NL2032980B1 - Variable stiffness prosthetic joint - Google Patents

Variable stiffness prosthetic joint Download PDF

Info

Publication number
NL2032980B1
NL2032980B1 NL2032980A NL2032980A NL2032980B1 NL 2032980 B1 NL2032980 B1 NL 2032980B1 NL 2032980 A NL2032980 A NL 2032980A NL 2032980 A NL2032980 A NL 2032980A NL 2032980 B1 NL2032980 B1 NL 2032980B1
Authority
NL
Netherlands
Prior art keywords
torsion spring
linear
joint
arm
prosthetic joint
Prior art date
Application number
NL2032980A
Other languages
Dutch (nl)
Inventor
Tagliabue Gregorio
Carloni Raffaella
Original Assignee
Univ Groningen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Groningen filed Critical Univ Groningen
Priority to NL2032980A priority Critical patent/NL2032980B1/en
Priority to PCT/EP2023/074130 priority patent/WO2024052257A1/en
Application granted granted Critical
Publication of NL2032980B1 publication Critical patent/NL2032980B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/604Joints for artificial legs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5016Prostheses not implantable in the body adjustable
    • A61F2002/503Prostheses not implantable in the body adjustable for adjusting elasticity, flexibility, spring rate or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5016Prostheses not implantable in the body adjustable
    • A61F2002/5033Prostheses not implantable in the body adjustable for adjusting damping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5072Prostheses not implantable in the body having spring elements
    • A61F2002/5073Helical springs, e.g. having at least one helical spring
    • A61F2002/5075Multiple spring systems including two or more helical springs

Landscapes

  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

The current invention is related to a variable stiffness prosthetic joint, for example a variable stiffness prosthetic kneejoint, comprising an inferior part, a superior part, and a variable stiffness actuator. The invention is further related to series elastic actuator for a variable stiffness prostheticjoint according to the invention. The invention is further related to an elastic element for a series elastic actuator according to the invention and/or for a prosthetic joint according to the invention.

Description

P35862NL00/WZO
VARIABLE STIFFNESS PROSTHETIC JOINT
The current invention is related to a variable stiffness prosthetic joint, for example a variable stiffness prosthetic knee joint, comprising an inferior part, a superior part, and a variable stiffness actuator. The invention is further related to series elastic actuator for a variable stiffness prosthetic joint according to the invention. The invention is further related to an elastic element for a series elastic actuator according to the invention and/or for a prosthetic joint according to the invention.
Nowadays it is possible to see a growing trend in the industry and in research of active prosthesis, e.g. prosthesis capable of actively supporting a human in activities of daily living, such as walking, walking uphill/downhill, ascending/descending stairs, running, lifting of objects. For example, an active prosthesis may actively support in these activities. Modern prostheses are more and more capable of replicating an increasing number of activities and functionalities compared to a passive prosthesis. Which leads to an increased quality of live for the patient.
It is an aim of the invention to provide an improved prosthetic joint. It is a further aim of the invention to provide a prosthetic joint that is more adaptable to various activities of daily living.
The aim of the invention is achieved by the variable stiffness prosthetic joint of claim 1.
The variable stiffness prosthetic joint of the invention comprises an inferior part and a superior part that are rotationally connected by a bearing structure allowing rotation of the superior part relative to the inferior part around a joint axis. For example, the superior part may be connected or connectable to an upper part of a limb, e.g. an upper arm or an upper leg, and the inferior part may be connected or connectable to a lower part of a limb, e.g. a lower arm or a lower leg. In other embodiments, the inferior part may be connected to the upper part of the limb whereas the superior art may be connected to the lower part of the limb. The bearing structure may be any bearing structure suitable for supporting relevant forces of the specific joint. For example, the bearing structure of a knee joint may be stronger than the bearing structure of an arm joint.
In embodiments, the inferior part or the superior part may comprise a portion which contains or may contain electronics, such as a processor and a power source, to monitor or control the prosthetic joint.
The prosthetic joint further comprises a variable stiffness actuator comprising a first series elastic actuator and a second series elastic actuator, which are mirror mounted relative to the superior part. The first and second series elastic actuator are provided on opposite sides of the superior part along the joint axis, such that, for example, the first series elastic actuator is provided on a left side of the superior art and the second series elastic actuator is provided on aright side of the superior part.
Each series elastic actuator comprises a motor element and a non-linear elastic element.
Thus, the first series elastic actuator comprises a first motor element and a first non-linear elastic element, and the second series elastic actuator comprises a second motor element and a second non-linear elastic element.
Each motor element is rigidly connected to the inferior part. For example, each motor element is mounted, e.g. bolted or welded, to the inferior part of the joint. Each motor element further comprises a rotatable shaft, i.e. which rotates by actuation of the motor element, which is aligned with the joint axis. For example, the rotatable shaft is a flanged shaft.
Each non-linear elastic element is connected to the rotatable shaft of the respective motor element on one end and to the superior part on the other end. This allows for indirect actuation, i.e. through the elastic element, of the joint by the motor element. Eac non-linear elastic element has a quadratic characteristic and comprises a first non-linear torsional spring and a second non-linear torsional spring that are in parallel configuration
In embodiments, each or either of the motor elements is a multiphase, e.g. three phase, frame-less motor with a nominal torque between 0.50Nm and 0.60Nm, preferably 0.54Nm, a maximum peak torque between 1.5Nm and 2Nm, preferably 1.75Nm, and a maximum rotation speed between 6500rpm and 7000rpm, preferably 6700rpm. The absence of a frame allows for a reduction in weight of the joint.
In embodiments the rotatable shaft of the respective motor element is connected to the respective non-linear elastic element by a transmission having an input, which is connected to the rotatable shaft, and an output, which is connected to the non-linear elastic element. The transmission may be an harmonic drive transmission based on harmonic gearing. The transmission may comprise a flexible spline with external teach that engages with internal teach of an outer spline. The flexible spline may be deformed by rotation of an internal element, which may be the input of the transmission.
The elastic elements are non-linear elastic elements meaning that they do not have a constant spring constant. Rotation of the rotatable shafts causes rotation of the elastic elements which in turn apply a force to the superior part. Depending on the relative direction of the rotation of the two motor elements, the superior part may rotate around the joint axis, or the stiffness of the joint may change.
The first series elastic actuator and the second series elastic actuator are placed in the joint in an agonistic-antagonistic configuration with respect to the superior part. Rotation of the first rotatable shaft and the second rotatable shaft in the same direction results in a rotation of the superior part around the joint axis because both series elastic actuators provide a force to the superior part in the same direction. Rotation of the first rotatable shaft and the second rotatable shaft in opposite direction results in a change of stiffness of the joint because the series elastic actuators provide forces in opposite directions, leading to the elastic elements being placed under tension, depending on the amount of force actuated by the motor elements, which leads to a change in stiffness.
Various daily activities, such as walking, walking uphill/downhill, ascending/descending stairs, running, lifting etc, result in different conditions on the joint. Depending on the activity, the joint may be desired to behave differently to compensate for the different conditions, e.g. by having a different stiffness. The invention allows for a compact joint, with a varying stiffness which, depending on the stiffness, allows the joint to be more suitable for one activity than another. This makes the joint more adaptable to various activities, and a need to change the joint for another joint, e.g. by changing the prosthetic, when engaging in different activities is reduced.
In embodiments, the prosthetic joint is a prosthetic knee joint. In other embodiments, the prosthetic joint is a prosthetic elbow joint, or another joint of the body.
In embodiments, the non-linear elastic elements have a strictly positive characteristic. It was found that for the prosthetic joint of the invention, an elastic element having a non-linear characteristic that is quadratic and strictly positive, allows for an output stiffness of the joint that does not depend on the position of the inferior part relative to the superior part and does depend on the relative rotation position of the first and second motor elements. This allows the stiffness to be determined by rotating the first and second motor element relative to each other, e.g. in opposite directions, only. The characteristic of the non-linear element is the relation between the force and the displacement.
In embodiments, each non-linear elastic element is connected to the respective rotatable shaft via a respective transmission, e.g. a harmonic drive transmission, having an input connected to the rotatable shaft and an output connected to the elastic element.
In embodiments, the first elastic element and the second elastic element are identical elastic elements.
In embodiments, each elastic element comprises a first non-linear torsional spring and a second non-linear torsional spring that are in a parallel configuration. Prosthetic joints may have to withstand high peak torques during use. In order to allow elastic element to withstand these high peak torques, the elastic element may have to be more massive, e.g. by having an increased depth. This may result in a joint that is too big. It was found that by using two non- linear torsional springs for the elastic element, the overall size of the elastic element may be smaller while still allowing for high peak torques. For example, in order to sustain a peak torque of 117NM, a single non-linear torsional spring may have to have a depth of 19mm.
However, when two non-linear torsional springs of different sizes are used, the total depth is smaller, while the system can still withstand the peak torque.
In embodiments, the first non-linear torsional spring has a larger diameter than the second non-linear torsional spring. For example, the first torsional spring has an outer diameter between 75mm and 80mm, preferably 78mm, and the second torsional spring has a diameter between 55mm and 60mm, preferably 58mm.
In embodiments, the first torsional spring and the second torsional spring have a spiral arm structure, wherein the spiral arm structure has a varying thickness and an Archimedean spiral profile. For example, the thickness of the spiral arm structure may vary between 1.5mm and 5mm.
In embodiments, the first torsional spring has an arm thickness varying between 1.5mm and 5mm, an arm depth of between 7mm and 8mm, preferably 7.5mm, an inner diameter between 12mm and 20mm, preferably 16mm and an outer diameter between 75mm and 80mm, preferably 78mm.
In embodiments, the second torsional spring has an arm thickness varying between 2.4mm and 4mm, an arm depth between 10mm and 13 mm, preferably 11.5mm, an inner diameter between 8mm and 12 mm, preferably 10mmm, and an outer diameter between 55mm and 60mm, preferably 58mm.
It was found that the above dimensions for the non-linear elastic elements allow for a prosthetic joint that may withstand a high peak torque, has natural joint like, e.g. knee joint like, behaviour, and is not too big to be fitted into a bionic limb, e.g. a bionic leg.
The invention further relates to a series elastic actuator for an prosthetic joint, wherein the series elastic actuator comprises: - a motor element rigidly connectable to an inferior part of the joint, wherein the motor element comprises a rotatable shaft; and - anon-linear elastic element connected to the rotatable shaft of the respective motor element and connectable to a superior part of the joint, wherein the non-linear elastic element has a quadratic characteristic, wherein the elastic element comprises a first non-linear torsional spring and a second non- linear torsional spring that are parallelly provided, wherein the first non-linear torsional spring has a larger diameter than the second non-linear torsional spring, wherein the first torsional spring and the second torsional spring have a spiral arm structure, wherein the spiral arm structure has a varying thickness and an Archimedean spiral profile.
In embodiments of the series elastic actuator, the first torsional spring has an arm thickness varying between 1.5mm and 5mm, an arm depth of between 7mm and 8mm, preferably 7.5mm, an inner diameter between 12mm and 20mm, preferably 16mm and an outer diameter between 75mm and 80mm, preferably 78mm.
In further embodiments of the series elastic actuator, the second torsional spring has an arm thickness varying between 2.4mm and 4mm, an arm depth between 10mm and 13 mm, preferably 11.5mm, an inner diameter between 8mm and 12 mm, preferably 10mmm, and an outer diameter between 55mm and 60mm, preferably 58mm.
The invention is further related to an elastic element for a series elastic actuator according to the invention or for a prosthetic joint according to the invention, wherein the elastic element comprises a first non-linear torsional spring and a second non-linear torsional spring that are parallelly provided, wherein the first non-linear torsional spring has a larger diameter than the second non-linear torsional spring, wherein the first torsional spring and the second torsional spring have a spiral arm structure, wherein the spiral arm structure has a varying thickness and an Archimedean spiral profile.
In further embodiments of the elastic element, the first torsional spring has an arm thickness varying between 1.5mm and 5mm, an arm depth of between 7mm and 8mm, preferably 7.5mm, an inner diameter between 12mm and 20mm, preferably 16mm and an outer diameter between 75mm and 80mm, preferably 78mm, and wherein the second torsional spring has an arm thickness varying between 2.4mm and 4mm, an arm depth between 10mm and 13 mm, preferably 11.5mm, an inner diameter between 8mm and 12 mm, preferably 10mmm, and an outer diameter between 55mm and 60mm, preferably 58mm.
The invention will now be illustrated by the drawing, wherein: - Fig. 1 shows a schematic depiction of the first series elastic actuator and the second series elastic actuator in an agonistic-antagonistic configuration; - Fig. 2 shows a schematic depiction of a general torsional spring; - Fig. 3 shows schematic depiction of the first non-linear torsional spring and the second non-linear torsional spring; - Fig. 4 shows a schematic depiction of the prosthetic joint; and - Fig. 5 shows a schematic depiction of a series elastic actuator.
Figure 1 shows a schematic depiction of the first series elastic actuator 4 and the second series elastic actuator 5 connected to the superior part 3 in an agonistic-antagonistic configuration. The first series elastic actuator comprises a first motor element 6a which is rigidly connected to the inferior part, 2 not shown. The first series elastic actuator 4 further comprises a first non-linear elastic element 7a that is connected to the first motor element 6a on one end and to the superior part 3 at another end thereof.
The second series elastic actuator 5 comprises a second motor element 6b which is rigidly connected to the inferior part, 2 not shown. The second series elastic actuator 5 further comprises a second non-linear elastic element 7b that is connected to the second motor element 6b on one end and to the superior part 3 at another end thereof.
Rotation of the first motor element 6a and the second motor element 6b in a same direction generates a rotation of the superior part 3 around the joint axis, and rotation of the first motor element 6a and the second motor element 6b in opposite directions generates a change of stiffness of the joint.
Figure 2 shows a schematic depiction of a general torsional spring having an Archimedean spiral structure, wherein the dimensions of the torsional spring are illustrated. In the figure, “t” is the arm thickness of the general spring, which for a non-linear torsional spring may vary as illustrated in figure 3, “a” is the distance between arms, “Db” is the depth of the spring, “Ri is the internal radius of the of the spring and “Ry” is the external radius of the spring.
Figure 3 shows a schematic depiction of the first non-linear torsional spring 9 and the second non-linear torsional spring 10, depicting possible dimensions in mm of the first non-linear torsional spring 9 and the second non-linear torsional spring 10.
The torsional springs 9, 10 of figure 3 have a quadratic and strictly positive characteristic due to the variation of thickness “t". It was found that for the prosthetic joint 1, an elastic element having a non-linear characteristic that is quadratic and strictly positive, allows for an output stiffness of the joint 1 that does not depend on the position of the inferior part 2 relative to the superior part 3 and does depend on the relative rotation position of the first and second motor elements Ba, 6b. This allows the stiffness to be determined by rotating the first and second motor element 6a, 6b relative to each other, e.g. in opposite directions, only.
Figure 4 shows a schematic depiction of the prosthetic joint 1. The prosthetic joint 1 comprises an inferior part 2 and a superior part 3. The inferior part 2 and the superior part 3 are connected by a bearing structure allowing rotation of the superior part 3 relative to the inferior part 2 around the joint axis.
The joint 1 further comprises a first series elastic actuator 4, as shown in more detail in figure 5, and a second series elastic actuator 5, that are provided on opposite sides of the superior part 3 along the joint axis in an agonistic-antagonistic configuration, e.g. as explained with reference to figure 1.
The inferior part 2 or the superior part 3 may comprise a portion which contains or may contain electronics, such as a processor and a power source, to monitor or control the prosthetic joint 1.
Figure 5 shows a schematic depiction of a first series elastic actuator 4 comprising a first motor element 6a with a rotatable shaft 11a. The first series elastic actuator 4 further comprises a transmission 8a connecting the rotatable shaft 11a to the first torsional element 9a and the second torsional element 10a. The first torsional element 9a and the second torsional element 10a are provided in a parallel configuration that are connected to each other by a shaft, e.g. having a circumferential interference fit connection.

Claims (14)

CONCLUSIESCONCLUSIONS 1. Variabele stijfneid prothetisch gewricht omvattende: - een onderste deel en een bovenste deel die roteerbaar met elkaar verbonden zijn door een lagerstructuur die het mogelijk maakt om het bovenste deel te roteren ten opzichte van het onderste deel rond een gewrichtsas; en - een variabele stijfheid actuator, waarbij de variabele stijfheid actuator een eerste serie elastische actuator en een tweede serie elastische actuator omvat die op tegenoverliggende kanten van het bovenste deel langs de gewrichtsas verschaft zijn, waarbij elke serie elastische actuator omvat: - een motorelement die rigide verbonden is met het onderste deel, waarbij het motorelement een roteerbare drijfas omvat die uitgelijnd is met de gewrichtsas; en - een niet-lineair elastisch element dat verbonden is met de roteerbare drijfas van het respectieve motorelement en met het bovenste deel, waarbij het niet-lineaire elastische element een kwadratische karakteristiek heeft en een eerste niet-lineaire torsieveer en een tweede niet-lineaire torsieveer omvat die in een parallelle configuratie zijn, waarbij de eerste serie elastische actuator en de tweede serie elastische actuator in een agonistische-antagonistische configuratie zijn ten opzichte van het bovenste deel zo dat rotatie van de eerste roteerbare drijfas en van de tweede roteerbare drijfas in een zelfde richting een rotatie van het bovenste deel rond de gewrichtsas veroorzaakt en een rotatie van de eerste roteerbare drijfas en de tweede roteerbare drijfas in tegengestelde richting een verandering van stijfheid van het gewricht veroorzaakt.CLAIMS 1. Variable stiffness prosthetic joint comprising: - a lower part and an upper part rotatably connected to each other by a bearing structure that allows the upper part to rotate with respect to the lower part about a joint axis; and - a variable stiffness actuator, the variable stiffness actuator comprising a first series elastic actuator and a second series elastic actuator provided on opposite sides of the upper portion along the joint axis, each series elastic actuator comprising: - a motor element which is rigid connected to the lower part, the motor element comprising a rotatable drive shaft aligned with the joint axis; and - a non-linear elastic element connected to the rotatable drive shaft of the respective motor element and to the upper part, the non-linear elastic element having a quadratic characteristic and a first non-linear torsion spring and a second non-linear torsion spring which are in a parallel configuration, wherein the first series elastic actuator and the second series elastic actuator are in an agonistic-antagonistic configuration with respect to the upper portion such that rotation of the first rotatable drive shaft and of the second rotatable drive shaft are in the same direction causes a rotation of the upper part about the joint axis and a rotation of the first rotatable drive shaft and the second rotatable drive shaft in opposite directions causes a change in stiffness of the joint. 2. Prothetisch gewricht volgens conclusie 1, waarbij het prothetisch gewricht een prothetisch kniegewricht is.2. Prosthetic joint according to claim 1, wherein the prosthetic joint is a prosthetic knee joint. 3. Prothetisch gewricht volgens een of meer van de voorgaande conclusies, waarbij de niet-lineaire elastische elementen een strikt positieve karakteristiek hebben.3. Prosthetic joint according to one or more of the preceding claims, wherein the non-linear elastic elements have a strictly positive characteristic. 4. Prothetisch gewricht volgens een of meer van de voorgaande conclusies, waarbij elk niet-lineair elastisch element verbonden is met de respectieve roteerbare drijfas via een respectieve transmissie, bijvoorbeeld een harmonische transmissie, met een ingang die verbonden is met de roteerbare drijfas en een uitgang die verbonden is met het elastisch element.4. Prosthetic joint according to one or more of the preceding claims, wherein each non-linear elastic element is connected to the respective rotatable drive shaft via a respective transmission, for example a harmonic transmission, with an input connected to the rotatable drive shaft and an output which is connected to the elastic element. 5. Prothetisch gewricht volgens een of meer van de voorgaande conclusies, waarbij het eerste elastische element en het tweede elastisch element identieke elastische elementen zijn.5. Prosthetic joint according to one or more of the preceding claims, wherein the first elastic element and the second elastic element are identical elastic elements. 6. Prothetisch gewricht volgens een of meer van de voorgaande conclusies, waarbij de eerste niet-lineaire torsieveer een grotere diameter heeft dan de tweede niet-lineaire torsieveer.6. Prosthetic joint according to one or more of the preceding claims, wherein the first non-linear torsion spring has a larger diameter than the second non-linear torsion spring. 7. Prothetisch gewricht volgens een of meer van de voorgaande conclusies, waarbij de eerste niet-lineaire torsieveer en de tweede torsieveer een spiraalarmstructuur hebben, waarbij de spiraalarmstructuur een variërende dikte en een Archimedisch spiraalprofiel heeft.7. Prosthetic joint according to one or more of the preceding claims, wherein the first non-linear torsion spring and the second torsion spring have a spiral arm structure, wherein the spiral arm structure has a varying thickness and an Archimedean spiral profile. 8. Prothetisch gewricht volgens conclusie 7, waarbij de eerste torsieveer een armdikte heeft die varieert tussen 1.5mm en 5mm, een armdiepte heeft tussen 7mm en 8mm, bij voorkeur 7.5mm, een binnendiameter heeft tussen 12mm en 20mm, bij voorkeur 16mm en een buitendiameter heeft tussen 75mm en 80mm, bij voorkeur 78mm.8. Prosthetic joint according to claim 7, wherein the first torsion spring has an arm thickness varying between 1.5mm and 5mm, an arm depth between 7mm and 8mm, preferably 7.5mm, an inner diameter between 12mm and 20mm, preferably 16mm and an outer diameter has between 75mm and 80mm, preferably 78mm. 9. Prothetisch gewricht volgens een of meer van de conclusies 7 — 8, waarbij de tweede torsieveer een armdikte heeft die varieert tussen 2.4mm en 4mm, en armdikte heeft tussen 10mm en 13mm, bij voorkeur 11.5mm, een binnendiameter heeft tussen 8mm en 12mm, bij voorkeur 10mm, en een buitendiameter heeft tussen 5mm en 60mm, bij voorkeur 58mm.9. Prosthetic joint according to one or more of claims 7 - 8, wherein the second torsion spring has an arm thickness varying between 2.4 mm and 4 mm, and an arm thickness between 10 mm and 13 mm, preferably 11.5 mm, has an inner diameter between 8 mm and 12 mm , preferably 10mm, and has an outer diameter between 5mm and 60mm, preferably 58mm. 10. Serie elastische actuator voor een prothetisch gewricht, waarbij de serie elastische actuator omvat: - een motor element die rigide verbindbaar is met een onderste deel van het gewricht, waarbij het motor element een roteerbare drijfas omvat; en - een niet-lineaire elastisch element dat verbonden is met de roteerbare drijfas van het respectieve motorelement en verbindbaar is met een bovenste deel van het gewricht, waarbij het niet-lineaire elastisch element een kwadratische karakteristiek heeft, waarbij het elastische element een eerste niet-lineaire torsieveer en een tweede niet-lineaire torsieveer omvat die parallel verschaft zijn, waarbij de eerste niet-lineaire torsieveer een grotere diameter heeft dan de tweede niet-lineaire torsieveer, waarbij de eerste torsieveer en de tweede torsieveer een spiraalarmstructuur hebben, waarbij de spiraalarmstructuur een variërende dikte en een Archimedisch spiraalprofiel heeft.10. Series elastic actuator for a prosthetic joint, wherein the series elastic actuator comprises: - a motor element that is rigidly connectable to a lower part of the joint, wherein the motor element comprises a rotatable drive shaft; and - a non-linear elastic element connected to the rotatable drive shaft of the respective motor element and connectable to an upper part of the joint, the non-linear elastic element having a quadratic characteristic, the elastic element having a first non- linear torsion spring and a second non-linear torsion spring provided in parallel, wherein the first non-linear torsion spring has a larger diameter than the second non-linear torsion spring, wherein the first torsion spring and the second torsion spring have a spiral arm structure, wherein the spiral arm structure has a varying thickness and an Archimedean spiral profile. 11. Serie elastische actuator volgens conclusie 10, waarbij de eerste torsieveer een armdikte heeft die varieert tussen 1.5mm en 5mm, een armdiepte heeft tussen 7mm en 8mm,11. Series elastic actuator according to claim 10, wherein the first torsion spring has an arm thickness varying between 1.5mm and 5mm, an arm depth between 7mm and 8mm, bij voorkeur 7.5mm, een binnendiameter heeft tussen 12mm en 20mm, bij voorkeur 16mm en een buitendiameter heeft tussen 75mm en 80mm, bij voorkeur 78mm.preferably 7.5mm, has an inner diameter between 12mm and 20mm, preferably 16mm and an outer diameter between 75mm and 80mm, preferably 78mm. 12. Serie elastische actuator volgens een of meer van de conclusies 10 — 11, waarbij de tweede torsieveer een armdikte heeft die varieert tussen 2.4mm en 4mm, en armdikte heeft tussen 10mm en 13mm, bij voorkeur 11.5mm, een binnendiameter heeft tussen 8mm en 12mm, bij voorkeur 10mm, en een buitendiameter heeft tussen 5mm en 60mm, bij voorkeur 58mm.12. Series elastic actuator according to one or more of claims 10 - 11, wherein the second torsion spring has an arm thickness varying between 2.4mm and 4mm, and an arm thickness between 10mm and 13mm, preferably 11.5mm, an inner diameter between 8mm and 12mm, preferably 10mm, and has an outer diameter between 5mm and 60mm, preferably 58mm. 13. Elastisch element voor een serie elastische actuator volgens een of meer van de conclusies 10 — 12, of voor een prothetisch gewricht volgens een of meer van de conclusies 1 — 9, waarbij het elastisch element een eerste niet-lineaire torsieveer en een tweede niet- lineaire torsieveer omvat die parallel verschaft zijn, waarbij de eerste niet-lineaire torsieveer een grotere diameter heeft dan de tweede niet-lineaire torsieveer, waarbij de eerste torsieveer en de tweede torsieveer een spiraalarmstructuur hebben, waarbij de spiraalarmstructuur een variërende dikte en een Archimedisch spiraalprofiel heeft.13. Elastic element for a series elastic actuator according to one or more of claims 10 - 12, or for a prosthetic joint according to one or more of claims 1 - 9, wherein the elastic element has a first non-linear torsion spring and a second non-linear torsion spring - linear torsion spring provided in parallel, wherein the first non-linear torsion spring has a larger diameter than the second non-linear torsion spring, wherein the first torsion spring and the second torsion spring have a spiral arm structure, wherein the spiral arm structure has a varying thickness and an Archimedean spiral profile has. 14. Elastisch element volgens conclusie 13, waarbij de eerste torsieveer een armdikte heeft die varieert tussen 1.5mm en 5mm, een armdiepte heeft tussen 7mm en 8mm, bij voorkeur 7.5mm, een binnendiameter heeft tussen 12mm en 20mm, bij voorkeur 16mm en een buitendiameter heeft tussen 75mm en 80mm, bij voorkeur 78mm en waarbij de tweede torsieveer een armdikte heeft die varieert tussen 2.4mm en 4mm, en armdikte heeft tussen 10mm en 13mm, bij voorkeur 11.5mm, een binnendiameter heeft tussen 8mm en 12mm, bij voorkeur 10mm, en een buitendiameter heeft tussen 5mm en 60mm, bij voorkeur 58mm.14. Elastic element according to claim 13, wherein the first torsion spring has an arm thickness varying between 1.5mm and 5mm, an arm depth between 7mm and 8mm, preferably 7.5mm, an inner diameter between 12mm and 20mm, preferably 16mm and an outer diameter has between 75mm and 80mm, preferably 78mm and wherein the second torsion spring has an arm thickness varying between 2.4mm and 4mm, and has an arm thickness between 10mm and 13mm, preferably 11.5mm, has an inner diameter between 8mm and 12mm, preferably 10mm, and has an outer diameter between 5mm and 60mm, preferably 58mm.
NL2032980A 2022-09-07 2022-09-07 Variable stiffness prosthetic joint NL2032980B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2032980A NL2032980B1 (en) 2022-09-07 2022-09-07 Variable stiffness prosthetic joint
PCT/EP2023/074130 WO2024052257A1 (en) 2022-09-07 2023-09-04 Variable stiffness prosthetic joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2032980A NL2032980B1 (en) 2022-09-07 2022-09-07 Variable stiffness prosthetic joint

Publications (1)

Publication Number Publication Date
NL2032980B1 true NL2032980B1 (en) 2024-03-21

Family

ID=83996539

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032980A NL2032980B1 (en) 2022-09-07 2022-09-07 Variable stiffness prosthetic joint

Country Status (2)

Country Link
NL (1) NL2032980B1 (en)
WO (1) WO2024052257A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088616A1 (en) * 2009-01-30 2010-08-05 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US8551184B1 (en) * 2002-07-15 2013-10-08 Iwalk, Inc. Variable mechanical-impedance artificial legs
US20160158032A1 (en) * 2013-05-03 2016-06-09 Springactive, Inc. Quasi-Active Prosthetic Joint System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551184B1 (en) * 2002-07-15 2013-10-08 Iwalk, Inc. Variable mechanical-impedance artificial legs
WO2010088616A1 (en) * 2009-01-30 2010-08-05 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US20160158032A1 (en) * 2013-05-03 2016-06-09 Springactive, Inc. Quasi-Active Prosthetic Joint System

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.E.ENGLISH, D. RUSSEL: "Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic", MECHANISM AND MACHINE THEORY, vol. 34, no. 1, 1 January 1999 (1999-01-01), pages 7 - 25, XP002808891, DOI: 10.1016/S0094-114X(98)00026-3 *
MALOSIO M ET AL: "Principle of operation of RotWWC-VSA, a multi-turn rotational variable stiffness actuator", MECHANISM AND MACHINE THEORY, PERGAMON, AMSTERDAM, NL, vol. 116, 23 May 2017 (2017-05-23), pages 34 - 49, XP085124409, ISSN: 0094-114X, DOI: 10.1016/J.MECHMACHTHEORY.2017.05.006 *

Also Published As

Publication number Publication date
WO2024052257A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
US10052216B2 (en) One motor finger mechanism
US9289316B2 (en) Quasi-active prosthetic joint system
Alam et al. Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop‐Foot
Au et al. An ankle-foot emulation system for the study of human walking biomechanics
US5376121A (en) Dual constraint elbow prosthesis
WO2018087997A1 (en) Knee joint
NL2032980B1 (en) Variable stiffness prosthetic joint
EP3300699B1 (en) Biomimetic and variable stiffness ankle system and related methods
US11173092B2 (en) Joint exoskeleton auxiliary driving mechanism
Ficanha et al. A two-axis cable-driven ankle-foot mechanism
CN101541265B (en) Finger joint prosthesis
Chen et al. Development of robotic ankle–foot orthosis with series elastic actuator and magneto-rheological brake
Lenzi et al. Actively variable transmission for robotic knee prostheses
Creylman et al. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking
KR20150113254A (en) Shoulder joint tracking apparatus for upper-limb rehabilitation with gravity compensating mechanism
Rodriguez-Cianca et al. A flexible shaft-driven remote and torsionally compliant actuator (rtca) for wearable robots
Lau et al. Stiffness modulator: A novel actuator for human augmentation
CN112888537A (en) Elastic joint
CA1283502C (en) Knee articulation prosthesis
Mastenbroek et al. Development of a mobile arm support (Armon): Design evolution and preliminary user experience
US10702401B2 (en) Variable friction-based swing-phase controller with artificial joint
US20230329885A1 (en) Systems and methods for an ankle prosthesis
US20220401244A1 (en) Orthopedic joint device
CN111228085A (en) Prosthesis of rigidity self-adaptive artificial joint
Basu et al. Design of a novel variable stiffness active ankle foot orthosis using permanent magnets for drop foot assistance