KR920008975B1 - Process for the production of conjugated fiber - Google Patents

Process for the production of conjugated fiber Download PDF

Info

Publication number
KR920008975B1
KR920008975B1 KR1019900007895A KR900007895A KR920008975B1 KR 920008975 B1 KR920008975 B1 KR 920008975B1 KR 1019900007895 A KR1019900007895 A KR 1019900007895A KR 900007895 A KR900007895 A KR 900007895A KR 920008975 B1 KR920008975 B1 KR 920008975B1
Authority
KR
South Korea
Prior art keywords
fiber
component
forming
composite fiber
refractive index
Prior art date
Application number
KR1019900007895A
Other languages
Korean (ko)
Other versions
KR910020218A (en
Inventor
김광태
손영호
이재철
이필상
Original Assignee
제일합섬 주식회사
이수환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일합섬 주식회사, 이수환 filed Critical 제일합섬 주식회사
Priority to KR1019900007895A priority Critical patent/KR920008975B1/en
Publication of KR910020218A publication Critical patent/KR910020218A/en
Application granted granted Critical
Publication of KR920008975B1 publication Critical patent/KR920008975B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

In multi-segment type composite fiber structure, fiber- forming polamide composition forms radial shapes by branching into 4-8 direction radially from the center of fiber cross section, while fiber-forming polyester composition forms wedge shapes by arranging the composition alternately between polyamides. The polyester composition contains 5 mμ - 50 mμ 0.1-3.0 wt.% silicon dioxide microparticles which can impart multiple concave convex of 0.4 - 0.8 μ along the fiber axis during alkali weight reduction. Low refractive resinous coats, e.g. polyurethane of refraction index 1.4-1.6 are applied to the alkali treated composite fiber to give good shade producibility after dyeing.

Description

복합섬유 구조물의 제조방법Manufacturing method of composite fiber structure

제1도~제3도는 본 발명 복합섬유의 횡단면 확대도, A : 섬유형성성 폴리아미드계, 수지 B : 섬유형성성 폴리에스테르계 수지.1 to 3 are cross-sectional enlarged views of the composite fiber of the present invention, A: fiber-forming polyamide-based resin, and B: fiber-forming polyester-based resin.

본 발명은 섬유 표면에 알카리 감량처리에 의해 섬유측 방향으로 광파장 오더(order)의 다수의 미세한 요철을 가지게함과 동시에 저굴절율의 수지피막을 형성시켜 염색시 일반 극세 섬유에 비해 현저한 심색효과와 고 발색성을 나타낼 수 있게 한 폴리아미드-폴리에스테르계 복합극세 섬유구조물의 제조방법에 관한 것이다.The present invention has a number of fine irregularities of optical wavelength order in the fiber side by alkali reduction treatment on the surface of the fiber and at the same time forms a resin film of low refractive index, and has a significant deep color effect and high color compared to general ultrafine fibers during dyeing. The present invention relates to a method for producing a polyamide-polyester-based composite microfiber structure capable of exhibiting color development.

일반적으로 0.3데니어(denier) 이하의 극세섬유류는 인조스웨드(suede), 투습방수복지, 청정용 직물 등 그 용도가 매우 다양하나 염색 가공등 공정상 애로사항이 있어 이의 사용에 많은 제약이 따른다. 극세섬유는 통상의 섬유에 비해 겉보기 표면 농도(발색성)가 저하되는 것으로 알려져 있고 이것은 극세섬유가 갖는 공통의 문제점이다. 이러한 겉보기 농도의 저하요인으로서는, 섬유가 가늘게 됨에 따라 단위중량에 대한 표면적이 증대하고 섬유표면의 반사광이 증가하기 때문에 빛이 산란(散亂)해 착색광이 약해져 표면의 겉보기농도가 저하되는 것으로 생각할 수 있는데 겉보기 농도가 저하될 경우 고농도의 염료를 사용하지 않으면 레귤러 데니어(Regular denier)섬유와 동등한 발색성을 얻을 수 없기 때문에 섬유의 제반 견뢰도가 저하되는 단점이 있다.In general, microfibers of less than 0.3 denier (denier) has a variety of uses, such as artificial suede (suede), moisture-permeable waterproofing, clean fabrics, but there are difficulties in the process, such as dyeing process has a lot of restrictions on their use. Microfibers are known to have a lower apparent surface concentration (chromic) than conventional fibers, which is a common problem with microfibers. As the decrease in the apparent concentration, as the fiber becomes thinner, the surface area with respect to the unit weight increases and the reflected light on the surface of the fiber increases, so that the light scatters and the colored light is weakened, so that the apparent concentration of the surface is deteriorated. If the apparent concentration is lowered, the color fastness of the regular denier fibers cannot be obtained unless a high concentration of the dye is used.

한편, 발색성 향상을 위해 섬유표면에 요철을 부여하는 방법으로는 일본공고특허 제68-14186호, 제71-26887호에 개시된 불활성 미립자와 결정화제의 폴리머 첨가법과 일본공고특허 제68-16665호에 개시된 미립자 첨가후의 용제처리법 등이 알려져 있으나 이러한 방법은 섬유표면에 광파장의 수배 내지 수십배 크기의 요철을 형성시켜 충분한 심색효과를 얻기 어렵다. 또한 일본공개특허 제80-137241호에 개시된 방법은 요철이 섬유축과 직각인 원주방향으로 형성되어 섬유구조물의 인열 및 인장강도가 저하되며 폴리에스테르섬유 자체의 고굴절율로 인해 표면 요철만으로는 심색효과를 얻는데에 부족함이 있다. 본 발명자들은 이러한 단점을 해결하기 위해 알카리 감량공정에서 미립자를 용출시킴으로써 섬유표면에 광파장오더인 0.4∼0.8μ의 미세한 요철을 형성시켜 빛을 난반사시킴과 동시에 저굴절율의 수지 피막을 형성시킴으로써 반사광을 최소화시킨 고발색성 폴리아미드-폴리에스테르계 복합 극세섬유 구조물의 제조방법을 발명하였다.On the other hand, as a method of imparting irregularities to the surface of the fiber to improve color development, the method of adding polymers of inert fine particles and crystallization agents disclosed in Japanese Patent Publication Nos. 68-14186 and 71-26887 and Japanese Patent Publication No. 68-16665 Solvent treatment after addition of the disclosed fine particles is known, but such a method is difficult to obtain a sufficient deep color effect by forming irregularities of several to tens of times the wavelength of light on the fiber surface. In addition, the method disclosed in Japanese Patent Application Laid-Open No. 80-137241 is formed in the circumferential direction perpendicular to the fiber axis so that the tearing and tensile strength of the fiber structure is lowered, and the deep refractive index of the polyester fiber itself has a deep color effect. There is not enough to gain. In order to solve this drawback, the present inventors minimize the reflected light by eluting the fine particles in the alkali reduction process to form fine irregularities of 0.4 to 0.8 μ of an optical wavelength order on the surface of the fiber to diffuse the light diffusely while forming a resin film having a low refractive index. The method for producing a highly colored polyamide-polyester-based composite microfiber structure was invented.

본 발명은 상세히 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명은 섬유 형성성 폴리아미드와 섬유 형성성 폴리에스테르로된 멀티세그멘트(multi segment)형 복합섬유에 있어서 제1성분인 섬유형성성 폴리아미드계 수지는 제1도, 제2도 및 제3도에 도시된 것처럼 복합섬유 횡단면의 중심에서 방사상으로 분지(分지)시켜 4방향 이상 8방향 이하의 방사상부를 형성하고 제2성분인 섬유형성성 폴리에스테르계수지는 제1성분 사이에 제1성분과 교호로 배열되어 쐐기상부를 형성하는데 제2성분으로는 평균직경 50mμ∼50mμ의 무기입자를 함유하도록하여 알카리감량시 섬유 표면에 다수의 미세한 요철을 형성시키도록 하는 열가소성 폴리에스테르 수지를 사용하고, 해당 복합 섬유를 알카리 감량후 굴절율 1.4∼1.6인 수지피막을 형성시키도록 하는 것을 특징으로 한다.The present invention relates to a fiber-forming polyamide-based resin as a first component in a multi-segment composite fiber composed of a fiber-forming polyamide and a fiber-forming polyester. Branched radially at the center of the cross section of the composite fiber as shown in to form a radial portion of four directions or more and eight directions or less, and the fiber-forming polyester resin, the second component, alternates with the first component between the first component. It is arranged in the form of a wedge, the second component is used as a thermoplastic polyester resin to contain inorganic particles having an average diameter of 50mμ ~ 50mμ to form a plurality of fine irregularities on the fiber surface when reducing alkali, the composite It is characterized by forming a resin film having a refractive index of 1.4 to 1.6 after reducing the fiber alkali.

본 발명에 사용된 무기 입자는 물에 분산된 형태의 산화규소(SiO2)로서 평균입경 5mμ 미만의 것은 알카리 감량후 요철의 효과가 충분치 못할뿐만 아니라 분산액 자체의 가격이 비싸 실용화에 애로가 있고 50mμ이상의 것은 광파장 이상의 너무 큰 요철을 형성하여 광의 산란효과가 불충분하고 섬유의 강도 저하 현상이 현저한 단점이 있다. 이러한 무기 입자의 함량은 감량가공후의 원하는 요철의 형태와 밀도에 따라 달라질 수 있으나, 방사시 분할 및 사절발생을 방지하기 위해서는 폴리에스테르 수지에 대해 0.1∼3중량%가 적당하다. 함유량이 0.1중량% 미만인 경우에는 요철의 형성이 미흡하여 염색후에 발색성에 도움을 주지 못하며, 3중량% 이상일 경우에는 제사(製絲)공정중에 세그멘트가 분리되어 모우가 발생할 뿐만 아니라 심한 경우에는 사절도 일어나며, 제직 및 제편 공정중에도 사절이 발생하여 조업성의 불안정 및 불량단의 원인이 된다. 또한 알카리 감량후에 강도 저하가 현저해져 섬유제품으로서 기능을 발휘하지 못한다.The inorganic particles used in the present invention are silicon oxide (SiO 2 ) dispersed in water, having an average particle diameter of less than 5 mμ, which is not sufficient for the effect of unevenness after reducing the alkali, and the dispersion itself is expensive and has difficulty in practical use. The above has disadvantages in that the formation of too large unevenness in the optical wavelength is insufficient, so that the light scattering effect is insufficient and the strength degradation of the fiber is remarkable. The content of such inorganic particles may vary depending on the shape and density of the desired irregularities after the weight loss processing, but 0.1 to 3% by weight of the polyester resin is suitable to prevent splitting and trimming during spinning. If the content is less than 0.1% by weight, the formation of unevenness is insufficient, which does not help the color development after dyeing. If the content is more than 3% by weight, the segment is separated during the sacrificial process, so that not only the bleeding occurs but also the severed thread. In addition, trimming occurs during the weaving and knitting process, causing instability and faulty operation. In addition, after the reduction of alkali, the strength decreases remarkably, and thus does not function as a fiber product.

본 발명은 섬유형성성 폴리아미드와 위에 설명한 무기입자를 함유시킨 섬유형성성 폴리에스테르 수지를 복합방사하여 총섬도 50∼150데니어, 단사섬도 1∼3데니어가 되도록 하며 제직 또는 제편하여 화학적 방법 혹은 물리적 방법으로 분할, 극세화 한 후 알카리 감량 가공에 의해 무기입자를 추출해냄으로써 미세한 요철을 형성시킨 다음, 섬유표면에 저굴절율의 수지 피막을 도포하여 염색시 심색성과 발색성을 향상시키도록 하였다. 분할시 화학적 방법은 섬유를 형성하고 있는 두 성분 폴리머에 선택적으로 작용하는 용제를 침지 혹은 패딩(padding)법에 의해 분할하는 것으로서, 사용되는 용제로는 벤질 알코올(Benzyl alcohol), 페닐 에틸 알코올(phenyl ethyl alcohol), 페놀(phenol), 오르쏘 클로로페놀(O-chloro phenol), 메타 크레졸(m-cresol), 파라 크레졸(p-cresol), 알파 메틸 알코올(α-methyl alcohol), 오르쏘 페닐 페놀(O-phenyl phenol)등이 알려져 있으나, 안전성, 작업성, 가격 등을 고려할 때 벤질 알코올이 적당한 것으로 알려져 있다. 물리적 방법으로는 침포기모(侵暴기毛) 및 버핑(Buffing)에 의한 분할이 대표적인 방법으로서 스웨드의제조에 많이 사용되는 방법이다. 경우에 따라서는 화학적 및 물리적 방법을 조합할 수 있다.The present invention is a composite spinning of the fiber-forming polyamide and the fiber-forming polyester resin containing the inorganic particles described above to have a total fineness of 50 ~ 150 denier, single yarn fine 1 ~ 3 denier and weaving or knitting to a chemical method or physical After dividing and minimizing by the method, fine irregularities were formed by extracting the inorganic particles by alkali reduction processing, and then a low refractive index resin coating was applied to the fiber surface to improve deep color and color development. The chemical method at the time of dividing is dividing the solvent selectively acting on the two-component polymer forming the fiber by dipping or padding method, and the solvent used is benzyl alcohol, phenyl ethyl alcohol (phenyl). ethyl alcohol, phenol, ortho chlorophenol, m-cresol, para-cresol, alpha methyl alcohol, ortho phenyl phenol Although (O-phenyl phenol) is known, benzyl alcohol is known to be suitable in consideration of safety, workability, and price. As a physical method, dividing by needle-napping and buffing is a typical method used in the manufacture of suede. In some cases, chemical and physical methods may be combined.

