KR970000304B1 - Process for producing magnetic recording iron hydroxide - Google Patents

Process for producing magnetic recording iron hydroxide Download PDF

Info

Publication number
KR970000304B1
KR970000304B1 KR1019930031775A KR930031775A KR970000304B1 KR 970000304 B1 KR970000304 B1 KR 970000304B1 KR 1019930031775 A KR1019930031775 A KR 1019930031775A KR 930031775 A KR930031775 A KR 930031775A KR 970000304 B1 KR970000304 B1 KR 970000304B1
Authority
KR
South Korea
Prior art keywords
solution
iron
waste acid
fecl
ions
Prior art date
Application number
KR1019930031775A
Other languages
Korean (ko)
Other versions
KR950017742A (en
Inventor
손진군
한기현
이재영
Original Assignee
조말수
포항종합제철주식회사
백덕현
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조말수, 포항종합제철주식회사, 백덕현, 재단법인산업과학기술연구소 filed Critical 조말수
Priority to KR1019930031775A priority Critical patent/KR970000304B1/en
Publication of KR950017742A publication Critical patent/KR950017742A/en
Application granted granted Critical
Publication of KR970000304B1 publication Critical patent/KR970000304B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/10Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

Process for preparing ferric hydroxide from waste water with ferrous chloride is described. Thus, i)waste water with ferrous chloride is added with iron scrap or powder to eliminate Fe+3 and hydrogen chloride from waste water, ii)the obtained solution is added with iron scrap to give a colloidal sludge which contains ferric hydroxide with a concentration of 100mg-1,000mg/L, iii)the colloidal sludge is stirred slowly to give a high dencity ferrous chloride solution, iv)the ferrous chloride solution is reacted with alkali at 40-60 deg.C to givea high dencity ferric hydroxide.

Description

폐산을 이용한 고순도 염화제일철 제조방법 및 이를 통한 자기기록매체용 수산화철 제조방법Manufacturing method of high purity ferric chloride using waste acid and manufacturing method of iron hydroxide for magnetic recording medium

본 발명은 폐산을 이용한 염화제일철 그리고 그 염화제일철을 이용하여 자기기록매체용 수산화철을 제조하는 방법에 관한 것이며, 보다 상세히는 제철소 냉연공장에서 발생하는 산세(酸洗)폐산을 이용하여 고순도 FeCl2용액을 제조하고 이를 습식산화하여 자기기록매체로 사용되는 γ-Fe2O3계 산화철의 출발원료인 수산화철(α-FeOOH, γ-FeOOH)를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing ferrous chloride using waste acid and iron hydroxide for magnetic recording medium using the ferric chloride, and more specifically, high-purity FeCl 2 solution using pickling waste acid generated in a cold mill of a steel mill. The present invention relates to a method for preparing iron hydroxide (α-FeOOH, γ-FeOOH) which is a starting material of γ-Fe 2 O 3 based iron oxide used as a magnetic recording medium by wet oxidation.

FeCl2용액을 자기기록매체의 출발물질인 수산화철 합성에 사용될 수 있을 뿐만아니라 고순도 산화철제조, 도금용액으로서 사용된다.The FeCl 2 solution can be used not only for the synthesis of iron hydroxide, which is a starting material for the magnetic recording medium, but also for the production of high purity iron oxide and plating solution.

자기기록매체로 사용되는 γ-Fe2O3계 산화철의 출발원료인 수산화철은 종래에는 주로 황산철)(FeSO4)를 사용하여 제조하여 왔으며, 현재 자기기록매체의 출발원료로서 가장 많이 사용되고 있는 α-FeOOH의 경우 대부분 FeSO4를 출발원료로 하여 제조되고 있다.Iron hydroxide, which is a starting material of γ-Fe 2 O 3 based iron oxide used as a magnetic recording medium, has been conventionally manufactured mainly using iron sulfate) (FeSO 4 ), and α is the most widely used starting material of magnetic recording media. -FeOOH is mostly manufactured using FeSO 4 as a starting material.

FeSO4이외에도 FeCl2용액을 이용하여 산성영역에서 γ-FeOOH라는 수산화철을 제조하는 공정이 알려져 있으며, 이 경우 FeCl2는 철스크랩을 염산으로 용해하여 얻은 것을 사용한다.In addition to FeSO 4 , a process for producing γ-FeOOH iron hydroxide in an acidic region using FeCl 2 solution is known. In this case, FeCl 2 is obtained by dissolving iron scrap with hydrochloric acid.

한편, 제철소 냉연공장에서는 FeCl2가 다량함유된 폐산이 배출되나, 그 폐산내에서 Fe+3, HCl, 기타 미량의 불순원소가 포함되어 있기 때문에 이로부터 고순도의 FeCl2를 얻기 위하여는 정제과정이 필요하며, 특히 얻어진 FeCl2를 자기기록매체의 출발물질이 수산화철제조를 위해 사용하는 경우보다 엄격한 정제가 필요한 것이다.On the other hand, in the cold rolling mill, FeCI 2 waste acid containing a large amount is discharged, but since Fe + 3 , HCl and other trace impurities are included in the waste acid, the purification process is required to obtain high purity FeCl 2 from it. In particular, more stringent purification is required than when the obtained FeCl 2 is used for the production of iron hydroxide as the starting material of the magnetic recording medium.

