NZ280564A - Cartoner assembly with cam operated transverse pushers which push groups of articles into cartons - Google Patents

Cartoner assembly with cam operated transverse pushers which push groups of articles into cartons

Info

Publication number
NZ280564A
NZ280564A NZ280564A NZ28056493A NZ280564A NZ 280564 A NZ280564 A NZ 280564A NZ 280564 A NZ280564 A NZ 280564A NZ 28056493 A NZ28056493 A NZ 28056493A NZ 280564 A NZ280564 A NZ 280564A
Authority
NZ
New Zealand
Prior art keywords
article
carton
assembly
cam
travel path
Prior art date
Application number
NZ280564A
Inventor
Kelly W Ziegler
Allen D Olson
Curt W Lovold
Original Assignee
Riverwood Int Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/856,450 external-priority patent/US5241806A/en
Application filed by Riverwood Int Corp filed Critical Riverwood Int Corp
Publication of NZ280564A publication Critical patent/NZ280564A/en

Links

Description

New Zealand No. International No. 280564 PCT/ TO BE ENTERED AFTER ACCEPTANCE AND PUBLICATION Priority dates: 24.03.1992; Complete Specification Filed: 02.03.1993 Classification:^) B65B5/10; B65B21/06.24; B65B35/30; B65B43/42 Publication date: 19 December 1997 Journal No.: 1423 NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION Title of Invention: Cartoner assembly Name, address and nationality of applicant(s) as in international application form: RIVERWOOD INTERNATIONAL CORPORATION, a Georgia corporation of 3350 Cumberland Circle, Suite 1600, Atlanta, Georgia 30339, United States of America 280564 Divided out of NZ No: 251088 Filed on Date: 2 March 1993 r.:a*;•:*>»*.
N.Z. PATFJiT OFr 0 NOV 13S5 CARTONER ASSEMBLY We, RIVERWOOD INTERNATIONAL CORPORATION, 3350 Cumberland Circle, Suite 1600, Atlanta, Georgia 30339, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: followed by page la 2,8,G 5 ( WO 93/18971 PCT/ -la- CONTINUOUS MOTION CARTONER ASSEMBLY SPECIFICATION BACKGROUND OF THE INVENTION This invention relates to cartoner assemblies and 5 methods for the packaging industry. Particularly, this invention relates to continuous motion cartoner assemblies to load article groups into opened carton sleeves.
The cartoner assembly of the present invention is particularly designed to be fully adjustable to package 10 different types, styles and sizes of articles, i.e. cans and bottles, and a wide range of article group patterns. The cartoner assembly is easily adjustable to meet the changes of these article parameters and loads the article groups into the carton sleeves in a fast and reliable 15 manner.
In the past, various machines and processes have been proposed and utilized to continuously package selected article groups into cartons. Each prior art machine and process, however, accomplishes the packaging of the 20 article groups in a distinct manner and utilizes particular machinery. For example, article groups can be continuously selected from an article infeed stream or provided in a preselected manner, dropped into or placed onto partially opened or erected cartons and subsequently 25 closed. Alternatively, carton blanks are folded and constructed about individual article groups, which generally requires the use of particular carton structures as well as cooperating carton folding and constructing £M5 WO 93/18971 pen equipxnent. These prior art cartoners have limited adjustability, limited output capability, restricted use and have been difficult and costly to maintain due to their respective designs.
Prior art cartoner assemblies include U.S. Patent 4/802/324 to applicants' assignee for a Vertical Cartoning Assembly and Method which discloses the placement and assembly of cartons over preselected article groups being moved on a conveyor. In operation, folded cartons are 10 placed between carton flights and lowered over moving preselected article groups by means of a cam rail/cam follower structure. The cartons are subsequently folded and closed into a wrapped configuration to yield a stream of packaged product. Further, U.S. Patent 5/036,(44, also 15 to applicants' assignee, discloses a Packaging Sleever Assembly which transfers flat packaging sleeves directly onto preselected article groups and subsequently wraps and closes the cartons. The latter assembly utilizes cam actuated flight bar structures which move in a generally 20 perpendicular direction relative to the article transfer conveyor to select article groups and to transfer carton sleeve structures for subsequent wrapping and closing.
Various end loading packaging machines have also been proposed in the art. For example, U.S. Patent 3/778/959 25 to Langen et al. discloses an end loader which utilizes a plurality of transversely extending spaced apart fences or flights mounted on a conveyor to rake or capture a -3-• predetermined number of containers from infeed container slips. The fences or flights function in cooperation with stationary transverse guide rail structures to discharge the containers into an end loading shipper package. 5 Further, U.S. Patent 4,237,673 to Calvert at al.~discloses a machine also for loading container sleeves -through their open ends. The latter machine utilizes a plurality of transverse parallel spaced apart metering bars together with fixed guides that are disposed at an acute angle to 10 the path of the metering bars. The open ended sleeve type containers are carried between the metering bars and the metered packages are forced along the fixed guides and into the open ends of the respective packages. Although these disclosures show machines which load article groups 15 into the ends of cartons, these machines lack control of the article groups to provide finished packaged products that are tight and stable. These machines are also limited in packaging speed and are difficult to adjust with respect to the packaging of various article group 20 orientations and carton sleeve sizes. U.S. Patent 4,93 6,077 to x.angen et al. discloses a carton loading machine which overcomes some of the problems and limitations of the '959 and '673 patent disclosures by utilizing pusher mechanisms with spring loaded pusher 25 heads to stagger adjacent product group rows during transfer into the carton. The machine further utilizes cam activated spaced load divider blades along an pcr^SoiQs 5 WO 93/18971 P t angularly Inclined discharge plane and between which the pusher mechanisms operate. This machine disclosure also lacks the amount of control and adjustability required for high speed packaging of varying article group 5 orientations.
The present invention provides an adjustable continuous motion cartoner assembly which selects predetermined article group patterns from parallel infeed streeuas of articles and which transfers the article groups 10 into the opened ends of carton sleeves being moved parallel to and in synchronization with the article groups. The cartoner assembly of the invention includes article group transfer structures which enable the individual rows of the article group to be moved and 15 controlled with a positive force so that the article group can be tightly placed and maintained between the walls of the carton.
The cartoner assembly of the invention further provides article instream structures, article transfer 20 structures and carton flight adjustment structures that permit easy adjustment of the assembly so that a variety of articles and article group patterns can be selected and controlled for transfer into the opened ends of a range of packaging carton sizes and configurations. 4 2'B 0 ,5 64 SUMMARY OF THE INVENTION The present invention provides a cartoner assembly for loading article groups into open carton sleeves which comprises and article infeed means supplying at least one stream of articles, an article selecting means intersecting said article infeed means to form and move a stream of article groups of a predetermined pattern, a carton supply means synchronized and moving parallel with said article selecting means to provide cartons with open ends facing said moving article groups, and an article group transfer means constructed and arranged to move article groups into the open ends of the carton sleeves.
Three cartoner assemblies which utilise this general structure are claimed in the present specification, in specification no. 251088 from which the present specification was divided, and in specification no. 280565 which was also divided from specification no. 251088. The inventions of all three are herein described.
