NO121623B - - Google Patents

Download PDF

Info

Publication number
NO121623B
NO121623B NO161880A NO16188066A NO121623B NO 121623 B NO121623 B NO 121623B NO 161880 A NO161880 A NO 161880A NO 16188066 A NO16188066 A NO 16188066A NO 121623 B NO121623 B NO 121623B
Authority
NO
Norway
Prior art keywords
aluminum
boride
particle size
diboride
refining agent
Prior art date
Application number
NO161880A
Other languages
Norwegian (no)
Inventor
R Biddulph
Original Assignee
United States Borax Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Borax Chem filed Critical United States Borax Chem
Publication of NO121623B publication Critical patent/NO121623B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Fremgangsmåte for fremstilling av et for støpealuminium egnet kornraffinerende middel. Method for producing a grain refining agent suitable for cast aluminium.

Nærværende oppfinnelse- vedrorer en fremgangsmåte for fremstilling av et for stopealuminium egnet kornraffinerende middel x form av en aluminiumforlegering som inneholder et findelt metallborid. The present invention relates to a method for producing a grain refining agent suitable for stope aluminum in the form of an aluminum prealloy containing a finely divided metal boride.

Det er kjent at nærværet av opp til 100 ppm (vektdeler pr. million) av et metallborid som har en krystallinsk struktur (f.eks. heksagonal titandiborid Til^ og kromborid CrB2eller tetragonal kromborid CrB2) meddeler stopt aluminium en finkornet struktur hvilket er av stor betydning når aluminium skal valses til ark eller folier. Vanligvis skal disse borider anvendes i form av et fint pulver, da deres effektivitet avhenger av antallet tilstedeværende partikler og dessuten virker store partikler slipende og forer til inhomogenitet. It is known that the presence of up to 100 ppm (parts per million by weight) of a metal boride having a crystalline structure (e.g. hexagonal titanium diboride Til^ and chromium boride CrB2 or tetragonal chromium boride CrB2) imparts to stopped aluminum a fine-grained structure which is of great importance when aluminum is to be rolled into sheets or foils. Generally, these borides must be used in the form of a fine powder, as their effectiveness depends on the number of particles present and, moreover, large particles are abrasive and lead to inhomogeneity.

I praksis er det i virkeligheten umulig å tilsette den nodvendige meget lille mengde findelt borid til smeltet aluminium uten at den førstnevnte oksyderes under tilsetningen, og gjores ineffektiv som kornraffineringsmiddel. For å fjerne denne u-lempe, er det vanlig å fremstille en forlegering av aluminium, som inneholder bor og titan eller annet metall, som vil danne et krystallinsk borid, og denne legering er i form av f.eks. enten elementene eller boridet eller en blanding av de to, og å anvende denne legering som kilde for borid ved fremstilling av finkornet aluminium. Slike forlegeringer kan inneholde f.eks. fra 0,5 til 10 vekts^ borid. Hittil er disse forlegeringer blitt fremstilt ved omsetning av aluminium med en blanding av komplekse fluorider av metall fra hvilket boridet avledes, og av bor. Et eksempel på en slik prosess er: In practice, it is in fact impossible to add the necessary very small amount of finely divided boride to molten aluminum without the former being oxidized during the addition, and rendered ineffective as a grain refining agent. In order to remove this disadvantage, it is common to produce a pre-alloy of aluminium, which contains boron and titanium or another metal, which will form a crystalline boride, and this alloy is in the form of e.g. either the elements or the boride or a mixture of the two, and to use this alloy as a source of boride in the production of fine-grained aluminium. Such prealloys may contain e.g. from 0.5 to 10 wt% boride. Until now, these prealloys have been produced by reacting aluminum with a mixture of complex fluorides of metal from which the boride is derived, and of boron. An example of such a process is:

Imidlertid er denne fremgangsmåte dyr og relativt ineffektiv, However, this method is expensive and relatively ineffective,

og produktet inneholder en udnsket hoy andel av grove partikler. and the product contains an undesirably high proportion of coarse particles.

Det er nå funnet at findelte borider (f.eks. med en partikkelstorrelse mindre enn 5 mikroner) kan jevnt fordeles i aluminium for å danne en forlegering ved bruk av et egnet flussmiddel. Flussmidlet forårsaker at boridet fuktes av aluminiumet og tjener også til å forebygge oksydasjon av de findelte boridpartiklene. Det er videre funnet at fluorider kan stotte fuktningen av boridet med aluminiumet. It has now been found that finely divided borides (eg with a particle size of less than 5 microns) can be uniformly distributed in aluminum to form a prealloy using a suitable flux. The flux causes the boride to be wetted by the aluminum and also serves to prevent oxidation of the finely divided boride particles. It has further been found that fluorides can support the wetting of the boride with the aluminium.

Nærværende oppfinnelse vedrorer folgelig en fremgangsmåte for fremstilling av et kornraffinerende middel som er egnet for stopealuminium i form av en aluminiumforlegering som inneholder aluminium og fra 0,5 til 10 vekts% av et metallborid med fin partikkelstorrelse ved å tilsette en borforbindelse til smeltet aluminium i nærvær av et uorganisk fluorid-flussmiddel og fremgangsmåten karakteriseres ved at der som borforbindelse tilsettes titandiborid, zirkoniumdiborid eller kromdiborid med en partikkelstorrelse under 5 mikron som er bnsket for det metallboridkornraffinerende middel, hvorved metallboridet blir tilstede som sådant i det kornraffinerende middel. The present invention therefore relates to a process for producing a grain refining agent suitable for stope aluminum in the form of an aluminum prealloy containing aluminum and from 0.5 to 10% by weight of a metal boride of fine particle size by adding a boron compound to molten aluminum in the presence of an inorganic fluoride flux and the method is characterized by the addition of titanium diboride, zirconium diboride or chromium diboride with a particle size below 5 microns, which is required for the metal boride grain refining agent, as a boron compound, whereby the metal boride is present as such in the grain refining agent.

Flussmidler som er blitt funnet å være særlig effektive, er komplekse halogenider, f.eks. K^ZrFg, K^TiFg, Na^AlFg og blandinger av ålkalimetall, f„eks. kaliumfluorid med kalium-klorid eller med kaliumjodid eller med en blanding av disse'to. Vanligvis kan det brukes ethvert komplekst halogenid eller blandinger av halogenider som inneholder et fluorid som en komponent som forårsaker at boridet som anvendes fuktes med aluminium. Fluxes which have been found to be particularly effective are complex halides, e.g. K^ZrFg, K^TiFg, Na^AlFg and mixtures of alkali metal, e.g. potassium fluoride with potassium chloride or with potassium iodide or with a mixture of these two. Generally, any complex halide or mixtures of halides containing a fluoride as a component causing the boride used to wet with aluminum can be used.

Aluminiumforlegeringen kan f.eks. fremstilles ved å blande det findelte borid med flussmidlet, og så blande denne blandingen med smeltet aluminium. Eventuelt kan blandingen av flussmidlet og boridet oppvarmes med fast aluminium inntil metallet smelter, og derpå rores blandingen om. Ved avkjoling oppnås en fast The aluminum prealloy can e.g. is produced by mixing the finely divided boride with the flux, and then mixing this mixture with molten aluminium. Optionally, the mixture of the flux and the boride can be heated with solid aluminum until the metal melts, and then the mixture is stirred. On cooling, a solid is obtained

legering, som inneholder det findelte borid i dispersjon. Dette på sin side kan tilsettes til storre mengder smeltet alloy, which contains the finely divided boride in dispersion. This, in turn, can be added to larger quantities of melt

aluminium, for å oppnå et endelig produkt, som inneholder f.eks. opp til 100 ppm av boridet i en form som resulterer i at det endelige stopte aluminiumprodukt er finkornet. aluminium, to obtain a final product, which contains e.g. up to 100 ppm of the boride in a form which results in the final stopped aluminum product being fine grained.

Oppfinnelsen illustreres ved de folgende eksempler. The invention is illustrated by the following examples.

Eksempel 1 Example 1

10 g titandiborid, som har en gjennomsnittlig partikkelstorrelse på 2,5 mikroner ble blandet med 6 g kaliumheksafluorzirkonat og anbragt i en smeltedigel. 90 g aluminium i et enkelt stykke ble anbragt på toppen av blandingen, og smeltedigelen ble opp-varmet inntil aluminiumet og flussmidlet var smeltet. Blandingen ble rort om og fikk kjola seg. ^et faste produkt som oppnås etter å være blitt befridd fra overskuddet av flussmidlet ved vasking, inneholdt 9, 5% av findelt titandiborid jevnt for-delt i aluminiumet. 10 g of titanium diboride, which has an average particle size of 2.5 microns, was mixed with 6 g of potassium hexafluorozirconate and placed in a crucible. 90 g of aluminum in a single piece was placed on top of the mixture and the crucible was heated until the aluminum and flux were melted. The mixture was stirred and allowed to settle. A solid product obtained after being freed from the excess flux by washing contained 9.5% of finely divided titanium diboride evenly distributed in the aluminium.

Kaliumheksafluorzirkonatet kan f.eks. erstattes med kalium-heksafluortitanat. The potassium hexafluorozirconate can e.g. is replaced with potassium hexafluorotitanate.

Eksemplene 2- 5 Examples 2-5

Fremgangsmåten i eksempel 1 ble gjentatt ved bruk av folgende materialmengder: The procedure in example 1 was repeated using the following amounts of material:

Eksempel 2 Example 2

100 g aluminium 100 g of aluminum

7,5 g titandiborid 7.5 g of titanium diboride

2,5 g natriumaluminiumfluorid (kryolitt) 2.5 g sodium aluminum fluoride (cryolite)

Eksempel 3 Example 3

100 g aluminium 100 g of aluminum

7,3 g kromdiborid 7.3 g of chromium diboride

2,5 g kaliumfluorid/kaliumjodid (50/50 vekt) 2.5 g potassium fluoride/potassium iodide (50/50 weight)

Eksempel * f Example * f

100 g aluminium 100 g of aluminum

7,5 g zirkoniumdiborid 7.5 g of zirconium diboride

c',5 g nutriumaluminiumfluorid (kryolitt) c'.5 g of nutrium aluminum fluoride (cryolite)

1'Iksempel 5 1'Example 5

100 g al ir: iniiiir. 100 g al ir: iniiiir.

'/, 5 g zi r:'.>u_l vu;d:: borid '/, 5 g zi r:'.>u_l vu;d:: boride

,<:>- i; It1 i- .i ±'u t J ,<:>- in; It1 i- .i ±'u t J

I hvert tilfelle ble det faste produkt funnet å inneholde minst 95% av boridet jevnt dispergert i aluminiumet. In each case the solid product was found to contain at least 95% of the boride uniformly dispersed in the aluminum.

Claims (1)

Fremgangsmåte for fremstilling av et kornraffinerende middel egnet for stopealuminium i form av en aluminiumforlegering inneholdende aluminium og fra 0,5 til 10 vekts$ av et metallborid av fin partikkelstorrelse ved å tilsette en borforbindelse til smeltet aluminium i nærvær av et uorganisk fluorid-flussmiddel,karakterisert vedat der tilsettes som borforbindelse titandiborid, zirkoniumdiborid eller kromdiborid med en partikkelstorrelse under 5 mikron, hvorved metallboridet forblir tilstede som sådant og med nevnte partikkelstorrelse, i det kornraffinerende middel.Process for the production of a grain refining agent suitable for stope aluminum in the form of an aluminum prealloy containing aluminum and from 0.5 to 10 wt% of a metal boride of fine particle size by adding a boron compound to molten aluminum in the presence of an inorganic fluoride flux, characterized whereby titanium diboride, zirconium diboride or chromium diboride with a particle size below 5 microns is added as a boron compound, whereby the metal boride remains present as such and with said particle size, in the grain refining agent.
NO161880A 1965-03-04 1966-02-28 NO121623B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9279/65A GB1127211A (en) 1965-03-04 1965-03-04 Improvements in or relating to alloys

Publications (1)

Publication Number Publication Date
NO121623B true NO121623B (en) 1971-03-22

Family

ID=9868914

Family Applications (1)

Application Number Title Priority Date Filing Date
NO161880A NO121623B (en) 1965-03-04 1966-02-28

Country Status (5)

Country Link
US (1) US3464816A (en)
CH (1) CH470481A (en)
DE (1) DE1533399A1 (en)
GB (1) GB1127211A (en)
NO (1) NO121623B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753694A (en) * 1970-07-06 1973-08-21 Int Nickel Co Production of composite metallic articles
LU67355A1 (en) * 1973-04-04 1974-11-21
FR2533943B1 (en) * 1982-10-05 1987-04-30 Montupet Fonderies PROCESS FOR THE MANUFACTURE OF COMPOSITE ALLOYS BASED ON ALUMINUM AND BORON AND ITS APPLICATION
GB2259308A (en) 1991-09-09 1993-03-10 London Scandinavian Metall Metal matrix alloys
US5415708A (en) * 1993-06-02 1995-05-16 Kballoys, Inc. Aluminum base alloy and method for preparing same
CN115627391B (en) * 2022-09-29 2024-01-30 河北科技大学 Grain refiner for aluminum and aluminum alloy, and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1921998A (en) * 1930-09-04 1933-08-08 Nat Smelting Co Method of improving aluminum and alloys thereof
US3037857A (en) * 1959-06-09 1962-06-05 Union Carbide Corp Aluminum-base alloy

Also Published As

Publication number Publication date
US3464816A (en) 1969-09-02
DE1533399A1 (en) 1969-12-18
CH470481A (en) 1969-03-31
GB1127211A (en) 1968-09-18

Similar Documents

Publication Publication Date Title
NO121623B (en)
US3754897A (en) Melting of metals
CN105039796A (en) Aluminum-tellurium intermediate alloy and preparing method and application thereof
US2170863A (en) Process for melting up light metal scrap
DE1181928B (en) Process for the chlorination of melts made of light metals, in particular aluminum and aluminum alloys, by means of fused fluid electrolysis
US2253502A (en) Malleable iron
US2154318A (en) Refractory and method of making
US2013926A (en) Modification of aluminum, aluminum alloys, and alloys containing aluminum
US2452914A (en) Process and composition for producing magnesium-zirconium alloys
DE2740213C2 (en) Use of a tungsten-titanium-aluminum alloy
US2497531A (en) Alloying composition for introducing zirconium into magnesium
US2955935A (en) Manufacture of aluminum titanium alloys
GB891369A (en) Electrolytic production of aluminum
US2497529A (en) Process for production of magnesium base alloys containing zirconium
US1848798A (en) Aladar jpacz
US1926853A (en) Solder
US2497538A (en) Fluxes for use in the treatment of light metals
US2474538A (en) Alloying manganese with magnesium
US2221624A (en) Treatment of manganese alloys
US3151980A (en) Process for improving aluminum silicon alloys
US2262106A (en) Flux for use in the treatment of light metal
US2686946A (en) Refining beryllium in the presence of a flux
US2807541A (en) Welding aluminium alloys
SU1774964A3 (en) Method of obtaining alloying element for modifying aluminium alloys
DE2658308A1 (en) Aluminium-strontium master alloy - produced by adding strontium encased in aluminium foil, to the aluminium melt