing step and then removed from the material by direct sublimation under low-pressure conditions during a primary drying step. During freezing, however, not all of the water is transformed to ice. Some portion of the water is trapped in a matrix of solids containing, for example, formulation components and/or the active ingredient. The excess bound water within the matrix can be reduced to a desired level of residual moisture during a secondary drying step. All lyophilization steps, freezing, primary drying and secondary drying, are determinative of the ?nal product properties. The primary drying is typically the longest step in a lyophilization process, therefore, optimization of this portion of the s has signi?cant economic effect. _ 13 _ In certain aspects of the invention, the lyophilization process only comprises the primary drying step.
In certain aspects of the invention, the lyophilization process also comprises a te "vacuum step" n the freezing step and the primary drying step.
In other aspects of the invention, the lyophilization process further comprises an "annealing step" n the freezing step and the primary drying step.
The term "annealing step" as used herein refers to a step in the lyophilization process of a polypeptide preparation undergoing lyophilization, prior to the drying step of the preparation, in which the temperature of the preparation is raised from a lower temperature to a higher ature and then cooled again after a period of time.
Cycle and formulation optimization has traditionally been performed to assure that the product temperature during primary drying would never exceed the collapse ature. The term "collapse temperature" as used herein refers to the product temperature during -drying above which product cake begins to lose its original structure. Above the collapse temperature, product could experience slow sporadic bubbling, swelling, foaming, cavitation, fenestration, gross collapse, retraction and beading that may have consequences on the appearance of the product. As a result, Collapse may result in poor product stability, long drying times, uneven drying and loss of texture. See, e.g., US 2010/0041870.
Lyophilized product in accordance with the t invention can be assessed based on product quality analysis, reconstitution time, quality of reconstitution, high molecular weight, moisture, glass transition temperature (Tg), and biological or biochemical activity. Typically, product quality analysis includes product ation rate analysis using methods including, but not limited to, size exclusion chromatography (SEC), cation exchange-HPLC (CEX-HPLC), X-ray diffraction (XRD), modulated differential scanning calorimetry (mDSC), ed phase HPLC (RP-HPLC), multi-angle light scattering detector (MALS), ?uorescence, ultraviolet absorption, ometry, capillary electrophoresis (CE), SDS-PAGE, and combinations thereof In some ments, evaluation of lyophilized product in accordance with the present invention includes a step of evaluating cake appearance. onally, lyophilized product may be assessed based on ical or biochemical ties of the product, typically, after reconstitution.
Lyophilized Factor IX Formulations This sure es pre-lyophilization, lyophilized, and post-reconstitution formulations, or pharmaceutical compositions, comprising a FIX polypeptide.
In certain aspects of the invention, the formulations disclosed herein comprise a FIX polypeptide, a buffering agent, a stabilizing agent, a bulking agent, and a surfactant, or any combinations thereof. The formulation can also contain any other agents that are useful for pharmaceutical formulation.
Factor IX (FIX) ptide The FIX polypeptide or FIX protein useful for the formulation is a functional Factor FIX protein in its normal role in coagulation, unless otherwise specified. Thus, the FIX polypeptide es t ptides that are functional and the polynucleotides that encode such functional variant polypeptides. In one embodiment, the FIX polypeptides are the human, bovine, e, canine, feline, and murine FIX polypeptides. The full length polypeptide and polynucleotide sequences of FIX are known, as are many functional variants, e.g., fragments, mutants and modified versions.
FIX polypeptides include full-length FIX, full-length FIX minus Met at the N—terminus, full-length FIX minus the signal sequence, mature FIX (minus the signal ce and propeptide), and mature FIX with an additional Met at the N—terminus. FIX can be made by recombinant means ("recombinant Factor IX" or "rFIX"), i.e., it is not lly occurring or derived from plasma.
A great many functional FIX variants are known. International publication number W0 02/040544 A3, which is herein incorporated by reference in its entirety, discloses mutants that exhibit increased resistance to tion by heparin at page 4, lines 9-30 and page 15, lines 6-31. International publication number W0 03/020764 A2, which is herein incorporated by reference in its entirety, discloses FIX mutants with reduced T cell immunogenicity in Tables 2 and 3 (on pages 14-24), and at page 12, lines 1-27. International publication number W0 2007/149406 A2, which is herein incorporated by reference in its entirety, discloses functional mutant FIX molecules that exhibit increased protein stability, sed in vivo and in vitro half-life, and increased resistance to proteases at page 4, line 1 to page 19, line 11. ses ic and other variant FIX molecules at page 19, line 12 to page 20, line 9.
International publication number W0 08/118507 A2, which is herein incorporated by reference in its entirety, discloses FIX mutants that exhibit increased ng activity at page 5, line 14 to page 6, line 5. ational publication number W0 09/051717 A2, which is herein incorporated by nce in its entirety, discloses FIX mutants having an increased number of N—linked and/or 0-linked glycosylation sites, which s in an increased half-life and/or recovery at page 9, line 11 to page 20, line 2. International publication number W0 09/137254 A2, which is herein incorporated by reference in its entirety, also discloses Factor IX mutants with increased numbers of glycosylation sites at page 2, paragraph [006] to page 5, aph [011] and page 16, paragraph [044] to page 24, paragraph [057]. International publication number W0 09/130198 A2, which is herein incorporated by reference in its entirety, discloses functional mutant FIX molecules that have an increased number of glycosylation sites, which result in an increased half-life, at page 4, line 26 to page 12, line 6. International publication number W0 09/140015 A2, which is herein incorporated by reference in its entirety, discloses functional FIX mutants that an increased number of Cys residues, which can be used for polymer (e.g., PEG) conjugation, at page 11, aph [0043] to page 13, paragraph . The FIX polypeptides described in International Application No. ?led July 11, 2011 and published as 12, 2012 are also incorporated herein by reference in its entirety.
In certain embodiments, the FIX polypeptide comprises wild-type FIX. In some embodiments, the FIX polypeptide further comprises a heterologous moiety fused to wild-type FIX. In certain embodiments, the heterologous moiety is a moiety extending half-life of FIX. In certain embodiments, the heterologous moiety comprises a polypeptide or a lypeptide moiety.
In other embodiments, the FIX polypeptide is a long-acting FIX polypeptide. A long-acting FIX polypeptide can comprise a FIX portion and a non FIX portion, e.g., a heterologous moiety that is capable of extending in vivo or in vitro ife of the FIX ptide. Exemplary non- FIX ns include, e.g., Fc, albumin, a PAS sequence, transferrin, CTP (28 amino acid C—terminal peptide (CTP) of human nic gonadotropin (hCG) with its 4 0-glycans), polyethylene glycol (PEG), hydroxyethyl starch (HES), albumin binding polypeptide, albumin-binding small molecules, or any combination thereof. Exemplary long-acting FIX ptides of the invention include, e.g., Factor IX-Fc polypeptides, Factor IX-albumin polypeptides, Factor IX-PAS polypeptides, Factor IX -transferrin polypeptides, Factor IX -CTP polypeptides, Factor IX -PEG polypeptides, Factor IX -HES polypeptides, Factor IX -albumin binding polypeptide polypeptides, or Factor IX -albumin-binding small molecule polypeptides.
In one embodiment, the FIX polypeptide is rFIXFc, a recombinant fusion protein comprised of human coagulation Factor IX (FIX) and an Fc domain of a human antibody (IgGl isotype). See, e.g., PCT Application No. , ?led July 11, 2011 and published as ty. The rFIXFc polypeptide is a heterodimeric protein with a FIXFc single chain (FIXFc-sc) and an Fc single chain (Fc-sc) bound together through two de bonds in the hinge region of Fc. rFIXFc requires two protein subunits, FIXFc-sc (642 amino acids, SEQ ID N022) and Fc-sc (227 amino acids, SEQ ID N024), to assemble Within a transfected cell line to form the ?nal protein product, rFIXFc. The polynucleotide ces encoding FIXFc-sc and Fc-sc are presented as SEQ ID N021 and SEQ ID N023, respectively.
In certain embodiments, the Factor IX portion of rFIXFc has a primary amino acid sequence that is identical to the Thr148 allelic form of plasma derived Factor IX and has structural and onal characteristics similar to endogenous Factor IX. The Fc domain of rFIXFc contains the hinge, CH2 and CH3 regions of IgG1. The assembled heterodimer mature form of rFIXFc contains 869 amino acids with a molecular weight of approximately 98 kilodaltons. In some embodiments, the rFIXFc polypeptide comprises an amino acid sequence at least 90%, 95%, or 100% identical to amino acids 1 to 642 of SEQHDNOZ.
In one embodiment, the second portion fused to FIX is an FcRn binding r.
In another embodiment, an FcRn binding r fused to FIX is an Fc fragment. An FcRn binding partner is any molecule that can be cally bound by the FcRn or with consequent active transport by the FcRn or of the FcRn binding partner. Thus, the term Fc includes any variants of IgG Fc that are functional. The region of the Fc portion of IgG that binds to the FcRn receptor has been described based on X-ray crystallography ister et al., Nature 3722379 (1994), incorporated herein by reference in its entirety). The major contact area of the Fc with the FcRn is near the on of the CH2 and CH3 domains. Fc-FcRn contacts are all Within a single Ig heavy chain. The FcRn g partners include, e.g., whole IgG, the Fc fragment of IgG, and other fragments of IgG that include the complete binding region of FcRn. The major contact sites include amino acid residues 248, 250-257, 272, 285, 288, 1, 308-311, and 314 of the CH2 domain and amino acid residues 385-387, 428, and 433-436 of the CH3 domain. References made to amino acid numbering of immunoglobulins or immunoglobulin fragments, or regions, are all based on Kabat et a]. 1991, Sequences of Proteins of Immunological Interest, U. S. Department of Public Health, Bethesda; MD, incorporated herein by reference in its entirety. (The FcRn receptor has been isolated from several mammalian s including humans. The sequences of the human FcRn, rat FcRn, and mouse FcRn are known (Story et al., J. Exp. Med. 180: 2377 (1994), incorporated herein by reference in its entirety.) An Fc can comprise the CH2 and CH3 domains of an immunoglobulin with or t the hinge region of the immunoglobulin. ary Fc variants are provided in incorporated herein by reference in its entirety.
Fc (or Fc portion of a chimeric polypeptide) can contain one or more mutations, and combinations of mutations.
Fc (or Fc portion of a chimeric ptide) can contain ons conferring increased half-life such as M252Y, S254T, T256E, and combinations thereof, as disclosed in Oganesyan et al., M0]. Immunol. 46:1750 , which is incorporated herein by reference in its entirety; H433K, N434F, and ations thereof, as disclosed in Vaccaro et al., Nat. Biotechnol. 23:1283 (2005), which is incorporated herein by nce in its entirety; the s disclosed at pages 1-2, paragraph [0012], and Examples 9 and 10 of US 2009/0264627 A1, which is incorporated herein by reference in its ty; and the mutants disclosed at page 2, paragraphs [0014] to [0021] of US 63699 A1, which is incorporated herein by reference in its entirety.
Fc (or Fc portion of a chimeric polypeptide) can also include, e.g., the following mutations: The Fc region of IgG can be modi?ed according to well recognized procedures such as site directed mutagenesis and the like to yield modi?ed IgG or Fc fragments or portions thereof that will be bound by FcRn. Such modifications include, e.g., modi?cations remote from the FcRn contact sites as well as modi?cations within the contact sites that preserve or even enhance binding to the FcRn. For example the ing single amino acid residues in human IgG1 Fc (Fcyl) can be substituted without icant loss of Fc binding affinity for FcRn: P238A, S239A, K246A, K248A, D249A, M252A, T256A, E258A, T260A, D265A, S267A, H268A, E269A, D270A, E272A, L274A, N276A, Y278A, D280A, V282A, E283A, H285A, N286A, T289A, K290A, R292A, E293A, E294A, Q295A, Y296F, N297A, S298A, Y300F, R301A, V303A, V305A, T307A, L309A, Q311A, D312A, N315A, K317A, E318A, K320A, K322A, S324A, K326A, A327Q, P329A, A33OQ, A330S, P331A, P331S, E333A, K334A, T335A, S337A, K338A, K340A, Q342A, R344A, E345A, Q347A, R355A, E356A, M358A, T359A, K360A, N361A, Q362A, Y373A, S375A D376A, A378Q, E380A, E382A, S383A, N384A, Q386A, E388A, N389A, N39OA, Y391F, K392A, L398A, S400A, D401A, D413A, K414A, R416A, Q418A, Q419A, N421A, V422A, S424A, E430A, N434A, T437A, Q438A, K439A, S440A, S444A, and K447A, Where for example P238A represents wildtype e substituted by alanine at position number 238. In addition to alanine other amino acids can be substituted for the wildtype amino acids at the positions specified above. Mutations can be introduced singly into Fc giving rise to more than one hundred FcRn g partners distinct from native Fc.
Additionally, combinations of two, three, or more of these individual mutations can be uced together, giving rise to hundreds more FcRn binding partners. n of these mutations can confer new functionality upon the FcRn binding partner. For example, one embodiment incorporates N297A, removing a highly conserved N—glycosylation site. The effect of this mutation is to reduce immunogenicity, thereby enhancing circulating half- life of the FcRn binding partner, and to render the FcRn binding partner incapable of binding to FcyRI, FcyRILA, FcyRIIB, and FcyRIILA, without compromising af?nity for FcRn (Routledge et al. 1995, lantation 602847, which is incorporated herein by nce in its ty; Friend et al. 1999, Transplantation 6821632, which is incorporated herein by reference in its entirety; Shields et al. 1995, J. Biol. Chem. 27626591, which is orated herein by reference in its entirety). Additionally, at least three human Fc gamma receptors appear to recognize a binding site on IgG within the lower hinge , generally amino acids 234-237. Therefore, another example of new functionality and potential decreased immunogenicity can arise from mutations of this region, as for example by replacing amino acids 233-236 of human IgG1 "ELLG" to the corresponding sequence from IgG2 "PVA" (with one amino acid deletion). It has been shown that FcyRI, FcyRII, and FcyRIH which mediate various effector functions will not bind to IgGl when such mutations have been uced (Ward and , Therapeutic Immunology 2:77 (1995), which is incorporated herein by reference in its entirety; and Armour et al., Eur. J. Immunol. 29:2613 (1999), which is incorporated herein by nce in its entirety). As a further example of new functionality arising from ons described above affinity for FcRn can be increased beyond that of wild type in some instances. This increased affinity can re?ect an increased "on" rate, a decreased "off' rate or both an increased "on" rate and a decreased "off' rate. Mutations believed to impart an sed affinity for FcRn include, e.g., T256A, T307A, E380A, and N434A (Shields et al., J. Biol. Chem. 276:6591 (2001), which is incorporated herein by reference in its ty).
The Fc (or Fc portion of a chimeric polypeptide) can be at least about 60%, about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical to the Fc amino acid sequence shown in Table 14 (e.g., amino acids 21 to 247 of SEQ ID NO: 4). The Fc (or Fc portion of a chimeric polypeptide) can be identical to the Fc amino acid ce shown in Table 14 (e.g., amino acids 21 to 247 of SEQ ID NO: 4).
As discussed above, exemplary long-acting polypeptides also include FIX fused to one or more albumin polypeptides, albumin binding polypeptides, or albumin-binding small molecules. In one embodiment, the albumin is human albumin. The albumin or albumin g protein can be fused to either the N—terminal end of FIX or to the C- terminal end of FIX or inserted between two amino acids in FIX. Examples of albumin, e.g., fragments thereof, that can be used in the present invention are known. e.g., US.
Patent No. 7,592,010; US. Patent No. 6,686,179; and Schulte, Thrombosis Res. 124 Suppl. 2:S6-S8 (2009), each of which is incorporated herein by reference in its entirety.
The albumin binding polypeptides can compromise, without limitation, bacterial albumin-binding domains, n-binding peptides, or albumin-binding antibody fragments that can bind to albumin. Domain 3 from ococcal protein G, as disclosed by Kraulis et al., FEBS Lett. 378: 4 (1996) and Linhult et 61]., Protein Sci. 11:206- 213 (2002) is an e of a bacterial albumin-binding domain. Examples of albumin- binding peptides include a series of es having the core sequence DICLPRWGCLW (SEQ ID NO: 5). See, e.g., Dennis et al., J. Biol. Chem. 2002, 277: 35035-35043 (2002).
Examples of albumin-binding antibody fragments are disclosed in Muller and Kontermann, Curr. Opin. M0]. Ther. 9:319-326 (2007); Rooverset et al., Cancer Immunol. ther. 56:303-317 (2007), and Holt et al., Prat. Eng. Design Sci, 21 :283-288 (2008), which are incorporated herein by reference in their entireties.
In certain aspects, a recombinant FIX polypeptide of the invention comprises at least one attachment site for a non-polypeptide small molecule, t, or derivative that can bind to albumin thereof. An example of such n binding moieties is 2-(3- maleimidopropanamido)(4-(4-iodophenyl)butanamido)hexanoate ("Albu" tag) as sed by Trusselet et al., Bioconjugate Chem. 20:2286-2292 (2009).
As discussed above, exemplary long-acting polypeptides also include FIX fused to at least one C-terminal peptide (CTP) of the B subunit of human chorionic tropin or fragment, variant, or derivative thereof The CTP can be fused to FIX either the N- terminal end of FIX or to the C—terminal end of FIX. One or more CTP peptides fused to or ed into a recombinant protein is known to increase the in vivo half-life of that protein. See, e.g., US. Patent No. 5,712,122, incorporated by reference herein in its entirety. Exemplary CTP es include DPRFQDSSSSKAPPPSLPSPSRLPGPSDTPIL (SEQ ID NO: 6) or SSSSKAPPPSLPSPSRLPGPSDTPILPQ. (SEQ ID NO: 7). See, e.g., US. Patent Application Publication No. US 2009/008741 1 A1, incorporated by reference.
As discussed above, exemplary long-acting polypeptides also e FIX fused to at least one PAS sequence or fragment, variant, or derivative thereof. The PAS sequence can be fused to either the N—terminal end of FIX or to the C—terminal end of FIX. A PAS peptide or PAS ce, as used herein, means an amino acid sequence comprising mainly alanine and serine residues or comprising mainly alanine, , and proline residues, the amino acid sequence forming random coil conformation under physiological conditions. Accordingly, the PAS sequence is a building block, an amino acid polymer, or a sequence cassette comprising, consisting essentially of, or consisting of alanine, serine, and proline which can be used as a part of the heterologous moiety in the chimeric protein. An amino acid polymer also can form random coil conformation when residues other than alanine, serine, and proline are added as a minor constituent in the PAS sequence. By "minor constituent" is meant that that amino acids other than alanine, , and proline can be added in the PAS sequence to a n degree, e.g., up to about 12%, i.€., about 12 of 100 amino acids of the PAS sequence, up to about 10%, up to about 9%, up to about 8%, about 6%, about 5%, about 4%, about 3%, lie. about 2%, or about 1%, of the amino acids. The amino acids different from alanine, serine and proline can be selected from the group consisting of Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Under logical conditions, a PAS peptide forms a random coil conformation and thereby can mediate an increased in viva and/or in vitro stability to a recombinant protein of the invention, and has procoagulant activity.
Non-limiting examples of the PAS peptides include ASPAAPAPASPAAPAPSAPA (SEQ ID NO: 8), APAAPSAPAPAAPS (SEQ ID NO: 9), APSSPSPSAPSSPSPASPSS (SEQ ID NO: 10), APSSPSPSAPSSPSPASPS (SEQ ID NO: 11), SSPSAPSPSSPASPSPSSPA (SEQ ID NO: 12), AASPAAPSAPPAAASPAAPSAPPA (SEQ ID NO: 13), ASAAAPAAASAAASAPSAAA (SEQ ID NO: 14) or any variants, derivatives, fragments, or combinations thereof. Additional examples of PAS sequences are known from, e.g., US Pat. Publ. No. 2010/0292130 A1, PCT Appl. Publ. No. WO 55134 A1, and European issued patent EP2173 890.
As discussed above, exemplary long-acting ptides also e FIX fused to at least one transferrin peptide or fragment, variant, or derivative thereof. At least one transferrin peptide can be fused to either the N—terminal end of FIX or to the C-terminal end of FIX or inserted between two amino acids in FIX. Any errin can be fused to or inserted into a recombinant FIX protein of the invention. As an example, wild-type human Tf (Tf) is a 679 amino acid n, of approximately 75 KDa (not accounting for ylation), with two main domains, N (about 330 amino acids) and C (about 340 amino acids), which appear to originate from a gene duplication. See GenBank accession numbers NM001063, XM002793, M12530, XM039845, XM 039847 and S95936 (www.ncbi.nlm.nih.gov), all of which are herein incorporated by reference in their entirety.
Transferrin transports iron through transferrin receptor (TfR)-mediated endocytosis. After the iron is released into an endosomal compartment and Tf—TfR complex is recycled to cell e, the Tf is released back extracellular space for next cycle of iron transporting. Tf possesses a long half-life that is in excess of 14-17 days (Li et 51]., Trends Pharmacol. Sci. 23:206-209 (2002)).Transferrin fusion proteins have been studied for half-life extension, targeted deliver for cancer therapies, oral delivery and sustained activation of proinsulin (Brandsma et al., Biotechnol. Adv, 29: 230-238 (2011); Bai et al., Proc. Natl. Acad. Sci. USA 102:7292—7296 (2005); Kim et al., J. Pharmacol.
Exp. Ther., 334:682-692 (2010); Wang et al., J. Controlled Release 155:386-392 (2011)).
As sed above, exemplary long-acting polypeptides also include FIX fused to at least one polyethylene glycol (PEG) moieties.
PEGylated FIX can refer to a conjugate formed between FIX and at least one polyethylene glycol (PEG) molecule. PEG is commercially available in a large variety of molecular s and average molecular weight ranges. Typical examples of PEG e molecular weight ranges include, but are not limited to, about 200, about 300, about 400, about 600, about 1000, about 1300-1600, about 1450, about 2000, about 3000, about 3000-3750, about 3350, about 3000-7000, about 3500-4500, about 000, about 7000-9000, about 8000, about 10000, about 8500-11500, about 16000-24000, about 35000, about 40000, about 60000, and about 80000 s. These average molecular weights are provided merely as examples and are not meant to be limiting in any way.
A recombinant cting FIX protein of the invention can be ted to include mono- or poly-(e.g., 2-4) PEG moieties. tion can be carried out by any of the PEGylation reactions known in the art. Methods for preparing a PEGylated protein t will generally include (i) reacting a polypeptide with polyethylene glycol (such as a ve ester or aldehyde derivative of PEG) under conditions whereby the peptide of the invention becomes attached to one or more PEG groups; and (ii) obtaining the reaction t(s). In general, the optimal reaction conditions for the ons will be determined case by case based on known parameters and the desired result.
There are a number of PEG attachment methods available to those skilled in the art, for example Malik F et al., Exp. Hematol. 20:1028-35 (1992); Francis, Focus on Growth Factors 3(2):4-10 (1992); European Pat. Pub. Nos. EP0401384, EP01543l6, and EP0401384; and International Pat. Appl. Pub. Nos. WO92/16221 and WO95/34326. As a non-limiting e, FIX variants can contain cysteine substitutions in one or more insertion sites in FIX, and the cysteines can be further conjugated to PEG polymer. See Mei et al., Blood 0-279 (2010) and US. Patent No. 7,632,921, which are incorporated herein by reference in their entireties.
As discussed above, exemplary long-acting polypeptides also include FIX fused to at least one hydroxyethyl starch (HES) polymer. HES is a derivative of naturally occurring amylopectin and is degraded by alpha-amylase in the body. HES exhibits advantageous biological properties and is used as a blood volume replacement agent and in hemodilution therapy in the clinics. See, e.g., Sommermeyer et al., Krankenhauspharmazie 8:271-278 (1987); and Weidler et al., Arzneim.-F0rschung/Drug Res.4l:494-498(l99l) HES is mainly characterized by the molecular weight distribution and the degree of substitution. HES has a mean molecular weight (weight mean) of from 1 to 300 kD, from 2 to 200kD, from 3 to 100 kD, or from 4 to 70kD. Hydroxyethyl starch can further exhibit a molar degree of substitution of from 0.1 to 3, from 0.1 to 2, from 0.1 to 0.9, or from 0.1 to 0.8, and a ratio between C22C6 substitution in the range of from 2 to 20 with respect to the hydroxyethyl groups. HES with a mean molecular weight of about 130 kD is VOLUVEN® from Fresenius. VOLUVEN ® is an arti?cial colloid, employed, e.g., for volume replacement used in the eutic indication for therapy and laxis of hypovolaemia. There are a number of HES attachment methods available to those skilled in the art, e.g., the same PEG ment methods described above.
Factor IX coagulant activity is expresses as ational Unit(s) (IU). One IU of Factor IX activity ponds approximately to the quantity of Factor IX in one milliliter of normal human plasma. Several assays are available for measuring Factor IX activity, including the one stage clotting assay (activated partial thromboplastin time; aPTT), thrombin generation time (TGA) and rotational thromboelastometry (ROTEM®).
Bu?ering Agent Buffering agents useful for the present invention can be a weak acid or base used to maintain the y (pH) of a on near a chosen value after the on of another acid or base. le buffering agents can maximize the stability of the pharmaceutical formulations by maintaining pH l of the formulation. Suitable buffering agents can also ensure physiological compatibility or optimize solubility. Rheology, viscosity and other properties can also dependent on the pH of the formulation. Common buffering agents include, but are not limited to, ine, citrate, succinate, acetate and phosphate.
In some embodiments, a buffering agent comprises L-histidine or mixtures of L-histidine with L-histidine hydrochloride with icity agents and potentially pH adjustment with an acid or a base known in the art. In certain embodiments, the buffering agent is L- histidine. In certain embodiments, the pH of the formulation is maintained n about 6 and about 8, or between about 6.5 and about 7.5.
Stabilizing Agent Stabilizing agents are added to a pharmaceutical product in order to stabilize that product. Such agents can stabilize proteins in a number of different ways. Common stabilizing agents include, but are not limited to, amino acids such as glycine, alanine, lysine, arginine, or ine, carbohydrates such as glucose, e, trehalose, raff1nose, or maltose, polyols such as ol, mannitol, sorbitol, cyclodextrins or destrans of any kind and molecular weight, or PEG. In one aspect of the invention, the stabilizing agent is chosen in order to maximize the stability of FIX polypeptide in lyophilized preparations. In n embodiments, the stabilizing agent is sucrose. g Agent Bulking agents can be added to a pharmaceutical product in order to add volume and mass to the product, thereby facilitating precise ng and handling thereof.
Common bulking agents include, but are not limited to, e, sucrose, glucose, mannitol, sorbitol, calcium carbonate, or magnesium stearate. In certain embodiments, the bulking agent is mannitol.
Surfactant tants are amphipathic substances with lyophilic and lyophobic groups. A surfactant can be anionic, cationic, zwitterionic, or nonionic. Examples of nonionic surfactants include, but are not limited to, alkyl late, nonylphenol ethoxylate, amine ethoxylate, polyethylene oxide, polypropylene oxide, fatty alcohols such as cetyl alcohol or oleyl alcohol, cocamide MEA, cocamide DEA, polysorbates, or dodecyl dimethylamine oxide. In certain embodiments, the surfactant is rbate 20 or rbate 80.
Pre-Lyophilization Formulation In one aspect, the disclosure provides a pre-lyophilization formulation comprising: (a) a Factor IX (FIX) polypeptide having FIX coagulation activity; (b) a buffering agent; (c) a stabilizing agent; (d) a bulking agent; and (e) a surfactant, wherein the formulation has a ?ll volume of less than about 5 mL, less than about 4mL, or less than about 3 mL and wherein each of (a) — (e) are at an amount per vial al) ient to allow (1) improved stability of the FIX polypeptide when lyophilized; (2) reduced reconstitution time when lyophilized; (3) reduced splashing onto a r comprising the formulation; (4) reduced lyophilization cycle time; (5) increased shelf-life of a lyophilate prepared from the pre-lyophilization formulation at room temperature; or (6) any combinations thereof, compared to a reference pre-lyophilization formulation, and wherein the reference formulation comprises (a) — (e) at the amount per vial identical to the pre-lyophilization ation, but has at least 5mL flll volume. In some embodiments, the reference formulation has a 5.3mL flll volume or a 5mL flll volume.
In other embodiments, the pre-lyophilization formulation allows at least two, at least three, at least four, or at least ?ve ties ed from (1) improved stability of the FIX ptide when lyophilized; (2)reduced reconstitution time when lyophilized; (3) reduced splashing onto a stopper comprising the formulation; (4) reduced lyophilization cycle time; and n(5) increased shelf-life of a late prepared from the pre-lyophilization ation at room ature. In certain embodiments, the pre- lyophilization formulation allows (1) improved stability of the FIX polypeptide when lyophilized. In certain embodiments, the pre-lyophilization formulation allows (2) reduced reconstitution time when lyophilized. In certain embodiments, the pre- lization formulation allows (3) reduced splashing onto a stopper comprising the formulation. In certain embodiments, the pre-lyophilization formulation allows (4) reduced lyophilization cycle time. In certain embodiments, the pre-lyophilization formulation allows (5) increased shelf-life of a lyophilate prepared from the pre- lyophilization formulation at room temperature. In certain embodiments, the pre- lyophilization formulation allows (6) any ations of properties described herein.
In certain embodiments, the pre-lyophilization formulation ses at least about 100 IU/vial of the FIX polypeptide. In n embodiments, the pre-lyophilization ation comprises at least about 200 IU/vial to about 10,000 IU/vial of the FIX polypeptide, about 2001U/vial to about 6,000 IU/vial, or about 5001U/vial to about ,0001U/vial. In certain embodiments, the pre-lyophilization formulation comprises about 220 IU/vial, about 250 IU/vial, about 300 l, about 400 IU/vial, about 500 IU/vial, about 600 IU/vial, about 700 IU/vial, about 800 IU/vial, about 900 IU/vial, about 1,000 IU/vial, about 1,100 IU/vial, about 1,200 IU/vial, about 1,300 IU/vial, about 1,400 IU/vial, about 1,500 IU/vial, about 2,000 l, about 2,500 IU/vial, about 3,000 IU/vial, about 4,000 IU/vial, about 5,000 IU/vial, about 5,500 l, about 6,000 IU/vial, about 6,500 IU/vial, about 7,000 IU/vial, about 7,500 IU/vial, about 8,000 IU/vial, about 8,500 IU/vial, about 9,000 l, about 9,500 IU/vial or about 10,000 IU/vial of the FIX polypeptide.
In some embodiments, a higher concentration of the pre-lyophilization formulation is ed by reducing the ?ll volume. In certain embodiments, the pre- lyophilization formulation has the ?ll volume of about 4.0 mL, about 3.5 mL, about 3.0 mL, about 2.9 mL, about 2.8 mL, about 2.7 mL, about 2.65 mL, about 2.6mL, about 2.5 mL, about 2.4 mL, about 2.3 mL, about 2.2 mL, about 2.1 mL, or about 2.0 mL. In some embodiments, the ?ll volume of the pre-lyophilization formulation is about 2.65 mL. In some embodiments, the ?ll volume of the pre-lyophilization formulation is less than about 5 mL.
In some embodiments, the FIX polypeptide can be further concentrated by an additional puri?cation step, e.g., a second ultra ?ltration step.
In certain embodiments, the reduced reconstitution time is less than 1.5 minute, less than 1 minute, less than 50 seconds, less than 40 seconds, less than 30 seconds, less than 20 seconds, or less than 10 seconds. In speci?c embodiments, the reduced reconstitution time is less than 30 seconds.
In certain embodiments, the reduced lyophilization cycle time of the pre- lization formulation is about 4 days or less, about 3 days or less, about 2 days or less, or about a day or less.
In certain embodiments, the concentration of the buffering agent in the pre- lyophilization formulation is between about 3 mg/mL and about 15 mg/mL, between 4mg/mL and between 12 mg/mL, between about 5 mg/mL and about 10 mg/mL, or n about 5.82 mg/mL and about 9.7 mg/mL. In one embodiment, the buffering cmmmmmmndbMan?mm388mgmLm?dmm97HQMi.hume embodiment, the buffering agent is at a concentration of about 7.76 mg/mL. In some embodiments, the pre-lyophilization formulation contains L-histidine at a concentration ofabout776rnghnL.
In certain embodiments, the concentration of the stabilizing agent in the pre- lyophilization formulation is between 10 mg/mL and about 50 mg/mL, between about 13 mg/mL and about 40 mg/mL, n about 15 mg/mL and about 35 mg/mL, or between about 17.85 mg/mL and about 29.95 mg/mL. In one embodiment, the buffering agent is at a tration of about 23.8 mg/mL. In some embodiments, the pre- lyophilization formulation contains sucrose at a concentration of 23.8mg/mL.
In certain embodiments, the concentration of the bulking agent in the pre- lyophilization formulation is between about 20 mg/mL and about 100 mg/mL, between about301nghnliandabout701nghnL,behwemaabout301nghnliandabout601nghnL, or between about 35.7 mg/mL and about 59.5 mg/mL. In one embodiment, the bulking agent is at a tration of about 47.6 mg/mL. In some embodiments, the pre- lyophilization formulation contains mannitol at a tration of about 47.6 mg/mL.
In certain embodiments, the concentration of the surfactant in the pre- lyophilization formulation is between about 0.01 mg/mL and about 5 mg/mL, between about 0.1 mg/mL and about 4 mg/mL, between about 0.1 mg/mL and about 3 mg/mL, between about 0.01 mg/mL and about 2 mg/mL, or between about 0.05 mg/mL and about 1 mg/mL. In one embodiment, the surfactant is at a concentration of about 0.2 mg/mL. In some embodiments, the pre-lyophilization formulation contains polysorbate or polysorbate 80 at a concentration of about 0.2 mg/mL.
In certain embodiments, the concentration of the FIX polypeptide in the pre- lyophilization formulation is n about 80 IU/mL and about 2,750 IU/mL. In some embodiments, the tration of the FIX ptide in the pre-lyophilization formulation is at least about 100 IU/mL, at least about 200 IU/mL, at least about 300 IU/mL, at least about 400 IU/mL, at least about 500 IU/mL, at least about 600 IU/mL, at least about 700 IU/mL, at least about 800 IU/mL, at least about 900 IU/mL, at least about 1000 IU/mL, at least about 1500 IU/mL, at least about 2000 IU/mL, or at least about 2500 IU/mL.
In one aspect, the disclosure further provides a pre—lyophilization ation comprising: (a) about 80 to about 2,750 IU/mL of ; (b) about 7.76 mg/mL of L-histidine. (c) about 47.6 mg/mL of mannitol; (d) about 23.8 mg/mL of sucrose; and, (e) about 0.2 mg/mL of polysorbate-20.
In certain embodiments, the fill volume of such pre—lyophilization formulation is about 3 mL, about 2.9 mL, about 2.8 mL, about 2.7 mL, about 2.65 mL, about 2.6 mL, about 2.5 mL, about 2.4 mL, about 2.3 mL, about 2.2 mL, about 2.1 mL, or about 2.0 mL. In one embodiment, the ?ll volume of such pre-lyophilization formulation is about 2.65 mL.
In addition, this disclosure provides a late powder which is lyophilized from any of the above pre-lyophilization formulations. In some ments, the pre- lyophilization ation is any formulation described .
Lyophilate Power The disclosure also provides a lyophilate powder comprising a FIX polypeptide, a buffering agent, a stabilizing agent, a bulking agent, a surfactant, or any combinations thereof.
In certain embodiments, the lyophilate powder comprises between about 8 mg and about 39 mg per vial, between about 9mg and about 35 mg per vial, between about mg and about 30 mg per vial, between about 12 mg and about 25 mg per vial, between about 15 mg and about 23 mg per vial of the buffering agent (e.g, L—histidine).
In one embodiment, the lyophilate powder comprises about 25 mg per vial, about 24 mg per vial, about 23 mg per vial, about 22 mg per vial, about 21 mg per vial, about 20 mg per vial, about 19 mg per vial, about 18 mg per vial, about 17 mg per vial, about 16 mg per vial, about 15 mg per vial of the buffering agent. In another embodiment, the lyophilate powder comprises about 20.6 mg per vial of the buffering agent. In some embodiments, the buffering agent is L-histidine.
In n embodiments, the lyophilate powder comprises between about 27 mg and about 132 mg per Vial, between about 30 mg and about 120 mg per Vial, between about 40 mg and about 110 mg per Vial, between about 50 mg and about 100 mg per Vial, between about 60 mg and about 90 mg per Vial of the stabilizing agent. In one embodiment, the lyophilate powder comprises about 68 mg per Vial, about 67 mg per Vial about 66 mg per Vial about 65 mg per Vial about 64 mg per Vial about 63 mg per Vial about 62 mg per Vial about 61 mg per Vial about 60 mg per Vial about 59 mg per Vial of the stabilizing agent. In another embodiment, the lyophilate power comprises about 63.1 mg per Vial of the stabilizing agent. In some embodiments, the stabilizing agent is sucrose.
In certain embodiments, the lyophilate powder comprises between about 50 mg and about 265 mg per Vial, between about 53 mg and about 265 mg per Vial, between about 50 mg and about 250 mg per Vial, between about 53 mg and about 265 mg per Vial, between about 80 mg and about 200 mg per Vial, between about 100 mg and about 150 mg per Vial, or between about 110 mg and about 140 mg per Vial of the bulking agent. In one embodiment, the late powder comprises about 131 mg per Vial, about 130 mg per Vial, about 129 mg per Vial, about 128 mg per Vial, about 127 mg per Vial, about 126 mg per Vial, about 125 mg per Vial, about 124 mg per Vial, about 123 mg per Vial, or about 122 mg per Vial of the bulking agent. In another embodiment, the lyophilate powder comprises about 126.1 mg per Vial of the bulking agent. In some ments, the bulking agent is mannitol.
In n embodiments, the lyophilate powder comprises between about 0.03 mg and about 13 mg per Vial, between about 0.05 mg and about 10 mg per Vial between about 0.07 mg and about 8 mg per Vial between about 0.1 mg and about 2 mg per Vial of the surfactant. In one embodiment, the lyophilate powder comprises about 1 mg per Vial, about 0.9 mg per Vial, about 0.8 mg per Vial, about 0.7 mg per Vial, about 0.6 mg per Vial, about 0.5 mg per Vial, about 0.4 mg per Vial, about 0.3 mg per Vial, about 0.2 mg per Vial, or about 0.1 mg per Vial of the surfactant. In another embodiment, the lyophilate power comprises about 0.5 mg per Vial of the surfactant. In one embodiment, the lyophilate powder comprises about 0.53 mg per Vial of the surfactant. In some ments, the surfactant is polysorbate 20 or polysorbate 80.
In n ments, the lyophilate powder comprises: (a) a FIX polypeptide at an amount between about 2 mg per Vial and about 150 mg per Vial; (b) a ing agent at an amount between about 10 mg per Vial and about 30 mg per Vial; (c) a bulking agent at an amount between about 70 mg Vial and about 200 mg per Vial. (d) a stabilizing agent at an amount between about 30 mg per Vial and 100 mg per Vial; and (e) a surfactant at an amount between about 0.05 mg per Vial and about 5 mg per Vial.
In some embodiments, the lyophilate powder comprises: (a) a FIX polypeptide at an amount between about 2.2 mg per Vial and about 125 mg per Vial; (b) a buffering agent at an amount between about 8 mg per Vial and about 39 mg per Vial; (c) a bulking agent at an amount n about 53 mg Vial and about 265 mg per Vial. (d) a stabilizing agent at an amount between about 27 mg per Vial and 132 mg per Vial; and (e) a surfactant at an amount between about 0.03 mg per Vial and about 13 mg per Vial.
In certain embodiments, the lyophilate powder comprises: (a) the lized FIX polypeptide at an amount between about 2.2 mg per Vial and about 125 mg per Vial; (b) the buffering agent at an amount between about 12.5 mg per Vial and 25 mg per Vial; (c) the stabilizing agent at an amount between about 32.5 mg per Vial and 80 mg per Vial; (d) the bulking agent at an amount between about 75 mg per Vial and 150 mg per Vial; and (e) the surfactant at an amount between about 0.1 mg/mL and about 2 mg/mL.
In one ment, the lyophilate powder comprises: (a) about 2.2 to about 125 mg/Vial of the FIX polypeptide; (b) about 20.6 mg/Vial of L-histidine; (c) about 126.1 mg/Vial of mannitol; (d) about 63.1 mg/Vial of sucrose; and (e) about 0.53 mg/Vial of polysorbate 20.
Reconstituted Formulation Furthermore, this disclosure provides a reconstituted formulation comprising any of the above lyophilate powder reconstituted by a titution buffer.
In n embodiments, the reconstitution buffer is a NaCl solution. In some embodiments, the reconstitution buffer is 5 mL.
In certain embodiments, the reconstituted formulation ses: (a) the FIX polypeptide at a concentration between about 0.9 mg/mL and about 50 mg/mL; (b) the buffering agent at a concentration between 2 mg/mL and about 5 mg/mL; (c) the bulking agent at a concentration between 20 mg/mL and about 30 mg/mL; (d) the stabilizing agent at a concentration between 8 mg/mL and 15 mg/mL per Vial; and (e) the surfactant at a concentration between 0.05 mg/mL and about 0.4 mg/mL.
In certain embodiments, the reconstituted formulation comprises: (a) the FIX polypeptide at a concentration between about 0.9 mg/mL and about 50 mg/mL; (b) the buffering agent at a concentration of about 3.88 mg/mL; (c) the g agent at a tration of about 23.8 mg/mL; (d) the stabilizing agent at a concentration of about 11.9 mg/mL; (e) the surfactant at a concentration of about 0.1 mg/mL; and (f) the reconstitution buffer comprising about 3.25 mg/mL NaCl.
In certain ments, the reconstituted formulation comprises: (a) the FIX polypeptide at a tration between about 80 IU/mL and about 2,750 IU/mL; (b) the buffering agent at a concentration of about 25 mM; (c) the bulking agent at a concentration of about 131 mM; (d) the stabilizing agent at a concentration of about 35 mM; (e) the surfactant at a concentration of 0.01 % (w/v); and (f) the reconstitution buffer.
Examples of the formulation compositions are r provided in Tables 2-4.
In one aspect, the disclosure further provides a vial comprising the pre- lyophilization formulations, the lyophilate powder, or the reconstituted formulations described herein.
In another aspect, the disclosure provides a kit comprising a ?rst container comprising the lyophilate powder described herein and a second ner comprising a reconstitution buffer at a volume suf?cient to produce a reconstituted formulation, when combined with the lyophilate powder of the ?rst container. In certain embodiments, the volume of the titution buffer in the kit is about 5 mL. In some embodiments, the volume is about 5.3 mL. In certain embodiments, the reconstitution buffer of the kit ses NaCl. In some embodiments, the kit is used to treat hemophilia B.
In yet another aspect, the disclosure provides a method of stering a FIX polypeptide to a hemophilia B patient in need f, comprising administering to the patient the reconstituted formulation described herein, wherein the administration prevents or reduces the frequency or severity of bleeding episodes in the patient.
The disclosure further provides a method of preventing, treating, rating, or managing hemophilia B in a patient in need thereof by administering the reconstituted formulation described .
Methods ofproducing a lyophilatepowder comprising a FIXpolypeptide This disclosure provides methods of producing a lyophilate powder comprising a FIX polypeptide. In one aspect, the disclosure provides lyophilization s comprising lizing the pre-lyophilization formulations described herein. In another aspect, the disclosure provides a lyophilization method comprising a single drying step.
In one aspect, this sure provides a method of lyophilizing a FIX polypeptide comprising: (a) a "freezing step" sing freezing a ophilization formulation comprising the FIX ptide and an aqueous solvent; (b) a "vacuum step" comprising reducing the pressure of the frozen pre- lyophilization formulation by an amount effective to remove the s solvent from the frozen pre-lyophilization formulation; and, (c) a single "drying step" comprising increasing the temperature of the frozen ophilization formulation above the collapse temperature, thereby ing a lyophilate powder. In another aspect, the lyophilization process time is reduced compared to a reference method, e.g., lyophilization process having two or more drying steps.
In other aspects, the lyophilate power produced by the present method has one or more characteristics of the following: (1) improved stability of the FIX polypeptide; (2) reduced reconstitution time; (3) reduced ing onto a stopper comprising the formulation; or (4) increased shelf-life of the lyophilate powder at room temperature.
In certain embodiments, the collapse temperature is -l.5 0C.
In n embodiments, the pre-lyophilization formulation is frozen to a freezing temperature of about -65 to about -40°C, about -65 to about -45 0C, about -65 to about - 55°C, about -60 to about -40 0C, about -60 to about -50°C or about -60 to about -55 0C during the freezing step. In certain ments, the pre-lyophilization formulation is frozen to a freezing temperature of about -55°C during the freezing step. In certain embodiments, the freezing temperature is ramped down from about 5°C to about -55°C during the freezing step.
In certain embodiments, the ng ature is held from about 30 minutes to about 5 hours, about 1 hour to about 5 hours, about 1.5 hours to about 5 hours, about 1.5 hours to about 4 hours, about 1.5 hours to about 3 hours, or about 1.5 hours to about 2.5 hours during the freezing step. In certain embodiments, the freezing temperature is held for about 2 hours during the ng step.
In certain embodiments, the frozen pre-lyophilization formulation of step (a) is further t to an "annealing step" (a') prior to the "vacuum step" (b). In certain ments, the temperature of the frozen pre-lyophilization formulation of step (a) is ramped up to an annealing temperature of about -l5°C to about -2°C during the annealing step. In certain embodiments, the temperature of the frozen pre-lyophilization formulation of step (a) is ramped up to an annealing temperature of about -6°C during the annealing step.
In certain embodiments, the annealing temperature is held for about 2 hours to about 4 hours during the annealing step. In certain embodiments, the annealing temperature is held for about 30 minutes to about 5 hours, about 1 hour to about 5 hours, about 2 hours to about 5 hours, about 2 hours to about 4 hours or about 2.5 hours to about 3.5 hours during the ing step. In certain embodiments, the annealing temperature is held for about 3 hours during the annealing step.
In certain embodiments, the temperature of the frozen pre-lyophilization formulation is ramped down from the ing temperature to a temperature of about - 65°C to about -40°C during the annealing step. In n embodiments, the temperature of the frozen pre-lyophilization formulation is ramped down from the annealing temperature to a temperature of -55°C during the annealing step.
In certain embodiments, the "vacuum step" comprises subjecting the frozen pre- lyophilization formulation to a vacuum between about 0.05 and about 1 mbar, n about 0.05 and about 0.50 mbar, between about 0.10 and about 0.50 mbar, between about 0.15 and about 0.50 mbar, between about 0.20 and about 0.50 mbar, or between about 0.25 and about 0.50 mbar. In certain embodiments, the vacuum in the "vacuum step" is about 0.33 mbar.
In certain embodiments, the vacuum is held in the "vacuum step" for about 5 hours, about 4 hours, about 3 hours, about 2 hours, or about 1 hour. In some embodiments, the vacuum is held in the "vacuum step" for about 2 hours.
In certain embodiments, the "drying step" comprises ramping up the temperature of the frozen pre-lyophilization formulation from about -55°C to a drying temperature of about 40°C. In certain embodiments, the drying ature is at least about 30°C, at least about 32°C at least about 34°C, at least about 35°C, at least about 36°C, at least about 38°C, at least about 39°C, at least about 40°C. In other ments, the drying temperature is about 35°C, about 40°C, about 32°C, or about 45 °C.
In certain embodiments, the drying step further comprises g the drying temperature for about 10 hours to about 40 hours, about 10 hours to about 30 hours, or about 20 hours to about 30 hours. In certain embodiments, the drying temperature is held for about 25 hours.
In certain embodiments, the drying step is carried out at a pressure of about 0.05 mbar to about 1 mbar, between about 0.05 and about 0.50 mbar, between about 0.10 and about 0.50 mbar, between about 0.15 and about 0.50 mbar, between about 0.20 and about 0.50 mbar, or about 0.20 mbar to about 0.45 mbar. In certain embodiments, the pressure is held at about 0.33 mbar during the drying step. The unit of mbar can be converted to Torr or any other units. For example, 1 mbar can be converted to 0.75006375541921 Torr.
In one aspect, the disclosure provides a method of producing a lyophilate powder comprising a FIX polypeptide, comprising: (a) a ing step" sing freezing a pre-lyophilization formulation comprising a FIX polypeptide by ramping down the temperature for about 2 hours to a freezing temperature of about -55°C, and g the freezing temperature for about 2 hours; (a') an "annealing step" comprising g up for about 1.5 hours the temperature of the frozen pre-lyophilization formulation of step (a) to an annealing temperature of about -6°C, holding the annealing temperature for about 3 hours, and ramping down the temperature for about 1.5 hours to about -55°C; (b) a "vacuum step" comprising holding the frozen pre-lyophilization formulation of step (a') at about -55°C for two hours at atmospheric pressure and ramping down the pressure for about 2 hours to about 0.33 mbar; and, (c) a single g step" sing ramping up for 3 hours the temperature of the frozen ophilization formulation of step (b) to about 40°C, while holding the pressure at about 0.33 mbar, and holding the temperature of the frozen ophilization ation at about 40°C for about 25 hours, while holding the pressure at about 0.33 mbar, thereby producing the lyophilate powder. In some embodiments, the lyophilization method takes less cycle time.
In certain embodiments, the lyophilate powder produced by the methods described herein has the following characteristics: (1) improved stability of the FIX polypeptide; (2) reduced reconstitution time; (3) reduced splashing onto a stopper comprising the formulation; (4) increased shelf-life of the lyophilate powder at room temperature; or (5) any combinations thereof, In some embodiments, the lyophilization cycle period can be less than about 4.5 days, about 4 days, about 3.5 days, about 3 days, about 2.5 days, or about 2 days. In other ments, the lyophilization cycle period is about 3 days or less. In certain embodiments, the ?ll volume of the pre-lyophilization formulation used in the lyophilization method is less than about 5 mL. In certain embodiments, the ?ll volume is about 4 mL, about 3.5 mL, about 3.0 mL, about 2.9 mL, about 2.8 mL, about 2.7 mL, about 2.65 mL, about 2.6 mL, about 2.5 mL, about 2.4 mL, about 2.3 mL, about 2.2 mL, about 2.1 mL, or about 2.0 mL. In one embodiment, the ?ll volume is about 2.65 mL.
In certain embodiments, the reduced reconstitution time of the lyophilate powder produced by the lyophilization method is less than about 1.5 s, less than about 1 minute, less than about 50 seconds, less than about 40 seconds, less than about 30 seconds, less than about 20 s, or less than about 10 seconds. In n embodiments, the reduced reconstitution time of the lyophilate powder produced by the lyophilization method is less than about 30 seconds.
In certain embodiments, the reduced lyophilization cycle time of the pre- lyophilization formulation used in the lyophilization method is about 4 days or less, about 3 days or less, about 2 days or less, or about a day or less.
In some embodiments, the late powder is produced ?om the pre- lyophilization formulation in about 90 hours or less, about 80 hours or less, about 70 hours or less, about 60 hours or less, about 50 hours or less, about 45 hours or less, about 40 hours or less, or about 30 hours or less. In certain embodiments, the late powder is produced from the pre-lyophilization formulation in about 45 hours or less.
In certain embodiments, the residual moisture in the lyophilate powder is less than about 1.0%, about 0.7%, about 0.6%, about 0.5%, about 0.4% or about 0.3%. In some embodiments, the residual moisture in the lyophilate powder is less than about 0.5%.
In one aspect, the disclosure provides a method of stabilizing a lyophilate powder comprising a FIX polypeptide, comprising lyophilizing a pre-lyophilization formulation according to the methods described herein, wherein the lyophilate powder is stabilized as measured by Size Exclusion Chromatography (SEC) with t to a lyophilate powder prepared by using a lyophilization method comprising more than one drying step.
In another aspect, the disclosure provides a method of increasing the shelf-life of a lyophilate powder comprising a FIX polypeptide, comprising lyophilizing a pre- lyophilization formulation according to the methods bed herein, wherein the shelf- life of the lyophilate powder is increased as measured by SEC and/or FIX clotting activity assay with respect to the shelf-life of a lyophilate powder prepared by using a lyophilization method comprising more than one drying step.
This disclosure also provides a method to decrease the reconstitution time of a lyophilate powder comprising a FIX polypeptide, comprising lyophilizing a pre- lization formulation ing to the methods described herein, wherein the titution time of the lyophilate powder is decreased with respect to the reconstitution time of a late powder prepared by using a lyophilization method comprising more than one drying step.
This disclosure further provides a method to reduce lyophilization process time of producing a lyophilate powder comprising a FIX polypeptide, comprising lyophilizing a pre-lyophilization formulation according to the s described , n the lyophilization s time of the pre-lyophilization formulation is reduced with respect to the lyophilization process time of producing a late powder using a lyophilization method sing more than one drying step.
Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included herewith for purposes of illustration only and are not intended to be limiting of the invention. All patents and publications referred to herein are expressly incorporated by reference.
EXAMPLES Example 1: Factor IX-Fc Drug Substance and Drug Product Compositions rFIXFc Description rFIXFc is a long-acting, fully recombinant fusion n consisting of human coagulation Factor IX (FIX) covalently linked to the Fc domain of human immunoglobulin Gl (IgGl). The Factor IX portion of rFIXFc has :1 primary amino acid sequence Eha‘t is identical to the Th?" allelic form of plasma derived Factor EX and has structural and functional characteristics similar to endogenous Factor IX. The Fc domain of rFIXFc contains the hinge, CH2 and CH3 regions of IgG1. rFIXFc contains 869 amino acids with a lar weight of imately 98 kilodaltons. rFIXFc is produced by recombinant DNA technology in a human embryonic kidney (HEK) cell line and then puri?ed.
The rFIXFc drug product ation of the invention comprising rFIXFc can allow development of high concentration drug products, e.g., 4000+ IU/vial drug product strengths. This requires a higher concentration of rFIXFc protein in the drug substance, as shown in the comparison Table 1 below. The rFIXFc drug product formulation of the invention can increase the shelf life of the 250 & 500 IU/vial drug product strengths to allow increased room temperature stability. Development data suggests that the 250 and 500 IU/vial drug product strengths are signi?cantly more stable under accelerated conditions than the reference drug t.
The rFIXFc drug product formulation of the invention can also decrease the reconstitution time when lyophilized. Reference drug product reconstitution time varies between 1-2 minutes. pment data suggests that the LCM drug product reduces the reconstitution time to less than 30 s.
The rFIXFc drug product formulation of the invention can also allow reduction of the lyophilization process time. Currently the lyophilization cycle is ~4.5 days. With a lower vial flll volume this can likely be reduced to N3 days or less for more ical manufacturing.
Drug Substance (DS) The drug substance for the rFIXFc formulation of the ion will use the same formulation ents as the reference drug substance. The higher concentration will be achieved using a second ultraflltration step during drug substance manufacturing. See Table 1.
Table 1: Drug Substance Compositions Drug Substance Compositions Reference Drug Component Drug Product Product rFactorIX-Fc 10-13 mg/mL 65-75 mg/mL L-Histidine 3.88 mg/mL (25 mM) 3.88 mg/mL (25 mM) Polysorbate 20 0.1 mg/mL (0.01 %) 0.1 mg/mL (0.1 %) Drug Product (DP) In order to accomplish the objectives stated above, a drug product was ed that doubled the concentrations of all components of the reference drug t (protein & excipients), while reducing the ?ll volume of the vial prior to lyophilization. This ensures that the dose of all components to the patient remains constant, while improving the drug product performance ters mentioned above.
Tables 2-4 below detail the composition of the lyophilization feedstock, the contents of the solid product in the vial after lyophilization and the composition after reconstitution. It is important to note the wide variance of the rFIXFc protein trations. Due to the fact that each batch of Factor IX is slightly different in its activity in IU/mg, the feedstock is compounded using the assayed activity. This results in a range of n concentrations, and this variance added to the different strengths of drug products gives the ranges stated below.
Table 2: Drug Product — Pre-lyophilization Formulation Compositions Drug Product Lyophilization ock Compositions Reference Drug Reference Drug Component Product Product thlslgogr:gll$ital 250-2000 IU/Vial 3000 IU/Vial 0.45-9.5 mg/mL 5.5-13.7 mg/mL 0.9-50 mg/mL rFaCtO?X'FC 40-500 IU/mL 480-750 IU/mL 80-2750 IU/mL L-Histidine 3.88 mg/mL (25 mM) 3.88 mg/mL (25 mM) 7.76 mg/mL (50 mM) . 23.8 mg/mL (131 23.8 mg/mL (131 47.6 mg/mL (261 Mann1tol mM) mM) mM) Sucrose 11.9 mg/mL (35 mM) 11.9 mg/mL (35 mM) 23.8 mg/mL (70 mM) Polysorbate 20 0.1 mg/mL (0.01 %) 0.1 mg/mL (0.01 %) 0.2 mg/mL (0.2 %) FeedStOCk F111 53 mL 7.4 mL 2.65 mL Volume Table 3: Drug Product — Lyophilate Compositions Drug Product lized Vial Solid Compositions Reference Drug Reference Drug Drug t Component Product Product 250-5500 IU/Vial* 250-2000 IU/Vial 3000 IU/Vial rFactorIX-Fc 2.2-46 mg/vial 28-69 mg/vial 2.2-125 mg/vial L-Histidine 19.4 mg/vial 27.2 mg/vial 19.4 mg/vial Mannitol 119 mg/vial 167 mg/vial 119 l Sucrose 59.5 mg/vial 83.3 mg/vial 59.5 mg/vial Polysorbate 20 0.5 mg/vial 0.7 mg/vial 0.5 mg/vial *The values are the nominal values that do not include the over?ll. The values including the over?ll are: 20.6 mg/vial (L-histidine), 126.01 mg/vial (mannitol), 63.1 mg/vial se), and 0.53 mg/vial orbate).
Table 4: Drug Product — Reconstituted Formulation Compositions Post-Reconstitution Drug Product Vial Compositions Reference Drug Reference Drug Drug Product Component Product Product 0 IU/V'al1 00 IU/Vial 3000 l Diluent 5.2 mL of NaCl in Water for Injection 0.45-9.5 mg/mL 5.5-13.7 mg/mL 0.9-50.0 mg/mL rFaCtO?X'FC 40-500 IU/mL 480-750 IU/mL 80-2750 IU/mL L-Histidine 3.88 mg/mL (25 mM) 5.43 mg/mL (35 mM) 3.88 mg/mL (25 mM) . 23.8 mg/mL (131 33.3 mg/mL (183 23.8 mg/mL (131 Mann1tol mM) mM) mM) Sucrose 11.9 mg/mL (35 mM) 16.7 mg/mL (48 mM) 11.9 mg/mL (35 mM) 0'14 mg/o/IIBL (0014 Polysorbate 20 0.1 mg/mL (0.01 %) 0.1 mg/mL (0.01 %) Reconstitution buffer 3.25 mg/mL 3.25 mg/mL 3.25 mg/mL Reconstituted Volume 5.3 mL 5.3 mL 5.3 mL Example 2: pment of Lyophilization Cycle Parameters for the Second Generation rFIXFc Drug Product SUMMARY The goal of this study was to evaluate ranges around the drying phase process parameters of the lyophilization cycle for the rFIXFc drug product of the invention.
This report izes a statistical design of experiments (DOE) study ting the lyophilization process parameters (Drying Shelf Temperature, Chamber Vacuum Level and Drying Time) and their effect on the product temperature during drying, the resulting residual moisture and drying rate of the drug t.
Preliminary lyophilization cycle design experiments on the Second Generation rFIXFc drug product demonstrated that distinct y and secondary drying steps were not necessary due to the ation’s high collapse ature of approximately -l.5 0C. A 12 experiment Design of Experiments (DOE) study was developed to evaluate the effect of the shelf temperature, vacuum level and drying time on the residual re levels and t temperatures during the lyophilization process on the placebo. An analysis of the data shows that in order to achieve a residual moisture level below 1%, a minimum shelf temperature of 30 °C during the drying phase is required. The analysis also demonstrated that drying times longer than 25 hours do not further decrease the residual moisture in the vials, and the chamber vacuum level has only a small effect on the residual moisture. The product temperatures during drying are signi?cantly affected by the shelf temperature and chamber vacuum level, but the most aggressive drying conditions in the study (40 °C Shelf Temperature at 1000 mTorr Chamber Vacuum) resulted in a product temperature that was more than 10 °C colder than the collapse temperature. The vial mass flow is predominantly a function of the shelf temperature, and in order to maintain vacuum control, the commercial lizer will need to be able to handle moisture flow rates of 0.7 g/hr/vial. A lyophilization cycle was proposed to achieve product with < 0.5% residual moisture using a shelf temperature of 40 °C, a chamber vacuum of 250 mTorr (0.33 mBar) and a drying time of 25 hours.
UCTION The Second Generation FactorIX-Fc (rFIXFc-2G) Drug Product composition was designed to allow for improved protein stability during accelerated storage, improved reconstitution time, and reduced flll volume to reduce splashing onto the stoppers. This was accomplished by reducing the ?ll volume from 5.3 mL to 2.65 mL, and ng the concentrations of protein and excipients in the formulation such that the reconstituted product is the same as the ?rst generation composition. Another t to reducing the ?ll volume was a decrease in the amount of water that needs to be removed during the lyophilization process.
Since the new drug product design required revalidation of the drug product process, the lyophilization cycle was redeveloped. The collapse temperature of the placebo ation was measured as approximately -l.5 °C, which would allow a shorter lyophilization cycle to be used than was designed for the reference rFIXFc lyophilization process. It was determined through initial experiments that no separate primary drying step was required, as the product did not o collapse even at shelf temperatures in excess of 40 °C. A cycle was designed using the freezing profile from the reference drug product combined with a direct step to the primary drying temperature after vacuum is applied. The placebo is a good surrogate for active rFIXFc-2G vials since the mannitol es the crystalline structure for the cake making the appearance the same as the active vials. Amorphous sugar is also more difficult to dry than protein, so the resulting residual moisture is slightly higher, providing a case value for the process. Removal of the protein from the vials also reduces the ance to water vapor, giving a worst case estimate for the vial mass flow rate.
A statistical design of experiments (DOE) study was carried out to evaluate the lyophilization process parameters (Drying Shelf Temperature, Chamber Vacuum Level and Drying Time) and their effect on the product ature during the drying process, the resulting residual moisture, and drying rate of the drug product.
ALS AND METHODS The goal of this study was to te ranges around the drying phase s parameters of the lyophilization cycle for the second generation rFIXFc drug product.
The drying phase parameters and ranges used to design the DOE study in JMP 9 are shown in Table 5. The resulting 12 experiment DOE plan showing the individual run parameter setpoints is shown in Table 6.
Table 5: The Drying Parameter Ranges Used in the DOE Study Design Minimum Maximum Drying DOEParamete r Value Value SheIfTemperature(°C> n.5- ChamberVacuum (mTorr) 1000 Drying Time (h) Table 6: The Study Design of Experiments Template Output from JMP 9 For each lyophilization cycle in the study, eighty 10 mL Schott vials (P/N: 68000320) were ?lled with 2.75 mL of Second Generation rFIXFc Placebo as shown in Table 7, which provides a worst case ?ll volume for residual moisture evaluation. The ?lled vials were arranged on a single shelf with three couples for each experiment as shown in Figure l.
Table 7: Second Generation rFIXFc Drug Product Placebo Recipe ___-num- The lization cycles used were variations of the cycle shown in Table 8. The Lyophilizer Shelf Drying Temperature, Drying Step Time and Drying Vacuum Level were varied based on the Design of Experiments table shown in Table 6. An SP Industries Lyostar II was used for each lyophilization cycle, and the vials were placed on the middle shelf.
Table 8: Lyophilizatlen Cycle Parameters Showing the BGE lnuuts of Temperature, Time and Vacuum ——Rampt°Clmtut"n;aread —-Sushi(tutu; Vacuum Hutton Earlilibrate "-— Pulldown lnitialVae ——— BQE‘tieeuum 1:"2"Drylng DOE Temp DOE Tame EOE Vacuum ; DirectSlep ; ; As Needed maximum {9178} Alter each lyophilization cycle, live vials were ed from corner and middle positions and measured for residual moisture using procedure TDM’P-74, and averaged over the shelf. The product temperature during drying and the vial mass flow rate were measured using thermocouples and by Manometrie Temperature Measurement in the Lyostar ll software. These outputs were analyzed using .llVlP 9 software to te the effect of the drying parameters on the second generation rFlXFe lyophilization process.
A 3MP stepwise analysis was med. to determine the significant variables, and these variables were then analyzed using a standard least s effect screening algorithm which shows how the process s tresidual moisture, t temperature and mass ?ow during drying) respond to the input variables.
RESULTS AND DISCU’l‘lON {9179} The results of the twelve lyophilization experiments are shown in Table 9.
Table 9: The DOE Results of Residual Moisture, Vial Mass Flow and t Temperature Ml-l-I-I(C) (mT) (hr) Moisture (g/hr/vial) (MTM,°C) IlIi--_-__ 16322—090 mml-—-—— m 15 004 Im--_m -.E--__"E 1. Analysis 0fLy0philizati0n Cycle Parameters on Residual Moisture The rFlXFc-ZG o was used as a worst-case surrogate for the drug product as it is generally more dif?cult to remove residual moisture from sugars during secondary drying than n. The resulting prediction pro?ler showing the outcome of the DOE analysis is shown in Figure 2. Several ations are apparent: The shelf temperature has the most signi?cant impact on the residual moisture in the drug product.
This is expected based on the fact that secondary drying, which removes tightly bound water, is a diffusion and tion controlled process. The model predicts with high con?dence that shelf temperatures higher than 30 °C are required to e residual moisture levels lower than 1%. The vacuum level appears to have a small but measurable effect on the resulting residual moisture. The drying time appears to show a point of diminishing returns ng at 25 hours where the on of further drying time does not continue to decrease the residual moisture level. This type of behavior is consistent with the kinetic approach to an equilibrium boundary determined by the shelf temperature, and the residual moisture approaches an asymptote where further drying is not possible. Based on this residual moisture DOE analysis the drying shelf temperature should be 30 °C or greater and the drying time should be ?xed at 25 hours or less. 2. Analysis of Lyophilization Cycle Parameters on Product ature During Sublimation The freeze drying collapse temperature of the rFIXFc-ZG Drug Product placebo has been measured as approximately -1.5 °C. Practically, this means that the drug product will in an elegant cake structure so long as the product temperature is maintained below this collapse ature as the bulk water is removed from the vial during lyophilization. The DOE analysis determined that the shelf temperature and chamber vacuum levels both had a cant effect on the product temperature as shown in Figure 3. The chamber vacuum had the largest , with higher pressures translating to higher product temperatures during sublimation. Even at 1000 mTorr (1.33 mBar) the highest measured product temperature was -15.2 °C, imately 13 °C below the product collapse temperature. The shelf temperature also had a modest effect on the product temperature, but the results are less pronounced than the vacuum effect. This analysis shows that there is little risk of collapse even at a shelf temperature of 40 °C and a chamber vacuum level of 1000 mTorr, essentially eliminating the potential of collapse from any cal lyophilization cycle design space. 3. Analysis of Lyophilization Cycle Parameters on Vial Mass Flow Rate During Sublimation The vial mass flow rate (dm/dt) is a measure of the rate at which water is being removed from the vials during the sublimation process. While faster drying is desirable to reduce the time required for the lyophilization cycle, too much moisture can overwhelm the condensers in manufacturing scale freeze driers and lead to a loss of vacuum control in the product chamber. The placebo represents the worst case vial mass ?ow conditions. Since there is no protein present in the formulation, the solids percentage in the cake is minimized and this results in a lower resistance to mass flow from the freeze dried cake. The shelf temperature has a signi?cant effect on the vial mass ?ow as shown in Figure 4 with increasing temperature causing faster sublimation.
The chamber vacuum level was included in the DOE is model, but the p value is 0.136 which is not significant with 95% confidence. The t measured dm/dt in the study was 0.7 g/hr/vial. 4. Proposed Second Generation rFIXFc Lyophilization Cycle Based on the Placebo DOE Study The data from the Placebo DOE study suggest it is feasible to design a lization cycle to achieve a residual moisture target of < 0.5% while maintaining the product below its collapse temperature using a single drying step. The proposed lyophilization cycle is shown in Table 10, and the data from DOE Run 8 which is under similar conditions to the proposed rFIXFc-2G lyophilization cycle is shown in Figure 5.
The residual moisture target of 0.5 % was selected as this is the average value of the ?rst generation rFIXFc drug product strength series. This moisture level provides a cushion so that as the t absorbs moisture during accelerated stability, product quality attributes will not be affected.
The freezing and annealing portions of the lyophilization cycle were used as developed for the reference rFIXFc drug product lyophilization cycle, and the separate primary and secondary drying steps have been replaced with a single drying step at 40 °C shelf temperature and 250 mTorr vacuum for 25 hours.
Table 10: The Proposed Lyophilization Cycle for rFIXFc-2G —m_Temp(°C) Ramp(°Clmin) Soak(min) Vacuum (mTorr) ————As Needed — Equilibrate "—1-— Fem ————— ————— ————— Pundown Initial Vac ———— rying 1500 As Needed CONCLUSIONS A 12 experiment DOE study evaluating the Second Generation rFIXFc Drug Product lyophilization process parameters on the al re, product temperature and vial mass flow rate of the placebo was completed. An is of the data shows that in order to achieve a residual re level below 1%, a minimum shelf temperature of 30 °C during the drying phase is required. The analysis also demonstrated that drying times longer than 25 hours do not significantly decrease the residual moisture in the vials, and the vacuum level has only a small effect on the residual re. The product temperatures during drying are significantly affected by the shelf ature and chamber vacuum level. The most aggressive conditions in the study (40 °C Shelf Temperature at 1000 mTorr Chamber Vacuum) ed in a product temperature that was more than 10 °C colder than the collapse temperature.
A lyophilization cycle was proposed to achieve product with < 0.5% residual moisture using a shelf temperature of 40 °C, a chamber vacuum of 250 mTorr (0.33 mBar) and a drying time of 25 hours.
The foregoing description of the c embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various ations such specific embodiments, without undue mentation, t departing from the general concept of the present invention. Therefore, such adaptations and modi?cations are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the ology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be de?ned only in accordance with the following claims and their equivalents. Other embodiments of the invention will be nt to those skilled in the art from consideration of the speci?cation and practice of the invention disclosed herein.
All documents, articles, publications, s, and patent applications mentioned in this specification are herein orated by reference to the same extent as if each individual publication or patent application was speci?cally and individually indicated to be incorporated by nce.
The present application claims priority to US. Provisional Application No. 61/969,801, filed March 24, 2014, which is incorporated herein by reference in its entirety.
VV()2015/148444 TABLE OF SEQUENCES Table 11: Polynucleotide Sequences of FIX FIX—Fc Chain DNA Sequence (FIX signal peptide underlined, FIX sequence double underlined, Fc region in bold) (SEQ ID NO:1, which encodes SEQ ID NO:2) pSYN-FIX-030 Nucleotide sequence (nt 1 to 7583): FIX exon 1 (signal peptide, 1st amino acid propeptide): nt 690- Fix mini intron: nt 778-1076 FIX sequence . nt 1077-2371 PC nt 052 1 gcgcgcgttg acattgatta ttgactagtt attaatagta atcaattacg 51 gggtcattag ttcatagccc atatatggag ttccgcgtta cataacttac 101 ggtaaatggc ccgcctggct gaccgcccaa cgacccccgc ccattgacgt 151 caataatgac gtatgttccc atagtaacgc caatagggac tttccattga 201 cgtcaatggg attt acggtaaact ttgg atca - agtgtatcat atgccaagta cgccccctat tgacgtcaat gacggtaaat - ggcccgcctg gcattatgcc cagtacatga ccttatggga ctttcctact - tggcagtaca tctacgtatt agtcatcgct attaccatgg tgatgcggtt 40- ttggcagtac atcaatgggc gtggatagcg gtttgactca cggggatttc 45- caagtctcca ccccattgac gtcaatggga gtttgttttg gcaccaaaat 50- gact ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat 55- gggcggtagg cgtgtacggt gggaggtcta tataagcaga gctctctggc 60- taactagaga tgct tactggctta tcgaaattaa tacgactcac 651 tatagggaga cccaagcttc tacg gccgccacca tgcagcgcgt 701 gaacatgatc atggcagaat caccaggcct catcaccatc ttag 751 gatatctact cagtgctgaa ggtt tgtttccttt tttaaaatac 801 attgagtatg cttgcctttt agatatagaa atatctgatg tctt 851 cactaaattt tgattacatg atttgacagc aatattgaag agtctaacag 901 ccagcacgca ggttggtaag tactgtggga caga ttttggctcc 951 atgccctaaa gagaaattgg ctttcagatt atttggatta aaga 1001 ctttcttaag agatgtaaaa ttttcatgat gttttctttt ttgctaaaac "051 taaagaatta ttcttttaca tttcagtttt tcttqatcat gaaaacqcca acaaaattct -151 tttgttcaag ggaatctagangggggggggt atggaaqaaa aqtgtagttt 1201 tqaaqaagca cqaqaaqttt t tqaa aa C a C 292225321981 a _C qatcaqtqtg atcc aggg ~301 ggggggggggggggggggggg cattaattcc tatqaatqtt qqtqtccctt -351 tggatttgaa ggaaagaact "ggggggggqa atqt aacattaaqa 1401 gatg cgagcagttt "gggggggg?a thctqataa caaqqtqqtt 1451 T EEQL? ctqaqqqggg,tcqaCttqggmgggggggagémggggggggga _ g_ag;g ccatttccat 1551 ggggmgggggggact 1601 actgaagctg aaaccattttngggggggg?c EEEEEEEgEa cccaatcatt 1651 taatgacttc actcgggttgmggggggggga EQEEEEEEEa ccaggtcaat 1701 aatqqtaaggmggggggggg? ctqtggaggc 1751 qattqtaact qctqcccact QLQLLQQQQQ 1801 thcaqgtqa acataatatt qaqqaqacaq 1851 caga gcaaaagcganggggggggtc qaattattcc caac 1901 gcag ataamggggggggat qacattqccc ttctqqaact 1951 qqacqaaccc ttaqtqctaa acaqctacat Lagggggggpm?gcattgctg 2001 ggaaqqaata cacqaacatc ttcctcaaat ttqqatctqq cggggggaqt 2051 gagggggggg=gggggggggg aqa tcaqctttag ttcttcaqta 2101 tha tctacqggg; 2251 gaccaqtttc ttaactqqaa ttattaqctg qqqtqaaqaq tgtqcaatqa 2301 aggggégaggmgggaaggpat accaaqqtqt cccqqtatqt caactqqatt 2351 aa aaaaaa caaaqctcac tgacaaaact cacacatgcc caccgtgccc 2401 agctccggaa ctcctgggcg gaccgtcagt cttcctcttc cccccaaaac 2451 ccaaggacac cctcatgatc tcccggaccc ctgaggtcac atgcgtggtg 2501 gtga gccacgaaga ccctgaggtc aagttcaact ggtacgtgga 2551 cggcgtggag gtgcataatg ccaagacaaa gccgcgggag gagcagtaca 2601 acagcacgta ccgtgtggtc agcgtcctca ccgtcctgca ccaggactgg 2651 ctgaatggca aggagtacaa ggtc tccaacaaag ccctcccagc 2701 ccccatcgag aaaaccatct ccaaagccaa gccc cgagaaccac 2751 aggtgtacac cctgccccca gatg agctgaccaa gaaccaggtc 2801 agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgccgtgga 2851 gtgggagagc aatgggcagc cggagaacaa ctacaagacc acgcctcccg 2901 tgttggactc cgacggctcc ttcttcctct acagcaagct caccgtggac 2951 aagagcaggt ggcagcaggg gaacgtcttc tcatgctccg tgatgcatga 3001 ggctctgcac taca cgcagaagag cctctccctg tctccgggta 3051 aatgagaatt cagacatgat aagatacatt gatgagtttg gacaaaccac 3101 aactagaatg cagtgaaaaa aatgctttat ttgtgaaatt tgtgatgcta 3151 ttgctttatt tgtaaccatt ataagctgca ataaacaagt tggggtgggc 3201 gaagaactcc agcatgagat ccccgcgctg gaggatcatc gcgt 3251 cccggaaaac gattccgaag cccaaccttt catagaaggc ggcggtggaa 3301 tcgaaatctc gtagcacgtg tcagtcctgc tcctcggcca cgaagtgcac 3351 gcagttgccg gccgggtcgc gcagggcgaa ctcccgcccc cacggctgct 3401 cgccgatctc ggtcatggcc ggcccggagg ggaa gttcgtggac 3451 acgacctccg accactcggc gtacagctcg tccaggccgc acac 3501 ccaggccagg gtgttgtccg gcaccacctg gtcctggacc gcgctgatga 3551 acagggtcac gtcgtcccgg accacaccgg cgaagtcgtc ctccacgaag 3601 tcccgggaga acccgagccg gtcggtccag aactcgaccg ctccggcgac 3651 gtcgcgcgcg gtgagcaccg cact ggtcaacttg gccatggttt 3701 tcac cttgtcgtat tatactatgc cgatatacta tgat 3751 taattgtcaa cacgtgctga tcagatccga aaatggatat tccc 3801 gggagctttt tgcaaaagcc taggcctcca aaaaagcctc actt 3851 ctggaatagc tcagaggcag aggcggcctc ggcctctgca taaataaaaa VV()2015/148444 3901 aaattagtca gccatggggc ggagaatggg cggaactggg cggagttagg 3951 ggcgggatgg gcggagttag gggcgggact atggttgctg tgag 4001 atqcatgctt tgcatacttc ctgg ggagcctggg gactttccac 4051 ttgc tgactaattq atgc tttgcatact tctgcctgct 4101 ggggagcctg ttcc acaccctcgt cgagctagct tcgtgaggct 4151 ccggtgcccg tcagtgggca gagcgcacat cgcccacagt ccccgagaag 4201 ggag gggtcggcaa ttgaaccggt gcctagagaa ggtggcgcgg 4251 ggtaaactgg gaaagtgatg actg gctccgcctt tttcccgagg 4301 gtgggggaga accqtatata agtgcagtag tcgccgtgaa Cgttcttttt 4351 cgcaacgggt ccag aacacaggta agtgccgtgt gtqgttcccg 4401 nggCCtggC ctctttacgg gttatggccc ttgcgtgcct tgaattactt 4451 ccacctggct ccagtacgtg attcttgatc ccgagctgga gccaggggcg 4501 ggccttgcgc tttaggagcc ccttcgcctc gtgcttgagt tgaggcctgg 4551 cctgggcgct ggggccgccg cgtgcgaatc cacc cctg 4601 tctcgctgct ttcgataagt ctctagccat ttaaaatttt tgatgacctg 4651 ctgcgacgct ttttttctgg caagatagtc ttgtaaatgc gggccaggat 4701 ctgcacactg gtatttcggt ttttggggcc ggcg acggggcccg 4751 tgcgtcccag cgcacatgtt cggcgaggcg gggcctgcga gcgcggccac 4801 cgagaatcgg acgggggtag tctcaagctg ctgc tctggtgcct 4851 ggcctcgcgc cgccgtgtat cgccccgccc tqqgcggcaa ggctggcccg 4901 gtcggcacca gttgcgtgag cggaaagatg gccgcttccc ggccctqctc 4951 cagggggctc aaaatggagg acgcggcgct cgggagagcg ggcgggtgag 5001 tcacccacac aaaggaaagg ggcctttccg tcctcagccg tcgcttcatg 5051 cacg gagtaccggg cgccgtccag gcacctcgat tagttctgga 5101 gcttttggag tacgtcgtct ttaggttggg gggaggggtt ttatgcgatg 5151 gagtttcccc acactgagtg ggtggagact gaagttaggc cagcttggca 5201 cttgatgtaa ttctccttgg aatttgccct ttttgagttt tggt 5251 tcattctcaa gcctcagaca gtggttcaaa gtttttttct tccatttcag 5301 gtgtcgtgaa cacgtggth cgcc gccaccatgg agacagacac 5351 actcctgcta tgggtactgc tgctctgggt tccaqgttcc actggtgaca 5401 aaactcacac atgcccaccg tgcccagcac ctgaactcct gqgaggaccg 5451 tcagtcttcc tcttcccccc aaaacccaag gacaccctca tgatctcccg 5501 gacccctgag tgcg tggtggtgga ccac cctg 5551 aggtcaagtt caactggtac gtggacggcg tggagqtgca taatgccaag 5601 acaaagccgc gggaggagca gtacaacagc acgtaccgtg gcgt 5651 cctcaccgtc ctgcaccagg actggctgaa tggcaaggag tacaagtgca 5701 aggtctccaa cctc ccagccccca tcgagaaaac catctccaaa 5751 gccaaagggc agccccgaga accacaggtg tacaccctgc ccccatcccg 5801 cgatgagctg accaagaacc aggtcagcct gacctgcctg gtcaaaggct 5851 tctatcccag cgcc gtggagtggg aqagcaatgg gcagccggag 5901 taca agaccacgcc tcccgtgttg gacg tctt 5951 cctctacagc aaqctcaccg tggacaagag caggtggcag caggggaacq 6001 tcttctcatg ctccgtgatg catgagqctc tgcacaacca ctacacgcag 6051 aagagcctct ccctgtctcc gggtaaatga ctcgagagat ggct gggcccgttt cgaaggtaag cctatcccta accctctcct cggtctcgat 6151 tctacchta ccggtcatca tcaccatcac cattgagttt aaacccgctg 6201 atcagcctcg actgtgcctt ctagttgcca gccatctgtt gtttgcccct 6251 cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc 6301 taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat 6351 tctggggggt ggggtggggc aggacagcaa gggggaggat tgggaagaca 6401 atagcaggca tgctqgggat gcggtgggct ctatggcttc tgaggcggaa 6451 agaaccagtg gcggtaatac ggttatccac agaatcaggg gataacgcag 6501 gaaagaacat gtgagcaaaa ggccagcaaa aggccagqaa ccgtaaaaag 6551 gccgcgttqc tggcgttttt ccataggctc cgcccccctg acgagcatca 6601 caaaaatcga agtc agaggtggcg aaacccgaca ggactataaa 6651 gataccaggc gtttccccct agaagctccc tcgtgcgctc tcctgttccg 6701 accctgccgc ttaccgqata cctgtccgcc tttctccctt cgggaagcgt 6751 ggcgctttct tcac gctgtaggta ttcg gtgtaggtcg 6801 ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc W02015/148444 _ tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg agag ttcttgaagt ggtggcctaa ctacggctac actagaagaa cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta , gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa 7201 ctca cgttaaggga ttttggtcat gacattaacc tataaaaata 7251 ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga tgacggtqaa 7301 aacctctgac acatgcagct gacg gtcacagctt gtctgtaagc 7351 cggg agcagacaag cccgtcaggg cgcgtcagcg ggtgttggcg 7401 ggtgtcgggg ctggcttaac tatgcggcat cagagcagat gaga 7451 gtgcaccata tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa 7501 taccgcatca ggcgccattc gccattcagg ctgcgcaact qttgggaagg 7551 gcgatcggtg cgggcctctt cgctattacg CCél Table 12: Polypeptide ces of FIX FIX-Fe Monomer Hybrid: created by coexpressing FIX-Fc and Fc chains.
A. FIX-Fc chain (SEQ ID NO: 2) The inal lysine is not present in either subunit; this processing is often observed in recombinant proteins produced in mammalian cell culture, as well as with plasma derived proteins.
-SC Subunit (the Fc part of FIX-Fc is in bold): 1 EEFV QGNLERECME EKCSFEEARE VFENTERTTE FWKQYVDGDQ 51 CESNPCLNGG SCKDDINSYE CWCPFGFEGK NCELDVTCNI KNGRCEQFCK 101 NSADNKVVCS LAEN QKSCEPAVPF VSQT SKLTRAETVF 151 PDVDYVNSTE AETILDNITQ STQSFNDFTR VVGGEDAKPG QFPWQVVLNG 201 GGSI VTAA HCVETGVKIT VVAGEHNIEE TEHTEQKRNV 251 IRIIPHHNYN AAINKYNHDI ALLELDEPLV LNSYVTPICI ADKEYTNIFL 301 KFGSGYVSGW GRVFHKGRSA LVLQYLRVPL VDRATCLRST KFTIYNNMFC VV()2015/148444 351 AGFHEGGRDS CQGDSGGPHV T ?V T GIISWG 1.?CA MKGKYGIYTK 401 VSRYVNWIKE1 KTKLTDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR 451 TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV 501 LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR 551 DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP GSFF 601 LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK Table 13: Polynucleotide Sequences of Fe Fc DNA sequence (mouse IgK signal e ined) (SEQ ID N023, which encodes SEQ ID N024) atggagacag tcct ggta ctgctgctct gggttccagg _ ttccactggt gacaaaactc acacatgccc accgtgccca gcacctgaac " tcctgggagg accgtcagtc ttcc ccccaaaacc caaggacacc " ctcatgatct cccggacccc tgaggtcaca tgcgtggtgg tggacgtgag " ccacgaagac cctgaggtca agttcaactg gtacgtggac ggcgtggagg " tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac " cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa " ggagtacaag tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa cccc gagaaccaca ggtgtacacc ctgcccccat cccgcgatga gctgaccaag aaccaggtca gcctgacctg 50" cctggtcaaa ggcttctatc ccagcgacat cgccgtggag tgggagagca 55" atgggcagcc ggagaacaac tacaagacca cgcctcccgt gttggactcc 60" gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg 65" gcagcagggg aacgtcttct catgctccgt tgag gctctgcaca 70" accactacac gcagaagagc ctctccctgt ctccgggtaa a Table 14: Polypeptide Sequences of Fc Fc chain (SEQ ID NO:4) 1 DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT SHED 51 PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK 101 CKVSNKALPA SKAK GQPREPQVYT LPPSRDELTK NQVSLTCLVK 151 GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG 201 NVFSCSVMHE ALHNHYTQKS LSLSPGK Definitions of the specific embodiments of the invention as claimed herein follow.
According to a first embodiment of the invention, there is ed a prelyophilization formulation comprising: (a) a Factor IX (FIX) polypeptide having FIX coagulation activity comprising FIX and an FcRn binding partner at a concentration from 100 IU/vial to about 10,000 l; (b) L-histidine at a concentration from 3 mg/mL to 15 mg/mL; (c) sucrose at a concentration from 10 mg/mL to 50 mg/mL; (d) mannitol at a concentration from 20 mg/mL to 100 mg/mL; and (e) polysorbate 20 at a concentration from 0.01 mg/mL to 5 mg/mL, wherein the formulation has a fill volume of 2 mL to 3 mL.
According to a second embodiment of the invention, there is provided a philization formulation comprising, (a) a FIX polypeptide comprising the FIXFc single chain (FIXFc-sc) polypeptide of SEQ ID NO: 2 and the Fc single chain (Fc-sc) polypeptide of SEQ ID NO: 4, at a concentration from 100 l to 10,000 IU/vial, (b) L-histidine at a concentration of 7.76 mg/mL, (c) sucrose at a concentration of 23.8 mg/mL, (d) mannitol at a concentration of 47.6 mg/mL, (e) polysorbate 20 at a concentration of 0.2 mg/mL, and n the formulation has a fill volume of 2.65 mL.
According to a third ment of the invention, there is ed a lyophilate powder, which is lyophilized from the pre-lyophilization formulation of the first or second embodiment. ing to a fourth ment of the invention, there is provided a reconstituted formulation comprising the lyophilate powder of the third embodiment reconstituted by a reconstitution buffer. ing to a fifth embodiment of the invention, there is provided a vial comprising the lyophilate powder of the third embodiment.
According to a sixth embodiment of the invention, there is provided a kit comprising a first container comprising the lyophilate powder of the third embodiment and a second container comprising a reconstitution buffer at a volume sufficient to produce, when combined with the lyophilization formulation of the first container, the reconstituted composition of the fourth embodiment.
According to a seventh embodiment of the invention, there is provided use of a pharmaceutical composition comprising the reconstituted formulation of the fourth embodiment for the manufacture of a medicament for preventing or reducing the frequency or ty of bleeding episodes in a ilia B patient.
According to an eighth embodiment of the invention, there is ed a method of ing a lyophilized FIX polypeptide from the pre-lyophilization formulation of the first or second embodiment, the method comprising: (a) a "freezing step" comprising freezing a pre-lyophilization formulation comprising the FIX polypeptide and an aqueous solvent to a freezing temperature of -65°C to - 40°C; (b) a "vacuum step" comprising reducing the pressure of the frozen pre- lyophilization ation by an amount effective to remove the s solvent from the frozen pre-lyophilization ation; and, (c) a single "drying step" comprising increasing the temperature of the frozen pre- lyophilization formulation above a collapse temperature of -1.5°C, thereby producing a lyophilate powder.

Claims (17)

WHAT IS CLAIMED IS:
1. A pre-lyophilization formulation sing: (a) a Factor IX (FIX) polypeptide having FIX coagulation activity sing FIX and an FcRn binding partner at a concentration from 100 IU/vial to about 10,000 IU/vial; (b) L-histidine at a concentration from 3 mg/mL to 15 mg/mL; (c) e at a concentration from 10 mg/mL to 50 mg/mL; (d) mannitol at a concentration from 20 mg/mL to 100 mg/mL; and (e) polysorbate 20 at a concentration from 0.01 mg/mL to 5 mg/mL, wherein the formulation has a fill volume of 2 mL to 3 mL.
2. The pre-lyophilization formulation of claim 1, wherein the FIX polypeptide is at a concentration from 220 IU/vial to 1,000 IU/vial.
3. The pre-lyophilization formulation of claim 1 or claim 2, wherein the L-histidine is at a concentration from 3.88 mg/mL to 9.7 mg/mL, wherein the sucrose is at a concentration from 17.85 mg/mL to 29.95 mg/mL, and wherein the mannitol is at a concentration from 35.7 mg/mL to 59.5 mg/mL.
4. The pre-lyophilization formulation of any one of claims 1 to 3, wherein the L- histidine is at a concentration of 7.76 mg/mL, wherein the sucrose is at a concentration of 23.8 mg/mL, n the mannitol is at a concentration of 47.6 mg/mL, and wherein the polysorbate 20 is at a concentration of 0.2 mg/mL.
5. The pre-lyophilization formulation of any one of claims 1 to 4, wherein the fill volume is 3.0 mL, 2.9 mL, 2.8 mL, 2.7 mL, 2.65 mL, 2.6 mL, 2.5 mL, 2.4 mL, 2.3 mL, 2.2 mL, 2.1 mL, or 2.0 mL.
6. The pre-lyophilization formulation of any one of claims 1 to 5, wherein the fill volume is 2.65 mL.
7. The pre-lyophilization formulation of any one of claims 1 to 5, wherein the fill volume is 2.5 mL.
8. The pre-lyophilization formulation of any one of claims 1 to 7, wherein the FcRn g partner is Fc or albumin.
9. The pre-lyophilization ation of claim 8, n the FcRn binding partner is Fc.
10. The pre-lyophilization formulation of any one of claims 1 to 9, wherein the FIX polypeptide is 100% identical SEQ ID NO: 2.
11. The pre-lyophilization formulation of any one of claims 1 to 10, wherein the FIX polypeptide comprises the FIXFc single chain (FIXFc-sc) polypeptide of SEQ ID NO: 2 and the Fc single chain (Fc-sc) ptide of SEQ ID NO: 4.
12. The pre-lyophilization formulation of any one of claims 1 to 11, wherein the FIX polypeptide comprises the FIXFc single chain (FIXFc-sc) polypeptide of SEQ ID NO: 2, without the C-terminal lysine, and the Fc single chain (Fc-sc) polypeptide of SEQ ID NO: 4, without the C-terminal lysine, wherein the sc polypeptide and the Fc-sc polypeptide are bound together through two disulfide bonds in the hinge region of Fc.
13. The pre-lyophilization formulation of claim 1, sing, (a) a FIX polypeptide comprising the FIXFc single chain (FIXFc-sc) polypeptide of SEQ ID NO: 2 without the C-terminal lysine, and the Fc single chain (Fc-sc) polypeptide of SEQ ID NO: 4 without the C-terminal lysine, at a concentration from 100 IU/vial to 10,000 IU/vial, (b) L-histidine at a concentration of 7.76 mg/mL, (c) sucrose at a tration of 23.8 mg/mL, (d) mannitol at a concentration of 47.6 mg/mL, (e) polysorbate 20 at a concentration of 0.2 mg/mL, and wherein the formulation has a fill volume of 2.65 mL.
14. The pre-lyophilization formulation of claim 13, wherein the FIX polypeptide is at a concentration from 220 IU/vial to 1,000 IU/vial.
15. A method of producing a lyophilized FIX ptide from the pre-lyophilization formulation of any one of claims 1 to 14, the method comprising: (a) a “freezing step” sing ng a ophilization formulation comprising the FIX polypeptide and an aqueous solvent to a ng temperature of -65°C to -40°C; (b) a “vacuum step” comprising reducing the pressure of the frozen pre-lyophilization formulation by an amount effective to remove the aqueous solvent from the frozen prelyophilization formulation; and, (c) a single “drying step” comprising increasing the temperature of the frozen prelyophilization formulation above a collapse temperature of -1.5°C, y producing a lyophilate powder.
16. The method of claim 15, wherein the temperature of the ophilization formulation is ramped down from 5°C to the freezing temperature during the freezing step and wherein the ng temperature is held from 30 minutes to 5 hours during the freezing step, wherein the frozen pre-lyophilization ation of step (a) is further subject to an "annealing step" (a') prior to the "vacuum step" (b), wherein the temperature of the frozen pre-lyophilization formulation of step (a) is ramped up to an annealing temperature of - 15°C to -2°C during the annealing step, and wherein the annealing temperature is held for 30 minutes to 5 hours during the annealing step, wherein the temperature of the frozen pre-lyophilization formulation is ramped down from the ing temperature to a temperature of -65°C to -40°C during the annealing step, n the "vacuum step" ses subjecting the frozen pre-lyophilization formulation to a vacuum from 0.05 mbar to 1 mbar for 2 hours, and/or wherein the "drying step" comprises ramping up the temperature of the frozen prelyophilization formulation from -55°C to a drying temperature of 40°C, wherein the drying temperature is held for 10 hours to 40 hours and wherein the drying step is carried out at a re of 0.05 mbar to 1 mbar.
17. The method of claim 15 or claim 16, wherein the pre-lyophilization formulation is aseptically filtered and aseptically filled into a vial prior to step (a), wherein the lyophilate powder is produced from the pre-lyophilization formulation in 45 hours or less, and/or wherein the residual moisture in the lyophilate powder is less than 0.7%. [REMAINDER OF PAGE INTENTIONALLY BLANK] 08921 w_m_> _>_O._ oasoooctm?. bQEm. once“: n .., .A .A Av. .. A o V .A., \VVV o .VVVVVAw\\\.\\\v\\\u\\\4v\.\\\V\A\\\\\v.vAv .VVVVVVVVVV \_ 0.00.00,no...0.1.. . o \VV V o VVV . .0, ..A..A \VAVV. VVVVVVVVVV.\VVVVVVVVV VVA: .9 .vo. . .. . nooachcuwnnno.030...‘0'... g N 8 a: > W eJmS!0I/\I % : “navy“ __'V__ “4.. m LL. (0 Wm) dJ. \
NZ724351A 2015-03-24 Lyophilized factor ix formulations NZ724351B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461969801P 2014-03-24 2014-03-24
PCT/US2015/022141 WO2015148444A1 (en) 2014-03-24 2015-03-24 Lyophilized factor ix formulations

Publications (2)

Publication Number Publication Date
NZ724351A NZ724351A (en) 2023-10-27
NZ724351B2 true NZ724351B2 (en) 2024-01-30

Family

ID=

Similar Documents

Publication Publication Date Title
AU2022204643A1 (en) Factor IX polypeptides and methods of use thereof
AU2020202863B2 (en) Lyophilized factor IX formulations
US10927362B2 (en) Processable single chain molecules and polypeptides made using same
US20240124555A1 (en) Optimized factor viii genes
KR102212098B1 (en) Chimeric factor viii polypeptides and uses thereof
AU2019208273B2 (en) Factor IX polypeptide formulations
CN110234662A (en) Tissue specificity WNT signal enhancing molecule and its purposes
IL266462B2 (en) Thrombin cleavable linker with xten and its uses thereof
HUE026384T2 (en) Clotting factor chimeric proteins for treatment of a hemostatic disorder
KR20090105913A (en) Hybrid immunoglobulins with moving parts
US20160229903A1 (en) Thrombin cleavable linker
AU2018206758A1 (en) Methods of Using a Fixed Dose of a Clotting Factor
AU2023200875A1 (en) UTI fusion proteins
AU2016319540A1 (en) Novel human serum albumin mutant
TW202126284A (en) Lentiviral vector formulations
NZ724351B2 (en) Lyophilized factor ix formulations
EA045351B1 (en) LYOPHILIZED COMPOSITION OF FACTOR IX FOR PREVENTING OR REDUCING BLEEDING ATTACKS IN HEMOPHILIA B
KR20130110577A (en) Optimization method of tnfr2