It is an objective of these inventions to provide an apparatus which continuously and reliably cartons predetermined product groups at high speed. Another object is to provide a continuous motiorr cartoner which is fully adjustable for use with a variety of cartons, product and product group types and sizes. A particular object is to provide a cartoner comprising article selection means having a plurality ^of.fixedy'wgjjat Lonary flight bars disposed thereo articles from an article infe with respect to the selection "wKTch"" linearly sd soi££eAQ$i#97 is m^ns. object is elect angled to provide a cartoner comprising arBflS^Yiransfer-imeans ... 280564 with respect to the selection means. Another object is to provide a cartoner comprising article transfer means having transversely reciprocating am assemblies including cam actuated stepped transfer heads for loading product 5 groups in an initially nested configuration having a differentially thinner loading dimension. A further object is to provide a cartoner having cam actuated means to guide product groups into cartons. And, yet another object is to provide a cartoner which comprises carton 10 transport means having improved carton flight phase adjustment means.
These and other benefits of the inventions will become clear from the following description by reference to the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top plan view of the continuous motion cartoner assembly of the present invention; FIG. 2 is a side view of the cartoner assembly showing the carton supply and transport mechanisms thereof; FIG. 3 is a detailed top plan view of the cartoner assembly; FIG. 4 is a detailed side view of the cartoner assembly taken approximately along line 4-4 of FIG. 3; FIG. 5 is an end view of the cartoner assembly, taken from the left side of FIG. 4; FIG. 6 is a cross-sectional view of the cartoner assembly taken approximately along line 6-6 of FIG. 3; FIG. 7 is a top view of the loader arm assembly; WO 93/18971 per/ £E»0 5 FIG. 8 is a bottom view of an end portion of the loader arm assembly partially in crossection; FIG. 9 is an end view of the loader arm assembly, taken from the left side of FIG. 7; FIG. 10 is an end view of the loader arm assembly of FIG. 6, taken from the right side of the loader arm assembly; FIG. li is a top view of the loader arm assembly; FIG. 12 is a side view of the loader arm assembly 10 shown in FIG. il; FIG. 13 is a top view of a portion of the cross loader mechanism showing the cooperation of the loader arm assemblies with the cross loader cam assembly and the relative motion thereinbetween; FIG. 14 is an end view of the cartoner assembly taken from the right side of FIG. 4 and showing the carton flight lug longitudinal phase adjustment features thereof; FIG. 15 is a side view of the funnel assembly shown in FIG. 4? FIG. 16 is a bottom view of the funnel assembly shown in FIG 15; and FIG. 17 is a top plan view of an alternative 25 embodiment of the loader head of the arm assembly.
PCI7US93/01975 4 * 0 DESCRIPTION OF THE PREFERRED EMBODIMENT The apparatus and methods of the present invention are for loading articles into cartons in a continuous, high speed process. As shown in the drawings, the 5 apparatus 10 of this invention is particularly useful in a continuous, high-speed packaging operation, and in cooperation with synchronized, related packaging apparatus. The apparatus 10 has a simplified structure, and is highly adjustable to provide reliable, continuous 10 and high speed packaging of articles or products of varying types, sizes and quantities into cartons of varying types and sizes. For example, the apparatus 10 is useable to load canned or bottled beverages into common 6, 12 and 24 pack cartons and configurations utilizing the 15 adjustment features described more fully below. Moreover, the process of loading beverage containers into cartons, for example, is accomplished quickly and reliably, under typical industry tolerances for both container and carton construction. Finally, the resultant filled cartons 20 output by the apparatus 10 are of high quality and consistency, having maximized squareness and tautness for improved storage qualities and transportability. Finally, the apparatus of this invention provides high speed processing of from 250 to 600 cartons per minute 25 depending upon carton size. «£8j&5 6 4 « , 0 Referring to FIGS. 1 and 2, the continuous motion cartoner assembly 10 generally comprises at least one carton supply mechanism 11, a carton transport mechanism or conveyer 12, an article supply mechanism or conveyor 5 13, an article selection and transport mechanism or conveyor 14 and a product group transfer or cross loading mechanism 15. These mechanisms are shown to be supported by a unitary frame structure 16, although if aligned properly, separate support structures may be utilized 10 consistent with the teachings of this invention. The carton supply mechanism 11 is shown to be disposed at an input end 20 of and in line with the carton transport mechanism 12 to supply cartons 17 thereto. The cartons 17 are subsequently transported in a linear fashion to an 15 output end 21 of the apparatus 10. The article supply mechanism 13 is also shown to be disposed at the input end 20 of the apparatus 10. A first portion of the article supply mechanism 13 is disposed anterior to and spacially parallel to the article transport mechanism 14, and a 20 second portion merges, at a predetermined angle, with a predetermined first segment of the article transport mechanism 14 to a supply a stream of product or articles 18 thereto. These merging mechanisms 13 and 14 are further constructed and arranged to meter individual articles 18 in the mechanism 13, via a fixed flight bar arrangement into predetermined product or article groups on conveyor 14. The article transport mechanism 14 is 280564 « , • disposed adjacent and parallel to the carton transport mechanism 12. Further, the article transport mechanism 14 extends, in a linear fashion, from approximately the beginning of the carton transport mechanism 12, through a first portion (for article merging) and to a second portion which terminates at a point approximately two thirds length of the carton transport mechanism 12. The article groups 19 are transported downstream thereon in a spaced and metered fashion, each group 19 being aligned 10 with a carton 17 traveling on the carton transport mechanism 12. The crossloading mechanism 15 is disposed adjacent to and parallel with the second portion of the article transport mechanism 14, extending and traveling linearly with respect to the upstream and downstream ends 15 20 and .21 of the apparatus 10. The crossloading mechanism has means, extending transversely or perpendicularly with respect to the longitudinal axis of the transport mechanisms 14 and 12, to move product groups 19 on the article transport mechanism 14 into aligned cartons 17 traveling on the carton transport mechanism 12, thereby loading the cartons 17 with product groups 19. Preferably, each of the aforementioned mechanisms 12, 13, 14 and 15 has a conveyor type structure with an endless chain or belt configured about rotatable drive and idler 25 end means, as know in the art, and moving longitudinally with respect to the input (upstream) and output (downstream) ends 20 and 21 of the apparatus 10. The PCT/ WO 93/18971 PCT/feAtlM «J O 4 2M movement of each mechanism is further synchronized with one another, for example by a common drive and/or gearing means. Synchronized operation of these cooperating mechanisms 12-15, along with that of the carton supply 5 mechanism 11, provides a continuous apparatus afid process for selecting and metering a stream of individual articles 18 traveling in one linear stream into predetermined groups 19 traveling in a second parallel, linear stream, which are subsequently transversely loaded into cartons 17 10 traveling in a third parallel linear stream.