이에 따라 본 발명자는 폐산에 알카리를 투여하여 폐산을 정제하고 알칼리 영역에서는 α-FeOOH 합성이 가능하다는 것을 개시한 바 있으며 (한국 특허공고 92-5334), 산성영역에서도 고유의 방법으로 γ-FeOOH 합성이 가능함을 확인한 바 있다(한국특허공고 93-4508).Accordingly, the present inventors have disclosed that it is possible to purify waste acid by administering alkali to waste acid and to synthesize α-FeOOH in the alkaline region (Korean Patent Publication 92-5334). It was confirmed that this is possible (Korean Patent Publication 93-4508).

그러나 이들 종래의 방법에서는 냉연폐산에 NaOH와 같은 알칼리를 투여하여 pH를 2.5-7의 범위로 조절하여 Fe+3이온, HCl 및 미량의 불순물을 정제하였기 때문에 폐산내에서 HCl 형태로 다량 존재하는 자유산(free acid)을 중화하기 위하여 다량의 알카리(NaOH등)가 소모되는 문제점이 있었다.However, in these conventional methods, since the pH is adjusted to a range of 2.5-7 by administering an alkali, such as NaOH, to cold-rolled waste acid, Fe + 3 ions, HCl, and trace impurities are purified. There was a problem that a large amount of alkali (NaOH, etc.) is consumed to neutralize the acid (free acid).

또한 알카리 투입시 극심한 pH 변동으로 Fe+2이온이 다량 Fe(OH)2로 슬러지화하기 때문에 원료손실이 발생하는 문제점도 있었다. 특히 알카리제로 NaOH를 사용할 경우 Na이온이 수천 내지 수만 ppm까지 혼합되기 때문에 용액반응시 과다한 Na+1이온으로 인하여 반응의 불균일과 반응종료후 수산화철을 수세할때 보다 많은 량의 물로 수세하여야 하는 불편함이 있었다.In addition, there is a problem in that raw material loss occurs because Fe +2 ions are sludged into a large amount of Fe (OH) 2 due to extreme pH fluctuations when alkali is added. In particular, when NaOH is used as an alkaline agent, Na ions are mixed up to several thousand to tens of thousands of ppm, so the unevenness of the reaction due to excessive Na +1 ions during the solution reaction and the inconvenience of washing with more water when washing iron hydroxide after completion of the reaction There was this.

이에 본 발명의 목적은 상기한 바와 같은 종래의 문제점을 해결한 보다 개선된 정제방법으로 폐산으로부터 고순도의 염화제일철을 제조하는 방법을 제공하는데 있다.It is an object of the present invention to provide a method for producing ferrous chloride of high purity from waste acid with a more improved purification method that solves the conventional problems as described above.

나아가 본 발명의 다른 목적은 폐산을 정제하여 얻은 고순도의 염화제일철을 사용하여 자기기록매체의 출발원료로인 수산화철을 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for producing iron hydroxide as a starting material of a magnetic recording medium using high purity ferric chloride obtained by purifying waste acid.

본 발명의 일견지에 의하면, 제철소의 냉연공장에서 발생하는 염화제일철(FeCl2)함유 폐산에 철스크랩 또는 철분말을 첨가하여 폐산내의 Fe+3이온 및 HCl과 반응시켜 Fe+3이온 및 HCl을 용해시켜 제거하는 단계 ; 이 용액에 철분말을 가하거나 지속적으로 반응시켜 폐산의 pH를 2.5이상이 되게 하여 숙성시켜 농도 100㎎/l-1000㎎/l의 Fe(OH)2및 Fe(OH)3같은 Fe계 콜로이드 슬러지를 생성시키는 단계 ; 및 상기 Fe계 슬러지가 생성된 용액을 서서히 교반하여 폐산내의 미량으로 존재하는 불순물 및 유기물을 흡착, 여과, 제거시켜 고순도의 FeCl를 회수하는 단계를 포함하는 고순도 염화제일철 제조공정이 제공된다.According to one aspect of the present invention, iron scrap or iron powder is added to a ferric chloride (FeCl 2 ) -containing waste acid generated in a cold rolling mill of a steel mill to react with Fe + 3 ions and HCl in the waste acid to react Fe + 3 ions and HCl. Dissolving and removing; Iron powder was added to this solution or continuously reacted to make the pH of the waste acid above 2.5 and then aged. The Fe-based colloidal sludge such as Fe (OH) 2 and Fe (OH) 3 at a concentration of 100 mg / l-1000 mg / l Generating a; And a high-purity ferric chloride manufacturing process comprising the step of recovering a high purity FeCl by slowly stirring the solution produced the Fe-based sludge by adsorbing, filtering, and removing impurities and organic matter present in a small amount in the waste acid.

