NO165641B - PROCEDURE FOR THE PREPARATION OF A PRESSURE-RESISTANT AND HIGH-STABLE COATING MASS. - Google Patents

PROCEDURE FOR THE PREPARATION OF A PRESSURE-RESISTANT AND HIGH-STABLE COATING MASS. Download PDF

Info

Publication number
NO165641B
NO165641B NO814354A NO814354A NO165641B NO 165641 B NO165641 B NO 165641B NO 814354 A NO814354 A NO 814354A NO 814354 A NO814354 A NO 814354A NO 165641 B NO165641 B NO 165641B
Authority
NO
Norway
Prior art keywords
asphalt
mass
stone material
temperature
mixing
Prior art date
Application number
NO814354A
Other languages
Norwegian (no)
Other versions
NO814354L (en
NO165641C (en
Inventor
S Ingmar Andersson
Nils-Olov Nilsson
J Elis V Karlsson
K G Ulrik Sandberg
Original Assignee
Skanska Cementgjuteriet Ab
Laxao Bruks Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skanska Cementgjuteriet Ab, Laxao Bruks Ab filed Critical Skanska Cementgjuteriet Ab
Publication of NO814354L publication Critical patent/NO814354L/en
Publication of NO165641B publication Critical patent/NO165641B/en
Publication of NO165641C publication Critical patent/NO165641C/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/26Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
    • E01C7/262Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre with fibrous material, e.g. asbestos; with animal or vegetal admixtures, e.g. leather, cork
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/16Reinforcements
    • E01C11/165Reinforcements particularly for bituminous or rubber- or plastic-bound pavings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1013Plant characterised by the mode of operation or the construction of the mixing apparatus; Mixing apparatus
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1059Controlling the operations; Devices solely for supplying or proportioning the ingredients
    • E01C19/1068Supplying or proportioning the ingredients
    • E01C19/1072Supplying or proportioning the ingredients the solid ingredients
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/182Aggregate or filler materials, except those according to E01C7/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Glass Compositions (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A method of manufacturing and a use of a compression resistance and high stable surfacing mass for heavy loaded surfaces, especially for strong traffic and heavily loaded street and road sections and mainly comprising a stone material which is bound by an asphalt mass. The surfacing mass is manufactured by heating asphalt at least to the recommended temperature for mixing asphalt with a stone material, and before or after the admixing of asphalt with the stone material a fibre material is added, especially a mineral fibre having an average fibre diameter of between 1 mu m and 5 mu m in an amount of about 0.5-20% of weight in relation to the asphalt weight, and the fibre material is mixed homogenously so as to throughout provide substantially separate fibres in the asphalt phase. When admixing the fibre material before adhesion of the asphalt to the stone material the temperature of the asphalt is preferably increased to 20-40 DEG C above the temperature for mixing the asphalt mass into the stone material, and after a homogenous mixing of asphalt and fibre the asphalt mass is cooled to the said admixing temperature, whereupon the asphalt-fibre mass is mixed homogenously with the stone material.

Description

Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling og en anvendelse av en trykkfast og høystabil béleghingsmasse for sterkt belastede overflater, spesielt for trafikerte og belastede gate- eller veideler, og hovedsakelig inneholdende et steinmateriale som er bundet av en asfaltmasse. The present invention relates to a method for the production and use of a pressure-resistant and highly stable paving compound for heavily loaded surfaces, especially for trafficked and loaded street or road parts, and mainly containing a stone material which is bound by an asphalt compound.

Utviklingen av trafikken på gater og veier, både når det gjelder trafikkintensitet og de enkelte kjøretøys tyngde, The development of traffic on streets and roads, both in terms of traffic intensity and the weight of the individual vehicles,

har ført til store krav til veibelegningenes stabilitet. I særlig høy grad gjelder dette ved utsatte steder slik som fremfor trafikklys, i veikryss, rundkjøringer m.m. der belegningsmasser bestående av et steinmateriale med asfalt som bindemiddel ofte utviser utilstrekkelig stabilitet. has led to great demands on the stability of road surfaces. To a particularly high degree, this applies in exposed places such as in front of traffic lights, at road junctions, roundabouts, etc. where paving materials consisting of a stone material with asphalt as binder often show insufficient stability.

En manglende stabilitet i belegningsmassen medfører at denne deformeres spesielt ved at kjøretøyhjulene på grunn av slitasje og sammenpakning av belegningsmassen danner ned-senkte hjulspor i veibanen, hvilket krever kostbart vedlike-hold. Vedlikeholdsarbeidene er på de utsatte steder dessuten meget vanskelig å utføre og bevirker trafikkforstyrrelser i høyere grad enn normal veivedlikehold. A lack of stability in the paving mass means that it is deformed, in particular because the vehicle wheels, due to wear and compaction of the paving mass, form sunken wheel tracks in the road surface, which requires expensive maintenance. In the exposed locations, the maintenance work is also very difficult to carry out and causes traffic disturbances to a greater degree than normal road maintenance.

Man har forsøkt å løse problemet med mangelfull stabilitet ved å anvende såkalte skjellettmasser, dvs. masser der kornstørrelsen i steinmaterialet er gradert slik at belast-ningen hovedsakelig overføres via grove steinkorn, som støter mot hverandre. Risikoen for avsetninger eller sammenpakning av belegningsmassen har på denne måte kunne minskes ved at steinpartiklene i steinmaterialet har mindre mulighet til å omgruppere seg jo færre steiner som deltar i belastningsover-føringen. Attempts have been made to solve the problem of insufficient stability by using so-called skeletal masses, i.e. masses where the grain size in the stone material is graded so that the load is mainly transferred via coarse stone grains, which collide with each other. In this way, the risk of deposits or compaction of the paving mass can be reduced by the fact that the stone particles in the stone material have less opportunity to regroup, the fewer stones that participate in the load transfer.

Kravet til bindemiddelets egenskaper øker imidlertid i tilsvarende grad, og i realiteten har bindemiddelets karakter blitt den mest vesentlige faktor for belegningsmassen. Det er således vesentlig at bindemiddelet låser steinpartiklene effektivt i sine inntatte stillinger og forhindrer forskyvning eller omgruppering av steinpartiklene. Bindemiddelevnen kan økes ved at en større mengde bindemiddel i forhold til mengden av steinmateriale tilføres. Da oppstår imidlertid problemer med den såkalte asfaltavrenning, hvilket innebærer at den varme asfalt under blandingen med steinmateriale renner av steinpartiklene, hvilket delvis motvirker hensikten med binde-middelsøkningen, delvis også bevirker problemer ved lagring og transport. Bele gningsmassens stabilitet økes ikke nevne-verdi, muligens på grunn av såkalt kaldflyt i asfalten. However, the requirement for the properties of the binder increases to a corresponding degree, and in reality the nature of the binder has become the most important factor for the coating mass. It is thus essential that the binder effectively locks the stone particles in their assumed positions and prevents displacement or regrouping of the stone particles. The binding agent capacity can be increased by adding a larger amount of binding agent in relation to the amount of stone material. However, then problems arise with the so-called asphalt runoff, which means that the hot asphalt during the mixture with stone material flows off the stone particles, which partly defeats the purpose of the binder increase, partly also causing problems during storage and transport. The stability of the paving compound is not increased significantly, possibly due to so-called cold flow in the asphalt.

Man har forsøkt å løse dette problem ved tilsetning av et finkornet fyllmateriale, men resultatet synes ikke å bli tilfredsstillende. Tydeligvis går skjellettprinsippet delvis tapt ved tilsetning av finkornet fyllmateriale. Attempts have been made to solve this problem by adding a fine-grained filler material, but the result does not seem to be satisfactory. Obviously, the skeleton principle is partially lost when fine-grained filler material is added.

Det har blitt gjort forsøk på å løse dette problem ved tilsetning av asbest-fiber. Asbest-fiber har ikke vist seg å gi skjellettmasser tilstrekkelig stabilitetsøkning med de innhold som teknisk sett kan anvendes. Sannsynligvis beror dette på asbest-fibrenes evne til å hake i hverandre og danne større aggregater. Kjennskap til asbest-fibrenes helsefare gjør det dessuten utelukket å anvende asbest i veibelegg. Attempts have been made to solve this problem by adding asbestos fibres. Asbestos fiber has not been shown to give skeleton masses a sufficient increase in stability with the contents that can technically be used. This is probably due to the asbestos fibers' ability to interlock and form larger aggregates. Knowledge of the health hazards of asbestos fibers also precludes the use of asbestos in road surfaces.

I svensk patentskrift 211.163 beskrives også et beleg-ningsmateriale som inneholder mineralfibre med en diameter på mellom 5 og 15 ura. Heller ikke de foreslåtte grove mineralfibre har vist seg å være anvendbare. Sannsynligvis er disse tilbøyelig til å orientere seg parallellt med steinoverflåtene i asfalt-steinmassen og dermed i bindemiddelfilmens plan. De bidrar derved neppe til skjellettmassens stabilitet. Ingen av eie foreslåtte metoder har derfor kommet til noen større praktisk anvendelse. Swedish patent document 211,163 also describes a coating material containing mineral fibers with a diameter of between 5 and 15 ura. Nor have the proposed coarse mineral fibers proven to be usable. These probably tend to orient themselves parallel to the stone surfaces in the asphalt-stone mass and thus in the plane of the binder film. They therefore hardly contribute to the stability of the skeletal mass. None of the proposed methods have therefore come to any major practical application.

Det har nå overraskende vist seg at en tilsetning av et mineralfibermateriale med en liten fiberdiameter, fortrinnsvis et fibermateriale med en midlere diameter som er mindre enn 5 ym, og der fibrene er jevnt fordelt i asfalten hovedsakelig som enkeltfibre, kraftig minsker el-ler eliminerer bindemiddelet eller asfaltens ovenfor angitte kaldflytprob-lemer. Dermed får man en bindemiddelfase med egenskaper som gir den ferdige belegningsmassen betydelig øket stabilitet sammenlignet med tidligere kjente belegningsmasser uten at viskositeten ved blandingstemperaturen blir for høy for en hurtig og god blanding. Den økede stabilitet beror på en øket styrke i bindemiddelet, hvilken sannsynligvis delvis beror på den økede tykkelse på bindemiddelsfilmen rundt stein-kornene, delvis også på at det tilsatte fibermaterialet, som er jevnt fordelt som enkelte fibre i asfalten, har en armer-ende virkning. It has now surprisingly been shown that an addition of a mineral fiber material with a small fiber diameter, preferably a fiber material with an average diameter of less than 5 µm, and where the fibers are evenly distributed in the asphalt mainly as single fibers, greatly reduces or eliminates the binder or asphalt's above-mentioned cold flow problems. This results in a binder phase with properties that give the finished coating compound significantly increased stability compared to previously known coating compounds without the viscosity at the mixing temperature becoming too high for a quick and good mixture. The increased stability is due to an increased strength in the binder, which is probably partly due to the increased thickness of the binder film around the stone grains, partly also to the fact that the added fiber material, which is evenly distributed as individual fibers in the asphalt, has a reinforcing effect .

Oppfinnelsen angår således en fremgangsmåte for fremstilling av en trykkfast og høystabil belegningsmasse for sterkt belastede overflater, fortrinnsvis slik som belegg for gater og veier, spesielt belegg i gatekryss, foran stopplys, i rundkjøringer og andre sterkt trafikkerte trafikknutepunkter, hvilken belegningsmasse hovedsakelig inneholder et stenmateriale som er bundet av en asfaltmasse, hvorved asfalt The invention thus relates to a method for producing a pressure-resistant and highly stable paving compound for highly stressed surfaces, preferably such as paving for streets and roads, especially paving at street intersections, in front of stoplights, in roundabouts and other heavily trafficked traffic junctions, which paving compound mainly contains a stone material which is bound by an asphalt mass, whereby asphalt

oppvarmes til en temperatur som minst overensstemmer med anbefalt temperatur på 150-160°C for blanding av asfalten med stenmateriale, parallelt med dette oppvarmes stenmaterialet til anbefalt blandingstemperatur, den oppvarmede asfalt og det oppvarmede stenmateriale blandes til en homogen blanding i proporsjonene 15-25 vektdeler stenmateriale pr. vektdel asfalt, hvilken fremgangsmåte er kjennetegnet ved at det tilsettes til stenmaterialet eller til asfalten 0,5 - 20 vekt%, beregnet på mengden av asfalt, av mineralfibre med en gjennomsnittlig fiberdiameter på mellom 1 og 5 um, og at fibermaterialet behandles med et fuktemiddel, f.eks. kationisk heated to a temperature that at least corresponds to the recommended temperature of 150-160°C for mixing the asphalt with stone material, parallel to this the stone material is heated to the recommended mixing temperature, the heated asphalt and the heated stone material are mixed to a homogeneous mixture in the proportions 15-25 parts by weight stone material per weight part asphalt, which method is characterized by the fact that 0.5 - 20% by weight, calculated on the amount of asphalt, of mineral fibers with an average fiber diameter of between 1 and 5 µm is added to the stone material or to the asphalt, and that the fiber material is treated with a wetting agent , e.g. cationic

—tensid før-tilsetning av fibermaterialet til asfalten. —surfactant before adding the fiber material to the asphalt.

Som fiber kan anvendes mange forskjellige typer material forutsatt at fibrene ikke smelter i asfalten, som under blandingen med steinmaterialet holder en témpertur på 140-170 eller fortrinnsvis 150-160°C, og under forutsetning at fibrene er forholds-vis stive og bibeholder i det minste en vesentlig stivhet i den varme asfalten. Som spesielt egnet material har vist seg mineralfibre, eksempelvis steinfibre, dvs. fibre fremstilt ved smeltning av stein slik som diabas og etterfølgende fib-rering av smeiten. Many different types of material can be used as fibres, provided that the fibers do not melt in the asphalt, which during mixing with the stone material maintains a temperature of 140-170 or preferably 150-160°C, and on the condition that the fibers are relatively stiff and retain in the at least a significant stiffness in the hot asphalt. Mineral fibres, for example stone fibres, i.e. fibers produced by melting stone such as diabase and subsequent fibrating of the melt, have proven to be a particularly suitable material.

Som ovenfor angitt skal den gjennomsnittlige fiberdiameter være mindre enn 5 ym. Når den gjennomsnittlige fiberdiameteren underskrider 1 ym minsker fibrenes gunstige effekt merkbart, sannsynligvis på grunn av at tynne fibre uunngåelig kortes ned betydelig under blandingsoperasjonen. Den gjennomsnittlige fiberdiameteren bør altså ligge mellom 1 og 5 ym. For å gi ønsket effekt, bør fibrene tilsettes i en vektmengde mellom 0,5 og 20 % av asfaltvekten, hvilket tilsvarer ca. As stated above, the average fiber diameter must be less than 5 µm. When the average fiber diameter is below 1 µm, the beneficial effect of the fibers decreases noticeably, probably due to the fact that thin fibers are inevitably shortened significantly during the mixing operation. The average fiber diameter should therefore be between 1 and 5 ym. To give the desired effect, the fibers should be added in an amount by weight between 0.5 and 20% of the asphalt weight, which corresponds to approx.

0,03 - 1,2 vekt% av den ferdige belegningsmasse. 0.03 - 1.2% by weight of the finished coating mass.

Det er vesentlig at fibrene ikke foreligger i form av floker eller andre sammenbakte aggregater. Dette kan tilveie-bringes gjennom en riktig utført innblandingsteknikk. For å lette fordelingen av fibrene og unngå flokedannelse og for å tilveiebringe en optimal fuktning av fiberoverflåtene med asfalt kan det være fordelaktig at fibrene overflatebehandles med et egnet middel. For formålet kan hvilke som helst upolare forbindelser anvendes, eksempelvis fuktemidler slik som kat-joniske tensider i form av tertiære eller kvartære ammonium-forbindelser. It is essential that the fibers are not in the form of tangles or other aggregates. This can be provided through a properly executed mixing technique. To facilitate the distribution of the fibers and avoid tangling and to provide an optimal wetting of the fiber surfaces with asphalt, it can be advantageous for the fibers to be surface treated with a suitable agent. For this purpose, any non-polar compounds can be used, for example wetting agents such as cationic surfactants in the form of tertiary or quaternary ammonium compounds.

Det er også fordelaktig at fibrene er så tørre som mulig ved innblandingen i asfalten, og for å oppnå en effekt lignen-de den nevnte behandling med fuktemiddel kan det være fordelaktig før innblandingen av fibrene i asfalt- eller belegningsmassen å tørke fibrene slik at hoveddelen av de vannmolekyler som normalt er absorbert til fibrenes overflate fjernes. It is also advantageous that the fibers are as dry as possible when mixed into the asphalt, and in order to achieve an effect similar to the aforementioned treatment with a wetting agent, it may be advantageous before mixing the fibers into the asphalt or paving compound to dry the fibers so that the main part of the water molecules that are normally absorbed to the surface of the fibers are removed.

Innblanding av fibrene kan skje ved tilsetning til steinmaterialet innen asfalten innblandes i disse, eller fibrene kan innblandes i den ferdige asfalt-steinmassen. Spesiell god effekt erholdes imidlertid hvis fibrene blandes med as-faltmassen innen denne tilsettes til steinmaterialet. Dette letter innblandingen og homogeniseringen av fibrene, og blandingen av fiber- og asfaltmaterialet kan skje på en meget skånsom måte for fibrene, slik at fibrene ikke brytes i stykker. The fibers can be mixed in by addition to the stone material before the asphalt is mixed in, or the fibers can be mixed into the finished asphalt-stone mass. However, a particularly good effect is obtained if the fibers are mixed with the asphalt mass before it is added to the stone material. This facilitates the mixing and homogenisation of the fibres, and the mixing of the fiber and asphalt material can take place in a very gentle way for the fibres, so that the fibers do not break into pieces.

En jevn og flokefri fordeling av fibrene i asfalten be-gunstiges ytterligere hvis asfalten i forbindelse med innblandingen av fibrene oppvarmes, f.eks. 20-40°C over den temperatur på 150-160°C ved hvilken blandingen av asfalt- og steinmateriale skjer, hvoretter asfalt-fiberblandingen avkjøles til denne temperatur og innblandes i steinmaterialet. Temperatur-økningen senker viskositeten på asfalten og letter dermed en homogen og skånsom innblanding av fibermaterialet og letter ennvidere ved denne forhøyede temperatur fuktingen av fiber-overflatene, og dispergeringen av fibrene i asfalten går ras-kere og skjer mer effektivt. An even and tangle-free distribution of the fibers in the asphalt is further favored if the asphalt is heated in connection with the mixing of the fibers, e.g. 20-40°C above the temperature of 150-160°C at which the mixture of asphalt and stone material takes place, after which the asphalt-fibre mixture is cooled to this temperature and mixed into the stone material. The increase in temperature lowers the viscosity of the asphalt and thus facilitates a homogeneous and gentle mixing of the fiber material, and this elevated temperature further facilitates the wetting of the fiber surfaces, and the dispersion of the fibers in the asphalt is faster and more efficient.

For å bedømme innvirkning av innblandingen av fibermaterialet på asfaltbeleggets stabilitet ble det fremstilt et an-tall fibermasser etter tre forskjellige metoder og innen hver gruppe med forskjellig mengde innblandet fibermateriale. In order to assess the impact of the mixing of the fiber material on the stability of the asphalt pavement, a number of fiber masses were produced using three different methods and within each group with a different amount of mixed fiber material.

Eksempel 1 Example 1

I et blandingsanlegg for asfaltmasser ble det innført In a mixing plant for asphalt compounds, it was introduced

3 100 kilo steinmateriale med en viss gitt fordeling av den gjennomsnittlige kornstørrelse. Steinmaterialet ble oppvarmet til 160°C, og til steinmaterialet ble det tilsatt 5,8 kg av et mineralfibermateriale angitt som "INORPHIL 057", hvilket materieale har en midlere fiberdiameter på 3 pm, og i hvilket hoveddelen av fibrene ligger innen området 1-5 urn. For karakterisering av fiberlengden finnes det ingen godtagbare direkte metoder. Hensiktsmessig måles i stedet det såkalte fortykningstall (n^), som beregnes ved ligningen 3,100 kilograms of stone material with a given distribution of the average grain size. The stone material was heated to 160°C, and to the stone material was added 5.8 kg of a mineral fiber material designated as "INORPHIL 057", which material has an average fiber diameter of 3 pm, and in which the majority of the fibers lie within the range of 1-5 urn. There are no acceptable direct methods for characterizing the fiber length. Appropriately, the so-called thickening number (n^), which is calculated by the equation, is measured instead

der er viskositeten på en oppslemming av 1,5 g tørre fibre i 200 ml ethylenglykol ved 20°C, og der qQ er viskositeten på samme ethylenglykol uten fiber, likeledes ved 20°C målt med samme utstyr, nemlig Brookfield viskosimeter med spindel LV1 eller tilsvarende. For "INORPHIL 057" gjelder fortyknings-tallet 1,0 - 5,0. where is the viscosity of a slurry of 1.5 g of dry fibers in 200 ml of ethylene glycol at 20°C, and where qQ is the viscosity of the same ethylene glycol without fibers, likewise at 20°C measured with the same equipment, namely Brookfield viscometer with spindle LV1 or equivalent. For "INORPHIL 057" the thickening number applies 1.0 - 5.0.

Til blandingen av steinmaterialet og fibermaterialet ble innblandet 195 kg asfalt. 195 kg of asphalt was mixed into the mixture of the stone material and the fiber material.

Etter avsluttet blanding ble massen tatt ut og dens stabilitet eller etterpakningstendens ble målt. Dette skjer på følgende måte: En avpasset mengde belegningsmasse legges ut i ramme av vinkelstål 80 x 80 mm. Rammen, hvis lengde er 2 000 ml og bredde 4 00 mm ligger på et betonggulv. Belegningsmassen iso-leres fra betonggulvet med en aluminiumsfolie. After mixing, the mass was taken out and its stability or repacking tendency was measured. This happens in the following way: An appropriate amount of coating compound is laid out in a frame of angle steel 80 x 80 mm. The frame, whose length is 2 000 ml and width 4 00 mm, rests on a concrete floor. The coating compound is isolated from the concrete floor with an aluminum foil.

Etter to døgn ved ca. 1 8°C måles høydeposisjonen for åtte punkter utetter rammens midtlinje i forhold til rammen. Punk-tenes innbyrdes avstand er 200 mm. Målepunktene utgjøres av en 20 mm sirkulær brikke som ved målingen legges på målepunk-tet. After two days at approx. 1 8°C, the height position is measured for eight points along the center line of the frame in relation to the frame. The distance between the points is 200 mm. The measuring points are made up of a 20 mm circular chip which is placed on the measuring point during the measurement.

Deretter rulles en sylindrisk valse med bredde 100 mm og diameter 350 mm belastet med 200 kg fem ganger frem og fem ganger tilbake over massen utetter midtlinjen. De nevnte målepunktene oppmåles på nytt og differansen mot det opprinne-lige mål anvendes som et mål på massens etterpakning. Verdiene sammenlignes med etterpakningen i en normalmasse hvorved føl-gende vurderingsgrunnlag anvendes: "normal", 0,8 - 1,2 x normalmassens deformasjon "noe etterpakning", 1,2 - 1,6 x normalmassens deformasjon "tydelig etterpakning", mer enn 1,6 x normalmassens A cylindrical roller with a width of 100 mm and a diameter of 350 mm, loaded with 200 kg, is then rolled five times forwards and five times back over the mass along the center line. The aforementioned measurement points are measured again and the difference to the original measurement is used as a measure of the repacking of the mass. The values are compared with the repacking in a normal mass, whereby the following assessment basis is used: "normal", 0.8 - 1.2 x the deformation of the normal mass "some repacking", 1.2 - 1.6 x the deformation of the normal mass "obvious repacking", more than 1.6 x normal mass

deformasjon. deformation.

Prøven viste i dette tilfellet en tydelig etterpakningstendens. In this case, the sample showed a clear repacking tendency.

Eksempel 2 - 6 Example 2 - 6

Eksempel 1 ble gjentatt med samme type mineralfiber men med forskjellig mengde innblandet fiber. Innblandingsmengden og resultatet er angitt i den etterfølgende tabell. Example 1 was repeated with the same type of mineral fiber but with a different amount of fiber mixed in. The mixing amount and the result are indicated in the following table.

Eksemp el 7- 9 Example 7-9

I disse eksempler ble mineralfibermaterialet innblandet In these examples, the mineral fiber material was mixed in

i den varme asfalt innen asfalt-mineralfiberblandingen ble tilsatt og innblandet i steinmaterialet. Resultatene er an-titt i tabell 3. in the hot asphalt within the asphalt-mineral fiber mixture was added and mixed into the stone material. The results are shown in table 3.

Eksempel 10- 12 Example 10-12

I disse eksempler ble asfalten oppvarmet til 190°C, hvoretter mineralfibermaterialet ble innblandet i asfalten, asfalt-mineralfiberblandingen ble avkjølt til 160°C og ble innblandet i steinmaterialet. Resultatene er angitt i den etterfølgende tabell. In these examples, the asphalt was heated to 190°C, after which the mineral fiber material was mixed into the asphalt, the asphalt-mineral fiber mixture was cooled to 160°C and was mixed into the stone material. The results are indicated in the following table.

Eksempel 13 Example 13

I dette eksempel ble det som sammenligning anvendt mineralfibre med en gjennomsnittlig diameter på 6 - 8 ym, men ble forøvrig utført på samme måte som i eksempel 1. In this example, mineral fibers with an average diameter of 6 - 8 ym were used as a comparison, but were otherwise carried out in the same way as in example 1.

Eksempel 14 Example 14

I dette tilfellet ble det anvendt samme type mineralfiber som i eksempel 1 - 12, men for å fastslå innvirkningen av fiberlengden ble fibermaterialet malt slik at det fikk et fortykningstall på 0,2. In this case, the same type of mineral fiber was used as in examples 1 - 12, but in order to determine the influence of the fiber length, the fiber material was ground so that it received a thickening factor of 0.2.

Fra den ovenfor angitte tabell fremgår det at den minste mengde innblandet fiber har vesentlig betydning for materialets stabilitet eller etterpakningstendens. Ved en innblanding på 0,3 vekt% fibermaterial av den angitte type får man ifølge eksempel 1 - 6 en tydelig etterpakningstendens og ifølge eksempel 7 - 12 er viss etterpakningstendens. I de tilfeller hvor innblandingsprosenten ligger på ca. 0,5 eller høyere får man derimot en normal etterpakning. Dette gjelder spesielt når innblandingen skjer ifølge eksempel 7-9 hhv. 10 - 12. Tabellen viser også at grovfiber ifølge eksempel 13 gir en tydelig etterpakningstendens, og at altså fiber med en midlere diameter på mindre enn 5 ym har vesentlig bedre egenskaper enn grovere fibre. Tabellen viser også at fiberlengden har en viss innvirkning, ved at det malte fibermaterialet som anvendes i eksempel 14 gir en påtagelig etterpakningstendens. From the above table, it appears that the smallest amount of fiber mixed in has a significant impact on the material's stability or repacking tendency. With an admixture of 0.3% by weight of fiber material of the specified type, according to examples 1 - 6, a clear post-packing tendency is obtained and according to examples 7 - 12, there is a certain post-packing tendency. In cases where the mixing percentage is approx. 0.5 or higher, on the other hand, you get a normal afterpack. This applies in particular when the mixing takes place according to examples 7-9 respectively. 10 - 12. The table also shows that coarse fiber according to example 13 gives a clear post-packing tendency, and that thus fiber with an average diameter of less than 5 ym has significantly better properties than coarser fibres. The table also shows that the fiber length has a certain impact, in that the milled fiber material used in example 14 gives a perceptible post-packing tendency.

På den medfølgende tegning er det vist skjematisk et anlegg for fremstilling av belegningsmassen ifølge oppfinnelsen. I en tank 1 utstyrt med varmespiraler 2 oppvarmes en asfaltmasse 3 til normal blandingstemperatur, eller som ovenfor angitt til en temperatur som ligger 20-40°C over denne blandingstemperatur. Den varme asfalt pumpes ved hjelp av en pumpe 4 satsvis over i en blandingsbeholder 5, hvilken er utstyrt med en rører 6, og til hvilken mineralfiber satsvis tilsettes fra en beholder 7. Etter omrøring til homogen blanding pumpes asfalt-fibermassen ved hjelp av en pumpe 8 gjennom en varme-veksler 9, der temperaturen på asfalt-fiberblandingen korri-geres til riktig innblandingstemperatur med steinmassen. I det tilfellet at blandingen av asfalt og mineralfiber har funnet sted ved forhøyet temperatur avkjøles massen, og i det tilfellet at blandingen har funnet sted ved den normale inn-blandingstemperaturen på eksempelvis 150-160°C og en viss av-kjøling eventuelt har funnet sted under håndteringen av massen, kan en viss temperaturøkende korrigering være nødvendig. The accompanying drawing schematically shows a plant for producing the coating compound according to the invention. In a tank 1 equipped with heating coils 2, an asphalt mass 3 is heated to normal mixing temperature, or as indicated above to a temperature that is 20-40°C above this mixing temperature. The hot asphalt is pumped using a pump 4 in batches into a mixing container 5, which is equipped with a stirrer 6, and to which mineral fiber is added in batches from a container 7. After stirring to a homogeneous mixture, the asphalt fiber mass is pumped using a pump 8 through a heat exchanger 9, where the temperature of the asphalt fiber mixture is corrected to the correct mixing temperature with the stone mass. In the case that the mixture of asphalt and mineral fiber has taken place at an elevated temperature, the mass is cooled, and in the case that the mixture has taken place at the normal mixing temperature of, for example, 150-160°C and some cooling has possibly taken place during the handling of the mass, some temperature increasing correction may be necessary.

Steinmaterialet oppvarmes i en beholder 10 utstyrt med oppvarmingsorgan 11, og overføres derfra satsvis til en rote-rende blandetrommel 12. Massen fra blandingsbeholder 5 for asfalt og mineralfiber pumpes likeledes satsvis gjennom varme-veksler 9 til blandingstrommelen 12, og blandes med steinmaterialet ved samme temperatur på de to faser. The stone material is heated in a container 10 equipped with a heating device 11, and transferred from there in batches to a rotating mixing drum 12. The mass from mixing container 5 for asphalt and mineral fiber is likewise pumped in batches through heat exchanger 9 to the mixing drum 12, and mixed with the stone material at the same temperature on the two phases.

Som tidligere angitt kan mineralfibermaterialet tilsettes direkte fra mineralfiberbeholderen 7 til blandingstrommelen 12 for asfalt og steinmaterial, og i dette tilfelle pumpes selvsagt asfalten direkte fra asfalttanken 1 til blandingstrommelen 12. As previously indicated, the mineral fiber material can be added directly from the mineral fiber container 7 to the mixing drum 12 for asphalt and stone material, and in this case the asphalt is of course pumped directly from the asphalt tank 1 to the mixing drum 12.

Det er inneforstått at den ovenfor angitte beskrivelse og det på tegningen viste anlegg bare utgjør illustrerende eksempler, at mange forskjellige modifikasjoner kan forekomme innen rammen av de etterfølgende patentkrav. It is understood that the description given above and the plant shown in the drawing only constitute illustrative examples, that many different modifications may occur within the framework of the subsequent patent claims.

Claims (6)

1. Fremgangsmåte for fremstilling av en trykkfast og høystabil belegningsmasse for sterkt belastede overflater, fortrinnsvis slik som belegg for gater og veier, spesielt belegg i gatekryss, foran stopplys, i rundkjøringer og. andre sterkt trafikkerte trafikknutepunkter, hvilken belegningsmasse hovedsakelig inneholder et stenmateriale som er bundet av en asfaltmasse, hvorved asfalt (3) oppvarmes til en temperatur som minst overensstemmer med anbefalt temperatur på 150-160°C for blanding av asfalten med stenmateriale, parallelt med dette oppvarmes stenmaterialet til anbefalt blandingstemperatur, den oppvarmede asfalt og det oppvarmede stenmateriale blandes til en homogen blanding i proporsjonene 15-25 vektdeler stenmateriale pr. vektdel asfalt, karakterisert ved at det tilsettes til stenmaterialet eller til asfalten 0,5 - 20 vekt%, beregnet på mengden av asfalt, av mineralfibre med en gjennomsnittlig fiberdiameter på mellom 1 og 5 pm, og at fibermaterialet behandles med et fuktemiddel, f.eks. kationisk tensid før tilsetning av fibermaterialet til asfalten.1. Method for producing a pressure-resistant and highly stable coating compound for highly stressed surfaces, preferably such as coating for streets and roads, especially coating at street intersections, in front of stoplights, in roundabouts and. other heavily trafficked traffic junctions, which paving mass mainly contains a stone material that is bound by an asphalt mass, whereby asphalt (3) is heated to a temperature that at least corresponds to the recommended temperature of 150-160°C for mixing the asphalt with stone material, parallel to this is heated the stone material to the recommended mixing temperature, the heated asphalt and the heated stone material are mixed into a homogeneous mixture in the proportions 15-25 parts by weight of stone material per weight part asphalt, characterized by the fact that 0.5 - 20% by weight, calculated on the amount of asphalt, of mineral fibers with an average fiber diameter of between 1 and 5 pm is added to the stone material or to the asphalt, and that the fiber material is treated with a wetting agent, e.g. cationic surfactant before adding the fibrous material to the asphalt. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at fibermaterialet tilsettes til den oppvarmede asfalt og blandes til en homogen masse av i asfalten dispergerte fibre, innen asfalten innblandes i stenmaterialet.2. Method according to claim 1, characterized in that the fiber material is added to the heated asphalt and mixed into a homogeneous mass of fibers dispersed in the asphalt, before the asphalt is mixed into the stone material. 3. Fremgangsmåte ifølge krav 2, karakterisert ved at asfalten oppvarmes til en temperatur som ligger 20-40°C over den anbefalte blandingstemperatur for asfaliy&tenmasse før tilsetning av fibermaterialet til asfalten, eller før blanding av asfalten og fibermaterialet til den homogene masse.3. Method according to claim 2, characterized by the asphalt being heated to a temperature that is 20-40°C above the recommended mixing temperature for asphalt mass before adding the fiber material to the asphalt, or before mixing the asphalt and the fiber material into the homogeneous mass. 4. Fremgangsmåte ifølge hvilket som helst av kravene 1,4. Method according to any one of claims 1, 2 eller 3, karakterisert ved at fibermaterialet gjennomtørkes fullstendig før tilsetning til asfaltmaterialet.2 or 3, characterized in that the fiber material is completely dried before addition to the asphalt material. 5. Fremgangsmåte ifølge hvilket som helst av kravene 2-5, karakterisert ved at asf altyfciber-blandingen avkjøles til anbefalt innblandingstemperatur før blanding av asfalt^Eibermasse med stenmaterialet.5. Method according to any one of claims 2-5, characterized in that the asphalt concrete mixture is cooled to the recommended mixing temperature before mixing asphalt-Eiber mass with the stone material. 6. Fremgangsmåte ifølge hvilket som helst av de fore-gående krav, karakterisert ved at det tilsatte fibermateriale er valgt blant en gruppe materi-aler med et fortykningstall ifølge foran angitte definisjon på mellom 1,0 og 5,0.6. Method according to any one of the preceding claims, characterized in that the added fiber material is selected from a group of materials with a thickening number according to the above definition of between 1.0 and 5.0.
NO814354A 1980-12-19 1981-12-18 PROCEDURE FOR THE PREPARATION OF A PRESSURE-RESISTANT AND HIGH-STABLE COATING MASS. NO165641C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8009021A SE441938B (en) 1980-12-19 1980-12-19 PROCEDURE FOR PREPARING A PRESSURE HALL FIXED AND HIGH-STABLE COATING MASS FOR HIGHLY LOADED SURFACES

Publications (3)

Publication Number Publication Date
NO814354L NO814354L (en) 1982-06-21
NO165641B true NO165641B (en) 1990-12-03
NO165641C NO165641C (en) 1991-03-13

Family

ID=20342535

Family Applications (1)

Application Number Title Priority Date Filing Date
NO814354A NO165641C (en) 1980-12-19 1981-12-18 PROCEDURE FOR THE PREPARATION OF A PRESSURE-RESISTANT AND HIGH-STABLE COATING MASS.

Country Status (8)

Country Link
EP (1) EP0058290B1 (en)
JP (1) JPS57127003A (en)
AT (1) ATE8283T1 (en)
DE (1) DE3164615D1 (en)
DK (1) DK152850B (en)
FI (1) FI72993C (en)
NO (1) NO165641C (en)
SE (1) SE441938B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076560A (en) * 1983-10-03 1985-05-01 Ube Ind Ltd Asphalt mixture
GB2187272A (en) * 1986-01-08 1987-09-03 John Harry Clarke Heat exchange apparatus
GB2215370A (en) * 1988-03-10 1989-09-20 Fibredec Ltd Method of repairing or surfacing roads and the like
DE3930599A1 (en) * 1989-09-13 1991-04-04 Strabag Bau Ag Cast asphalt for heavy duty traffic surfaces - contains reinforcing fibres esp. of polyacrylonitrile
FR2682308B1 (en) * 1991-10-14 1995-04-21 Screg Routes Travaux Publics PROCESS AND STATION FOR COATING AGGREGATES WITH BITUMEN AND FIBERS, PARTICULARLY GLASS FIBERS, AND DEVICE FOR INCORPORATING A PARTICULATE PRODUCT INTO BITUMEN.
FR2721952B1 (en) * 1994-07-01 1996-08-02 Soc D Pavage Et Des Asphaltes ASPHALT COULE ARME
FR2724952B1 (en) * 1994-09-27 1996-12-20 Orgel PROCESS FOR REINFORCING SOILS, GROUND LAYERS OR PAVEMENTS BY WIRE OF GLASS
FR2770235A1 (en) * 1997-10-23 1999-04-30 Et L Entretien Des Routes Sa P Mineral metalling for road surfaces
DE102007027306A1 (en) * 2007-06-10 2008-12-18 Evonik Goldschmidt Gmbh Use of a bonding agent for fibers, in particular for their introduction into bitumen-containing masses
JP6531022B2 (en) * 2015-10-06 2019-06-12 大成ロテック株式会社 Method for producing cold construction type asphalt mixture and cold construction type asphalt mixture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6815771A (en) * 1968-01-09 1969-07-11
US3822340A (en) * 1972-03-27 1974-07-02 Franklin Key Calcium sulfate whisker fibers and the method for the manufacture thereof
JPS51139819A (en) * 1975-05-29 1976-12-02 Mitsui Toatsu Chemicals Composite of paving asphalt
US4175978A (en) * 1977-03-17 1979-11-27 Owens-Corning Fiberglas Corporation Road pavement and repair
CH638005A5 (en) * 1978-12-06 1983-08-31 Kibag Ag METHOD FOR PRODUCING A BLACK COVER, AND A BLACK COVER PRODUCED THEREOF.
FI67072C (en) * 1979-02-09 1985-01-10 Amiantus Ag FOER FARING FOER FRAMSTAELLNING AV FIBERFOERSTAERKT HYDRAULISKT BINDANDE MATERIAL

Also Published As

Publication number Publication date
NO814354L (en) 1982-06-21
DE3164615D1 (en) 1984-08-09
NO165641C (en) 1991-03-13
DK152850B (en) 1988-05-24
JPS57127003A (en) 1982-08-07
SE8009021L (en) 1982-06-20
FI72993B (en) 1987-04-30
JPH0235802B2 (en) 1990-08-14
EP0058290A1 (en) 1982-08-25
ATE8283T1 (en) 1984-07-15
FI814083L (en) 1982-06-20
DK561781A (en) 1982-06-20
SE441938B (en) 1985-11-18
FI72993C (en) 1987-08-10
EP0058290B1 (en) 1984-07-04

Similar Documents

Publication Publication Date Title
CN106431125B (en) A kind of cold mixing type chromatic bitumen mixture and preparation method
NO165641B (en) PROCEDURE FOR THE PREPARATION OF A PRESSURE-RESISTANT AND HIGH-STABLE COATING MASS.
US11976008B2 (en) Methods and compositions to increase performance of asphalt cement concrete comprising recycled asphalt pavement
US9528000B2 (en) Hot-mix asphalt paving mixture
US7939154B2 (en) Road and repair materials including magnetite and methods regarding same
CN101343853A (en) Pavement construction method of high-modulus asphalt concrete
Moriyoshi et al. Construction and pavement properties after seven years in porous asphalt with long life
EP3519508A1 (en) Compositions for road or floor markings
CA1201555A (en) Asphalt compositions
US10882789B2 (en) Compositions and methods for the introduction of reinforcement fibers in portland and asphalt cement concrete
US4155654A (en) Apparatus for continuous preparation of sulfur asphalt binders and paving compositions
US4613376A (en) Asphalt surfacing mass
CN106477974A (en) A kind of glass fibre and water-base epoxy emulsified asphalt material for road repair
CN105777010A (en) Rubber steel wire and asphalt mastic gravel mixture and preparation method thereof
CN112960938B (en) Wear-resistant asphalt concrete pavement and construction method thereof
PL189186B1 (en) A method for manufacturing granulated asphalt mastic, and a semi-finished product for use in the method
EP0055233B1 (en) Composition of a surfacing mass
KR20150120688A (en) asphalt concrete composition for road repair
US8168696B2 (en) Method of using porous aggregate in asphalt compositions
JP5812770B2 (en) Porous asphalt mixture and construction method using the same
JPH0548323B2 (en)
KR100368873B1 (en) The manufacturing method of color asphalt concrete for vehicle road pavement
US1960865A (en) Art of road construction
Distin et al. Developments in microsurfacing
JP2019183407A (en) Method for manufacturing asphalt mixture containing deterioration inhibitor