Although the apparatus 10 shown in the drawings is utilized in a beverage bottle or can cartoning operation, modifications consistent with the teachings of this invention may be made to package various other liquid or 15 gas containers or solid objects. Also, as shown in the drawings, various ancillary processing mechanisms may be incorporated in the structure of the basic apparatus 10. For example, in the beverage cartoning apparatus 10, flap tuckers 3 0 are disposed adjacent each side of the carton 20 transport mechanism 12, one anterior to the loading region to provide a closed carton backside against which the loaded containers may nest, and one posterior to the loading region to allow ingress to the catton 17 through its open, unglued end flaps. Gluing, compression and 25 discharge mechanisms 32, 33 and 34 are disposed consecutively, further downstream and adjacent the carton transport mechanism 12 to complete the carton flap WO 93/18971 PCT7\JS93/in975 securement process. The design of such mechanisms is well known in the art. A coupon placement mechanism 31 is also shown used in conjunction with the apparatus 10.
Referring to FIGS. 3-5, the carton supply mechanism 5 11 is preferably a rotary carton erecting apparatus 27, such as that disclosed in U.S. Patent 4,530,686 owned by Applicants' assignee. The carton erecting apparatus 27 is supported above the input end of the carton transport mechanism 12 by a frame structure 28, and basically 10 transfers fiat carton blanks from a power magazine 29 to the conveyance surface of the mechanism 12, simultaneously opening the blank so that it assumes a four-sided configuration with opposing open ends bounded by at least one flap each. Importantly, the partially erected carton 15 17 is placed in a transverse orientation so that its ends are open to the sides of the carton transport mechanism 12 for loading purposes. In an alternative embodiment, a pair of carton- supply mechanisms may be utilized to provide cartons 17 at a faster rate, for example during a 20 6-pack cartoning operation.
The article supply mechanism 13 provides a plurality of input individual articles 18 to the apparatus 10. The mechanism 13 is shown to comprise a conveyor 40 disposed about a drive sprocket/shaft assembly 41 and an idler 25 sprocket/shaft assembly 42, as is known in the art. The conveyor 40 may consist of a plurality of individual tracks or paths as shown, or alternatively a unitary, « . » wider path or belt. Also, and importantly, the articles 18 transported on the top, forward run of the conveyor 40 are separated into a plurality of single file paths by lane separators 43. Each lane separator 43 is shown to be 5 an upstanding wall of a height sufficient, to ^guide the flow of one or more containers 18 on the conveyor 40, and which is suspended above the conveyor 40. The lane separators 43 form product conveyance lanes which angle towards the article conveyance mechanism 14. An approach 10 angle of approximately twenty-five (25) degrees with respect to the longitudinal axis of the mechanism 14 has been found to provide optimal results in the instant apparatus embodiment. The conveyor 40 is closely spaced with the article transport conveyor 14 to allow for 15 product movement thereinbetween. A dead plate may alternatively be utilized. Each lane separator 43 has a terminal portion 44 of a predetermined length, such that it extends into the path of the article transport mechanism 14 a distance approximately equal to one-third 20 the width of the mechanism 14 conveyance path. Each terminal portion 44 is constructed such that it allows longitudinally transported flight structures 52 (described further below) of the article transport mechanism 14 to pass through the angled conveyance lanes. As the flight 25 structures 52 mesh with and pass through the lane separator end portions 44, they engage articles 18 disposed in lanes. 2805i WO 93/18971 PCT/US93/01975 I « The combination of forces exerted by the flight bars 52, lane ends 44, and conveyors 40 and 14 serve to select and meter individual articles 18 into predetermined article groups 19 which are fully merged onto the article 5 transport mechanism 14. The size, orientation and peripheral dimensions of the resultant product groups 19 is dependent upon the number of infeed lanes 13, product 18 dimensions, and the configuration and spacing of the flight bars 52. For example, in the instant embodiment, 10 four lanes of product are active, and the flight bars 52 are spaced such that the resultant product group 19 is selected of twelve articles in three rows of four articles each. A pair of lanes are blocked off by closure means (not shown). The lane separators 43 and the flight bars 15 52 are adjustable to provide full variability of product group parameters.
The article supply mechanism 13 is shown to terminate at its infeed end 13 for mating with a" complementary external apparatus, for example an additional infeed 20 conveyor or conveyors. Alternatively, such infeed conveyor may be integrated with the apparatus 10. Further, although this embodiment utilizes conveyance lanes which initially extend in-line with the remaining elements of the apparatus 10 and subsequently angle 25 towards the article transport mechanism 14, it is possible to provide an infeed conveyor that is entirely angled as such. Finally, it is within the purview of the present pc2£"fr5 § 4 i ■ Invention to utilize a two-tiered infeed with both the existing level of infeed, and an additional level which is elevated above this level. Such a configuration would provide a stacked product group. The remaining elements 5 of this apparatus would then be modified t"o handle, transport and load the stacked product group into an appropriate carton.
The article transport mechanism 14 selects article groups 19 from the article supply mechanism 13 as set 10 forth above and transports them linearly downstream with respect to the overall apparatus 10. The downstream transport of article groups 19 is synchronized with the carton transport mechanism 12 and with the crossloading mechanism 15, as described further below, to affectuate 15 carton 17 loading. Referring also to FXQ. 6, the article transport mechanism 14 generally comprises a conveyor, a plurality of flight bars 52 fixed to and longitudinally transported on the conveyor , and at least one slide plate 53, which is also disposed on the conveyor between the 20 flight bars 52. The conveyor runs at a predetermined speed and includes a drive sprocket/shaft assembly 55 and an idler sprocket/shaft assembly 56, a pair of parallel endless conveyor chains 64 which are connected to and revolve about the sprocket/shaft assemblies 55 and 56, 25 forming a longitudinally extending forward or top run 68 and a return or bottom run 69. Idler assembly 56 is disposed just anterior to the area where the article 280564 « . » supply mechanism 13 merges with the article transport mechanism 14, and marks the beginning of the conveyor. The drive sprocket/shaft assembly 55 is disposed adjacent the end of the crossloading mechanism 15 and marks the end 5 of the conveyor. The conveyor chains 64 are each supported by a top and bottom longitudinally extending chain guide 66, which in turn are connected to the main frame 16 via upstanding conveyor supports 67. The flight bars 52 are each shown to include a top member 57 and a 10 bottom member 58 which are connected to one another by spacer blocks 59. The top and bottom members 57 and 58 are preferably flat plate structures which are horizontally disposed, parallel to one another and spacially separated from one another by the spacer blocks 15 59. Each top and bottom member 57 and 58 further has an angled front end 60 and a flat back end 61. The front end 60 slants or angles inwardly, with respect to the overall flight bar structure 52, from its leading edge 62 to its trailing edge 63 to enable the flight bars 52 to select 20 individual articles 18 disposed in the article infeed lanes and to separate them from the closely spaced nearest upstream article 18. At least one slide plate 53 is disposed between each flight bar 52 and is connected to flight chains 64. Both the flight bars 52 (via the bottom 25 member 58) and the slide plates 53 are connected to the flight chain via connection brackets and bolts 65. The P<2M5 6 4 -17-• slide plates 53 are thin, flat structures with a low friction top surface which support the article groups 19 and further permit sliding movement thereon.
The height of the flight bar 52 (i.e., the separation 5 distance between the top and bottom members.57 "Jmd 58) is a function of the container size and configuration. For example, taller bottles would require greater flight bar 52 height than a short can, for proper selection and transport. Additionally, the placement of labels and the 10 like thereon are a factor in determining proper flight bar 52 height. The width of the top and bottom members 57 and 58 is 9 function of the desired dimensions of the product groups 19 formed. For example, the selection of larger or wider groups would require thinner flight bars 52. It is 15 within the purview of this invention that the flight bar 52 height and width be fully adjustable to accommodate various container and group parameters, either by means of a modifiable flight bar or by substitution"of a new flight bar. Additionally, a one-piece flight bar structure may 20 be substituted for the two-tier structure shown.
The carton transport mechanism 12 receives cartons 17 from the carton supply mechanism 11 as set forth above and transports them linearly downstream with respect to the overall apparatus 10. The downstream transport of cartons 25 17 is synchronized with the article transport mechanism 14 and with the crossloading mechanism 15, as described further below, to affectuate carton 17 loading.
JIMZ WO 93/18971 PCIWsW/0ff75^ -IB- Important ly , the carton transport conveyor 12 is adjustable to accommodate cartons 17 of varying types and sizes. Referring to FIGS. 3, 4, 6 and 14 in particular, the carton transport mechanism 12 basically comprises a 5 plurality of flight lugs 75 and 76 which are connected to flight chains 77, the flight chains 77 being connected to and revolving about drive and idler ends 82 and 83. The number of lugs 75 and 76 per carton 17 may be varied. PIG. 6 shows an embodiment having three lugs 7 5 and 76, 10 while the remaining FIGS show an embodiment having four lugs per carton 17 (two leading and two trailing) . Leading lugs 75 are disposed anterior to the carton 17 for control and stabilization purposes, while the trailing lugs 7 6 urge the cartons forward on the conveyor 15 mechanism 12. The lugs are preferably constructed of nylon or a similar material. The lugs 75 and 76 are attached to the flight chains 77 via lug bases 78. The flight chains 77 are supported at both the top or forward run 84 and the bottom or return run 85 of the conveyor 12 by chain guides 20 79. The chain guides 79 are connected to the main frame 16 via guide supports 81. An elongated, longitudinally extending return guide 86 is disposed along the bottom run 85 of the conveyor 12 and mates with a notch 87 in each lug 75 and 76 to stabilize their return during high speed 25 operation. Additionally, longitudinally oriented slide rails 80 are disposed between each flight chain 77 and level with the horizontal plane of the article transport 280564 WO 93/18971 PCT/US93/01975 conveyor 14 slide plates 53. The slide rails 80 are preferably thin, elongated, metallic rails with a low-friction top surface which supports the bottom of each carton 17 on the conveyor 12. The width-wise or 5 transverse spacing between lugs 75 and 76 on the'parallel, side-by-side chains 77 is variable via a transverse lug adjustment mechanism 212, as known in the art. The in-line or longitudinal spacing between lugs 75 and 76, also known as the lug phase, is adjustable via lug phase 10 adjustment means disposed at the drive end 82 of the conveyor 12, as described more fully below. And, lug phase adjustment may be accomplished without the use of prior art phase variators and their attendant shortcomings. 151 The transfer or crossloading mechanism 15 is synchronized with the aforementioned apparatus 10 elements to move article groups 19 traveling on the article transport conveyor 14 into aligned cartons 17 traveling on the. carton transport conveyor 12. Referring again to PIG. 20 6, the crossloading mechanism 15 basically comprises a plurality of loader arm assemblies 89, a flight chain and guide tube assembly 91 to which the loader arm assemblies 89 are attached at predetermined intervals, and which provides a longitudinal movement component thereto, and a 25 control cam assembly 90 which provides a predetermined transverse motion component to the loader arm assemblies 89. ' 6 4 I .
» The flight chain and guide tube assembly 91 has a forward or top run 95 and a return or bottom run 96 and comprises drive and idler sprocket/shaft assemblies 93 and 94 and a pair of spacially parallel flight chains 102 and 5 103 which are connected to and revolve about the sprocket/shaft assemblies 93 and 94. The idler sprocket/shaft assembly 94 is disposed adjacent and immediately posterior to the region of the article transport conveyor 14 where the product groups 19 have 10 been fully merged therein, and marks the beginning of the flight chain assembly 91. The drive, sprocket/shaft assembly 93 is disposed downstream and adjacent to the article transport conveyor drive assembly 55, and marks the end of the crossloader 15. The flight chains 102 and 15 103 are driven by the sprocket/shaft assembly 93. The flight chains 102 and 103 are maintained in a rectilinear configuration on both the top and bottom runs 95 and 96 by chain guides 104 and 105, which are linked to the frame 16 via vertical support members 92.
Pairs of elongated tubes 106 are disposed at predetermined intervals along the flight chains 102 and 103, each guide tube 106 being directly connected at one end to the outer flight chain 103, and at its opposite end to the inner flight chain 102 so that they are oriented 25 transversely with respect to the axis of the apparatus 10 and to the downstream or forward run of the crossloader 15. The guide tubes 106 have a low friction exterior _ 05 WO 93/18971 PCT/US53/01975 2 surface to provide slidable support of the loader arm assemblies 89. The pairs of closely spaced tubes 106 increase the stability of transverse movement of the arm assemblies 89. Further stability is attained by the guide 5 blocks 107 (connected to the inner ends of the guide tubes 106 via set screws) traveling in a longitudinally oriented guide rail 109 which is linked to the frame 16 via a support 110. Lateral retainers 108 are mounted on the top of each guide block 107 to guide the transversely moving 10 arm assemblies 89. The spacing between successive sets (pairs) of tubes 106 corresponds to the spacing between the flight bars 52 of the article transport conveyor 14 and of the flight lugs 75 and 76 of the carton transport conveyor 12 so that the arm assemblies 89 are aligned to 15 push product, groups 19 from between the flight bars 52 into the cartons 17.
The loader arm assemblies 89 are movably mounted on the guide tubes 106, and in a transverse orientation with respect to the axis of the apparatus 10. The arm 20 assemblies 89 are conveyed in a downstream, longitudinal direction by the crossloader 15, while they simultaneously reciprocate in a transverse direction under the control of a cam mechanism 90 described below. Referring to FZ08. 6-11, each loader arm assembly 89 basically comprises an 25 elongated, rectilinear base plate 116, a stepped loading head 117 located at one end of the base plate 116, pivotal means 115 to actuate the stepped head 117 located 280564 generally at the opposite end of the base plate 116, and an elongated connection bar 121 which connects the actuation means 115 to the stepped head 117.
The base plate 116 is shown to have a rigid, flat, 5 elongated plate like structure which is oriented horizontally. A rigid stiffing bar 122 is connected to the top surface of the base plate 116, vertically oriented, to increase the rigidity and strength of the arm assembly 89. Preferably, a plurality of bores are 10 disposed in the stiffing bar 122 to reduce the weight of the bar 122, while maintaining its strength. The inwardly disposed end of the base plate 116 is slidably supported by the lateral retainers 108 of the guide block 107 of the flight chain and guide tube assembly 91. A first or outer 15 bushing block 123 is connected to the bottom of the base plate 116 at its actuation end 115. The first bushing block 123 has a pair of apertures, including bushings, through which the guide tubes 106 are slidably extended. A second or inner 20 bushing block 124 is similarly connected to the base plate 116 and interfaces with the guide tubes 106 a short distance from the first bushing block 123. The bushing blocks 123 and 124 are further connected by a spreader bar 125 which is oriented and rides between the guide tubes 25 106. A rotatable cam follower 126 is connected to the bottom of the spreader bar 125. The longitudinally traveling cam follower 126 cooperates with the cam t , t assembly 90 to cause the above discussed arm assembly 89 elements to transversely reciprocate on the guide tubes 106 and through the lateral retainers 108 of the guide block 107.
The loading head 117 has one or more fixed face members 118 and'one or more extensible facer*~members 119. The fixed face members 118 are connected to a backing plate 135. The extensible member 119 has a rear or tail portion which extends through an aperture 138 in the 10 backing plate 135 and is laterally supported by vertical supports 136. The tail portion is pivotally connected to the connecting bar 121 via a connection rod 137. Referring also to FIG. 3, each face member 118 and 119 contacts an individual container or article 18 located and 15 exposed for contact at one end of the article group 19. Since the articles are arranged in rows, as the arm assemblies 89 move forward, the face members 118 and 119 push the rows of articles forward from the article transport conveyor 14 into the cartons 17. Additionally, 20 the face members 118 and 119 are shown to be stepped or staggered so that the adjacent rows of articles 18 are also staggered or unaligned. In this configuration, the cylindrical containers in adjacent rows rest closer to one another than they would when aligned. Hence, the width of 25 the nested product groups 19 is less than that of the aligned groups 19. This decreased product group 19 width is exploited during carton loading to improve product pCT£M5 6 4 wo 93/18971 PcrZS»0s5 6 4 group ingress reliability and speed. Subsequent to loading, this nested product group configuration is altered, as described below, to provide a taut, fully loaded, square carton 17 with minimum wasted space. The 5 differential product group configuration provided by the stepped, actuatable loading head 117 is particularly beneficial given normal carton and beverage container manufacturing tolerances. Also, taut, fully loaded, square cartons are more stable for improved storage and 10 handling, with less article shifting and breakage. This is especially desirable in glass beverage containers.
Still referring to FIG. 3, at the apex position of approach of each arm assembly 89, the extensible face member 119 is shown to move from a retracted position with 15 respect to the fixed face members 118 to an extended position, wherein it is nearly flush with the fixed face members 118. This occurs at the point the product groups 19 are fully inserted into the carton 17-. It is this extension which aligns the product group rows with one 20 another, resulting in a normal product group 19. The extensible face member 119 is controlled by the cam assembly 90, via the actuation end 115 and connection bar 121. The cam assembly 90 simultaneously controls the transverse reciprocation of the entire arm assembly 89. 25 A pivot arm 120 is disposed at the actuation end 115 of the arm assembly 89. Importantly, the pivot arm 120 cooperates with the cam assembly 90 to actuate (via the 2805 « i • connecting bar 121) the loading head 117. The pivot arm 120 has a cylindrical vertical member 127 and a bar-shaped horizontal member 128 connected at a first end to the top of the vertical member 127 and oriented at a right angle 5 thereto. The horizontal member 128 is pivotally" connected at its opposite or second end to the second bushing block 124, via a pivot point 131. The connecting bar 121 is pivotally connected to the top of the horizontal member 128, proximate the first end thereof. As best shown in 10 FIG. 7, the horizontal members 128 extends and is movable through a slotted aperture 132 (shown in FXG. 10) in the base plate stiffener 122. A rotatable cam follower 129 is disposed at the bottom end of the vertical member 127. The longitudinally moving cam follower 129 cooperates with 15 the cam assembly 90 to cause the pivot arm 120 to pivot about point 131 and to thereby move connection bar 121 relative to the longitudinal axis of the arm assembly 89. This in turn actuates the extensible face member 119 of the loading head 117.
The loading head 117 configuration is variable to interface with a wide range of product group 19 configurations. Although in the instant embodiment the head 117 is configured for use with a 3 by 4 12 - pack configuration, the head 117 can be modified for cartoning 25 2 by 6 12 - packs, 6 packs, 24 packs and various other product group arrangements, including stacked configurations. The essential feature of the head 117 is wo 93/18971 280564 4 t that the face members contacting the end containers alternate between fixed-type members 118 and extensible-type members 119 so that the container rows may be initially staggered for loading purposes. Head 117 5 modification is accomplished by changes in the configuration of the face members and their placement on the backing plate 135. The head 117 configuration may also be adjusted to accommodate various container sizes, types and configurations. Additionally, the loading head 10 117 may be bifurcated,, as shown in PIG. 17, to further divide pregrouped patterns selected by the flights 52 in cooperation with a wedge shaped dividing funnel assembly 213. Utilizing this head 117 configuration the apparatus 10 has the ability to achieve cartoning rates 15 approximately twice that of conventional systems. Modifications may be made to the remaining elements of the crossloader 15 to provide cam-actuated stepped faces in this twin-headed embodiment.
The loader control cam assembly 90 controls the 20 transverse, reciprocal motion of both the overall arm assemblies 89 and the extensible face members 119 of the arm assembly loading heads 117. Referring to PIG8. 3 and 13, the loader control cam assembly 90 is generally oriented longitudinally with respect to the overall 25 crossloading mechanism 15, and has a top or forward run 142 and a bottom or return run 14 3 corresponding to the revolving arm assemblies 89. The top run 142 basically 2805 WO 93/18971 PCT/US93/01975 t ■ comprises an inwardly sloping approach segment 144, an active segment 145 located at the apex of the approach segment 144 and involving a change in direction thereof, and an outwardly sloping dwell segment 146. in the 5 approach segment 144, the first or arm cam follower 126 is urged inwardly,' with respect to the apparatus 10, and drives each arm assembly 89 into moving engagement with a product group 19 until the product group 19 is loaded in a carton 17. At this point the cam follower 126 is at the 10 apex position of the cam assembly 90. As best shown in FIG. 13, the second or extensible member cam follower 129 is also guided inwardly in the approach segment 144, but since it is linearly aligned and traveling along with the first cam follower 125, no relative movement exists 15 between these two elements 126 and 129. In contrast, as each arm assembly 89 reaches the apex 145 of the cam assembly 90, the first cam follower 126 moves out of linear alignment with the second cam follower 129. The second cam follower 129 no longer moves the arm assembly 20 89 in a transverse direction, and instead it is propelled only longitudinally. However, the spacially trailing second arm follower continues to undergo transverse movement due to the inwardly sloping cam segment 144, causing the pivot arm 120 to pivot about point 131 and 25 thereby activating the extensible member 119. In the outwardly sloping dwell segment 14 6, a complete pivot of the pivot arm 120 is accomplished, with resultant full 2805 « . • extension of the extensible member 119. Throughout this segment 146, the cam rollers 126 and 129 are once again linearly aligned during travel and therefore no further relative motion occurs. Each arm assembly 89 is retracted 5 by the outward movement of the cam roller 126. In the return run 143 of the cam assembly 90, the arm assemblies 89 are longitudinally returned to the forward run 142 and undergo no transverse motion. Additionally, the pivot arm 120 is reset in the return run 143 to its position in the 10 approach segment 144. still referring to FIG. 13, the forward run 14 2 of the cam assembly 90 comprises a continuous inner rail 147 which extends the entire length of the top run 142, and an outer rail 148 which extends the length of the approach segment 144 and is spaced from 15 the inner rail 147 a distance equivalent to the diameter of the second cam follower 129. The second follower 129 is disposed in a cam pathway between the inner and outer rails 147 and 148 to affectuate transverse,"inward motion to the arm assemblies 89. Preferably, the outer rail is 20 connected to a pivot point 149 at it's first end. . Its opposite end is connected to a release mechanism (not shown), such as a pressure release cylinder and piston. The release mechanism is controlled by a sensing mechanism, for example, a photoeye or capacitive proximity 25 sensor, such that if an excessive force is placed on the 2805 WO 93/18971 PCT/US93/01975 I • * outer rail 14 8, for example due to a jamming of the arm assembly 89, the release mechanism will be actuated releasing the outer rail 148 which pivots about point 149.
Referring to FIGS. 4, is and 16, a funnel assembly 5 157 is shown disposed between the article transport conveyor 14 and the carton transport -conveyor 12 to facilitate entry of product groups 19 into the cartons 17. The funnel assembly 157 basically comprises a plurality of funnels 158 which are fixed at predetermined intervals, 10 corresponding to the remaining elements of the apparatus 10, to a longitudinally oriented, revolving flight chain 159. The flight chain 159 is supported by a base which includes actuation, dwell and release cam surfaces 170, 171 and 172 which control the actuation of the funnels 15 158. The chain 159 revolves about drive and idler sprocket/shafts 174 and 175 and is specifically supported by a chain guide 173. Each funnel 158 comprises a base 162, first and second guides 160 and 161, a pair of first arms 163, a pair of second arms 164, and first and second 20 blocks 165 and 166. The base 162 is a flat plate with a low friction top surface to provide sliding support of product groups 19 moved thereacross. The base 162 must be wide enough to bridge the gap between conveyors 12 and 14, and long enough to accommodate the width of the product 25 group 19. The guides 160 and 161 are flat plates which are pivotally mounted at the length-wise first and second ends of the base 162. The guides 160 and 161 have a height 280564 PCT/US93/0197S s • which is a function of the height of the containers 18. The first and second arms 163 and 164 are connected to the bottom of the respective first and second guides 160 and 161, and extend therefrom at a right angle. The first 5 arms 163 are further pivotally connected, to a first block 165 disposed on the bottom of the base 162 at a first end. The second arms 164 are similarly connected to a second block 166 disposed on the bottom of the base 162, at the second end. The ends of the first arms 163 have rods 168 10 which pivotally mate with slots 176 disposed proximate the ends of the second arms 164. A cam follower 167 is disposed at the end of each of the second arms 164. This structure pivots the guides 160 and 161 under cam control. A spring 169 normally urges the arms 163 and 164 15 downwardly, whereby the guides 160 and 161 are angled inwardly or closed. In this closed orientation, the guides 160 and 161 are positioned to slide between the carton side end flaps (dust flz.ps) and into an operative orientation as they are conveyed upwardly by the flight 20 chains 159. Subsequently, the active cam surface 170 urges the cam follower 167 upwardly which causes the guides 160 and 161 to pivot to a vertical or open position. In this orientation, the carton flaps are held aside and the product groups 19 are guided into the carton 17. Although 25 this apparatus embodiment utilizes this particular cam actuated funnel assembly 157, it is within the purview of the present invention to utilize alternative funnel 280564 WO 93/18971 PCT/US93/01975 assembly embodiments or to substitute a dead plate structure in place of a funnel assembly depending upon the particular cartoning application.
Referring to FIG. 14, the drive end 82 of the carton 5 transport conveyor 12 primarily tunotions to longitudinally' convey cartons 17 downstream in the apparatus and further provides a meant to adjust the longitudinal separation distance between or phase of the leading and trailing flight lugs 75 and 76. This phase 10 adjustment is desirable to permit the apparatus 10 to be used with various carton configurations. The drive end 82 components are shown to primarily comprise a first or top drive shaft 179, a second or bottom drive shaft 180, a gear box 181, and a plurality of head sprockets 182*185 15 mounted on the first or head shaft 179. The flight lugs 75 and 76 mounted on flight chains 77 are longitudinally moved via rotation of their respective head sprockets 182-185. The flight lugs 75 and 76 are linked to flight chains 77 via lug bases 78. Slide rails 80 are :hown 20 disposed between flight chains 77 for support of the carton 17 bottom.
The first or head shaft 179 is fixed to the mainframe 16 directly above and spacially parallel to the second drive shaft 180. The second drive shaft 180 is also 25 connected to the frame 16, and further to the gearbox 181 which is communicatively connected to a main motor (not shown). Rotational force from the second drive shaft 180 280 b C WO 93/18971 PCT/US93/01975 is transferred to the first drive shaft 179 via drive chain 202, which is connected to drive sprockets 199 and 196. Drive sprocket 199 is coupled to second drive shaft 180 via taper lock bushing 200, and drive sprocket 196 is 5 releasably coupled to first drive shaft 179 via clamp plate 197 and drive hub 198. Chain 202 tension is adjustable via take up 201. Only the leading lug head sprockets 182 and 183 are directly linked to the first drive shaft 179 and rotated thereby. The trailing lug 10 tail sprockets 184 and 185 are merely rotatable about the first drive shaft 179, but not driven by its rotation. The first leading lug head sprocket 182 is coupled to the first drive shaft 179 via clamp plate 193 and fixed hub 194. The second leading lug head sprocket 183 is split and 15 coupled to a drive hub 191. This structure permits removal of the leading lug sprocket 183 and its associated elements for conversion of the apparatus for 6-pack cartoning function as shown in PIG. 6.
The first trailing lug head sprocket 184 is mounted 20 for rotation about the first drive shaft 179 via clamp plate 188 and bushing 189. Drive sprocket 186 is provided to interface with drive chain 205 for transfer of rotational force from the second drive shaft 180. Drive chain 205 is coupled to the second drive shaft 180 via 25 drive sprocket 203, which in turn is attached to the shaft 180 via clamp hub 204. Tension in drive chain 205 is adjustable via take up 206. The second trailing lug head 2805 WO 93/18971 PCT/US93/01975 t ■ ♦ sprocket 185 is mounted for rotation about the first drive shaft 179 via splined hub 190, drive hub 191 and splined adjustment hub 192. Drive sprocket 187 interfaces with drive chain 209 for transfer of rotational force from the 5 second drive shaft 180. Drive chain 209 is coupled to drive shaft 180 via drive sprocket 207, which"in turn is attached to the shaft 180 via splined hub 2 08. Chain tension adjustment is provided by take up 210.
In a normal conveyance mode, rotational force from 10 the second drive shaft 180 is transferred to both the leading lug conveyance components, via direct connection to the first drive shaft 179, and to the trailing lug conveyance components freely rotating about the first drive shaft 179, by the sprocket and drive chain 15 structures described above. And, since these structures have corresponding dimensions, the rate of rotation of the trailing and leading conveyance components is synchronized such that a constant longitudinal phase is maintained. Lug phase is varied by first disengaging the first and 20 second drive shafts 179 and 180, and subsequently rotating the first drive shaft 179 to advance the leading lugs 75. Since the trailing lugs 76 rotate freely with respect to the first drive shafts 179, they remain stationary during such rotation. Disengagement of the second drive shaft 25 180 is accomplished by loosening bolts 213 to free drive sprocket 196 from the first drive shaft 179. Rotation of the first drive shaft 179 is accomplished by means of a 280564 WO 93/18971 PCT/US93/01975 l • hex end 211 which is shown exposed for mating with a wrench or the like at an area of the apparatus 10 which is easily accessible to a technician. This mechanism allows for adjustment of carton spacing between, for example, 6 5 and 12 inch, on center arrangements whereby the apparatus is quickly and easily converted from 6 to 24 pack processing.
Many changes are possible to the embodiments of this invention utilizing the teachings thereof, the 10 descriptions above, and the accompanying drawings should be interpreted in the illustrative and not the limited sense. 28055

Claims (5)

WHAT WE CLAIM IS:
1. A cartoner assembly for loading article groups into open carton sleeves comprising: (a) article infeed means supplying at least one stream of articles; (b) article selecting means intersecting said article infeed means to form and move a longitudinal stream of article groups of a predetermined pattern; (c) carton supply means synchronized and moving parallel with said article selecting means to provide cartons with open ends facing said moving article groups; and (d) article group transfer means constructed and arranged to move article groups into the open ends of the carton sleeves, said article group transfer means comprising guide support means moving in parallel synchronization with said carton supply means, a movable pushing mechanism operative in a transverse direction, and activation means to move said pushing mechanism at predetermined positions during its travel path, said activation means comprising a cam track/cam follower assembly, said pushing mechanism including a movable head member cam activatable at predetermined times with respect to said travel path, and a pivotable member connected to said movable head member and having a cam follower acted upon by said cam track/cam follower assembly.
2. The cartoner assembly of Claim 1, wherein said head member has a fixed and cam activated extensible face portions.
3. An article cartoner comprising: (a) an article infeeder for supplying a stream of articles in a linear travel path; (b) an article selector having a longitudinal travel path intersecting said article infeeder travel path, said article selector having a plurality of spaced, parallel, 28 0 5 6 4 - 36 - transversely oriented article dividers which are fixed in place for intersecting said article stream to form a stream of article groups; (c) a carton supplier for supplying a stream of cartons with open ends facing said article group stream, said carton supplier having a longitudinal travel path parallel to said article selector travel path; and (d) article group transfer means constructed and arranged to move article groups into the open ends of the carton sleeves, said article group transfer means comprising guide support means moving in parallel synchronization with said carton supply means, a movable pushing mechanism operative in a transverse direction, and activation means to move said pushing mechanism at predetermined positions during its travel path, said activation means comprising a cam track/cam follower assembly, said pushing mechanism including a movable head member cam activatable at predetermined times with respect to said travel path, and a pivotable member connected to said movable head member and having a cam follower acted upon by said cam track/cam follower assembly.
4. An article cartoner wherein said article group transfer means further comprises: a longitudinal travel path parallel to said article selector travel path and a plurality of transversely operative pushers for pushing said article groups into said open ends of said cartons.
5. A cartoner assembly according to any one of the preceding claims and substantially as hereinbefore described with reference to the accompanying drawings. END OF CLAIMS N.Z. PATENT OFFICE 7 OCT m RECEIVED
NZ280564A 1992-03-24 1993-03-02 Cartoner assembly with cam operated transverse pushers which push groups of articles into cartons NZ280564A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/856,450 US5241806A (en) 1992-03-24 1992-03-24 Continuous motion cartoner assembly
NZ251088A NZ251088A (en) 1992-03-24 1993-03-02 Continuous motion carton loading machine with transversely moving pushers to load articles into cartons

Publications (1)

Publication Number Publication Date
NZ280564A true NZ280564A (en) 1997-12-19

Family

ID=26651281

Family Applications (2)

Application Number Title Priority Date Filing Date
NZ280565A NZ280565A (en) 1992-03-24 1993-03-02 Carton supply means for cartoner machine: two pairs of endless chains with spaced carton flight lugs
NZ280564A NZ280564A (en) 1992-03-24 1993-03-02 Cartoner assembly with cam operated transverse pushers which push groups of articles into cartons

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NZ280565A NZ280565A (en) 1992-03-24 1993-03-02 Carton supply means for cartoner machine: two pairs of endless chains with spaced carton flight lugs

Country Status (1)

Country Link
NZ (2) NZ280565A (en)

Also Published As

Publication number Publication date
NZ280565A (en) 1997-10-24

Similar Documents

Publication Publication Date Title
EP0631555B1 (en) Continuous motion cartoner assembly
AU675517B2 (en) Stacked article cartoning apparatus
KR100444887B1 (en) Packing machine for multi-packs
EP0268611B1 (en) Method and apparatus for feeding containers to a carrier sleeve
US20220033122A1 (en) Continuous Motion Packaging Machine With Carton Turning Station
US5692361A (en) Stacked article packaging method
AU725588B2 (en) Apparatus for loading stacked article groups into cartons
EP0686118B1 (en) Stacked article packaging method
NZ280564A (en) Cartoner assembly with cam operated transverse pushers which push groups of articles into cartons
EP0632776B1 (en) Cross loading apparatus for use with cartoning systems
AU696341B2 (en) Stacked article packaging method

Legal Events

Date Code Title Description
RENW Renewal (renewal fees accepted)
ASS Change of ownership

Owner name: GRAPHIC PACKAGING INTERNATIONAL, INC, US

Free format text: OLD OWNER(S): RIVERWOOD INTERNATIONAL CORP

RENW Renewal (renewal fees accepted)
EXPY Patent expired
ERR Error or correction

Free format text: THE OWNER HAS BEEN CORRECTED TO 3127201, GRAPHIC PACKAGING INTERNATIONAL, INC., 1500 RIVEREDGE PARKWAY NW, SUITE 100, ATLANTA GEORGIA 30328, US

Effective date: 20150130