일반적으로 폴리에스테르 섬유의 알카리 감량은 폴리에스테르 고분자 사슬중의 에스테르기(基)가 가수분해되어 테레프탈산(Terephthalic acid)과 에틸렌 글리콜(Ethylene glycol)이 생성되고 테레프탈산은 중화하여 디소듐테레프탈레이트(Disodium terrphthalate)가 되면서 중량감소가 일어나게 되며, 가수분해는 폴리에스테르 섬유구조의 치밀성으로 인하여 알카리가 섬유를 분해하는 속도가 알카리의 섬유내 침투 속도보다 빨라서 섬유표면에서부터 서서히 일어나는 것으로 알려져 있다. 폴리에스테르 섬유 표면에 무기 입자가 분포되어 있으면, 무기 입자 주위는 마이크로 보이드(Micro void)등으로 인해 상대적으로 구조가 느슨하게 되어 가수 분해 효과가 커져, 결국 무기 입자는 섬유외부로 용출되어 섬유표면에는 미세한 요철이 형성된다.In general, the weight loss of polyester fibers is due to hydrolysis of ester groups in the polyester polymer chain to form terephthalic acid and ethylene glycol, and neutralization of terephthalic acid to disodium terrphthalate. It is known that the weight loss occurs as a) and hydrolysis occurs slowly from the fiber surface due to the compactness of the polyester fiber structure, because the rate of alkali decomposition is faster than the penetration rate of alkali into the fiber. If the inorganic particles are distributed on the surface of the polyester fiber, the structure around the inorganic particles becomes relatively loose due to micro voids and the like, so that the hydrolysis effect is increased, and finally, the inorganic particles are eluted out of the fiber and fine on the fiber surface. Unevenness is formed.

미세한 요철은 섬유에 빛이 입사되었을 때 빛을 산란시켜 섬유표면에서의 반사광, 즉 백색광을 감소시켜 결국 염색물의 착색광을 증대시켜 고 발색성을 나타내게 한다. 폴리에스테르 섬유는 섬유 가운데 가장 높은 굴절율을 갖고 있으며, 이것이 폴리에스테르섬유의 발색성을 저해하는 하나의 요인으로 되어 있다. 폴리에스테르 섬유의 심색성을 향상시키는 또 하나의 방법으로서 굴절율 1.4∼1.6의 저굴절율 수지를 섬유 표면에 도포하면 광의 표면 반사율이 저하되어 발색성과 심색성이 향상된다고 알려져 있다. 저굴절율 수지로는 불소계 화합물, 산화규소와 친수성비닐모노머(Vinyl monomer)의 혼합물, 산화규소와 수용성 폴리아미드 수지의 혼합물, 폴리우레탄(polyurethane)수지, 폴리우레탄과 실리콘(silicone)계 화합물의 혼합물등이 제안되어 있다.Fine unevenness scatters the light when the light is incident on the fiber, thereby reducing the reflected light on the surface of the fiber, that is, the white light, which in turn increases the colored light of the dye, resulting in high color development. Polyester fibers have the highest refractive index among the fibers, which is one factor that inhibits the color development of the polyester fibers. As another method of improving the color depth of polyester fiber, when the low refractive index resin of refractive index 1.4-1.6 is apply | coated to a fiber surface, it is known that surface reflectance of light falls and color development and color depth are improved. Low refractive index resins include fluorine compounds, mixtures of silicon oxide and hydrophilic vinyl monomers, mixtures of silicon oxide and water-soluble polyamide resins, polyurethane resins, mixtures of polyurethane and silicone compounds, etc. Is proposed.

본 발명에서 요철형성 목적으로 사용한 무기 입자로는 평균입경 5mμ∼50mμ의 산화규소를 물에 미분산 시킨 산화규소 함량 10∼50중량%, 수소이온 농도 9.0 내지 11.0의 콜로이드상 실리카(Colloidal Silica)를 사용하였으며 폴리에스테르계 수지 중합시 임의의 단계에서 투입하였다. 알카리 감량은 화학적 혹은 물리적 방법으로 분할 처리를 적절히 행한 후 공지의 방법으로 실시하여 섬유중량에 대하여 5 내지 15중량%를 감량하였다. 즉, 폴리아미드계 성분을 감안하다면 폴리에스테르계 성분에 대해 7 내지 20중량% 감량하였다.Inorganic particles used for the purpose of forming the unevenness in the present invention is a colloidal silica (Colloidal Silica) of 10 to 50% by weight of silicon oxide finely dispersed in water with an average particle diameter of 5mμ-50mμ in water, 9.0 to 11.0 hydrogen ion concentration It was used in the polymerization step of the polyester resin at any stage. The alkali weight loss was appropriately divided by chemical or physical method and then carried out by a known method to reduce 5 to 15% by weight based on the weight of the fiber. That is, considering the polyamide component, the weight loss was 7 to 20 wt% based on the polyester component.

분할 처리후 폴리에스테르 성분의 단사섬도는 0.3데니어 미만으로서 레귤러데니어섬유에 비하여 표면적이 커 통상의 감량조건 보다는 마일드한 조건으로 행하거나 감량시간을 단축해야 한다. 더구나 분할처리를 벤질 알코올로 행했을 때에는 벤질 알코올 처리로 형성된 섬유내의 마이크로보이드(Micro void)가 표면적의 증가를 가져와 수산(OH)기의 충돌 횟수를 증가시키고 수산기의 섬유내 침투를 용이하게 하여 가수분해 효과가 커지므로 처리조건을 더욱 마일드하게 할 필요가 있다.The single yarn fineness of the polyester component after the dividing treatment is less than 0.3 denier, and the surface area of the polyester component is larger than that of regular denier fibers. In addition, when the dividing process is performed with benzyl alcohol, the micro voids in the fiber formed by the benzyl alcohol treatment increase the surface area, increase the number of collisions of the hydroxyl group and facilitate the penetration of the hydroxyl group into the fiber. As the decomposition effect is increased, it is necessary to make the processing conditions more mild.

본 발명에서 저굴절율수지로는 드라이 크리닝 내구성 및 촉감을 고려하여 열반응형 폴리우레탄을 사용하였으며, 이 폴리우레탄은 이소시아네이트(Isocyanate)를 중아황산염(重亞황酸鹽)으로 봉쇄시킨 자기유화형(自己乳化型) 우레탄 폴리머(pre ploymer)로서 프로필렌 옥사이드(Propylene oxide)와 에틸렌 옥사이드(Ethylene oxide)의 블록 또는 랜덤 공중합 폴리에테르 디올(Polyether diol)과 헥사메틸렌디이소시아네이트(Hexa methylene diisocyanate) 또는 자이렌 디이소시아네이트(xylene diisocyanate)를 반응시켜 얻은 우레탄 프리 폴리머의 말단 이소시아네이트기를 중아황산염으로 봉쇄시킨 예를 들 수 있다.In the present invention, as the low refractive index resin, a heat-reactive polyurethane was used in consideration of dry cleaning durability and tactile feeling, and the polyurethane was a self-emulsifying type in which isocyanate was sealed with bisulfite. Self-contained urethane polymers with block or random copolymer polypropylene diol and hexamethylene diisocyanate or zylene dipropylene of propylene oxide and ethylene oxide An example in which the terminal isocyanate group of the urethane prepolymer obtained by reacting isocyanate (xylene diisocyanate) is sealed with bisulfite.

상기 우레탄의 사용량은 섬유 중량에 대하여 수지 고형분 0.1 내지 5.0중량% 부착되도록 하는 것이 좋다.The amount of the urethane is preferably to be attached to the resin solid content of 0.1 to 5.0% by weight based on the weight of the fiber.

이하 본 발명을 실시예에 의거하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예 1]Example 1

25℃, 96% 황산중에서 상대점도가 2.6인 나이론 6을 제1성분으로 하고, 평균입력 15mμ인 산화규소를 1.0중량% 함유하고 25℃, 오르쏘 클로로페놀(O-chlorophenal)중에서 고유점도가 0.64인 폴리에틸렌테레프탈레이트(ployethyleneterephthalate)를 제2성분으로 하여 1 : 3의 용적비로 용융방사하고 1,500m/min의 속도로 권취하여 제3도와 같은 단면형태를 갖는 미연신사를 얻었다. 이것을 130℃에서 3배 연신하여 150℃의 열판으로 열 고정하여 75데니어 36필라멘트의 멀티세그멘트형 복합섬유를 얻었다. 75데니어 36필라멘트의레귤러 폴리에틸렌테레프탈레이트 섬유를 경사로 사용하고 상기 복합 섬유를 위사로 사용하여 평직으로 제직한 후 분할율 90% 이상이 되도록 벤질 알코올 유화분산액에 침지하여 분할처리를 실시하고, 감량율 10%가 되도록 수산화 나트륨 수용액으로 비등처리를 하였다. 이 알카리 처리 직물을 수용성 우레탄 프리폴리머 "ELASTRONC-52"(제일공업제약, 일본) 10% 수용액(고형분 1.5%)에 패딩(Padding)하여 픽업(pick-up) 70%가 되도록 망글(mangle)로 짜주고 80%에서 2분간 건조후 160℃ 1분간 열처리하였다.Nylon 6 with a relative viscosity of 2.6 in sulfuric acid at 25 ° C and 96% as the first component, 1.0 wt% of silicon oxide with an average input of 15 mμ, and 0.64 intrinsic viscosity in ortho chlorophenol (O-chlorophenal) at 25 ° C. Phosphorous polyethylene terephthalate (ployethyleneterephthalate) as a second component was melt spun at a volume ratio of 1: 3 and wound at a speed of 1,500 m / min to obtain an undrawn yarn having a cross-sectional shape as shown in FIG. This was stretched three times at 130 ° C. and heat-fixed with a hot plate at 150 ° C. to obtain 75 denier 36 filament multisegment composite fibers. After using 75 denier 36 filament regular polyethylene terephthalate fiber as a warp yarn and weaving into a plain weave using the composite fiber as a weft yarn, dividing is performed by dipping in benzyl alcohol emulsion dispersion so that the split ratio is 90% or more. It was boiled with an aqueous sodium hydroxide solution so as to be. The alkaline treated fabric was padded in a 10% aqueous solution (1.5% solids) of water-soluble urethane prepolymer "ELASTRONC-52" (Cheil Industries, Ltd., Japan) and woven into a mangle to make a 70% pick-up. After drying for 2 minutes at 80% and heat-treated for 1 minute at 160 ℃.

처리후의 직물을 통상의 방법에 의하여 적색으로 고압염색을 하여 염색포의 요철크기, 발색성 및 강도 감소율을 평가하여 그 결과를 표 1에 나타내었다.The fabric after the treatment was dyed by high pressure in red by a conventional method to evaluate the uneven size, color development and strength reduction rate of the dyed fabric is shown in Table 1.

[비교 실시예1]Comparative Example 1

실시예 1에서 산화규소를 함유하지 않도록 한 것 이외에는 실시예 1과 동일한 방법으로 실시하였다. 그 결과는 표 1과 같다.The same process as in Example 1 was carried out except that the silicon oxide was not contained in Example 1. The results are shown in Table 1.

[비교 실시예2]Comparative Example 2

실시예 1에 있어서 산화규소 함량이 0.05중량% 함유하도록 한 것 이외에는 실시예 1과 동일한 방법으로 실시하였다. 그 결과는 표 1과 같다.The same process as in Example 1 was carried out except that the silicon oxide content in Example 1 was 0.05% by weight. The results are shown in Table 1.

[비교 실시예 3]Comparative Example 3

실시예 1에 있어서 산화 규소함량이 5.0중량% 함유하도록 한 것 이외에는 실시예 1과 동일한 방법으로 실시하였다. 그 결과는 표 1과 같다.The same process as in Example 1 was carried out except that the silicon oxide content was contained in Example 1 by 5.0 wt%. The results are shown in Table 1.

[비교 실시예 4]Comparative Example 4

실시예 1에 있어서 수용성 우레탄 프리폴리머 처리를 하지 않도록 한 것 이외에는 실시예 1과 동일한 방법으로 실시하였다. 그 결과는 표 1과 같다.The same procedure as in Example 1 was carried out except that the water-soluble urethane prepolymer treatment was not performed in Example 1. The results are shown in Table 1.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

[평가방법][Assessment Methods]

1. 요철 크기1. uneven size

주사전자현미경으로 관찰하여 부의 축방향길이를 측정하였다.The negative axial length was measured by scanning electron microscopy.

2. 발색성2. Color development

표준포와 비교하여 발색성의 향상 정도를 판정하여 나타내었으며 표준포는 실시예 1에 있어서 제2성분에 산화규소가 함유되지 않도록 분할 처리후 알카리 감량가공을 하지 않도록 하며, 수용성 우레탄 프리폴리머처리를 하지 않도록 하여 실시예 1과 동일한 방법으로 실시하여 제조하였다. 얻어진 염색포를 자연광하에서 관찰하여 다음과 같은 판정기준으로 10명의 판정자를 선정하여 관능 검사를 실시하여 이 값을 평균하여 판정치로 취하였다.Compared with the standard fabric, the degree of improvement in color development was determined. The standard fabric was subjected to alkali weight loss treatment after the split treatment so as not to contain silicon oxide in the second component, and to avoid the water-soluble urethane prepolymer treatment. It prepared by the same method as in Example 1. The obtained dyed cloth was observed under natural light, and ten judges were selected according to the following criteria, and the sensory test was carried out, and these values were averaged and taken as judgment values.

1급 : 표준포에 비하여 발색성이 향상되지 않음.Class 1: Color development is not improved compared to standard cloth.

2급 : 표준포에 비하여 발색성이 약간 향상.2nd class: Color development is slightly improved compared to standard cloth.

3급 : 표준포에 비하여 발색성이 상당히 향상.Class 3: Color development is significantly improved compared to standard fabrics.

3. 강도 감소율3. Strength reduction rate

상기의 표준포에 대하여 위사의 인열강도 및 인장강도의 감소율을 백분율로 표시하였으며 계산은 다음과 같이 하였다.The percentage of tear strength and tensile strength of the weft of the standard fabric was expressed as a percentage, and the calculation was performed as follows.

Figure kpo00002
Figure kpo00002

단,only,

Figure kpo00003
Figure kpo00003

Figure kpo00004
Figure kpo00004

여기서, 인열강도는 KS K0535(펜듈럼범), 인장강도 KS K 0520(래블스트립법)으로 평가하였다.Here, the tear strength was evaluated by KS K0535 (pendulum) and tensile strength KS K 0520 (ravel strip method).

4. 방사성4. Radioactive

방사시의 분할, 모우 발생 및 사절발생등 조업성으로 고려하여 평가하였다.The results were evaluated by considering the operability such as splitting, mooring and trimming during spinning.

Claims (3)

섬유 형성성 폴리아미드와 섬유 형성성 폴리에스테르로된 멀티세그멘트형 복합섬유에 있어서, 제1성분인 섬유형성성 폴리아미드계 수지는 복합섬유 횡단면의 중심에서 방사상으로 분지(分지)시켜 4방향 이상 8방향 이하의 방사상부를 형성하고 제2성분인 섬유형성성 폴리에스테르계수지는 제1성분 사이에 제1성분과 교호로 배열되어 쐐기상부를 형성하는데 제2성분으로는 무기미립자를 함유하도록 하여 알카리 감량시 섬유 표면에 섬유측 방향으로 0.4∼0.8μ의 다수의 미세한 요철을 형성시키도록 하는 열가소성 폴리에스테르 수지를 사용하고, 해당 복합 섬유를 알카리 감량후 굴절율의 수지피막을 형성시켜 염색후에 고발색성을 나타내는 복합섬유 구조물의 제조방법.In the multi-segment composite fiber composed of fiber-forming polyamide and fiber-forming polyester, the fiber-forming polyamide-based resin as the first component is branched radially at the center of the cross section of the composite fiber in four directions or more. The fiber-forming polyester resin, which forms a radial portion of eight directions or less, and is a second component, is arranged alternately with the first component between the first component to form a wedge portion. The second component contains inorganic fine particles to reduce alkali. It uses thermoplastic polyester resin to form a number of fine unevenness of 0.4 to 0.8μ in the fiber side direction at the fiber side, and forms a resin film having a refractive index after alkali reduction of the composite fiber to show high color development after dyeing. Method for producing a composite fiber structure. 제1항에 있어서, 무기 미립자는 5mμ∼50mμ의 산화규소(SiO2)이고 함유향은 폴리에스테르계 수지에 대해 0.1 내지 3.0중량%인 것을 특징으로 하는 복합섬유 구조물의 제조방법.The method for producing a composite fiber structure according to claim 1, wherein the inorganic fine particles are 5 to 50 mμ of silicon oxide (SiO 2 ) and the content of fragrance is 0.1 to 3.0 wt% based on the polyester resin. 제1항에 있어서, 저굴절율 수지피막은 굴절율 1.4 내지 1.6의 폴리우레탄인 것을 특징으로 하는 복합섬유 구조물의 제조방법.The method of manufacturing a composite fiber structure according to claim 1, wherein the low refractive index resin film is a polyurethane having a refractive index of 1.4 to 1.6.
KR1019900007895A 1990-05-30 1990-05-30 Process for the production of conjugated fiber KR920008975B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900007895A KR920008975B1 (en) 1990-05-30 1990-05-30 Process for the production of conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900007895A KR920008975B1 (en) 1990-05-30 1990-05-30 Process for the production of conjugated fiber

Publications (2)

Publication Number Publication Date
KR910020218A KR910020218A (en) 1991-12-19
KR920008975B1 true KR920008975B1 (en) 1992-10-12

Family

ID=19299577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900007895A KR920008975B1 (en) 1990-05-30 1990-05-30 Process for the production of conjugated fiber

Country Status (1)

Country Link
KR (1) KR920008975B1 (en)

Also Published As

Publication number Publication date
KR910020218A (en) 1991-12-19

Similar Documents

Publication Publication Date Title
US4254182A (en) Polyester synthetic fiber containing particulate material and a method for producing an irregularly uneven random surface having recesses and projections on said fiber by chemically extracting said particulate material
EP1132508B1 (en) Composite staple fiber and process for producing the same
KR102286888B1 (en) Dyed artificial leather and method for manufacturing same
US4764426A (en) Polyester fiber and production thereof
EP0134141B1 (en) Pile articles and their production
KR920008975B1 (en) Process for the production of conjugated fiber
KR930000238B1 (en) Manufacturing process of composite fiber
JP2970350B2 (en) Manufacturing method of woven or knitted fabric using mixed yarn of different fineness
JP3017865B2 (en) Ethylene-vinyl alcohol copolymer hollow fiber and method for producing the same
JP3727419B2 (en) Hygroscopic polyester fiber and its production method
KR100483812B1 (en) Cation dyeable Sea-island fine filament which has high alkali-resistance and process of producing thereof
JP3459269B2 (en) Composite fiber having pores and method for producing the same
JP2954827B2 (en) Production method of ultrafine fiber
JPH0625918A (en) Easy-raising polyester fiber and its production
JP3665171B2 (en) Composite split filament and assembly comprising the same
JP3123028B2 (en) Method for producing polyester-based fabric
JPS6045610A (en) Composite fiber
JP2571834B2 (en) Polyester fiber having hemp-like feeling and method for producing the same
JP2622175B2 (en) Heterogeneously mixed conjugate fiber and method for producing the same
JP3106896B2 (en) False twisted yarn
JP3574553B2 (en) High-gloss, high-color mixed yarn
JPH10266029A (en) Combined yarn of polyester filaments with different shrinkage
KR20210142438A (en) Multilobal polyester conjugate fiber, High edged multilobal silk-like polyester fiber, Method manufacturing thereof and Yarns comprising the same
JPH04209839A (en) Polyester-based conjugate fiber
JPS6338456B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000930

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee