NZ216928A - Sorbinil by optical resolution of precursor 6- fluoro -4- ureidochroman -4-ylcarboxylic acid and certain amine salts of this precursor acid - Google Patents
Sorbinil by optical resolution of precursor 6- fluoro -4- ureidochroman -4-ylcarboxylic acid and certain amine salts of this precursor acidInfo
- Publication number
- NZ216928A NZ216928A NZ216928A NZ21692883A NZ216928A NZ 216928 A NZ216928 A NZ 216928A NZ 216928 A NZ216928 A NZ 216928A NZ 21692883 A NZ21692883 A NZ 21692883A NZ 216928 A NZ216928 A NZ 216928A
- Authority
- NZ
- New Zealand
- Prior art keywords
- fluoro
- sorbinil
- acid
- amine
- salt
- Prior art date
Links
- LXANPKRCLVQAOG-NSHDSACASA-N sorbinil Chemical compound C12=CC(F)=CC=C2OCC[C@@]21NC(=O)NC2=O LXANPKRCLVQAOG-NSHDSACASA-N 0.000 title claims description 30
- 229950004311 sorbinil Drugs 0.000 title claims description 29
- 239000002253 acid Substances 0.000 title claims description 8
- -1 amine salts Chemical class 0.000 title claims description 7
- 239000002243 precursor Substances 0.000 title description 8
- PLFOGGJHQOVQAF-UHFFFAOYSA-N 4-(carbamoylamino)-6-fluoro-2,3-dihydrochromene-4-carboxylic acid Chemical compound C1=C(F)C=C2C(NC(=O)N)(C(O)=O)CCOC2=C1 PLFOGGJHQOVQAF-UHFFFAOYSA-N 0.000 title description 6
- 230000003287 optical effect Effects 0.000 title description 3
- 238000000034 method Methods 0.000 claims description 29
- KWGRBVOPPLSCSI-WPRPVWTQSA-N (-)-ephedrine Chemical compound CN[C@@H](C)[C@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WPRPVWTQSA-N 0.000 claims description 16
- 150000001412 amines Chemical class 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 125000002091 cationic group Chemical group 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 claims 1
- 239000012442 inert solvent Substances 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 96
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 40
- 239000000047 product Substances 0.000 description 38
- 229910001868 water Inorganic materials 0.000 description 21
- 238000001914 filtration Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 239000002002 slurry Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 150000001413 amino acids Chemical class 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 238000010992 reflux Methods 0.000 description 12
- SWBBIJZMIGAZHW-UHFFFAOYSA-N 6-fluoro-2,3-dihydrochromen-4-one Chemical compound O1CCC(=O)C2=CC(F)=CC=C21 SWBBIJZMIGAZHW-UHFFFAOYSA-N 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 239000012452 mother liquor Substances 0.000 description 6
- 229960000583 acetic acid Drugs 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 5
- PLFOGGJHQOVQAF-LLVKDONJSA-N (4r)-4-(carbamoylamino)-6-fluoro-2,3-dihydrochromene-4-carboxylic acid Chemical compound C1=C(F)C=C2[C@@](NC(=O)N)(C(O)=O)CCOC2=C1 PLFOGGJHQOVQAF-LLVKDONJSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000005909 Kieselgur Substances 0.000 description 4
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 4
- 229940091173 hydantoin Drugs 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- GKKCIDNWFBPDBW-UHFFFAOYSA-M potassium cyanate Chemical compound [K]OC#N GKKCIDNWFBPDBW-UHFFFAOYSA-M 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000020477 pH reduction Effects 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 2
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 2
- 229960002179 ephedrine Drugs 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- IKEOYIYTNFOOCW-UHFFFAOYSA-N 2-fluoro-2,3-dihydrochromen-4-one Chemical compound FC1OC2=CC=CC=C2C(C1)=O IKEOYIYTNFOOCW-UHFFFAOYSA-N 0.000 description 1
- KAISVRPJYJPQON-UHFFFAOYSA-N 4-chloro-6-fluoro-3,4-dihydrochromen-2-imine Chemical compound FC=1C=C2C(CC(OC2=CC=1)=N)Cl KAISVRPJYJPQON-UHFFFAOYSA-N 0.000 description 1
- VUTSCRNPMNTQSK-UHFFFAOYSA-N 6-fluoro-3,4-dihydrochromen-2-one Chemical compound O1C(=O)CCC2=CC(F)=CC=C21 VUTSCRNPMNTQSK-UHFFFAOYSA-N 0.000 description 1
- NBJLVCCKHBVDLN-UHFFFAOYSA-N 6-fluorochromene-2,4-dione Chemical compound O1C(=O)CC(=O)C2=CC(F)=CC=C21 NBJLVCCKHBVDLN-UHFFFAOYSA-N 0.000 description 1
- 229940118148 Aldose reductase inhibitor Drugs 0.000 description 1
- 208000002249 Diabetes Complications Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- XDGYKMTZQOTMFP-UHFFFAOYSA-N N-chloro-2,3-dihydrochromen-4-imine Chemical compound ClN=C1CCOC2=CC=CC=C12 XDGYKMTZQOTMFP-UHFFFAOYSA-N 0.000 description 1
- 229910019093 NaOCl Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000007059 Strecker synthesis reaction Methods 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000003288 aldose reductase inhibitor Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 238000005910 aminocarbonylation reaction Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- RRKTZKIUPZVBMF-IBTVXLQLSA-N brucine Chemical compound O([C@@H]1[C@H]([C@H]2C3)[C@@H]4N(C(C1)=O)C=1C=C(C(=CC=11)OC)OC)CC=C2CN2[C@@H]3[C@]41CC2 RRKTZKIUPZVBMF-IBTVXLQLSA-N 0.000 description 1
- RRKTZKIUPZVBMF-UHFFFAOYSA-N brucine Natural products C1=2C=C(OC)C(OC)=CC=2N(C(C2)=O)C3C(C4C5)C2OCC=C4CN2C5C31CC2 RRKTZKIUPZVBMF-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- FUKUFMFMCZIRNT-UHFFFAOYSA-N hydron;methanol;chloride Chemical compound Cl.OC FUKUFMFMCZIRNT-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- JOYYZHWCUDYZKJ-UHFFFAOYSA-N n-chloro-6-fluoro-2,3-dihydrochromen-4-imine Chemical compound O1CCC(=NCl)C2=CC(F)=CC=C21 JOYYZHWCUDYZKJ-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940117803 phenethylamine Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Description
New Zealand Paient Spedficaiion for Paient Number £16928 2 f 69 28 NO DRAWINGS Priority Date(s); JOr.|.|r$2-j.
..AOr.U^t' Complete Specification Filed: iXr.\a>& Class: W.. CQ.^JtX-fCj J • • • Publication Date: .Q .4^. P.O. Journal, No: .VWtf- Under the provisions of Re^ lation 23 (I) the ..._ Complete Specification has been ante-dat to *3 November 19 ^ * • J M Of. • Divided out of: No.: 206,189 Date: 8th November 1983 NEW ZEALAND PATENTS ACT, 1953 COMPLETE SPECIFICATION "SORBINIL BY OPTICAL RESOLUTION OF PRECURSOR 6-FLUORO-4-UREIDOCHROMAN-4-CARBOXYLIC ACID" X^We, PFIZER INC., a corporation organized under the laws of the State of Delaware, United States of America, of 235 East 42nd Street, New York, State of New York, United States of America, hereby declare the invention for whichXK/ we pray that a patent may be granted to MX«/us, and the method by which it is to be performed, to be particularly described in and by the following statement: - (followed by page la) 2 16928 SORBINIL BY OPTICAL RESOLUTION OF PRECURSOR 6-FLUORO-4-UREIDOCHROMAN-4-CARBOXYLIC ACID S-6-Fluorospiro[chroman-4,4'-imidazolidine]-2',5'-dione, also named S-2,3-dihydro-6-fluorospiro[4H-1-benzopyran-4,4'-imidazolidine]-21,5'-dione (U.S.A.N.: sorbinil) of the formula is a highly potent aldose reductase inhibitor having especial value in effectively controlling the chronic complications of diabetes mellitus. (Sarges, U.S. Patent No. 4,130,714). The present invention concerns an improved process for preparing sorbinil and intermediates used in this improved process.
Heretofore, sorbinil was prepared by resolution of the corresponding racemic 6-fluorospiro[chroman-4,41 -imidazolidine]-25'-dione, of the formula by using highly toxic brucine as the resolving agent in high volumes of solvent (New Zealand Patent Specification No. 187334).
Surprisingly, we have found that resolution of precursor 6-fluoro-4-ureidochroman-4-carboxylic acid, of the formula (I) F (II) 2 16928 00H — tux) as either the D- (+}- (1-phenethyl) amine or the L-(-)-ephedrine salt, followed by simple cyclization in glacial acetic acid, provides an improved method for sorbinil. The racemic precursor is conveniently derived from the above racemic imidazolidine of the formula (II) via the amino acid of the formula COOH (IV) In this manner, outstanding yields of sorbinil are. obtained with much lower solvent volumes and with "readily available, relatively inexpensive optically active amines. At the same time the use of a highly toxic resolving agent is avoided. The efficiency of this process is further enhanced by isolating the undesired enantiomer from mother liquors and recycling to fresh racemate, via precursor 6-fluoro-4-chromanone.
Sorbinil has also been more recently prepared by an alternative synthesis in which the required chirality is induced during the synthetic sequence (Sarges, U.S. Patent No. 4,286,098).
The present invention encompasses a process for the preparation of sorbinil, or a pharmaceutically acceptable cationic salt thereof, which comprises the steps of: 216928 (a) separating a crystalline S-6-fluoro-4-ureido-chroman-4-carboxylic acid with D-(+)-(1-phenethyl)amine or L-(-)-ephedrine, respectively of the formulae from a racemic compound of the formula (III); and (b) cyclizing said phenethyl amine or ephedrine salt in excess glacial acetic acid to form said sorbinil.
Also within the purview of the present invention are the intermediate salts of S-6-fluoro-4-ureido-chroman-4-carboxylic acid with either D-(+)- (1-phenethyl) amine or L-(-)-ephedrine.
The process of the present invention is readily carried out. Racemic 6-fluoro-4-ureidochroman-4-carboxylic acid (available from 6-fluoro-4-chromanone by the method of Sarges, U.S. Patent No. 4,130,714) is combined with D-(+)-(1-phenethyl)amine or L-(-)-ephedrine in a suitable solvent. Usually about mole for mole of acid and amine are employed, although the amount of amine can be varied from as little as 0.5 mole/mole to a large excess. To avoid precipitation of racemic free acid, it is preferred to employ at least about mole/mole. The solvent is usually organic in nature. With either amine, methanol is particularly well-suited. Acetone is also a preferred solvent when the amine is ephedrine. Simple experimentation will determine other solvents suitable for the present process. The salts are generally formed at elevated temperatures, e.g., 40-100°C., conveniently between 4 0°C. and the reflux temperature of the solvent. It is not essential that complete solution occur at any ch3 H2N-CHC6H5 and CH, CH_ OH I 3 I 3 I HN CH-CHC H5 , v. - I •■> . * ' 2169 28 stage, i.e., the salt can crystallize prior to complete solution of the starting racemic acid (III). The crystalline resolved salt is recovered after lowering the temperature, e.g., to 0-40°C., and, if desired, digesting the product by stirring for 1'to 24 hours at the temperature used for isolation. If further purification of the resolved salt is desired, the initially recovered salt can be repulped or recrystallized from the same or another solvent, as delineated above.
The resolved salt, if desired, is converted to its acid form by standard techniques of acidification and extraction. The resolving agent, if desired, is recovered from the aqueous raffinate by standard techniques of basification and extraction.
The resolved free acid, or conveniently the amine salt itself, is readily converted to sorbinil by heating at 70-110°C. in glacial acetic acid. This step is conveniently carried out over a steam bath at 90-100°C.
The required racemic ureidocarboxylic acid (III) is prepared by total synthesis, e.g., conversion of 6-fluoro-4-chromanone to amino acid (IV) via the Strecker synthesis, followed by N-aminocarbonylation. It is preferable to prepare the intermediate amino acid (IV) from the racemic hydantoin (II), in turn readily prepared from 6-fluoro-4-chromanone in one step according to the method of Sarges, U.S. Patent No. 4,130,714.
Conversion of the hydantoin (II) to the aminoacid (IV) is accomplished under a variety of aqueous, basic conditions'. Suitable bases are sodium, potassium and barium hydroxide, used in excess (e.g., 2-4 moles of base/mole of hydantoin) in water at 75-100°C., conveniently at reflux. The preferred base is sodium hydroxide, using about 4 moles of base/mole of hydantoin. The aminoacid can be recovered by neutralization or 216928 ♦ acidification and solvent displacement. Because the aminoacid is so highly water soluble, it is preferable to N-aminocarbonylate the amino acid in situ, i.e., without isolation. Thus the aqueous reaction mixture 5 . containing aminoacid is simply neutralized, preferably made slightly acidic, and treated with excess of an alkali metal cyanate. The resulting ureido derivative (III) is then readily precipitated by acidification.
The efficiency of the over-all process from 6-10 fluoro-4-chromanone to sorbinil is greatly increased by recovering crude enantiomer of the sorbinil precursor from mother liquors. Preferably also recovering the amine resolving agent, using standard techniques of basification and extraction, the enantiomeric material 15 is recycled to 6-fluoro-4-chromanone, by the method taught in New ZealandLPatent Specification No. 216929,, filed concurrently with present application, for "Regeneration of 6-Fluoro-4-Chromonone from Byproducts in the Synthesis of Sorbinil." 20 This method is also disclosed by specific Examples below.
The present invention is illustrated by the following examples. However, it should be understood that the invention is not limited to the specific 25 details of these examples. All temperatures are in °C. and are ambient unless otherwise specified. All solvent stripping was carried out in vacuo. % c 6MARt9&7 •216928 EXAMPLE 1 RS-4-Amino-6-fluorochroman-4-carboxylic Ac id A stirred slurry of RS-6-fluorospiro[chroman-4,4'-imidazolidine]-25'-dione, (78 g, 0.33.mole) and Ba(0H)2.8H30 (208.3 g, 0.66 mole) in 585 ml H20 was " slowly heated to reflux over 3 hours and refluxed 16 hours. The slurry was cooled to 80° and powdered added portionwise over 5 minutes.
Moderate foaming was noted. After stirring 1.5 hours at 80the mixture was cooled to 60° and filtered over diatomaceous earth with 2 x 100 ml hot for wash. The combined filtrate and washes were stripped to 200 ml and allowed to stand overnight. 2-Propanol (600 ml) was added and the mixture heated to 70° to dissolve precipitated solids. The hot solution was treated with activated carbon, filtered over diatomaceous earth and washed with hot 1:1 H20:2-propanol. The combined filtrate and washes were stripped to 200 ml, and water chased with 3 x 300 ml fresh 2-propanol. The resulting thick slurry was diluted with 200 ml additional 2-propanol, cooled to 5", granulated 0.5 hour, filtered and air dried to yield title product, 63.6 g, 91.2%, mp 252-253 (dec.). 2f€92« EXAMPLE 2 RS-6-Fluoro-4-ure idochroman-4-carboxylic Ac id Method A Title product of the preceding Example (21.1 g, 0.1 mole) was slurried in 250 ml HjO. KOCN (16.2 g, 0.2 mole) was added portionwise over. 2.5 minutes. The almost complete solution was stirred 22 hours at 23 during which the pH increased from 6.8 to 9.1 and complete solution occurred. Concentrated HCl (19.0 ml) was added over 1 hour, keeping temperature 25-29°C. The resulting slurry was granulated 1 hour (pH 3.2-3.5), and title product recovered by filtration with 150 ml HjO wash, partially dried in air and then for 18 hours at 50-55° in vacuo, 20.0 g, 79%.
Method B The same starting imidazolidine used in the preceding Example (47.2 g, 0.2 mole) and NaOH pellets (28 g, 0.7 mole) were combined in 600 ml ^O and heated at reflux for 40 hours. The reaction mixture was cooled to 24° and the pH lowered from 11.8 to 5.0 with 6N HCl. Gassing was noted below pH 8. After stirring the slurry for 20 minutes at pH 5, KOCN (32.5 g, 0.4 mole) was added over 2 minutes, the mixture stirred 20 hours and a small amount of solids removed by filtration with 50 ml water for wash. The combined filtrate and wash was adjusted from pH 8.5 to 4.0 with 6N HCl. Precipitated title product was recovered by filtration, washed with warm water and air dried, 39.7 g (78%), mp 198-199 (dec.).
Alternatively the NaOH hydrolysis stage was carried out at 118° and 27 psig for 18 hours. Further reaction with KOCN and isolation as immediately above likewise gave title product, 38.8 g (76.4%), mp 199-200 (dec.). 2 169 28 EXAMPLE 2 (Cont.) Alternatively KOH (26.4 g, 85%, 0.4 mole) was substituted for NaOH, with a reflux time of 22 hours. Reaction with KOCN and isolation as immediately above likewise gave title product, 36.8 g (72.4%), mp 198-199 (dec.).
EXAMPLE 3 D-(+)-(1-Phenethyl)ammonium S-6-Fluoro-4-ureidochroman-4-carboxylate Title product of the preceding Example (10.0 g, 39.4 mmole) was slurried in 4 00 ml of methanol at 45+5° for 1 hour. Over 4 minutes 4.87 g, (40.1 nunole) of D-(+)-(1-phenethyl)amine in 45 ml methanol was added to the resulting thin slurry, yielding a solution. The bath was removed, the mixture cooled slowly to ambient temperature, the mixture granulated for 16 hours, and crude title product recovered by filtration and dried at 60° in air, 6.4 g, 86.6%, mp 206-210°, [alpha]^ = +54.3° (c = 0.3, methanol). Crude title product, 6 g, was repulped in 180 ml methanol at 40-50° for 1 hour, cooled to ambient temperature, granulated 3 hours, filtered and air dried to yield purified title product, 4.4 g, mp 214-216°, [alpha]^5 = +69° (c = 0.3 in methanol), 73.3% recovery, overall 63.5% yield.
The mother liquor from crude title product was stripped to yield a mixture consisting primarily of D-(+)-(1-phenethyl)ammonium R-6-fluoro-4-ureidochroman-4-carboxylate together with title product, 8.3 g, mp 198-200°C, [alphajj^ = -35.4° (c = 0.5, methanol], suitable for recycle to 6-fluoro-4-chromanone. Under one option, this salt mixture is distributed between ethyl acetate and water, with the pH first adjusted to 10. The ethyl acetate layer is separated and optically 216928 EXAMPLE 3 (Cont.) active amine recovered by evaporation. The pH of the aqueous phase is then adjusted to 1-2 with hydrochloric acid and extracted with fresh ethyl acetate. The organic phase is washed with additional small portions of water, dried (MgSO^) and evaporated to yield a mixture of R and RS-6-fluoro-4-ureidochroman-4-carboxylic acid.
EXAMPLE 4 Sorbinil Title product of the preceding Example (4.3 g, 11 mmoles) was slurried in 30 ml glacial CE^CC^H at 93 °C for 2 hours, a solution resulting after the initial 15 minutes. The mixture was cooled to 60° and stripped to 10 ml. Warm water (21.5 ml, 50°) was added, resulting in a slurry having pH 3.5. After minutes, the pH was adjusted to 4.5 with 4 ml 4N NaOH (temperature now 28°) and the mixture cooled to 20° over 30 minutes. Filtration gave relatively pure sorbinil directly, 2.35 g, 90.3%, mp 238-241°C, [alpha]D = +52.7° (c = 1, methanol). Sorbinil was purified by dissolving 2.2 g in 27.4 ml boiling acetone, clarified by hot filtration and the mother liquor stripped to 13 ml. The resulting slurry was twice slowly diluted with 17.2 ml of hexane and stripped to 13 ml. Filtration and air drying gave purified sorbinil, 1.924 g, 87.5%, mp 239.5-242.5°, [alpha]^5 = +54.5 (c = 1, methanol).
Relatively pure sorbinil, 56.2 g, mp .237-.2410, [alphajp = +52.3° (c = 1, methanol), prepared in like manner in'89.8% yield from title product of the preceding Example was dissolved in 700 ml of boiling acetone, clarified by filtration and stripped to 3 00 ml. Hexane 2 16928 EXAMPLE 4 (Cont.) (400 ml) was slowly added and the mixture restripped to 300 ml. Hexane addition and stripping was repeated, yielding purified title product, vacuum dried at 4 0.°C for 18 hours, 54.9 g, 97.7%, mp 236-241°, [alpha]^ = +53.4° (c = 1 in methanol).
EXAMPLE 5 L-(-)Ephedrine Salt of S-6-fluoro-4-ureidochroman-4-carboxylic Acid Method A Title product of Example 2 (35.6 g, 0.14 mole) was slurried 1.07 liters acetone, stirred at reflux (59°) for 30 minutes, and cooled to 54°. L-{-)-ephedrine (24.4 g, 0.148 mole) was added in one portion. The slurry thinned and near solution resulted. After less than 2 minutes at 55° rapid crystallization began. The ' slurry was refluxed 2 hours, cooled to 40°C and sugarlike crystals of crude title product recovered by filtration, 26.1 g; mp 204° (dec.); lalpha]^ = +37.0 (c = 1, methanol).
Mother liquor at ambient temperature gave a second crop of solids,' 1.3 g, mp 180-185° (dec); [alpha]^ =0 (c = 1, methanol).
Concentration of mother liquor gave foamy solids, 32.9 g, mp 72-90° (dec.); [alpha]*5 = -55.7° (c = 1, methanol).
First crop solids (25 g) were repulped in 250 ml of refluxing acetone, recovered after cooling to 40°, 24 g; mp 205° (dec-); [alpha]^ = +38.2 (c = 1, methanol). Evaporation of mother liquor to dryness gave 1.2 g, mp 90-110° (dec.); [alpha]J5 = +31.4° (c = 1, methanol).
EXAMPLE 5 (Cont.) 216928 Once repulped solids (13 g) were repulped in 260 ml of refluxing acetone, recovered after cooling to 45°, 11.7 g, [alpha]p5 = +39.3 (c = 1, methanol). Evaporation of mother liquor gave an additional 1.1 g of solids.
Method B Title product of Example 2 (100 g) was stirred at reflux (65°) in 374 ml methanol for 30 minutes, then cooled to 59°. Water (7.42 ml) and L-(-)-ephedrine (68 g) were added, resulting in heavy precipitation.
The slurry was refluxed at 66° for 45 minutes, cooled to 27° and highly purified title product directly recovered by filtration, 70.4 g, [alpha]^ =.+44.36 (c = 1.04 in methanol). The filtrate was evaporated to yield the crude diastereomeric salt, L-(-)-ephedrine R-6-fluoro-4-ureidochroman-4-carboxylate, 116.3 g. 816928 EXAMPLE 6 Sorbinil Once repulped title product of the preceding Example (9.6 g.; made by Method A) and 68 ml. glacial CH^COjH'were heated at 95°C. for 1 hour, evaporated in vacuo at 60° to 20 g. of oily residue, diluted with 50 ml. H2O at 60°, and then 50 ml. 1^0 at 10°. The resulting slurry was adjusted from pH 3 to 4.5 with 4N NaOH to yield crude sorbinil, 4.7 g., mp 234-240°; [alpha]D = +50.5 (c = 1, methanol). This crude sorbinil, 4.0 g., was dissolved in 60 ml. boiling absolute ethanol, clarified by filtration, cooled to 24° and purified sorbinil recovered by filtration, 2.0 g., mp 240.5-243.0, [alpha]^ = +55.4 (c = 1, methanol).
By the same method the highly purified title product of the preceding Example (10 g.; made by Method B) was converted to highly pure sorbinil, 4.93 g.; mp 240-242°; [alpha]^5 = +54.7° (c = 1, methanol).
By the procedure of Example 4, D-(+)-l-(phen-ethyl)amine salt of R- and RS-6-fluoro-4-ureidochroman-4-carboxylic acid is converted to title product.
EXAMPLE 7 R- and RS-6-Fluorospiro-[chroman-4,4'- Imidazolidine]-2',5'-dione iff 6MAR^87 vv C 816928 EXAMPLE 8 Crude 6-Fluoro-4-Chroraanone from Sorbinil Enantiomer and Racemate Levorotatory (R—) and/or racemic (RS-) 6-fluoro-spiro-[chroman-4,41-imidazolidine]-2',5*-dione (100 g, 0.423 mmole) was slurried in 750 ml HjO. Ba(0H)2.8H20 (267.0 g, 0.846 mole) was added and the resulting thin slurry refluxed 48 hours. The resulting heavy suspension was cooled to 60-65° and (100 g, 0.876 mole) added. The slurry was then stirred 30 minutes and filtered at 50-55° with 300 ml of warm water wash of the collected inorganic salts. The combined filtrate and wash was adjusted from pH 8.5 to 4.5-5.0 with hydrochloric acid. To the acidified solution, N-chlorosuccinimide (57.0 g, 0.427 mole) was added portionwise over 5 hours at 30-45 minute intervals. The resulting slurry was stirred 17 hours at room temperature, then 1 hour at 15°.. Solids were recovered by filtration, taken up in CH2C12, treated with activated carbon, and CH2C12 displaced with hexane to a pot temperature of 68-69° and a final volume of 400-500 ml, during which crystallization occurred. After cooling and digestion for 1 hour at 20-25°, purified title product was recovered by filtration, 50.2 g, having the physical properties of the known material.
Title product prepared in this manner contains 6-fluoro-4-chloriminochroman as an impurity. The latter interferes with further use of title product in the synthesis of additional sorbinil. Said impurity is removed (being converted to the desired 6-fluoro-2-chromanone) according to the following Example. -6 MAR 1537 21692S EXAMPLE 9 Purification of Crude 6-Fluoro-4-chromanone by Hydrogenation Crude 6-fluoro-4-chromanone/ containing 6-fluoro-. 4-chloriminochroman as an impurity (5.0 g) , 5% Pd/C (50% water wet, 0.25 gj, and 1:1 H20:C2H^0H (100 ml) were combined and the mixture hydrogenated at 45 psig of hydrogen (4 atmospheres) for 2 hours, by which time tic on silica gel (using toluene:methyl ethyl ketone: acetic acid 5:2:1 as eluant) indicated absence of faster moving chlorimine (R^ 0.8) in the 6-fluoro-4-chromanone (Rf 0.7). The' reaction mixture was diluted with 100 ml of methanol (to completely dissolve solids other than catalyst), the catalyst recovered by vacuum filtration on a pad of diatomaceous earth, and the filtrate evaporated in vacuo to 50 ml (from a water bath at 45°), cooled to 5°, granulated for 15 minutes and filtered to yield purified title product, 2.65 g, mp 108-112°, tic as indicated above. 2 169 EXAMPLE 10 R- and RS-6-Fluoro-4-ureido-Chroman-4-carboxylic Acid Method A Recovered D-(+)-(1-phenethyl)ammonium R-6-fluoro- 4-ureidochroman-4-carboxylate (containing also in minor portion the corresponding D-ammonium S-carboxylate ^ salt), 32.3 g, was combined with 215 ml of IN HCl and y'. stirred at 16-23° for 21 hours. Title product was recovered by filtration, 20.6 g, 94%, mp 195-198° (dec.).
Method 3 A column containing a 50 ml volume of previously used ion exchange resin (Amberlite IRA 900) was slowly flushed sequentially with 250 ml deionized H20, 250 ml IN NaOH, 250 ml N2 sparged H20 and 250 ml N2 sparged methanol. Crude enantiomeric salt (10 g) in 50 ml methanol was placed on the column, eluted with an additional 100 ml of methanol, and the eluant evaporated in vacuo to yield recovered ephedrine, 0.0199 mole, by titrimetric assay with 0.1N HCl in methanol. The column was then eluted with 150 ml of methanol containing 4.4 g dry HCl and finally with 150 ml of fresh methanol. The latter methanol HCl and methanol eluants were combined and evaporated in vacuo to yield enantiomeric (R) and racemic (RS) 6-fluoro-4-ureido-chroman-4-carboxylic acid, 5.86 g. m c o o EMlMPLE 11 216928 Crude 6-Fluoro-4-chromanone from R- and RS-6-Fluoro-4-ureidochroman-4~carboxylic Acid Title product of the preceding Example (100 g) was 5 slurried in 475 ml H20. 50% NaOH, 32 g, was added, producing incomplete solution. The mixture was warmed over 4 0 minutes to a pot temperature of 100° (reflux), by which time there was complete dissolution. Reflux was continued 18 hours and the mixture cooled. The pH 10 was 9.6 and tic indicated incomplete reaction. The pH was increased to 12.0 with 13.8 g of 50% NaOH and the mixture reheated to reflux for 2.5 hours, at which time tic on silica gel (toluene:methyl ethyl ketone:acetic acid 5:2:1 as eluant) indicated no more than traces of 15 starting material (R^ 0.5) with high level of intermediate R- and RS-6-fluoro-4-aminochroman-4-carboxylic acid (R^ 0.0). The reaction mixture was cooled to 20° and, maintaining temperature less than 30°, adjusted to pH 4.5 with concentrated HCl, as a precipitate formed. 20 N-chlorosuccinimide (53 g) was added over.15 minutes, maintaining temperature less than 30°C and the pH 4.0-4.5 by the simultaneous addition of 7 ml of 50% NaOH. The reaction mixture was stirred 1 hour at 25°C, by which time the pH was 5.2 and tic (above system) 25 indicated complete conversion of intermediate amino . acid to products. The pH was then adjusted to 9.6 with about 27 ml of 50% NaOH, the basic slurry granulated for 2 hours at 20°, and title product recovered by filtration, 50.0 g, mp 55-58° (partial) 65-75° (com-30 plete, but melt not clear); tic (above system) indicated title product (R^ 0.7) containing 6-fluoro-4-chloro-iminochroman (R^ 0.8). n EXAMPLE 11 (Cont.) 2 169 Alternatively, D-(+)-(1-phenethyl)ammonium R-6-fluoro-4-ureidochroman-4-carboxylate, containing in minor portion the corresponding D-ammonium S-carbox-5 ylate is used in the present process. In the initial stage of the process, the salt is distributed between the 50% NaOH and an equal volume of CI^Clj. The aqueous phase is washed 2 x with one third volume of CH2C12. The organic layers are combined and stripped 10 to yield D-(+)- (1-phenethyl) amine suitable for recycling. The aqueous phase is carried through the balance of the present process to yield title product.
EXAMPLE 12 6-Fluoro-4-Chloriminochromeui from 15 R- and RS-6-fluoro-4-ureidochroman The preceding Example was repeated on one tenth scale to obtain intermediate R- and RS-6-fluoro-4-aminochroman-4-carboxylic acid in NaOH solution. To the solution was added (dropwise) 15% w/w NaOCl 20 (48.2 ml), maintaining temperature 20-30°. The mixture was stirred 3.5 hours at 20-25°, by which time tic (system as in preceding Example) indicated conversion of amino acid to essentially clean title product, with light trace of 6-fluoro-4-chromanone. Title product 25 was recovered by filtration, 3.8 g, Rf 0.8 in above system.
O IS -18-EXAMPLE 13 2 16928 6-Fluoro-4-chromane from Chlorimine Title product of the preceding Example (3.6 g) and 5% Pd/C, 50% water wet (0.18 g dry basis) were combined in 72 ml of methanol:water 9:1. The pH was adjusted to 2.0 with concentrated HCl and the mixture hydrogenated at 40-45 psig (3.7-4 atmospheres) of hydrogen for 2 hours. Catalysts was recovered by filtration on a pad of diatomaceous earth. The filtrate showed only title product by tic (R^ 0.7 in system of immediately • preceding Examples), readily recovered by evaporation • in vacuo. Tic indicated some product was retained on the catalyst cake, readily recovered by repulp of the C"^) catalyst cake in methanol.
O 216928 - 19
Claims (5)
1. A process for the preparation of a crystalline S-6-fiuoro-4-ursidcchrcman-4-carboxyli c acid salt with D- (-H- (1—pheixethyi) amine or L- {-) —ephedrine which comprises combining a racemic compound of the formula COOK with at least a half cclar quantity cf D-(-^J - (1-phenethyl) amine or L-(-) -ephedrine in a reaction-inert solvent and recovering said crystalline salt.
2. A process cf claim 1 which further comprises cyclisaticn of said recovered crystalline salt in glacial acatic acic to form sorbinil and recovering said sorbinil or a phamaceutically-acoabtable cationic salt thereof.
3. An amine salt cf S-5-fluorc-4-or =idcchroman-4-carbcxylic acid wherein the amine is D- (-} - Cl-phen-ethvl)amine cr L-(-)-ephedrine.
4. A process as claimed in claim 1 or claim 2 when performed substantially as hereinbefore described with reference to any example thereof.
5. Sorbinil or a pharmaceutical^ acceptable cationic salt thereof when prepared by a process as claimed in claim 2 or claim 4. 1 lMicu I.iii Xk. DAY Of A. J. PARK & SON PER 9e!w. AGENTS FOR THE APPLICANTS If T7 •,h*MW*l'''^Wiril(ir'M-" 1"'fni
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44068682A | 1982-11-10 | 1982-11-10 | |
US06/440,657 US4431828A (en) | 1982-11-10 | 1982-11-10 | Regeneration of 6-fluoro-4-chromanone from by-products in the synthesis of sorbinil |
US06/440,641 US4435578A (en) | 1982-11-10 | 1982-11-10 | Sorbinil by optical resolution of precursor 6-fluoro-4-ureidochroman-4-carboxylic acid |
NZ206189A NZ206189A (en) | 1982-11-10 | 1983-11-08 | Preparation of sorbinil by selective crystallisation of certain amine salts of racemic 6-fluoro-2,3-dihydro-spiro (4h-1-benzopyran -4,4'- imidazolidine) -2',5'- dione |
Publications (1)
Publication Number | Publication Date |
---|---|
NZ216928A true NZ216928A (en) | 1987-06-30 |
Family
ID=27484274
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NZ216928A NZ216928A (en) | 1982-11-10 | 1983-11-08 | Sorbinil by optical resolution of precursor 6- fluoro -4- ureidochroman -4-ylcarboxylic acid and certain amine salts of this precursor acid |
NZ21692983A NZ216929A (en) | 1982-11-10 | 1983-11-08 | Regeneration of 6-fluorochroman -4-one from by-products from synthesis of sorbinil |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NZ21692983A NZ216929A (en) | 1982-11-10 | 1983-11-08 | Regeneration of 6-fluorochroman -4-one from by-products from synthesis of sorbinil |
Country Status (1)
Country | Link |
---|---|
NZ (2) | NZ216928A (en) |
-
1983
- 1983-11-08 NZ NZ216928A patent/NZ216928A/en unknown
- 1983-11-08 NZ NZ21692983A patent/NZ216929A/en unknown
Also Published As
Publication number | Publication date |
---|---|
NZ216929A (en) | 1987-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0109232B1 (en) | Sorbinal by optical resolution of precursor 6-fluro-4-ureidochroman-4-carboxylic acid | |
EP0111387B1 (en) | Regeneration of 6-fluoro-4-chromanone from by-products in the synthesis of sorbinil | |
US4528387A (en) | Sorbinil by optical resolution of precursor 6-fluoro-4-ureidochroman-4-carboxylic acid | |
NZ216928A (en) | Sorbinil by optical resolution of precursor 6- fluoro -4- ureidochroman -4-ylcarboxylic acid and certain amine salts of this precursor acid | |
EP0109231B1 (en) | Sorbinil by optical resolution with aminopinane derivatives | |
US4620019A (en) | S-6-fluoro-4-aminochroman-4-carboxylic acid derivatives useful as intermediates for sorbinil | |
CA1215378A (en) | Regeneration of 6-fluoro-4-chromanone from 6-fluoro-4- ureidochroman-4-carboxylic acid | |
NZ206189A (en) | Preparation of sorbinil by selective crystallisation of certain amine salts of racemic 6-fluoro-2,3-dihydro-spiro (4h-1-benzopyran -4,4'- imidazolidine) -2',5'- dione | |
KR870000909B1 (en) | Process for preparing a salt of crystalline s'-6-fluoro-4-ureidochroman-4-carboxylic acid | |
NZ213594A (en) | Regeneration of 6-fluoro-4-chromanone from 6-fluoro-4-ureidochroman-4-carboxylic acid |