KR950002185B1 - Semiconductor device and manufacturing method for shallow junction shaped ic - Google Patents

Semiconductor device and manufacturing method for shallow junction shaped ic Download PDF

Info

Publication number
KR950002185B1
KR950002185B1 KR1019910022950A KR910022950A KR950002185B1 KR 950002185 B1 KR950002185 B1 KR 950002185B1 KR 1019910022950 A KR1019910022950 A KR 1019910022950A KR 910022950 A KR910022950 A KR 910022950A KR 950002185 B1 KR950002185 B1 KR 950002185B1
Authority
KR
South Korea
Prior art keywords
region
semiconductor device
oxide film
shallow junction
forming
Prior art date
Application number
KR1019910022950A
Other languages
Korean (ko)
Other versions
KR930014782A (en
Inventor
김영균
Original Assignee
현대전자산업주식회사
정몽헌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대전자산업주식회사, 정몽헌 filed Critical 현대전자산업주식회사
Priority to KR1019910022950A priority Critical patent/KR950002185B1/en
Publication of KR930014782A publication Critical patent/KR930014782A/en
Application granted granted Critical
Publication of KR950002185B1 publication Critical patent/KR950002185B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

The method includes the steps of forming an N- region (2) on the P silicon substrate (1), forming a device isolating oxide film (3) on the portion of N- region (2), forming a screen oxide film (4) on the film (3) and the exposed region (2), implanting Si ions 1015/cm2 at energy of 40KeV into the N- region (2) through the screen oxide film (4), implanting BF2 ions 3 × 1015/cm2 at energy of 50KeV into the predetermined portion of ion-implanted region (2), and heat-treating the substrate to form a P+ region (5), thereby amorphising the silicon substrate to reduce the junction depth and leakage current.

Description

얕은 접합 형상을 가진 반도체소자 및 그 제조방법A semiconductor device having a shallow junction shape and a method of manufacturing the same

제 1 도는 본 발명에 따라 Si이 먼저 이온주입된 상태를 나타낸 반도체소자의 단면도.1 is a cross-sectional view of a semiconductor device showing a state in which Si is first implanted according to the present invention.

제 2 도는 본 발명에 따라 제 1 도의 공정 다음에 BF2이 주입된 상태를 나타낸 반도체소자의 단면도.2 is a cross-sectional view of a semiconductor device showing a state in which BF 2 is implanted after the process of FIG. 1 according to the present invention.

제 3 도는 본 발명에 따라 P+얕은 접합이 형성된 상태를 나타내는 반도체소자의 단면도.3 is a cross-sectional view of a semiconductor device showing a state in which a P + shallow junction is formed in accordance with the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : P-형 실리콘 기판 2 : n-영역1: P - type silicon substrate 2: n - region

3 : 소자분리산화막 4 : 스크린 산화막3: device isolation oxide film 4: screen oxide film

5 : P+영역 6 : 도전층5: P + region 6: conductive layer

7 : 포토레지스트층7: photoresist layer

본 발명은 고집적 반도체 기억소자에 적용될 수 있는 얕은 접합 형상을 가진 반도체소자 및 그 제조방법에 관한 것으로, 특히, 실리콘기판이 선 비정질화되어 P+형의 얕은 접합형상을 가지게 되는 반도체소자 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a shallow junction shape that can be applied to a highly integrated semiconductor memory device and a method of manufacturing the same. In particular, a semiconductor device in which a silicon substrate is pre-amorphized to have a shallow junction shape of P + type and its fabrication It is about a method.

최근, 반도체소자가 고집적화가 됨에 따라, 트랜지스터가 미세화되므로, 채널길이가 짧게 되는 단채널효과를 가지게 되어, 펀치스쿠(punch through)현상이 발생하게 된다.In recent years, as semiconductor devices have been highly integrated, transistors have been miniaturized, so that the channel length has a short channel effect, and punch through phenomenon occurs.

따라서, 상기 단채널효과를 경감시키기 위해, 종래의 기술에 있어서는, P+실리콘기판 상부에 소정의 n_액티브영역을 형성한 다음 리소그래피기술에 의해 선택적으로 불화붕소이온을 예를 들어, 3×1015/㎠정도 상기 n_액티브영역에 주입하고, 그 질소분위기에서 900℃ 30분간 열처리하여, 주입된 이온을 전기적으로 활성화시켜 P+영역을 형성하고 그 상부에 알루미늄패트와 같은 도전층을 증착시켜 얕은 접합을 가진 다이오드를 제조하였다.Therefore, in order to alleviate the short channel effect, in the related art, a predetermined n_ active region is formed on the P + silicon substrate, and then boron fluoride ion is selectively selected by lithography, for example, 3x10. 15 / cm 2 injected into the n_ active region and heat-treated at 900 DEG C for 30 minutes in the nitrogen atmosphere to electrically activate the implanted ions to form a P + region and to deposit a conductive layer such as aluminum pat on top of it. Diodes with shallow junctions were made.

그러나, 상술한 종래의 기술에 있어서는 리소그래피기술에 의해 선택적으로 단결정 실리콘기판상으로 주입되는 불화붕소이온이 실리콘 단결정에서의 열린 통로를 따라 깊숙이 들어가는 현상을 나타낸다.However, the conventional technique described above shows a phenomenon in which boron fluoride ions, which are selectively implanted onto a single crystal silicon substrate by lithography, enter deeply along an open passage in the silicon single crystal.

따라서, 본 발명은, 면적이 예로서 200×400㎛2인 소정의 n_영역에 리소그래피기술에 의해 선택적으로 예로서, Si 이온을 40kev의 에너지와 1015/㎠의 양으로 먼저 주입시켜 실리콘 단결정의 규칙성을 파괴하여, 뒤따르는 공정인 불화붕소이온의 주입공정에 의해 발생되는 실리콘기판 단결정에서의 열린 통로를 따라 깊숙이 들어가는 현상을 방지하여, P+영역의 붕소농도와 n_영역의 인농도가 같아져서 접합깊이가 0.2㎛이하인 P+영역의 얕은 접합의 다이오드를 형성하여 접합깊이 및 누설전류를 작게 하여 단채널효과를 억제하는 것을 그 목적으로 한다.Accordingly, the present invention provides a surface area for example, to a selective region on a predetermined n _ 2 × 200 400㎛ for example by a lithographic method, a silicon single crystal by first implanting Si ions in an amount of energy and 10 15 / ㎠ 40kev The boron concentration in the P + region and the phosphorus concentration in the n _ region are prevented by breaking the regularity of and preventing the deep penetration along the open passage in the silicon substrate single crystal generated by the subsequent implantation process of boron fluoride ion. The purpose is to suppress the short channel effect by forming a diode of a shallow junction in the P + region where the junction depth is equal to or smaller than 0.2 μm, thereby reducing the junction depth and leakage current.

따라서, 본 발명에 의한 얕은 접합형상을 가진 반도체소자 제조방법에 있어서, P_타입의 실리콘기판을 제공하는 단계와, 상기 기판 상부에 n_영역을 형성하는 단계와, 상기 n_영역 상부에 소자분리 산화막을 형성하는 단계와, 상기 소자분리 산화막 상부에 스크린 산화막을 형성하는 단계와, 상기 스크린 산화막 상부의 소정부분에 포토레지스트층을 형성하는 단계와, 노출된 상기 스크린 산화막 상부로부터 Si를 n_영역의 소정부분에 이온주입시키는 단계와, 상기 Si가 이온주입된 n_영역의 소정부분에 BF2를 이온주입시키는 단계와, 상기 스크린 산화막 상부에 형성된 포토레지스트층을 제거하는 단계와, 열처리를 거쳐서 상기 BF2가 이온주입된 영역에 P+영역을 형성하는 단계와, 상기 스크린 산화막의 소정부분을 리소그래피기술을 이용하여 콘택홀을 형성하고, 그 상부에 도전층을 증착하는 단계를 포함하는 것을 특징으로 한다.Therefore, in the method of manufacturing a semiconductor device having a shallow junction shape according to the present invention, providing a P_ type silicon substrate, forming an n_ region on the substrate, and forming a device on the n_ region forming a separating oxide film, and a step of forming a screen oxide film in the device isolation oxide film above, and a step of forming a photoresist layer on a predetermined portion of the screen oxide layer upper and the Si from the exposed said screen oxide upper n _ and the step of ion implantation in a predetermined part of the region, the method comprising the step of the Si is ion-implanted BF 2 at a predetermined portion of the ion-implanted n _ region, removing the photoresist layer formed on an upper part of the screen oxide film, a thermal treatment Forming a P + region in the BF 2 ion implanted region, and forming a predetermined portion of the screen oxide layer using a lithography technique. Forming a tack hole, and depositing a conductive layer thereon.

또한, 본 발명에 의한 얕은 접합형상을 가진 반도체소자에 있어서, P_타입의 실리콘 기판과, 상기 기판에 형성된 n_영역과, 상기 n_영역 상부에 형성된 소자분리산화막과, 상기 소자분리 산화막 상부에 형성된 스크린 산화막과, 상기 n_영역의 소정 부분에 형성된 P+영역과, 상기 P+영역 상부의 콘택홀을 통하여 P+영역과 전기적으로 접속되는 모전층을 구비하는 것을 특징으로 한다.In addition, in the semiconductor device having a shallow junction shape according to the present invention, a P_ type silicon substrate, an n_ region formed on the substrate, a device isolation oxide film formed on the n_ region, and an upper portion of the device isolation oxide film through the screen oxide layer and a P + region and a contact hole in the upper part of the P + regions formed in the predetermined portion of the n _ region formed is characterized by having a mojeon layer is connected to a P + region and electrically.

또한, 본 발명에 의한 얇은 접합형상을 가진 반도체소자에 있어서, P+영역은, Si를 n_영역에 먼저 이온주입시켜 실리콘 기판을 선 비정질화 한 후 BF2를 이온주입시켜 형성되는 것을 특징으로 한다.In addition, in the semiconductor device having a thin junction shape according to the present invention, the P + region is formed by ion implantation of Si into the n _ region first to pre-amorphize the silicon substrate and then implantation of BF 2 into the ion region. do.

이하, 첨부된 도면으로 본 발명을 더욱 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail with the accompanying drawings.

제 1 도는, P_타입의 실리콘기판 상부에 예로서 인을 1013/㎠, 150kev의 조건으로 주입하여 열처리하여 n_영역을 소정부분 형성시킨후, 그 상부에 LOCOS 공정으로 소자분리 산화막(3)을 형성시키고, 상기 소자분리 산화막(3)상부에 스크린 산화막(4)을 형성시키고, 상기 스크린 산화막(4) 상부의 소정부분에 포토레지스트층(7)을 형성시켜, Si 이온을 40kev, 1015/㎠ 조건으로 n_영역의 소정부분에 이온주입시키는 상태를 도시한다.The first turn, P _ type of the silicon substrate by the upper heat-treated by injecting the to 10 13 / ㎠, conditions of 150kev for example in then the n _ region forming a predetermined section, the element isolation by LOCOS process on the top oxide film (3 ), A screen oxide film 4 is formed on the device isolation oxide film 3, and a photoresist layer 7 is formed on a predetermined portion of the screen oxide film 4 to form Si ions of 40 kev, 10. to 15 / ㎠ condition shows a state in which the ion implantation to the predetermined portion of the n _ zone.

이때, 상기 Si 이온주입에 의해 실리콘기판의 단결정의 규칙성은 파괴되어 실리콘기판은 비정질화된다.At this time, the regularity of the single crystal of the silicon substrate is destroyed by the Si ion implantation, and the silicon substrate is amorphous.

제 2 도는 제 1 도에 도시된 공정 다음에, BF2이온을 3×1015㎠, 50kev의 조건으로 이온주입시키는 공정을 도시한 것이다.FIG. 2 shows a step of implanting BF 2 ions under the conditions of 3 × 10 15 cm 2 and 50 kev following the process shown in FIG. 1.

제 3 도는, 상기 BF2이온을 이온주입시킨후 잔존하는 포토레지스트층(7)을 제거하여, 600℃, 60분 및 900℃, 30분동안 질소분위기에서 열처리를 거쳐 P+영역(5)을 형성시키고, 그 상부에 리소그래피기술에 의해 형성된 콘택홀을 통해 알루미늄패드인 도전층(6)을 형성한 상태를 도시한 것이다.3, after the ion implantation of the BF 2 ions, the remaining photoresist layer 7 is removed, and the P + region 5 is subjected to heat treatment in a nitrogen atmosphere at 600 ° C., 60 minutes, and 900 ° C. for 30 minutes. The conductive layer 6, which is an aluminum pad, is formed through the contact hole formed by the lithographic technique.

이하, 표 1에서는, Si 이온주입을 이용하지 않는 종래기술에 의해 형성된 다이오드와, 본 발명에 의한 Si 이온주입기술을 이용하여 형성된 다이오드의 접합깊이 및 -5V를 인가하였을 때의 누설전류를 측정한 값을 비교하여 도시한다.Hereinafter, in Table 1, the junction depth of the diode formed by the prior art which does not use Si ion implantation and the diode formed by using the Si ion implantation technique according to the present invention and the leakage current when applying -5V were measured. The values are compared and shown.

[표 1]TABLE 1

여기서, 누설전류는 -5V를 도전층에 인가할때 다이오드면적 200×400㎛2를 통하여 흐르는 전류이다.Here, the leakage current is a current flowing through the diode area 200 x 400 탆 2 when -5 V is applied to the conductive layer.

표 1에서 알 수 있는 바와같이, 본 발명의 Si 이온주입을 이용한 기술이 종래의 기술에 비해 접합깊이와 누설전류의 특성에 있어서 매우 양호함을 알 수 있다.As can be seen from Table 1, it can be seen that the technique using the Si ion implantation of the present invention is very good in the characteristics of the junction depth and the leakage current compared to the conventional technique.

이상에 살펴본 바와같이, 본 발명에 따른 실리콘기판을 선비정절화하여 얕은 접합형상을 가진 반도체소자는, 접합깊이 및 누설전류를 작게함으로써 트랜지스터의 단채널효과를 경감시켜 소자의 고집적화에 크게 기여할 수 있는 효과를 가진다.As described above, the semiconductor device having a shallow junction shape by pre-ordering the silicon substrate according to the present invention can reduce the short channel effect of the transistor by reducing the junction depth and the leakage current, thereby greatly contributing to the high integration of the device. Has an effect.

Claims (5)

얕은 접합형상을 가진 반도체소자를 제조하기 위한 방법에 있어서, P형 실리콘기판의 상부에 n_영역을 형성하는 단계와, 상기 n_영역 일정부분 상부에 소자분리 산화막을 형성하는 단계와, 상기 소자분리 산화막과 노출된 n_영역 상부에 스크린 산화막을 형성하는 단계와, 상기 스크린 산화막을 통해 Si를 n_영역의 일정깊이까지 이온주입시키는 단계와, 상기 Si가 이온주입된 n_영역의 소정부분에 BF2를 이온주입 시키는 단계와, 열처리를 거쳐서 상기 BF2가 이온주입된 영역에 P_영역을 형성하는 단계를 포함하는 얕은 접합형상을 가진 반도체소자 제조방법.A method for manufacturing a semiconductor device having a shallow junction shape, comprising: forming an n_ region on an upper portion of a p-type silicon substrate, forming an isolation oxide layer on a portion of the n_ region, and forming a screen oxide film on the n _ region upper exposure and the isolating oxide film, and a step of ion implantation of Si to a predetermined depth of the n _ region through the screen oxide layer, and a predetermined portion of said Si is ion-implanted n _ region Ion implantation of BF 2 in, and forming a P _ region in the BF 2 ion implanted region through a heat treatment, a method of manufacturing a semiconductor device having a shallow junction shape. 제 1 항에 있어서, 상기 n_영역은 P_형 실리콘 기판에 P(인)을 1013/㎠, 150kev의 조건으로 이온주입하고 열처리를 거쳐 형성되는 것을 특징으로 하는 얕은 접합형상으로 가진 반도체소자 제조방법.2. The method of claim 1, wherein n _ region is a semiconductor device having a shallow junction shape characterized in that the ion implantation of P (phosphorus) in P _-type silicon substrate with 10 13 / ㎠, conditions of 150kev is formed through the heat treatment Manufacturing method. 제 1 항에 있어서, 상기 Si를 1015/㎠, 40kev의 조건으로 이온주입하는 것을 특징으로 하는 얕은 접합형상을 가진 반도체소자 제조방법.The method of manufacturing a semiconductor device having a shallow junction shape according to claim 1, wherein the Si is ion implanted under conditions of 10 15 / cm 2 and 40 kev. 제 1 항에 있어서, 상기 BF2를 3×1015/㎠, 50kev의 조건으로 이온주입하는 것을 특징으로 하는 얕은 접합형상을 가진 반도체소자 제조방법.The method of claim 1, wherein the BF 2 is ion implanted under a condition of 3 × 10 15 / cm 2 and 50 kev. 얕은 접합형상을 가진 반도체 소자에 있어서, 상기 기판(1)에 형성된 n_영역과, 상기 n_영역 일정 상부에 형성된 소자분리산화막과, 상기 소자분리 산화막 n_영역 상부에 형성된 스크린 산화막과, 상기 소자분산화막이 형성되지 않은 n_영역의 일정깊이까지 형성된 P+영역이 구비되는 것을 특징으로 하는 얕은 접합형상을 가진 반도체소자.A semiconductor device having a shallow junction geometry, and n _ region formed in the substrate 1, and the n _ region constant separation element formed in the top oxide film and the element isolating oxide film n _ area screen oxide film formed thereon, the A semiconductor device having a shallow junction shape, characterized in that the P + region formed to a predetermined depth of the n _ region where the device dispersion film is not formed.
KR1019910022950A 1991-12-13 1991-12-13 Semiconductor device and manufacturing method for shallow junction shaped ic KR950002185B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910022950A KR950002185B1 (en) 1991-12-13 1991-12-13 Semiconductor device and manufacturing method for shallow junction shaped ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910022950A KR950002185B1 (en) 1991-12-13 1991-12-13 Semiconductor device and manufacturing method for shallow junction shaped ic

Publications (2)

Publication Number Publication Date
KR930014782A KR930014782A (en) 1993-07-23
KR950002185B1 true KR950002185B1 (en) 1995-03-14

Family

ID=19324781

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910022950A KR950002185B1 (en) 1991-12-13 1991-12-13 Semiconductor device and manufacturing method for shallow junction shaped ic

Country Status (1)

Country Link
KR (1) KR950002185B1 (en)

Also Published As

Publication number Publication date
KR930014782A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
KR930010121B1 (en) Process for forming high and low voltage cmos transistors on a single integrated circuit chip
EP0208935B1 (en) Narrow channel width fet
US6768173B2 (en) High voltage MOS transistor with up-retro well
KR930009030B1 (en) Process for forming bipolar transistor and high voltage cmos transistor in a single ic chip
US4382827A (en) Silicon nitride S/D ion implant mask in CMOS device fabrication
US4717683A (en) CMOS process
US7696049B2 (en) Method to manufacture LDMOS transistors with improved threshold voltage control
CA1063731A (en) Method for making transistor structures having impurity regions separated by a short lateral distance
JPH09121058A (en) Method of adjusting threshold voltage of semiconductor element to be manufactured on insulating substrate semiconductor
JPH0231497B2 (en)
US4252574A (en) Low leakage N-channel SOS transistors and method of making them
US4416050A (en) Method of fabrication of dielectrically isolated CMOS devices
JPH07201974A (en) Manufacture of semiconductor device
US3876472A (en) Method of achieving semiconductor substrates having similar surface resistivity
US4535529A (en) Method of making semiconductor devices by forming an impurity adjusted epitaxial layer over out diffused buried layers having different lateral conductivity types
GB2037073A (en) Method of producing a metal-semiconductor fieldeffect transistor
KR0152909B1 (en) Insulation structure of semiconductor and manufacturing method thereof
JP3356629B2 (en) Method of manufacturing lateral MOS transistor
KR950002185B1 (en) Semiconductor device and manufacturing method for shallow junction shaped ic
US6245649B1 (en) Method for forming a retrograde impurity profile
KR100281397B1 (en) A method of forming an ultra-thin soi electrostatic discharge protection device
KR100212010B1 (en) Method for fabricating transistor of semiconductor device
US4814290A (en) Method for providing increased dopant concentration in selected regions of semiconductor devices
JPH0434942A (en) Manufacture of semiconductor device
KR19990005828A (en) P-N shallow junction formation method of source / drain in PMOSFET

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090223

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee