NL2030008B1 - Method and system for monitoring state of high-strength bolt of rotating component - Google Patents

Method and system for monitoring state of high-strength bolt of rotating component Download PDF

Info

Publication number
NL2030008B1
NL2030008B1 NL2030008A NL2030008A NL2030008B1 NL 2030008 B1 NL2030008 B1 NL 2030008B1 NL 2030008 A NL2030008 A NL 2030008A NL 2030008 A NL2030008 A NL 2030008A NL 2030008 B1 NL2030008 B1 NL 2030008B1
Authority
NL
Netherlands
Prior art keywords
bolt
detected
image
sequence
geometric center
Prior art date
Application number
NL2030008A
Other languages
Dutch (nl)
Inventor
Zhang Shi
Wang Xiangwei
Ding Chunxing
Zheng Junbin
Jin Beibei
Wang Naizhe
Original Assignee
Huaneng Renewables Corporation Ltd Hebei Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Renewables Corporation Ltd Hebei Branch filed Critical Huaneng Renewables Corporation Ltd Hebei Branch
Priority to NL2030008A priority Critical patent/NL2030008B1/en
Application granted granted Critical
Publication of NL2030008B1 publication Critical patent/NL2030008B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

A method and system for monitoring a state of a high-strength bolt of a rotating component. The method includes: arranging a special marked line on a bolt to be 5 detected; acquiring an image of the bolt to be detected with the special marked line; calculating a geometric center of the image of the bolt to be detected; determining a horizontal axis coordinate sequence according to the geometric center of the image of the bolt to be detected; calculating a central angle on the basis of the horizontal axis coordinate sequence to obtain a central angle sequence, the central angle being an 10 included angle between the bolt to be detected and a central marked line of a lens; and determining, according to the central angle sequence, whether the bolt to be detected is abnormal. Figure 1

Description

METHOD AND SYSTEM FOR MONITORING STATE OF HIGH-STRENGTH BOLT
OF ROTATING COMPONENT
TECHNICAL FIELD
[01] The present disclosure relates to the field of monitoring of states of high- strength bolts, and in particular, to a method and system for monitoring a state of a high-strength bolt of a rotating component.
BACKGROUND ART
[02] Breakage, for example, of a high-strength bolt of a rotating component will extend a fault point, which particularly damages peripheral bolts and equipment. Safety accidents caused by the breakage of the rotating component occur sometimes. At this stage, there are many ultrasonic detection methods for bolts. This method has a better detection effect on bolts. However, due to a large number of high-strength bolts on the rotating component, use of an ultrasonic measure and other measures not only consumes a lot of time, but also increases a lot of cost investment. At the same time, online detection cannot be effectively achieved with existing methods, and there is a lack of detection methods in a non-stop state.
SUMMARY
[03] Based on this, the present disclosure provides a method and system for monitoring a state of a high-strength bolt of a rotating component.
[04] To achieve the above-mentioned purpose, the present disclosure provides the following solution.
[05] A method for monitoring a state of a high-strength bolt of a rotating component includes:
[06] arranging a special marked line on a bolt to be detected;
[07] acquiring an image of the bolt to be detected with the special marked line;
[08] calculating a geometric center of the image of the bolt to be detected;
[09] determining a horizontal axis coordinate sequence according to the geometric center of the image of the bolt to be detected;
[10] calculating a central angle on the basis of the horizontal axis coordinate sequence to obtain a central angle sequence, the central angle being an included angle between the bolt to be detected and a central marked line of a lens; and
[11] determining, according to the central angle sequence, whether the bolt to be detected is abnormal.
[12] Optionally, the calculating the geometric center of the image of the bolt to be detected specifically includes:
[13] training the image of the bolt to be detected by means of a cascade classifier to acquire a graphic feature file;
[14] identifying, on the basis of the graphic feature file, a boundary of the image of the bolt to be detected by using an identification algorithm; and
[15] calculating the geometric center of the image of the bolt to be detected according to the boundary of the image of the bolt to be detected.
[16] Optionally, the determining a horizontal axis coordinate sequence according to the geometric center of the image of the bolt to be detected specifically includes:
[17] restoring the image of the bolt to be detected to the geometric center by means of image transformation;
[18] calculating a horizontal coordinate center point of each restored image; and
[19] projecting the horizontal coordinate center point to a horizontal axis to obtain the horizontal axis coordinate sequence.
[20] Optionally, the determining, according to the central angle sequence, whether the bolt to be detected is abnormal specifically includes: [BI] differentiating adjacent data in the central angle sequence to obtain a new sequence;
[22] calculating a difference value between each item in the new sequence and the numerical value 1;
[23] determining whether the difference value is greater than a set error; and
[4] if yes, determining whether the current bolt to be detected to abnormal.
[25] Optionally, the method further includes:
[26] when it is determined that the bolt to be detected is abnormal, determining an abnormality type according to the graphic feature file.
[27] The present disclosure further provides a system for monitoring a state of a high-strength bolt of a rotating component, including:
[28] an arrangement module used for arranging a special marked line on a bolt to be detected;
[29] an acquisition module used for acquiring an image of the bolt to be detected with the special marked line;
[30] a geometric center calculation module used for calculating a geometric center of the image of the bolt to be detected;
[31] a horizontal coordinate sequence determination module used for determining a horizontal axis coordinate sequence according to the geometric center of the image of the bolt to be detected;
[32] a central angle sequence calculation module used for calculating a central angle on the basis of the horizontal axis coordinate sequence to obtain a central angle sequence, the central angle being an included angle between the bolt to be detected and a central marked line of a lens; and
[33] a determining module used for determining, according to the central angle sequence, whether the bolt to be detected is abnormal.
[34] Optionally, the geometric center calculation module specifically includes:
[35] a training unit used for training the image of the bolt to be detected by means of a cascade classifier to acquire a graphic feature file;
[36] an identification unit used for identifying, on the basis of the graphic feature file, a boundary of the image of the bolt to be detected by using an identification algorithm; and
[37] a geometric center calculation unit used for calculating the geometric center of the image of the bolt to be detected according to the boundary of the image of the bolt to be detected.
[38] Optionally, the horizontal coordinate sequence determination module specifically includes:
[39] a transformation unit used for restoring the image of the bolt to be detected to the geometric center by means of image transformation;
[40] a horizontal coordinate center point calculation unit used for calculating a horizontal coordinate center point of each restored image; and
[41] a projection unit used for projecting the horizontal coordinate center point to a horizontal axis to obtain the horizontal axis coordinate sequence.
[42] Optionally, the determining module specifically includes:
[43] a differentiation unit used for differentiating adjacent data in the central angle sequence to obtain a new sequence;
[44] a difference value calculation unit used for calculating a difference value between each item in the new sequence and the numerical value 1;
[45] a first determining unit used for determining whether the difference value is greater than a set error; and
[46] a second determining unit used for determining that the current bolt to be detected is abnormal when the difference value is greater than the set error.
[47] Optionally, the system further includes:
[48] an abnormality type determination module used for determining an abnormality type according to the graphic feature file when it is determined that the bolt to be detected is abnormal.
[49] According to the specific embodiments provided by the present disclosure, the present disclosure discloses the following technical effects.
[50] The present disclosure discloses a method and system for monitoring a state of a high-strength bolt of a rotating component. The method includes: arranging a special marked line on a bolt to be detected; acquiring an image of the bolt to be detected with the special marked line; calculating a geometric center of the image of the bolt to be detected; determining a horizontal axis coordinate sequence according to the geometric center of the image of the bolt to be detected; calculating a central angle on the basis of the horizontal axis coordinate sequence to obtain a central angle sequence, the central angle being an included angle between the bolt to be detected and a central marked line of a lens; and determining, according to the central angle sequence, whether the bolt to be detected is abnormal. By the adoption of the above method, the abnormality of the high-strength bolt of the rotating component can be quickly and accurately monitored.
BRIEF DESCRIPTION OF THE DRAWINGS
[51] In order to describe the embodiments of the present disclosure or technical solutions in the existing art more clearly, drawings required to be used in the embodiments will be briefly introduced below. Apparently, the drawings in the descriptions below are only some embodiments of the present disclosure. Those ordinarily skilled in the art also can acquire other drawings according to the these drawings without creative work.
[52] FIG. 1 is a flowchart of a method for monitoring a state of a high-strength bolt of a rotating component according to the embodiments of the present disclosure; and
[53] FIG. 2 is a structural block diagram of a system for monitoring a state of a high- strength bolt of a rotating component according to the embodiments of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[54] The following clearly and completely describes the technical solution in the embodiments of the present disclosure in combination with the accompanying 5 drawings of the embodiments of the present disclosure. Apparently, the described embodiments are only part of the embodiments of the present disclosure, not all embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present disclosure.
[55] In order to make the above-mentioned purposes, characteristics and advantages of the present disclosure more obvious and understandable, the present disclosure is further described in detail below with reference to the accompanying drawings and specific implementation modes.
[56] As shown in FIG. 1, a method for monitoring a state of a high-strength bolt of a rotating component includes the following steps.
[57] Step 101: a special marked line is arranged on a bolt to be detected.
[58] Step 102: an image of the bolt to be detected with the special marked line is acquired.
[59] Step 103: a geometric center of the image of the bolt to be detected is calculated. Specifically:
[60] Step 1031: the image of the bolt to be detected is trained by means of a cascade classifier (Traincascade) to acquire a graphic feature file.
[61] Step 1032: a boundary of the image of the bolt to be detected is identified, on the basis of the graphic feature file, by using an identification algorithm (OpenCV).
Step 1033: the geometric center of the image of the bolt to be detected is calculated according to the boundary of the image of the bolt to be detected.
[62] Step 104: a horizontal axis coordinate sequence is determined according to the geometric center of the image of the bolt to be detected. Specifically:
[63] Step 1041: the image of the bolt to be detected is restored to the geometric center by means of image transformation (tangential distortion and radial distortion correction).
[64] Step 1042: a horizontal coordinate center point of each restored image is calculated.
[65] Step 1043: the horizontal coordinate center point is projected to a horizontal axis to obtain the horizontal axis coordinate sequence.
[66] Step 105: a central angle is calculated on the basis of the horizontal axis coordinate sequence to obtain a central angle sequence, the central angle being an included angle between the bolt to be detected and a central marked line of a lens.
[67] The central angle is deduced by using the following formula (the radian of the central marked line of the lens is preset to be 0, described with the rust language):
[68] n=(({rs*™xc)/((r*b).powi(2)+(r*xc).powi(2)).sqrt()).asin())+{{r*xc)/(r*b)).atan()/dsit a
[69] wherers, r, and b are all related to a specific image probe of an existing type anda mounting method of the specific image probe; r denotes the radius of detected flange ring equipment; rs denotes a distance between a lens mounting position and a flange ring; b is a coefficient related to an equivalent focal length; dsit a denotes an included angle between adjacent bolts; and xc is a horizontal coordinate in the horizontal axis coordinate sequence.
[70] Step 106: whether the bolt to be detected is abnormal is determined according to the central angle sequence.
[71] Adjacent data in the central angle sequence (..., n-1, nO, m1, …) are differentiated to obtain a new sequence. A difference value between each item in this final sequence and 1 is a set error o under the condition that all the bolts are normal and uniform. If the difference value is greater than this error, it is indicated that the bolt here is abnormal.
[72] The method further includes: step 107: when it is determined that the bolt to be detected is abnormal, an abnormality type is determined according to the graphic feature file. It is known from the step 106 that the bolt at a specific position is abnormal, and the corresponding image is subjected to fine judgment (a corresponding defect bolt feature file can be obtained by means of acquisition and training of images under different defects; the image boundary acquired at the step 1033 is cut to obtain a new image; the new image is cut by applying the feature file), thus realizing detection of breakage, missing, and the like.
[73] As shown in FIG. 2, the present disclosure further provides a system for monitoring a state of a high-strength bolt of a rotating component. The system includes:
[74] an arrangement module 201 used for arranging a special marked line on a bolt to be detected;
[75] an acquisition module 202 used for acquiring an image of the bolt to be detected with the special marked line; and
[76] a geometric center calculation module 203 used for calculating a geometric center of the image of the bolt to be detected,
[77] the geometric center calculation module 203 specifically including:
[78] a training unit used for training the image of the bolt to be detected by means of a cascade classifier to acquire a graphic feature file;
[79] an identification unit used for identifying, on the basis of the graphic feature file, a boundary of the image of the bolt to be detected by using an identification algorithm; and
[80] a geometric center calculation unit used for calculating the geometric center of the image of the bolt to be detected according to the boundary of the image of the bolt to be detected.
[81] a horizontal coordinate sequence determination module 204 used for determining a horizontal axis coordinate sequence according to the geometric center of the image of the bolt to be detected,
[82] the horizontal coordinate sequence determination module 204 specifically including:
[83] a transformation unit used for restoring the image of the bolt to be detected to the geometric center by means of image transformation;
[84] a horizontal coordinate center point calculation unit used for calculating a horizontal coordinate center point of each restored image; and
[85] a projection unit used for projecting the horizontal coordinate center point to a horizontal axis to obtain the horizontal axis coordinate sequence;
[86] a central angle sequence calculation module 205 used for calculating a central angle on the basis of the horizontal axis coordinate sequence to obtain a central angle sequence, the central angle being an included angle between the bolt to be detected and a central marked line of a lens; and
[87] a determining module 206 used for determining, according to the central angle sequence, whether the bolt to be detected is abnormal.
[88] The determining module 206 specifically includes:
[89] a differentiation unit used for differentiating adjacent data in the central angle sequence to obtain a new sequence;
[90] a difference value calculation unit used for calculating a difference value between each item in the new sequence and the numerical value 1,
[91] a first determining unit used for determining whether the difference value is greater than a set error; and
[92] a second determining unit used for determining that the current bolt to be detected is abnormal when the difference value is greater than the set error.
[93] The system further includes:
[94] an abnormality type determination module 207 used for determining an abnormality type according to the graphic feature file when it is determined that the bolt to be detected is abnormal.
[95] Allthe embodiments in the specification are described in a progressive manner.
Contents mainly described in each embodiment are different from those described in other embodiments. Same or similar parts of all the embodiments refer to each other.
The system disclosed by the embodiments is relatively simply described as it corresponds to the method disclosed by the embodiments, and related parts refer to part of the descriptions of the method.
[96] The principle and implementation modes of the present disclosure are described by applying specific examples herein. The descriptions of the above embodiments are only intended to help to understand the method of the present disclosure and a core idea of the method. In addition, those ordinarily skilled in the art can make changes to the specific implementation modes and the application scope according to the idea of the present disclosure. From the above, the contents of the specification shall not be deemed as limitations to the present disclosure.

Claims (10)

ConclusiesConclusions 1. Werkwijze voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component, bevattende: aanbrengen op een te detecteren bout van een bijzondere markeringslijn; verkrijgen middels de bijzondere markeringslijn van een beeld van de te detecteren bout; berekenen van een geometrisch centrum van het beeld van de te detecteren bout; bepalen van een coördinaatsequentie langs een horizontale as volgens het geometrisch centrum van het beeld van de te detecteren bout; berekenen van een centrale hoek op basis van de coördinaatsequentie langs de horizontale as om een centrale hoek sequentie te verkrijgen, de centrale hoek zijnde een hoek omvat tussen de te detecteren bout en een centrale markeerlijn van een lens; en bepalen volgens de centrale hoeksequentie of de te detecteren bout abnormaal is.A method of monitoring a high stress condition on a bolt of a rotating component comprising: applying to a bolt to be detected a particular marking line; obtaining by means of the special marking line an image of the bolt to be detected; calculating a geometric center of the image of the bolt to be detected; determining a coordinate sequence along a horizontal axis according to the geometric center of the image of the bolt to be detected; calculating a central angle based on the coordinate sequence along the horizontal axis to obtain a central angle sequence, the central angle being an angle comprised between the bolt to be detected and a central marker line of a lens; and determining according to the central angle sequence whether the bolt to be detected is abnormal. 2 . Werkwijze voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 1, waarbij het berekenen van het geometrische centrum van het beeld van de detecteren bout in het bijzonder bevat: het trainen van het beeld van de te detecteren bout door middel van cascadeclassificatie om een dossier van grafische kenmerken te verkrijgen; identificeren, op basis van het dossier van grafische kenmerken, van een grens van het beeld van de te detecteren bout door gebruik te maken van een identificatie algoritme; en berekenen van het geometrische centrum van het beeld van de te detecteren bout volgens de grens van het beeld van de te detecteren bout.2 . A method for monitoring a high stress condition on a bolt of a rotating component according to claim 1, wherein calculating the geometric center of the image of the detected bolt includes, in particular: training the image of the bolt to be detected through cascade classification to obtain a file of graphic characteristics; identifying, based on the file of graphic features, a boundary of the image of the bolt to be detected using an identification algorithm; and calculating the geometric center of the image of the bolt to be detected according to the boundary of the image of the bolt to be detected. 3. Werkwijze voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 1, waarbij het bepalen van de coördinaatsequentie langs een horizontale as volgens het geometrisch centrum van het beeld van de te detecteren bout in het bijzonder bevat: herstellen van het beeld van de te detecteren bout tot het geometrische centrum door middel van een beeldtransformatie; berekenen van een horizontale coördinaat centraal punt van elk hersteld beeld; en projecteren van het horizontale coördinaat centraal punt op een horizontale as om een horizontale as coördinaatseguentie te verkrijgen.The method for monitoring a high stress condition on a bolt of a rotating component according to claim 1, wherein determining the coordinate sequence along a horizontal axis along the geometric center of the image of the bolt to be detected includes in particular: restoring the image of the bolt to be detected to the geometric center by means of an image transformation; calculating a horizontal coordinate center point of each restored image; and projecting the horizontal coordinate center point onto a horizontal axis to obtain a horizontal axis coordinate sequence. 4. Werkwijze voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 1, waarbij het bepalen, volgens de centrale hoek sequentie, of de te detecteren bout abnormaal is in het bijzonder bevat : naburige data in de centrale hoek sequentie differentiëren om een nieuwe sequentie te verkrijgen; berekenen van een verschilwaarde tussen elk item in de nieuwe sequentie en de numerieke waarde 1; bepalen of de verschilwaarde groter is dan een ingestelde fout; en indien zo, bepalen of de huidige te detecteren bout abnormaal is.A method for monitoring a high stress condition on a bolt of a rotating component according to claim 1, wherein determining, according to the central angle sequence, whether the bolt to be detected is abnormal includes in particular: neighboring data in the central differentiate angle sequence to obtain a new sequence; calculating a difference value between each item in the new sequence and the numerical value 1; determine whether the difference value is greater than a set error; and if so, determine if the current bolt to be detected is abnormal. 5. Werkwijze voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 1, verder bevattende: wanneer de te detecteren bout als abnormaal bepaald is, het bepalen van een abnormaal type volgens het dossier van grafische kenmerken.The method for monitoring a high stress condition on a bolt of a rotating component according to claim 1, further comprising: when the bolt to be detected is determined as abnormal, determining an abnormal type according to the file of graphic characteristics. 6. Systeem voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component, bevattende:6. A system for monitoring a high stress condition on a bolt of a rotating component, comprising: een aanbrengmodule gebruikt voor het aanbrengen van een bijzondere markeerlijn op de te detecteren bout; een acquisitiemodule gebruikt voor het verkrijgen van een beeld van de te detecteren bout met de bijzondere markeerlijn; een geometrisch centrum berekeningsmodule gebruikt voor het berekenen van een geometrisch centrum van het beeld van de te detecteren bout; een horizontale coördinaat sequentie bepalingsmodule gebruikt voor het bepalen van een horizontale as coördinaat sequentie volgens het geometrisch centrum van het beeld van de te detecteren bout; een centrale hoek sequentie berekeningsmodule gebruikt voor het berekenen van een centrale hoek op basis van de horizontale as coördinaatsequentie voor het verkrijgen van een centrale hoek sequentie, de centrale hoek zijnde een hoek omvat tussen de te detecteren bout en de centrale markeerlijn van een lens; en een bepalingsmodule gebruikt voor het bepalen, volgens de centrale hoek sequentie, of de te detecteren bout abnormaal is.an application module used to apply a particular marking line to the bolt to be detected; an acquisition module used to acquire an image of the bolt to be detected with the particular marker line; a geometric center calculation module used to calculate a geometric center of the image of the bolt to be detected; a horizontal coordinate sequence determination module used to determine a horizontal axis coordinate sequence according to the geometric center of the image of the bolt to be detected; a center angle sequence calculation module used to calculate a center angle based on the horizontal axis coordinate sequence to obtain a center angle sequence, the center angle being an angle comprised between the bolt to be detected and the center mark line of a lens; and a determination module used to determine, according to the central angle sequence, whether the bolt to be detected is abnormal. 7. Systeem voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 6, waarbij het geometrisch centrum berekeningsmodule in het bijzonder bevat: een trainingseenheid voor het trainen van het beeld van de te detecteren bout door middel van een cascadeclassificatie om een dossier van grafische kenmerken te verkrijgen; een identificatie eenheid gebruikt voor het identificeren, op basis van het dossier van grafische kenmerken, van een grens van het beeld van de te detecteren bout door gebruik te maken van een identificatie algoritme; en een geometrisch centrum berekeningseenheid gebruikt voor het berekenen van het geometrisch centrum van het beeld van de te detecteren bout volgens de grens van het beeld van de te detecteren bout.The system for monitoring a high stress condition on a bolt of a rotating component according to claim 6, wherein the geometric center calculation module includes in particular: a training unit for training the image of the bolt to be detected by means of a cascade classification to obtain a file of graphic characteristics; an identification unit used to identify, based on the file of graphic features, a boundary of the image of the bolt to be detected by using an identification algorithm; and a geometric center calculation unit used to calculate the geometric center of the image of the bolt to be detected according to the boundary of the image of the bolt to be detected. 8. Systeem voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 6, waarbij de horizontale codrdinaatsequentie bepalingsmodule in het bijzonder bevat: een transformatie eenheid gebruikt voor het herstellen van het beeld van de te detecteren bout tot het geometrisch centrum door middel van beeldtransformatie; een horizontaal coördinaat centraal punt berekeningseenheid gebruikt voor het berekenen van horizontaal coördinaat centraal punt voor elk hersteld beeld; en een projectie eenheid gebruikt voor het projecteren van het horizontaal coördinaat centraal punt tot een horizontale as voor het verkrijgen van de horizontale coördinaatsequentie.The system for monitoring a high stress condition on a bolt of a rotating component according to claim 6, wherein the horizontal coordinate sequence determination module includes in particular: a transformation unit used to restore the image of the bolt to be detected to the geometric center through image transformation; a horizontal coordinate center point calculation unit used to calculate horizontal coordinate center point for each restored image; and a projection unit used to project the horizontal coordinate center point to a horizontal axis to obtain the horizontal coordinate sequence. 9. Systeem voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 6, waarbij de bepalingsmodule in het bijzonder bevat: een differentiatie eenheid gebruikt voor het differentiëren van nabij gelegen data in de centrale hoek sequentie voor het verkrijgen van een nieuwe sequentie; een verschilwaarde berekeningseenheid gebruikt voor het berekenen van een verschilwaarde tussen elk item van de nieuwe sequentie en de numerieke waarde 1; een eerste bepalingseenheid gebruikt voor het bepalen of de verschilwaarde groter is dan een ingestelde fout; en een tweede bepalingseenheid gebruikt voor het bepalen dat de huidige te detecteren bout abnormaal is wanneer de verschilwaarde groter is dan de ingestelde fout.A system for monitoring a high stress condition on a bolt of a rotating component according to claim 6, wherein the determination module includes in particular: a differentiator used to differentiate adjacent data in the central angle sequence to obtain of a new sequence; a difference value calculation unit used to calculate a difference value between each item of the new sequence and the numeric value 1; a first determination unit used to determine whether the difference value is greater than a set error; and a second determination unit used to determine that the current bolt to be detected is abnormal when the difference value is greater than the set error. 10. Systeem voor het bewaken van een toestand van hoge spanning op een bout van een draaiende component volgens conclusie 6, verder bevattende: een abnormaal type bepalingsmodule gebruikt voor het bepalen van een abnormaal type volgens het dossier van grafische kenmerken wanneer bepaald is dat de detecteren bout abnormaal is.The system for monitoring a high stress condition on a bolt of a rotating component according to claim 6, further comprising: an abnormal type determination module used to determine an abnormal type according to the file of graphic features when it is determined that the detecting bolt is abnormal.
NL2030008A 2021-12-03 2021-12-03 Method and system for monitoring state of high-strength bolt of rotating component NL2030008B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2030008A NL2030008B1 (en) 2021-12-03 2021-12-03 Method and system for monitoring state of high-strength bolt of rotating component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2030008A NL2030008B1 (en) 2021-12-03 2021-12-03 Method and system for monitoring state of high-strength bolt of rotating component

Publications (1)

Publication Number Publication Date
NL2030008B1 true NL2030008B1 (en) 2023-06-20

Family

ID=87001992

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030008A NL2030008B1 (en) 2021-12-03 2021-12-03 Method and system for monitoring state of high-strength bolt of rotating component

Country Status (1)

Country Link
NL (1) NL2030008B1 (en)

Similar Documents

Publication Publication Date Title
CN110222436B (en) Method and device for evaluating health state of train parts and storage medium
US11658346B2 (en) Information processing method, learned model generation method, and apparatus
CN105222879B (en) The long-range self-diagnosable system and its self-diagnosing method of complicated dynamic weighing sensing network
CN103149222A (en) Flaw detection device in real-time imaging of ray
US11087450B1 (en) Wheel matcher
CN112330615B (en) Method and system for monitoring state of high-strength bolt of rotating part
US20200156680A1 (en) Railway vehicle major component and system diagnosis apparatus
CN112469613A (en) Method and device for diagnosing and monitoring vehicles, vehicle components and traffic lanes
NL2030008B1 (en) Method and system for monitoring state of high-strength bolt of rotating component
CN112799372A (en) Display method, learning completion model generation method, device, and program
KR100838722B1 (en) Device for detecting the defects on the strip surface
Doycheva et al. Computer vision and deep learning for real-time pavement distress detection
JP2018136877A (en) Inspection management system, inspection management method and program
JP3293587B2 (en) Defect marking method, work method of defect-marked coil, and method of manufacturing defect-marked coil
CN109017872B (en) Preventative maintenance method and device for train wheels and storage medium
CN108944998B (en) Train wheel detection and maintenance system
CN111998792B (en) On-line detection method and on-line detection device for tire blank out-of-roundness of tire building machine
JP2003329600A (en) Method for controlling quality of steel plate
CN113960071A (en) Quality detection process and detection system for color printing products
Asplund et al. Assessment of the data quality of wayside wheel profile measurements.
Doyle et al. Pantograph condition monitoring system for automated maintenance inspections and prevention of overhead wiring tear downs
Soufhwee et al. Visual inspection as a screening method in assembly process for quality improvement
CN113838033A (en) Train wheel tread scratch image detection method and image detection system
Jhorar et al. Failure Analysis and Improvement of Defective Clamping Pad During Leak Testing Process Using Kepner-Tregoe Analysis
CN110901688A (en) System for linking alarm data of physically separated wireless sensors to a running train