본 발명의 다른 견지에 의하면, 상기 고순도 염화제일철을 이용하여 자기기로매체의 출발물질인 α-FeOOH를 제조하는 방법이 제공되는바, 이 방법은, 상기 정제된 고순도 염화제일철 용액에 알칼리를 첨가하여 pH를 13이상 유지하고 온도를 40-60℃으로 유지하면서 공기를 불어넣는 용액반응시킴을 포함한다.According to another aspect of the present invention, there is provided a method for preparing α-FeOOH, which is a starting material of a medium using a high purity ferric chloride, by adding alkali to the purified high purity ferric chloride solution. maintaining a pH of 13 or more and maintaining a temperature of 40-60 ° C .;

본 발명의 또다른 견지에 의하면, 상기 고순도 연화제일철을 이용하여 자기기록매체의 출발물질인 γ-FeOOH를 제조하는 방법이 제공되는바, 이 방법은, 상기 정제된 고순도 연화제일철 용액에 알칼리를 투여하여 pH를 6-7로 유지하고 온도 20-30℃에서 공기를 불어놓는 용액반응에 의해 γ-FeCl2핵을 형성한후, 이어 지속적으로 알카리를 투여하면서 40-60℃ 온도에서 공기를 불어넣는 용액반응시킴을 포함한다.According to still another aspect of the present invention, there is provided a method of preparing γ-FeOOH, which is a starting material of a magnetic recording medium using the high purity softener, wherein the method comprises administering alkali to the purified high purity iron softener solution. To maintain the pH at 6-7 and form a γ-FeCl 2 nucleus by a solution reaction in which the air is blown at a temperature of 20-30 ° C, followed by continuously infusing alkali at 40-60 ° C. Solution reaction.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 폐산에 알카리대신 철스크랩이나 산화철을 환원한 철분말을 사용하여 Fe+3이온과 HCl을 제거하고 그후 pH를 변화시켜 Fe(OH)2와 Fe(OH)3가 생성될때까지 숙성시켜 폐산내의 미량 불순물을 흡착시킨 후 제거하여 고순도 염화제일철을 제조하고, 나아가 이로부터 자기기록매체의 출발원료인 수산화철을 제조하는 방법에 관한 것이다.The present invention removes Fe +3 ions and HCl using iron scrap or reduced iron oxide instead of alkali in waste acid, and then matures until Fe (OH) 2 and Fe (OH) 3 are produced by changing the pH. The present invention relates to a method for producing high purity ferric chloride by adsorbing and removing trace impurities in waste acid, and from this, iron hydroxide, which is a starting material of a magnetic recording medium.

하기표 1은 냉연폐산의 성분을 나타내는 것으로써, 폐산내의 Fe+3이온은 수산화철 합성 반응시 반응 불균일의 주요원인이 되어 입자형태불량, 이물질 혼입등의 문제를 야기시킨다. 또한 HCl은 용액의 pH 저하, 보다 많은 중화제의 투입등의 문제를 일으킨다. 또한 미량 존재하는 불순물중 Si,Al,Cr등은 슬러리 형성원소이므로 반응속도에 민감한 영향을 주며 최종제품의 전자기적 특성 특히 포화자화값을 저하시키는 문제를 일으킨다.Table 1 shows the components of the cold rolled waste acid, and Fe + 3 ions in the waste acid become a major cause of reaction unevenness during the iron hydroxide synthesis reaction, causing problems such as particle shape defects and foreign matter mixing. HCl also causes problems such as lowering the pH of the solution and adding more neutralizers. In addition, Si, Al, Cr, etc., among the impurities present in trace amounts, are a slurry-forming element, and thus have a sensitive effect on the reaction rate and cause a problem of lowering the electromagnetic characteristics of the final product, in particular, the saturation magnetization value.

따라서 이와같은 불순물의 함량을 최소로 억제할 필요가 있는 것이다.Therefore, it is necessary to suppress the content of such impurities to a minimum.

이와 같은 Fe , HCl 및 기타 미량 불순물을 제거하는 다음과 같은 과정을 거치게 된다.Fe like this , HCl and other trace impurities are removed as follows.

먼저 폐산에 철스크랩을 미량 투입하여 하기식(1),(2)에 따라 Fe 및 HCl이 제거된다.First, a small amount of iron scrap is added to the waste acid to remove Fe and HCl according to the following formulas (1) and (2).

Fe+2HCl→FeCl+H………………… (1)Fe + 2HCl → FeCl + H... … … … … … … (One)

2Fe Cl+Fe→3Fe Cl……………… (2)2Fe Cl + Fe → 3Fe Cl… … … … … … (2)

상기 식(1)에서, 철(Fe)은 염산과의 반응이 용이하므로 염산은 첨가된 철스크랩과 쉽게 반응하여 FeCl을 생성한다.In Formula (1), since iron (Fe) is easy to react with hydrochloric acid, hydrochloric acid easily reacts with the added iron scrap to produce FeCl.

Fe 은 철과의 전기화학적 전위차에 의하여 쉽게 Fe 로 환원된다. 반응식(2)는 비교적 빠르게 진행되나, 반응(1)은 잔류 HCl 농도, 반응온도, 첨가되는 철스크랩의 크기 및 첨가량에 따라 변한다.Fe Fe easily due to electrochemical potential difference with silver iron Reduced to. Reaction (2) proceeds relatively quickly, but reaction (1) changes depending on the residual HCl concentration, the reaction temperature, the size and amount of iron scrap added.

반응온도는 30℃ 이하에서는 반응속도가 느리고, 60℃ 이상에서는 흄(fume) 발생이 심하므로, 30-60℃가 바람직하다.The reaction temperature is 30 ° C or less, the reaction rate is slow, 60 ° C or more, since the generation of fumes (fume) is severe, 30-60 ° C is preferred.

철스크랩은 상기 반응식(1)에서 보듯이 잔류 염화수소의 농도를 고려하여 당량비 이상 첨가하여야 반응이 충분히 진행된다.As shown in the reaction formula (1), the iron scrap must be added more than the equivalent ratio in consideration of the concentration of residual hydrogen chloride to sufficiently proceed the reaction.

염산에 의한 첨가된 철스크랩의 용해는 염화수소의 농도가 10g/ℓ 이상일 경우에는 현저하지만 상기 반응식(1)에 따라 염화수소의 농도가 10g/ℓ 이하로 감소하게 되면 용해도는 현저하게 감소하게 된다.The dissolution of the added iron scrap by hydrochloric acid is remarkable when the concentration of hydrogen chloride is 10 g / l or more, but the solubility is remarkably reduced when the concentration of hydrogen chloride is reduced to 10 g / l or less according to the reaction formula (1).

염산의 농도가 10g/ℓ 이하인 경우는 반응속도를 높여도 수소가스의 발생량이 적고 흄발생이 심하지 않으므로 상기한 바와 같은 경우 반응속도를 증가시키기 위하여 반응온도를 60℃ 이상으로 하거나 미세한 철분말을 첨가할 수 있다.If the concentration of hydrochloric acid is 10g / l or less, even if the reaction rate is increased, the amount of hydrogen gas is generated and the fume is not severe. Therefore, in order to increase the reaction rate, the reaction temperature is set to 60 ° C or higher or fine iron powder is added. can do.

본 발명에서 사용되는 철분말은 냉연공장에서 배소분무하여 제조되는 α-FeO를 400℃ 이상의 수소분위기하에서 환원시켜 제조된 환원철일 수 있다. 그후 잔류 자유산이 완전히 반응하도록 방치한다.The iron powder used in the present invention may be reduced iron prepared by reducing α-FeO produced by roasting in a cold rolling mill under a hydrogen atmosphere of 400 ° C. or higher. The residual free acid is then left to react completely.

반응시간은 반응조건에 따라 변하며 pH가 2.5 부근에 이르면 잔류산은 거의 존재하지 않는다. 즉, pH=2.5에서 Fe 와 잔류산을 제거한 후 pH가 2.5이상이 될 때까지 지속적으로 유지하면 pH가 상승됨에 따라 투여된 철스크랩 또는 철분말의 계면에서 하기 반응식(3),(4)에 따라 투여된 철금속이 물과 용존산소에 의한 산화작용으로 인하여 Fe(OH)또는 Fe(OH)등으로 산화되어 Fe계 콜로이드 슬러지가 자발적으로 생성된다. 그러나 pH가 2.5보다 낮을 경우 자유산의 존재로 인해 이와같은 슬러지는 형성되지 않는다.The reaction time varies depending on the reaction conditions. When the pH reaches 2.5, almost no residual acid is present. Ie Fe at pH = 2.5 After the residual acid is removed and the pH is continuously maintained until the pH is 2.5 or more, the ferrous metal administered according to the following reaction formulas (3) and (4) at the interface of the iron scrap or iron powder administered as the pH is increased is Due to the oxidative action by the dissolved oxygen, Fe (OH) or Fe (OH) is oxidized to form Fe-based colloidal sludge spontaneously. However, when the pH is lower than 2.5, such sludge is not formed due to the presence of free acid.

Fe+2HO→Fe(OH)+2H 2e ……………(3)Fe + 2HO → Fe (OH) + 2H 2e... … … … … (3)

Fe+3HO→Fe(OH)+3H 3e ……………(4)Fe + 3HO → Fe (OH) + 3H 3e… … … … … (4)

상기 반응식에 의해 생성된 수산화제 1철 및 수산화 제2철은 매우 강력한 추미립상의 (B.E.T 비표면적=100-500m2/g)흡착제로서 Si,Al,Cr 등 폐산내의 다른 불순물을 흡착하게 된다.The ferrous hydroxide and ferric hydroxide produced by the above reactions are very strong adsorbents (BET specific surface area = 100-500 m 2 / g) and adsorb other impurities in waste acid such as Si, Al, Cr.

Fe계 슬러지가 생성된 용액을 서서히 교반하여 불순물을 충분히 흡착시킨 후 여과기를 통하여 여과시키면 Fe+3, 염산 및 Si, Al, Cr등 폐산내의 불순물이 제거된 고순도의 염화제일철 용액을 얻는다. 이 용액은 0.01몰/ℓ 이하의 Fe+3및 10g/ℓ 이하의 염산을 함유한다. Fe계 슬러지 생성시, 용액내의 Fe(OH)2및 Fe(OH)3의 농도는, 100mg/ℓ 이하에서는 불순물의 충분한 흡착이 이루어지지 않고, 1000mg/ℓ 이상에서는 Fe+3의 원료손실이 발생하고 여과시 여과효율이 감소하므로, 100-1000mg/ℓ가 바람직하다.After slowly stirring the solution in which the Fe-based sludge is formed, the impurities are sufficiently adsorbed and filtered through a filter to obtain a high-purity ferric chloride solution in which impurities in Fe +3 , hydrochloric acid, and waste acids such as Si, Al, and Cr are removed. This solution contains up to 0.01 mol / l Fe +3 and up to 10 g / l hydrochloric acid. When Fe-based sludge is produced, the concentrations of Fe (OH) 2 and Fe (OH) 3 in the solution are not sufficiently adsorbed at impurities below 100 mg / l, and raw material loss of Fe +3 occurs at 1000 mg / l or higher. And filtration efficiency during filtration decreases, so 100-1000 mg / l is preferred.

한편, 냉연폐산은 부식억제제로서 아민계가 주류를 이루는 유기물을 약 10ppm 함유한다. pH 2.5 이상에서 숙성시켜 생성된 상기 수산화제일철 및 수산화제이철은 초미립 흡착물질로서 상기와 같은 유기물을 또한 흡착하여 제거한다. 정제된 폐산에 활성탄을 가하여 교반한 후 여과하거나, 폐산을 활성탄이 장입된 용기에 통과시키면 상기 유기물의 제거는 보다 효과적이다.On the other hand, cold rolled waste acid contains about 10 ppm of the organic material of the amine-based mainstream as a corrosion inhibitor. The ferrous hydroxide and ferric hydroxide produced by aging above pH 2.5 also adsorb and remove such organic matter as ultrafine adsorbents. Activated carbon is added to the purified waste acid, stirred, and filtered, or the waste acid is passed through a container loaded with activated carbon to remove the organic matter more effectively.

상기한 바와 같이, 냉연폐산에 철스크랩 또는 환원철 분말을 첨가하여 Fe+3및 염산을 제거하고, pH를 조절하여 Fe(OH)2및 Fe(OH)3을 형성하여 무기물 및 유기물을 흡착, 제거함으로써 고순도의 염화제일철 용액을 얻는다.As described above, iron + scrap or reduced iron powder is added to the cold rolled waste acid to remove Fe + 3 and hydrochloric acid, and the pH is adjusted to form Fe (OH) 2 and Fe (OH) 3 to adsorb and remove inorganic and organic materials. Thus, a high purity ferric chloride solution is obtained.

본 발명의 방법에 의하여 정제된 염화제일철을 함유하는 폐산에 수산화나트륨을 첨가하여 pH를 13.0 이상으로 조절하고, 40-60℃을 유지하면서 공기를 불어넣는 용액반응을 시키면 입자형태가 우수한 α-FeOOH를 얻을 수 있다.By adding sodium hydroxide to the waste acid containing ferrous chloride purified by the method of the present invention, the pH is adjusted to 13.0 or more, and the solution reaction of blowing air while maintaining the temperature at 40-60 ° C. is excellent in the form of α-FeOOH. Can be obtained.

또한, 상기 정제된 염화제일철을 함유하는 폐산에 수산화나트륨을 가하여 pH를 6-7로 유지한 후 20-30℃에서 공기를 불어넣는 용액반응을 수행하면 입자형태가 우수한 γ-FeOOH 핵이 형성되고, 계속하여 알카리를 첨가하면서 40-60℃에서 공기를 불어넣는 용액반응을 일으키면 불순물의 혼입이 없는 우수한 γ-FeOOH 분말을 얻을 수 있다.In addition, by adding sodium hydroxide to the purified acid containing ferric chloride to maintain a pH of 6-7 and performing a solution reaction by blowing air at 20-30 ℃ to form a good γ-FeOOH nucleus Then, the solution reaction of blowing air at 40-60 ° C. while adding alkali can give excellent γ-FeOOH powder without incorporation of impurities.

상기 분말을 400-600℃에서 탈수하고, 250-350℃의 수소분위기하에서 환원시킨 후 200-300℃에서 재산화시키면 자기적 특성이 뛰어난 γ-Fe2O3를 얻을 수 있다.The powder is dehydrated at 400-600 ° C., reduced in a hydrogen atmosphere of 250-350 ° C., and reoxidized at 200-300 ° C. to obtain γ-Fe 2 O 3 having excellent magnetic properties.

상기한 바와 같이 본 발명의 방법에 의한 경우 종래의 방법과 비교시 정제시 알카리를 필요로 하지 않고, Fe+2이온의 손실이 적으므로 비용면에서 경제적이고, 본 발명에 의해 정제된 FeCl2용액을 사용하여 자기 기록매체의 출발물질인 수산화철을 제조할 경우 균일한 반응에 의해 수산화철의 입자형태가 우수하고, 또한 이로부터 전자기적 특성이 뛰어난 최종 γ-Fe2O3자성체를 안정하게 제조할 수 있는 것이다. 뿐만아니라 Fe+2이온의 손실이 적어 경제적인 잇점도 있는 것이다.As described above, in the case of the method of the present invention, it is economical in terms of cost because it does not require alkali at the time of purification compared to the conventional method, and there is little loss of Fe +2 ions, and the FeCl 2 solution purified according to the present invention. In the case of manufacturing iron hydroxide as a starting material of the magnetic recording medium, the final γ-Fe 2 O 3 magnetic material having excellent particle shape and excellent electromagnetic characteristics can be stably manufactured by a uniform reaction. It is. In addition, the loss of Fe +2 ions has an economic advantage.

이하, 본 발명의 실시예에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.

시싱 1-3 및 비교예 1-5Sourcing 1-3 and Comparative Example 1-5

자기기록매체용으로 적합한 FeOOH를 제조하기 위하여 제철소 냉연공장의 폐산을 정제하여 고순도 FeCl2용액을 제조하였다. 각 시료별 제조공정은 다음과 같았다.In order to produce FeOOH suitable for magnetic recording media, a high purity FeCl 2 solution was prepared by refining the waste acid of a cold rolling mill at a steel mill. The manufacturing process for each sample was as follows.

냉연폐산내의 Fe 농도가 198.25g /ℓ(3.55몰 /ℓ)로서 Fe 농도는 자기기록매체의 제조농도는 적합하지 않아 여기에 물로 희석하여 Fe 이온농도가 1몰 /ℓ되도록 조절하였다.The Fe concentration in cold rolled waste acid was 198.25 g / l (3.55 mol / l), and the Fe concentration was adjusted to be 1 mol / l by dilution with water because the concentration of the magnetic recording medium was not suitable.

비교예 1은 철스크랩이나 철분말을 사용하지 않고 희석폐산을 그대로 처리한 것이다.In Comparative Example 1, the diluted waste acid was treated as it is without using iron scrap or iron powder.

비교예 3은 NaOH를 철막하여 제조하는 종래의 방법으로 처리한 것이다.Comparative Example 3 is treated by a conventional method for producing NaOH by iron film.

희석한 폐산 10ℓ 에 Fe 스크랩 10kg 을 투여하여 폐산내에 존재하는 Fe+3를 Fe+2이온으로 환원하고 잔류 HCl을 제거시키는 반응을 30℃에서 10시간동안 진행하였다(비교예 2).10 kg of Fe scrap was administered to 10 L of diluted waste acid to reduce Fe +3 present in waste acid to Fe +2 ions and to remove residual HCl for 10 hours at 30 ° C (Comparative Example 2).

10시간 반응시킨 용액 10ℓ 중 5ℓ를 취출하여 냉연공장에서 발생하는 산화철을 수소분위기하에서 500OC에서 1시간동안 환원하여 제조한 환원철 500g 을 투여하여 1시간동안 반응을 진행하였다. (비교예 4)5 L of 10 L of the solution reacted for 10 hours was taken out, and 500 g of reduced iron prepared by reducing iron oxide generated in a cold rolling mill at 500 O C under hydrogen atmosphere was administered for 1 hour. (Comparative Example 4)

또한 10시간 반응시키고 남은 폐산 5ℓ를 70℃로 상승시킨 후 1시간동안 지속적으로 반응을 시켰다(발명예 3).In addition, the reaction was continued for 10 hours, and 5 L of the remaining waste acid was raised to 70 ° C., and the reaction was continued for 1 hour (Invention Example 3).

철분말을 투여한 사료의 경우 급속한 반응의 진행으로 1시간 경화후 pH는 2.5이상으로 증가하였다. pH가 2.5이상으로 증가하기 시작하면 폐산내에서 Fe(OH)3와 Fe(OH)3등으로 이루어진 Fe계수산화물 슬러지가 발생하기 시작하였다(발명예 1,2).In the case of iron powder, the pH increased to 2.5 or more after 1 hour of curing due to rapid reaction. When the pH began to increase to 2.5 or more, Fe hydroxide sludge composed of Fe (OH) 3 and Fe (OH) 3 and the like began to be generated in the waste acid (Inventive Examples 1 and 2).

그후 반응시간에 따라 시료를 채취하고 이를 여과하여 Fe계 수산화물을 슬러지의 함량을 측정하고 여과된 도금액의 성분을 분석하였다.After that, a sample was collected according to the reaction time and filtered to measure the sludge content of Fe-based hydroxide, and the components of the filtered plating solution were analyzed.

또한 10시간 동안 반응시키고 남은 폐산 5ℓ를 70℃에서 14시간 동안 반응시킨 결과 폐산내에는 Fe(OH)2와 Fe(OH)3로 이루어진 슬러지가 발생하였다(발명예 3).In addition, as a result of reacting the remaining 5 l of waste acid for 10 hours at 70 ° C. for 14 hours, sludge composed of Fe (OH) 2 and Fe (OH) 3 occurred in the waste acid (Invention Example 3).

이 용액을 여과하여 슬러지 발생량을 측정하고 여액내의 불순물 함량을 분석하였다.The solution was filtered to measure sludge generation and the impurity content in the filtrate was analyzed.

각종 방법으로 제조된 FeCl2용액의 불순물을 함량과 작업조건, 폐산 1ℓ당 슬러지 발생량등을 하기 표 2에 나타내었다.The impurity content of FeCl 2 solution prepared by various methods, working conditions, sludge generation amount per 1 L of waste acid, and the like are shown in Table 2 below.

한편 종래의 알칼리 투입에 따른 불순물 제거효과와 슬러지 발생량등을 비교하기 위하여 1몰농도의 폐산 1ℓ에 4몰농도의 NaOH를 가하여 pH를 4.0으로 조절하였다. 그후 이 용액을 여과하여 슬러지 발생량을 조사하고 그 여액을 분석하여 역시 표2에 나타내었다(비교예 3).On the other hand, in order to compare the impurities removal effect and the sludge generation amount according to the conventional alkali input, the pH was adjusted to 4.0 by adding 4 molar concentration of NaOH to 1 l of waste acid of 1 molar concentration. The solution was then filtered to investigate the sludge production and the filtrate was analyzed and shown in Table 2 (Comparative Example 3).

상기 표 2에서 알 수 있는 바와 같이 종래에 사용하던 알카리 투입법은 미량불순물인 Si, Al, Cr제거에는 우수한 효과를 나타내고 Fe 제거에도 비교적 효과적이지만 NaOH 투입으로 Na 이온의 급격한 증가가 발생하는 문제점이 있다. 또한 고농도 알칼리 투입으로 pH 변동이 심하여 Fe 이온의 침전이 심하게 일어나 Fe 이온농도가 감소하였으며 이로인한 과대한 슬러지 발생으로 여과시간이 장시간 소요되었다.As can be seen in Table 2, the conventionally used alkali dosing method shows an excellent effect on the removal of trace impurities of Si, Al, Cr and Fe. Relatively effective for removal but NaOH injection There is a problem that a sudden increase in ions occurs. In addition, the pH fluctuates due to the high concentration of alkali. The precipitation of ions occurs badly and Fe The concentration of ions was decreased and the filtration time was long due to excessive sludge generation.

그러나 철분말을 투여하거나 철스크랩으로 장시간 용액의 pH를 2.5이상으로 숙성시킴으로써 용액내의 슬러지 함량이 100mg이상인 시료의 경우 Fe , HCl 및 각종 불순물이 극히 적거나 검출되지 않았다. 그러나 Fe계 슬러지 발생량이 1000mg이상이 되면 여과시간이 많이 소요될 뿔 아니라 Fe 이온농도의 저하가 발생하므로 그 이상으로 작업하는 것은 불필요함을 알 수 있다.However, in the case of a sample with a sludge content of 100 mg or more in the solution by administering iron powder or by aging the pH of the solution for more than 2.5 hours with iron scrap, Fe , HCl and various impurities are extremely low or not detected. However, when the amount of Fe-based sludge generation is more than 1000mg, it is not necessary to work more than the horn due to the decrease of Fe ion concentration as well as the filtration time.

실시예 4Example 4

발명예 1의 정제 폐산1ℓ NaOH 4몰 용액 1ℓ를 가하여 pH를 13.5로 조절한 후 45℃에서 공기를 불어넣는 용액반응을 시켜서 α-FeOOH 입자를 제조하였다.Purification of Inventive Example 1 1 L of 4 L solution of 1 L NaOH waste acid was added thereto to adjust the pH to 13.5, and then, α-FeOOH particles were prepared by a solution reaction of blowing air at 45 ° C.

또한 발명예 2의 정제폐산 1ℓ에 1.29몰 농도의 NaOH 1ℓ를 가하고 25℃에서 γ-FeOOH 핵을 합성한 후 지속적으로 알카리를 투입하면서 50℃에서 산화반응을 통하여 γ-FeOOH 분말을 제조하였다. 이들 입자들을 TEM으로 관찰한 결과 입자특성이 양호하고 불순물이 혼재되지 않았다.In addition, 1L NaOH of 1.29 mol was added to 1 L of purified waste acid of Inventive Example 2, γ-FeOOH nuclei were synthesized at 25 ° C., and γ-FeOOH powder was prepared through oxidation at 50 ° C. while alkali was continuously added. Observation of these particles by TEM showed good particle characteristics and no mixing of impurities.

또한 이들 분말을 550℃에서 1시간 탈수하고 수소분위기 하에서 250℃로 1시간동안 환원한 후 공기중에서 250℃로 1시간 산화하여 γ-FeO입자를 제조하였다.Further, these powders were dehydrated at 550 ° C. for 1 hour, reduced to 250 ° C. for 1 hour in a hydrogen atmosphere, and then oxidized at 250 ° C. in air for 1 hour to prepare γ-FeO particles.

이들 분말은 보자력이 각각 380, 375Oe 포화자화가 74emu/g, 74.5emu/g으로서 자기적 특성이 매우 양호하였다.These powders had very good magnetic properties with coercivity of 380, 375Oe saturation magnetization of 74emu / g and 74.5emu / g, respectively.

Claims (2)

제철소의 냉연공장에서 발생하는 염화제일철(FeCl2) 함유폐산에 철스크랩 또는 철분말을 첨가하여 폐산내의 Fe+3이온 및 HCl과 반응시켜 Fe+3이온 및 HCl을 용해 제거하는 단계 ; 이 용액에 철분말을 가하거나 지속적으로 반응시켜 폐산의 pH를 2.5이상이 되게하여 숙성시켜 농도 100mg-1000mg/ℓ의 Fe(OH)2및 Fe(OH)3같은 Fe계 콜로이드 슬러지를 생성시키는 단계 ; 및 상기 Fe계 슬러지가 생성된 용액을 서서히 교반하여 폐산내의 미량으로 존재하는 불순물 및 유기물을 흡착여과 제거시켜 고순도의 FeCl2를 회수하는 단계 ; 및 상기 고순도 염화제일철 용액에 알카리를 투여하여 pH를 13이상으로 유지하고 온도 40-60℃에서 공기를 불어넣는 용액반응시키는 단계를 포함하는 자기기록매체용 수산화철 제조방법.Ferrous chloride occurring in the cold rolling mill of a steel mill (FeCl 2) and a spent acid containing addition of iron scrap or iron powder is reacted with Fe +3 ions and HCl in the spent acid phase to dissolve and remove the Fe +3 ions and HCl; Iron powder was added to this solution or continuously reacted to mature the pH of waste acid to 2.5 or more to produce Fe-based colloidal sludge such as Fe (OH) 2 and Fe (OH) 3 at a concentration of 100 mg-1000 mg / l. ; And slowly stirring the solution in which the Fe-based sludge is produced by adsorption filtration to remove impurities and organic substances present in trace amounts in the waste acid to recover FeCl 2 having high purity. And administering alkali to the high-purity ferric chloride solution to maintain a pH of 13 or more and causing a solution reaction to blow air at a temperature of 40-60 ° C. A method of manufacturing iron hydroxide for a magnetic recording medium. 제철소의 냉연공장에서 발생하는 염화제일철(FeCl2) 함유폐산에 철스크랩 또는 철분말을 첨가하여 폐산내의 Fe+3이온 및 HCl과 반응시켜 Fe+3이온 및 HCl을 용해제거하는 단계 ; 이 용액에 철분말을 가하거나 지속적으로 반응시켜 폐산의 pH를 2.5이상이 되게하여 숙성시켜 농도 100mg-1000mg/ℓ의 Fe(OH)2및 Fe(OH)3같은 Fe계 콜로이드 슬러지를 생성시키는 단계 및 상기 Fe계 슬러지가 생성된 용액을 서서히 교반하여 폐산내의 미량으로 존재하는 불순물 및 유기물을 흡착여과 제거시켜 고순도의 FeCl2를 회수하는 단계 및 상기 정제된 고순도 염화제일철용액에 알칼리를 투여하여 pH를 6-7로 유지하고 온도 20-30℃에서 공기를 불어넣는 용액반응에 의해 γ-FeOOH핵을 생성한 후, 이어서 지속적으로 알카리를 투여하면서 40-60℃ 온도에서 공기를 불어넣는 용액 반응시키는 단계를 포함하는 자기기록매체용 수산화철 제조방법.Ferrous chloride occurring in the cold rolling mill of a steel mill (FeCl 2) and a spent acid containing addition of iron scrap or iron powder is reacted with Fe +3 ions and HCl in the spent acid phase to dissolve and remove the Fe +3 ions and HCl; Iron powder was added to this solution or continuously reacted to mature the pH of waste acid to 2.5 or more to produce Fe-based colloidal sludge such as Fe (OH) 2 and Fe (OH) 3 at a concentration of 100 mg-1000 mg / l. And slowly stirring the solution in which the Fe-based sludge is produced, adsorbing and removing impurities and organics present in trace amounts in the waste acid to recover FeCl 2 of high purity, and administering an alkali to the purified high purity ferric chloride solution to pH. After maintaining at 6-7 and producing a γ-FeOOH nucleus by a solution reaction that blows air at a temperature of 20-30 ℃, followed by a solution reaction of blowing air at a temperature of 40-60 ℃ with continuous alkali administration Iron hydroxide manufacturing method for a magnetic recording medium comprising a.
KR1019930031775A 1993-12-31 1993-12-31 Process for producing magnetic recording iron hydroxide KR970000304B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930031775A KR970000304B1 (en) 1993-12-31 1993-12-31 Process for producing magnetic recording iron hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930031775A KR970000304B1 (en) 1993-12-31 1993-12-31 Process for producing magnetic recording iron hydroxide

Publications (2)

Publication Number Publication Date
KR950017742A KR950017742A (en) 1995-07-20
KR970000304B1 true KR970000304B1 (en) 1997-01-08

Family

ID=19374706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930031775A KR970000304B1 (en) 1993-12-31 1993-12-31 Process for producing magnetic recording iron hydroxide

Country Status (1)

Country Link
KR (1) KR970000304B1 (en)

Also Published As

Publication number Publication date
KR950017742A (en) 1995-07-20

Similar Documents

Publication Publication Date Title
JPS5980737A (en) Recovery of metals from waste hydrogenation catalyst
CN113502394A (en) Method for recovering cobalt or nickel intermediate product
US4214895A (en) Method for producing cobalt metal powder
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
US3436177A (en) Continuous process for removing multivalent impurities from copper-bearing leach solutions
KR970000304B1 (en) Process for producing magnetic recording iron hydroxide
CN110983054B (en) Method for separating and recovering cobalt and nickel from manganese sulfate solution
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
US4150095A (en) Recovering magnetite and ammonium sulphate from ammonium jarosite
CN110983039A (en) Method for removing impurities in pyrolusite sulfur dioxide leaching solution
JP2004075463A (en) Method for removing and recovering indium from indium-containing ferric chloride etchant waste
US5951954A (en) Method for manufacturing clear brine fluids from impure zinc feedstock
JP2008031018A (en) Method of producing iron oxide for ferrite
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
CN109289488B (en) High temperature furnace chlorine, argon-containing tail gas treatment system
KR0119001B1 (en) Process for iron chloride utilizing the ferrite iron oxide
JP4279022B2 (en) Manufacturing method of high purity iron oxide powder
JPH06171953A (en) Production of ferric chloride solution
KR900001490B1 (en) Process for production of fenoso-ferric oxide containing cobalt for magnetic recording
JP2953863B2 (en) Production method of iron oxide for ferrite raw material
KR100368246B1 (en) Method for refining waste pickling solution using mill scale
JP3343964B2 (en) Continuous production of ferric chloride solution
KR100513855B1 (en) Method for Treatment of Ni Containing Solution from Recycling Process of FeCl3 Etching Solution
JPH0340924A (en) Production of high-purity ferrous sulfate solution from sulfuric acid-based pickling waste acid
JP3104720B2 (en) Nickel removal method from nickel-containing iron chloride aqueous solution

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040105

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee