KR20240170550A - V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures and its manufacturing method - Google Patents
V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures and its manufacturing method Download PDFInfo
- Publication number
- KR20240170550A KR20240170550A KR1020247035363A KR20247035363A KR20240170550A KR 20240170550 A KR20240170550 A KR 20240170550A KR 1020247035363 A KR1020247035363 A KR 1020247035363A KR 20247035363 A KR20247035363 A KR 20247035363A KR 20240170550 A KR20240170550 A KR 20240170550A
- Authority
- KR
- South Korea
- Prior art keywords
- resistant
- steel plate
- earthquake
- building structures
- resistant steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 76
- 239000010959 steel Substances 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000005096 rolling process Methods 0.000 claims abstract description 79
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 230000007797 corrosion Effects 0.000 claims abstract description 24
- 238000005260 corrosion Methods 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 14
- 229910001562 pearlite Inorganic materials 0.000 claims description 11
- 229910000859 α-Fe Inorganic materials 0.000 claims description 10
- 238000005452 bending Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- 238000009661 fatigue test Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 239000010949 copper Substances 0.000 description 21
- 229910000746 Structural steel Inorganic materials 0.000 description 18
- 238000005728 strengthening Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 229910001566 austenite Inorganic materials 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 239000013078 crystal Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 230000035882 stress Effects 0.000 description 10
- 239000011651 chromium Substances 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000009435 building construction Methods 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 239000013081 microcrystal Substances 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910000870 Weathering steel Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 V계 550MPa급 건축구조용 내진내후성 강판 및 그의 제조방법을 제공한다. 본 발명의 강판은 화학 성분이 질량백분율에 따라 C:0.07~0.12%, Si:0.35~0.45%, Mn:1.30~1.40%, P≤0.020%, S≤0.008%, Cr:0.60~0.70%, Ni:0.25~0.35%, Cu:0.30~0.40%, V:0.08~0.12%, Als:0.015~0.055%, N:0.0200~0.0220%를 포함하고, 나머지는 Fe 및 불가피한 불순물이며, 상기 성분을 함유한 슬래브를 가열, 조압연, 마무리압연, 층류냉각 및 권취하여 얻는다. 본 발명에 따른 내진내후성 강판은 우수한 내대기부식성능과 내진성능을 갖는다.The present invention provides a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures and a manufacturing method therefor. The steel plate of the present invention contains, in mass percentage, chemical components of C: 0.07 to 0.12%, Si: 0.35 to 0.45%, Mn: 1.30 to 1.40%, P≤0.020%, S≤0.008%, Cr: 0.60 to 0.70%, Ni: 0.25 to 0.35%, Cu: 0.30 to 0.40%, V: 0.08 to 0.12%, Als: 0.015 to 0.055%, N: 0.0200 to 0.0220%, the remainder being Fe and inevitable impurities, and is obtained by heating, rough rolling, finish rolling, laminar cooling, and coiling a slab containing the above components. The earthquake-resistant weather-resistant steel plate according to the present invention has excellent atmospheric corrosion resistance and earthquake resistance.
Description
본 발명은 V계 550MPa급 건축구조용 내진내후성 강판 및 그의 제조방법에 관한 것으로서, 연속 열간압연 벨트 기술 분야, 구체적으로는 내진내후성 강판 기술 분야에 속한다.The present invention relates to a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures and a manufacturing method thereof, and belongs to the field of continuous hot-rolled belt technology, specifically, the field of earthquake-resistant weather-resistant steel plate technology.
철골구조물은 경량화, 고강도, 편리한 설치, 짧은 시공주기, 높은 재활용율의 장점을 가지고 있어 건축구조용 강철의 응용이 빠르게 발전하고 있다. 탄소구조강, 저합금고강도강 등 기존 건축구조용강은 내식성이 좋지 않고 부식에 취약하여 강구조물의 수명을 크게 단축시키므로 사용과정에서 녹을 제거하고 코팅하여야 하며, 이는 강구조물의 비용을 증가시킬 뿐만 아니라 환경오염 문제도 있어 고성능 건축구조용 강은 우수한 내대기부식성을 구비하여야 한다. 또한 중국은 지진 다발지역으로서 지진에 대비해야 할 지진지역(7급 이상)이 101개로 전국 면적의 32.5%를 차지해 건물이 "작은 지진에 끄떡없고, 큰 지진에는 수리가 가능하며, 더 큰 지진에도 넘어지지 않는다”는 목적을 달성하기 위해서는 고성능 건축구조용 강철이 우수한 내진성능을 갖춰야 한다.Steel structures have the advantages of light weight, high strength, convenient installation, short construction cycle, and high recyclability, so the application of structural steel for building construction is developing rapidly. Existing structural steel for building construction, such as carbon structural steel and low-alloy high-strength steel, have poor corrosion resistance and are vulnerable to corrosion, which greatly shortens the life of steel structures. Therefore, rust must be removed and coated during use. This not only increases the cost of steel structures, but also causes environmental pollution. Therefore, high-performance structural steel for building construction must have excellent atmospheric corrosion resistance. In addition, China is an earthquake-prone area, and there are 101 seismic zones (level 7 or higher) that require earthquake preparedness, accounting for 32.5% of the country's total area. In order for buildings to achieve the goal of "withstanding small earthquakes, being repairable in large earthquakes, and not collapsing in even larger earthquakes", high-performance structural steel for building construction must have excellent seismic performance.
《구조강 제6부: 내진형 건축구조강 인도기술조건》(GB/T 34560.6-2017) 에서는 내진구조용 강재의 항복비 ≤ 0.85를 요구하고 있으며, 《건축내진설계규범》(GB 50011-2010)에서는 내진구조용 강재의 항복비 ≤ 0.85이여야 하며, 뚜렷한 항복 플랫폼, 파단 신장율(percentage elongation after fracture) ≥20%를 가져야 하며, 양호한 충격인성을 가져야 한다고 요구하고 있다. 하지만, 항복점 연신율 Ae(percentage yield point extension)는 명백한 항복현상을 보이는 금속재료의, 항복개시부터 균일한 가공경화개시까지의 인장계 게이지 길이의 연장과 인장계 게이지 길이의 백분율을 말하며, Ae 값이 클수록 항복 플랫폼 길이가 길어진다. 또한 지진 중의 건물은 주로 큰 교번 응력 하중을 견디며 대부분 200회 미만의 교번 횟수로, 지진으로 인한 건축용 강철의 손상 및 파손 과정은 고변형 저주기 피로 거동과 매우 유사함을 알 수 있다. 따라서 건축구조용 강철은 우수한 내진성능을 실현하기 위해서는 우수한 가소성과 인성을 가져야 할뿐만 아니라 작은 항복비, 큰 Ae 값, 우수한 고변형 저주기 피로성능을 가져야 한다.The "Structural Steel Part 6: Delivery Technical Conditions for Earthquake-Resistant Building Structural Steel" (GB/T 34560.6-2017) requires that the yield ratio of earthquake-resistant structural steel is ≤ 0.85, and the "Seismic Design Code for Buildings" (GB 50011-2010) requires that the yield ratio of earthquake-resistant structural steel is ≤ 0.85, has a distinct yield platform, a percentage elongation after fracture ≥ 20%, and good impact toughness. However, the yield point elongation Ae (percentage yield point extension) refers to the extension of the tensile gauge length from the initiation of yield to the initiation of uniform work hardening of a metal material that shows an obvious yield phenomenon, and the percentage of the tensile gauge length, and the larger the Ae value, the longer the yield platform length. In addition, buildings during earthquakes mainly withstand large alternating stress loads, and most of them have alternating cycles of less than 200, so it can be seen that the damage and failure process of architectural steel due to earthquakes is very similar to the high-strain, low-cycle fatigue behavior. Therefore, in order to realize excellent seismic performance, architectural structural steel should not only have excellent plasticity and toughness, but also have a small yield ratio, a large Ae value, and excellent high-strain, low-cycle fatigue performance.
중국공개특허107385324A, 107385239A, 107604248A, 110184525A는 모두 항복강도 500MPa 이상의 건축구조용 강과 그의 제조방법을 공개하고 있으나 낮은 항복비만 달성할 수 있을 뿐 우수한 내대기부식성능은 물론 항복점 연신율과 고변형 저주기 피로 성능 등의 내진성능 지표도 확보하지 못하고 있다.Chinese published patents 107385324A, 107385239A, 107604248A, and 110184525A all disclose structural steel for construction with a yield strength of 500 MPa or more and a manufacturing method thereof, but they can only achieve a low yield ratio and fail to secure excellent atmospheric corrosion resistance, yield point elongation, high strain low-cycle fatigue performance, and other seismic performance indicators.
상기 기술적 문제를 바탕으로 본 발명이 해결하고자 하는 기술적 과제는 V계 550MPa급 건축구조용 내진내후성 강판 및 그의 제조방법을 제공하고자 하는 것이다.Based on the above technical problems, the technical problem to be solved by the present invention is to provide a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures and a manufacturing method thereof.
본 발명의 목적을 이루기 위한 기술방안은 하기와 같다.The technical solution for achieving the purpose of the present invention is as follows.
본 발명의 일 측면은, V계 550MPa급 건축구조용 내진내후성 강판을 제공하고자 하는 것으로, 화학 성분이 질량백분율에 따라 C:0.07~0.12%, Si:0.35~0.45%, Mn:1.30~1.40%, P≤0.020%, S≤0.008%, Cr:0.60~0.70%, Ni:0.25~0.35%, Cu:0.30~0.40%, V:0.08~0.12%, Als:0.015~0.055%, N:0.0200~0.0220%를 포함하고, 나머지는 Fe 및 불가피한 불순물이다.One aspect of the present invention is to provide a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, the chemical composition including, in mass percentage, C: 0.07 to 0.12%, Si: 0.35 to 0.45%, Mn: 1.30 to 1.40%, P≤0.020%, S≤0.008%, Cr: 0.60 to 0.70%, Ni: 0.25 to 0.35%, Cu: 0.30 to 0.40%, V: 0.08 to 0.12%, Als: 0.015 to 0.055%, N: 0.0200 to 0.0220%, and the remainder is Fe and inevitable impurities.
상기 건축구조용 내진내후성 강판의 금속 조직은 다각형 페라이트 + 펄라이트이며, 부피분율은 페라이트 75~80%, 펄라이트 20~25%이다.The metal structure of the above earthquake-resistant weather-resistant steel plate for building structures is polygonal ferrite + pearlite, and the volume fraction is 75 to 80% ferrite and 20 to 25% pearlite.
또한, 상기 건축구조용 내진내후성 강판의 내대기부식성지수 I≥6.5이다.In addition, the atmospheric corrosion resistance index of the earthquake-resistant weather-resistant steel plate for the above-mentioned building structure is I≥6.5.
또한, 상기 건축구조용 내진내후성 강판의 항복강도 ≥550MPa, 인장강도 ≥600MPa, 파단 신장율≥20%, 항복비 ≤0.85, 항복점 연신율 Ae ≥2.0%, 180° 굽힘 시험 D=2a, 전체 크기 V-노치 -40℃ 충격 에너지 KV2 ≥70J이다.In addition, the above earthquake-resistant weather-resistant steel plate for building structures has a yield strength of ≥550 MPa, a tensile strength of ≥600 MPa, an elongation at break of ≥20%, a yield ratio of ≤0.85, an elongation at yield point of Ae of ≥2.0%, a 180° bending test of D=2a, and an impact energy of full-size V-notch of -40°C of KV2 of ≥70J.
또한, 상기 건축구조용 내진내후성 강판의, Q355B에 대한 상대적 부식율은 ≤ 45%이다.In addition, the relative corrosion rate of the earthquake-resistant weather-resistant steel plate for the above-mentioned building structure with respect to Q355B is ≤ 45%.
또한, 상기 건축구조용 내진내후성 강판의, 변형 진폭 범위가 ±2%인 고변형 저주기 피로 시험에서의 피로수명은 200주기 이상이다.In addition, the fatigue life of the earthquake-resistant weather-resistant steel plate for building structures in a high-strain, low-cycle fatigue test with a deformation amplitude range of ±2% is 200 cycles or more.
또한, 상기 건축구조용 내진내후성 강판의 두께는 6.0~16.0mm이다.Additionally, the thickness of the earthquake-resistant weather-resistant steel plate for the above-mentioned building structure is 6.0 to 16.0 mm.
본 발명의 각 원소 및 주요 공정의 작용 및 메커니즘:Action and mechanism of each element and main process of the present invention:
항복비의 영향 법칙: 세정강화와 전위강화는 항복강도의 증가폭을 인장강도의 증가폭보다 크게 하여 항복비를 현저히 증가시킬 수 있고, 석출강화는 항복강도의 증가폭을 인장강도 증가폭보다 약간 크게 하여 항복비에 작은 영향을 줄 수 있으며, 고용강화는 항복강도 증가폭을 인장강도 증가폭보다 약간 작게 하여 항복비를 감소시킬 수 있다.Yield ratio effect law: Washing strengthening and dislocation strengthening can significantly increase the yield ratio by making the increase in yield strength greater than the increase in tensile strength; precipitation strengthening can have a small effect on the yield ratio by making the increase in yield strength slightly greater than the increase in tensile strength; and solid solution strengthening can decrease the yield ratio by making the increase in yield strength slightly smaller than the increase in tensile strength.
항복점 연신율의 영향 법칙: (1) C, N 간극 원자(self-interstitial)의 함유량 증가는 항복 현상을 더 명확하게 하여 항복점 연신율을 증가시킬 수 있다. 저탄소강의 항복효과는 간극원자 C, N에 의해 형성된 코트렐 대기(Cottrell atmosphere)가 전위를 피닝하므로 변형시 응력을 어느 정도 증가시켜야만 전위가 피닝에서 벗어날 수 있으며, 이때 인장곡선에 상항복점이 형성되고, 전위가 일단 피닝에서 벗어나면 작은 응력에서도 계속 움직일 수 있으며, 이때 응력변형곡선에 하항복점이 형성된다. (2) 미세조직에 베이나이트, 마르텐사이트 등 전위 밀도가 높은 조직이 나타나면 항복점 연신율이 감소한다. 결정중의 전위 밀도가 높으면 강화 효과가 더 크고 힘을 받을 때 전위 간의 상호 작용이 강하며 변형 경화의 거동이 두드러져 항복 현상이 명확하지 않게 되어 항복점 연신율이 감소한다. (3) 결정립의 미세화는 항복 현상을 보다 명확하게 하여 항복점 연신율을 증가시킬 수 있다. 항복 현상에 대한 결정립 미세화의 명확한 개선 효과는 다결정 조화 변형 이론으로 설명할 수 있다. 다결정은 단결정과 달리 변형 과정에서 결정 입자 간의 변형 조화가 유지되어야 하며, 따라서 다결정 변형은 5개의 독립적인 슬립 라인이 필요하다. 체심 입방 구조의 페라이트에는 5개 이상의 슬립 라인이 있지만 결정 입자가 크면 결정의 배향 수가 감소하고 가동 슬립 라인의 수가 적기 때문에 슬립은 항복 강도가 낮고 유리한 배향의 큰 결정 입자에만 발생한다. 응력이 증가함에 따라 유리한 배향의 큰 결정립에서 다중 슬립 및 기타 결정립 슬립이 시작되어 항복 단계가 조기에 종료되고 가공 및 경화 단계에 들어가 항복 플랫폼의 낮은 연신율을 초래한다. 결정립이 감소하면 결정의 배향 수가 크게 증가하고 그에 따라 가동되는 슬립 라인의 수가 증가하여 더 많은 결정립에서 초기 단일 슬립이 발생할 수 있다. 또한 미세결정은 항복강도와 분단응력이 더 높으며, 일단 전위가 간극원자의 피닝을 벗어나면 가해지는 분단응력이 전위가 시작되는 임계분단응력보다 훨씬 높기 때문에 더 많은 평행슬립면상의 단일슬립이 연속적으로 가동되어 거의 평행되는 슬립밴드를 형성하여 거시적으로 더 긴 항복플랫폼을 형성한다. 마찬가지로 응력이 증가함에 따라 다중 슬립은 거친 결정 샘플과 같이 유리한 배향의 큰 결정립에서 우선적으로 발생하지 않고 대부분의 결정립에서 동시에 발생하므로 가공 및 경화 단계에 조기에 진입하지 않는다.The effect law of yield point elongation: (1) The increase in the content of C, N self-interstitial atoms can make the yield phenomenon more obvious and increase the yield point elongation. The yield effect of low carbon steel is that the Cottrell atmosphere formed by the interstitial atoms C, N pins dislocations, so the stress must increase to a certain extent during deformation so that the dislocations can escape from pinning, at which time the upper yield point is formed on the tensile curve, and once the dislocations escape from pinning, they can continue to move even under small stresses, at which time the lower yield point is formed on the stress-strain curve. (2) If a high-density microstructure such as bainite or martensite appears, the yield point elongation decreases. When the dislocation density in the crystal is high, the strengthening effect is greater, the interaction between dislocations is strong when force is applied, and the behavior of strain hardening is prominent, so the yield phenomenon is not obvious and the yield point elongation decreases. (3) The refinement of the crystal grains can make the yield phenomenon more obvious and increase the yield point elongation. The obvious improvement effect of grain refinement on the yield phenomenon can be explained by the polycrystal harmonic deformation theory. Unlike single crystals, polycrystals must maintain the strain harmony between crystal grains during the deformation process, so polycrystal deformation requires five independent slip lines. There are more than five slip lines in body-centered cubic structure ferrite, but when the crystal grains are large, the number of crystal orientations is reduced and the number of movable slip lines is small, so slip occurs only in large crystal grains with low yield strength and favorable orientation. As the stress increases, multiple slips and other grain slips begin in large crystal grains with favorable orientation, which causes the yield stage to end early and enters the working and hardening stage, resulting in low elongation of the yield platform. When the crystal grains decrease, the number of crystal orientations increases greatly, and the number of movable slip lines increases accordingly, so that initial single slip can occur in more crystal grains. In addition, fine grains have higher yield strength and fracture stress, and once a dislocation escapes the pinning of an interstitial atom, the fracture stress applied is much higher than the critical fracture stress at which the dislocation initiates, so that more single slips on parallel slip planes are sequentially operated to form nearly parallel slip bands, forming a macroscopically longer yield platform. Similarly, as stress increases, multiple slips do not occur preferentially in large grains with favorable orientations as in coarse-grained samples, but rather simultaneously in most grains, thus avoiding the early entry into the working-hardening stage.
우수한 내진성 및 내부식성 등 제품의 종합적인 성능 정합을 위해 항복비와 항복점 연신율의 영향 법칙을 기반으로 본 발명은 각 원소의 함량과 주요 공정의 공정 매개변수를 한정하였다.In order to achieve comprehensive performance matching of the product, including excellent earthquake resistance and corrosion resistance, the present invention limited the content of each element and the process parameters of the main process based on the influence law of yield ratio and yield point elongation.
탄소: 탄소는 강철에서 효과적인 강화 원소이며 매트릭스에 용해되어 고용강화 역할을 할 수 있으며 또한 V와 결합하여 탄화물 석출 입자를 형성하여 미세결정강화 및 석출강화 역할을 할 수 있으므로 탄소 함량을 높이는 것이 강도 향상에 유리하며, 동시에 탄소는 간극원자로서 전위를 고정하여 항복현상을 더욱 뚜렷하게 하고 Ae 값을 높일 수 있다. 그러나 탄소 함량이 너무 높으면 강철에 더 크고 취성이 있는 탄화물 입자가 형성되어 가소성 및 인성에도 좋지 않으며, 탄소 함량이 너무 높으면 강판 중앙에 편석벨트가 쉽게 형성되어 굽힘성능, 성형성능 등에 불리하며, 또한 탄소 함량이 너무 높으면 용접 탄소당량 및 용접 균열민감도지수가 증가하여 용접가공에 불리하므로 본 발명의 C 함량은 0.07~0.12%로 설정한다.Carbon: Carbon is an effective strengthening element in steel, which can be dissolved in the matrix to play a role of solid solution strengthening, and can also combine with V to form carbide precipitation particles to play a role of microcrystal strengthening and precipitation strengthening, so increasing the carbon content is beneficial to improving the strength, and at the same time, carbon can fix dislocations as interstitial atoms, which makes the yield phenomenon more obvious and increases the Ae value. However, if the carbon content is too high, larger and brittle carbide particles will be formed in the steel, which is not good for plasticity and toughness, and if the carbon content is too high, a segregation belt is easily formed in the center of the steel plate, which is disadvantageous for bending performance, formability, etc., and if the carbon content is too high, the welding carbon equivalent and the welding crack sensitivity index will increase, which is disadvantageous for welding processing, so the C content of the present invention is set to 0.07 to 0.12%.
규소: 규소는 페라이트와 오스테나이트에 용해되어 강철의 경도와 강도를 향상시킬 수 있으며 녹층 조직을 미세화하고 강철의 전반적인 부식 속도를 줄이는 데 도움이 되지만 함량이 너무 높으면 강철의 가소성과 인성이 감소하고 압연 시 디스케일링이 어렵고 용접 성능이 저하되므로 본 발명의 Si 함량은 0.35~0.45%로 설정한다.Silicon: Silicon can be dissolved in ferrite and austenite, which can improve the hardness and strength of steel, and help to refine the rust layer structure and reduce the overall corrosion rate of steel, but if the content is too high, the plasticity and toughness of steel will decrease, descaling during rolling will be difficult, and the welding performance will be reduced, so the Si content of the present invention is set to 0.35 to 0.45%.
망간: 망간은 고용강화 효과가 강하고 강철의 상전이 온도를 크게 낮추고 강철의 미세 조직을 미세화할 수 있으며 중요한 강인화 원소이지만 Mn 함량이 너무 많으면 연속 주조 과정에서 주물 블랭크의 균열이 발생하기 쉽고, 동시에 강판의 코어 성분이 편석되어 강철의 용접 성능이 저하될 수 있으므로 본 발명의 Mn 함량은 1.30~1.40%로 설정한다.Manganese: Manganese has a strong solid solution strengthening effect, can greatly reduce the phase transition temperature of steel, and refine the microstructure of steel, and is an important toughening element. However, if the Mn content is too high, cracks in the casting blank are likely to occur during the continuous casting process, and at the same time, the core component of the steel plate may segregate, thereby reducing the welding performance of the steel. Therefore, the Mn content of the present invention is set to 1.30 to 1.40%.
인과 황: 인원소와 유황원소는 강판의 조직성능에 부정적인 영향을 미치며 인원소는 강철의 내대기부식성능을 효과적으로 향상시킬 수 있지만 인 함량이 너무 높으면 강철의 가소성과 저온인성이 크게 감소하고 유황은 황화물 혼입을 형성하여 강철의 성능을 악화시키므로 본 발명의 P와 S 함량은 P≤0.020%, S≤0.008%로 설정한다.Phosphorus and Sulfur: Phosphorus and sulfur elements have a negative effect on the structural performance of steel plates, and phosphorus can effectively improve the atmospheric corrosion resistance of steel, but if the phosphorus content is too high, the plasticity and low-temperature toughness of steel will be greatly reduced, and sulfur will form sulfide impurities, thereby worsening the performance of steel, so the P and S contents of the present invention are set to P≤0.020% and S≤0.008%.
크롬: 크롬은 강철의 부동태화 능력을 향상시키는 데 상당한 효과가 있으며 강철 표면의 조밀한 부동태화 필름 또는 보호성 녹층의 형성을 촉진할 수 있으며 녹층내의 농축은 부식성 매질에 대한 녹층의 선택적 투과 특성을 효과적으로 향상시킬 수 있지만, 크롬 함량이 너무 높으면 생산 비용이 증가하므로 본 발명의 Cr 함량은 0.60~0.70%로 설정한다.Chromium: Chromium has a significant effect on improving the passivation ability of steel, and can promote the formation of a dense passivation film or protective rust layer on the steel surface, and the concentration in the rust layer can effectively improve the selective penetration property of the rust layer for corrosive media, but if the chromium content is too high, the production cost will increase, so the Cr content of the present invention is set at 0.60~0.70%.
니켈: 니켈을 강철에 첨가하면 강재의 내식성이 크게 향상됨과 동시에 니켈과 구리 원소가 Ni를 함유한 구리 리치 상을 형성하고 고체 상태로 외산화층에 잔류하여, 기체 내 구리 농축량을 감소시키고 액체 구리 상 형성 기회를 감소시켜 열취성 결함의 발생을 방지하므로, 일반적으로 강철중 Ni/Cu≥1/2로 제어하지만, 너무 높은 함량의 니켈은 산화피의 접착력을 증가시키고 강철에 압입되면 표면에 열간압연 결함이 형성되며, 또한 니켈은 귀금속이며 니켈 함량이 너무 높으면 강재 합금 비용이 크게 증가하므로 본 발명의 Ni 함량은 0.25%~0.35%로 설정한다.Nickel: When nickel is added to steel, the corrosion resistance of the steel is greatly improved, and at the same time, nickel and copper elements form a copper-rich phase containing Ni, which remains in the outer oxide layer in a solid state, thereby reducing the concentration of copper in the gas and reducing the opportunity of forming a liquid copper phase, thereby preventing the occurrence of heat embrittlement defects, so that Ni/Cu≥1/2 in the steel is generally controlled, but too high a nickel content will increase the adhesion of the oxide layer, and when pressed into the steel, hot-rolling defects will be formed on the surface, and in addition, nickel is a precious metal, and if the nickel content is too high, the cost of the steel alloy will greatly increase, so the Ni content of the present invention is set to 0.25% to 0.35%.
구리: 구리 원소의 첨가는 강철 표면에 치밀하고 접착력이 우수한 비정질 산화물(탄화수소계 산화물) 보호층을 형성하는데 유리하며, 내식작용이 뚜렷하고, 또한 구리는 유황과 불용성 황화물을 생성하여 강철 내식성에 대한 S의 유해한 영향을 상쇄한다. 그러나 구리 함량이 너무 높을시, 구리의 녹는점이 강철 빌렛의 가열 온도보다 낮기 때문에 석출된 구리가 액상으로 오스테나이트 입계에 축적도어, 석출된 구리 함량이 일정 수준에 도달하면 가열 또는 열간 압연 시 균열이 발생하기 쉽다. 또한, 내대기부식성지수 I의 계산식에 따르면 구리 함량이 너무 적거나 너무 많으면 I의 계산값이 감소하므로 본 발명의 Cu 함량은 0.30~0.40%로 설정한다.Copper: The addition of copper element is beneficial to form a dense and highly adhesive amorphous oxide (hydrocarbon-based oxide) protective layer on the steel surface, and has obvious corrosion resistance. In addition, copper can produce sulfur and insoluble sulfides to offset the harmful effect of S on the corrosion resistance of steel. However, when the copper content is too high, since the melting point of copper is lower than the heating temperature of the steel billet, the precipitated copper will accumulate in the austenite grain boundary in a liquid state, and when the precipitated copper content reaches a certain level, cracks are likely to occur during heating or hot rolling. In addition, according to the calculation formula of the atmospheric corrosion resistance index I, if the copper content is too little or too much, the calculated value of I will decrease, so the Cu content of the present invention is set to 0.30 to 0.40%.
바나듐, 질소: 바나듐 원소의 오스테나이트 고용은 열변형 과정의 정적 및 동적 재결정을 억제하여 오스테나이트의 미재결정 영역을 확장하고, 마감압연 과정 중의 미재결정 영역의 응변량을 증가시키며, 오스테나이트의 페라이트로의 전환을 촉진하여 페라이트 결정립을 미세화한다. 동시에 바나듐은 탄소, 질소와 결합하여 미세한 탄질화물 피닝(Pinning)입계를 형성하고 재결정을 지연시키며 오스테나이트 결정립의 성장을 억제하고 미세결정강화 및 석출강화 효과를 발생시키지만 항복비를 높인다. 강철의 질소 원소 함량을 증가시키면 바나듐의 제2상 석출에 유리하고, 질소 함량이 높을 경우 바나듐 원소 고정 후 잔량이 남아 있어 나머지 질소를 간극원자로 하여 전위를 피닝할 수 있으므로 항복현상이 더욱 뚜렷해지고 Ae 값을 높일 수 있다. 그러나 질소 함량이 너무 높으면 강철의 시효 경향 및 냉취성과 열취성을 증가시켜 강철 용접성능과 냉간굽힘성능을 손상시키므로, 본 발명의 V 함량을 0.08~0.12%, N 함량을 0.0200~0.0220%로 설정한다.Vanadium, Nitrogen: The dissolution of vanadium element in austenite suppresses the static and dynamic recrystallization during the thermal deformation process, expands the non-recrystallized region of austenite, increases the amount of deformation of the non-recrystallized region during the finishing rolling process, and promotes the conversion of austenite to ferrite, thereby refining the ferrite grains. At the same time, vanadium combines with carbon and nitrogen to form fine carbonitride pinning grain boundaries, delays recrystallization, suppresses the growth of austenite grains, and produces microcrystal strengthening and precipitation strengthening effects, but increases the yield ratio. Increasing the nitrogen element content of steel is beneficial to the second phase precipitation of vanadium, and when the nitrogen content is high, the residue remains after the fixation of vanadium element, which can use the remaining nitrogen as interstitial atoms to pin dislocations, so the yield phenomenon becomes more obvious and the Ae value can be increased. However, if the nitrogen content is too high, it increases the aging tendency and cold embrittlement and hot embrittlement of the steel, thereby damaging the weldability and cold bending performance of the steel. Therefore, the V content of the present invention is set to 0.08 to 0.12%, and the N content is set to 0.0200 to 0.0220%.
알루미늄: 알루미늄은 강철에 첨가되어 탈산소작용을 하여 강철의 품질을 향상시킬 수 있지만, 알루미늄 함량이 너무 높으면 질소산화물이 오스테나이트 입계에서 석출되어 주조 빌렛의 균열을 일으키기 쉬우므로, 본 발명의 Als 함량은 0.015~0.055%로 설정한다.Aluminum: Aluminum can be added to steel to perform a deoxidizing effect and improve the quality of the steel. However, if the aluminum content is too high, nitrogen oxides are likely to precipitate at the austenite grain boundary, causing cracks in the cast billet. Therefore, the Als content of the present invention is set to 0.015 to 0.055%.
본 발명은 또한 상기 성분을 함유한 슬래브를 가열, 조압연, 마무리압연, 층류냉각 및 권취하여 건축구조용 내진내후성 강판을 얻는 단계를 포함하는 V계 550MPa급 건축구조용 내진내후성 강판의 제조방법을 제공한다.The present invention also provides a method for manufacturing a V-type 550 MPa grade earthquake-resistant weather-resistant steel plate for building structures, comprising the steps of heating, rough rolling, finish rolling, laminar cooling, and coiling a slab containing the above components to obtain an earthquake-resistant weather-resistant steel plate for building structures.
또한, 가열 단계에서, 슬래브를 축열식가열로에서 가열하고 슬래브를 가열하는 것은 주물 조직과 성분의 편석을 균일화 하는 동시에 합금원소를 고용시키지만, 가열온도가 너무 높고 가열시간이 너무 길면 연소손실, 과열, 과연소 등의 문제가 발생한다. 따라서 본 발명에서는 가열단계에서 가열온도를 1180~1220℃로 설정하고 가열시간은 180~400분으로 설정한다.In addition, in the heating step, heating the slab in a regenerative heating furnace and heating the slab uniformizes the cast structure and segregation of components while dissolving alloy elements, but if the heating temperature is too high and the heating time is too long, problems such as combustion loss, overheating, and over-burning occur. Therefore, in the present invention, the heating temperature is set to 1180 to 1220°C in the heating step, and the heating time is set to 180 to 400 minutes.
또한, 조압연단계에서, 조압연은 오스테나이트의 재결정을 보장하기 위해 충분한 변형을 달성하고 오스테나이트 결정립을 미세화하여 혼정조직의 발생을 방지해야 하며, 중간 빌렛의 두께가 너무 두꺼우면 조압연 변형량이 부족할 수 있고 또한 마무리압연 부하가 증가하며, 중간 빌렛의 두께가 너무 작으면 마무리압연 변형량이 부족할 수 있다. 따라서 본 발명에서는 조압연 단계에서 6패스의 조압연을 진행하며, 각 패스의 변형량이 18% 이상, 완제품의 두께가 6.0~10.0mm일 때 중간 빌렛의 두께는 48~52mm, 완제품의 두께가 10.0~16.0mm일 때 중간 빌렛의 두께는 53~57mm이다.In addition, in the rough rolling stage, the rough rolling should achieve sufficient deformation to ensure the recrystallization of austenite and refine the austenite grains to prevent the occurrence of a mixed grain structure. If the thickness of the intermediate billet is too thick, the rough rolling deformation may be insufficient and the finish rolling load may also increase. If the thickness of the intermediate billet is too small, the finish rolling deformation may be insufficient. Therefore, in the present invention, 6 passes of rough rolling are performed in the rough rolling stage, and the deformation of each pass is 18% or more. When the thickness of the finished product is 6.0 to 10.0 mm, the thickness of the intermediate billet is 48 to 52 mm, and when the thickness of the finished product is 10.0 to 16.0 mm, the thickness of the intermediate billet is 53 to 57 mm.
또한, 마무리압연 단계에서, 마무리압연의 마지막 3패스의 프레임 상의 슬래브는 기본적으로 오스테나이트 미재결정영역에서 압연되며, 큰 변형률을 사용하여 이미 재결정영역에서 압연되고 어느 정도 미세화된 오스테나이트 결정립을 압연 및 연장할 수 있으며, 단위 부피당 오스테나이트의 입계면적을 증가시키는 동시에, 결정 내에서 많은 변형밴드와 고밀도전위를 생성하여 페라이트의 핵 생성률을 높이고 상 변화 후 미세조직을 얻을 수 있다. 마무리압연의 압연개시 온도가 너무 높으면 오스테나이트의 미재결정영역에서 마무리압연 과정의 변형량이 부족하여 조직 미세화에 불리하다. 최종압연 온도가 너무 낮으면 압연개시 온도와 차이가 많이 나기에 마무리압연 공정의 냉각속도가 너무 빠르게 되며 또한 마무리압연의 마지막 몇 패스의 프레임이 2상 영역에서 압연될 위험이 있고 제품의 종합성능이 저하된다. 최종압연 온도가 너무 높으면 미재결정영역의 변형량이 부족하여 최종조직의 미세화에 불리하다. 따라서 본 발명에서는 마무리압연 단계에서 7패스의 마무리압연을 진행하며, 그중 마지막 3패스의 프레임 압하율을 각각 ≥17%, ≥13% 및 ≥10%로 설정하고, 마무리압연의 압연개시 온도는 ≤1030℃, 최종압연 온도는 840~880℃로 설정한다.In addition, in the finishing rolling stage, the slab on the frame of the last three passes of the finishing rolling is basically rolled in the austenite non-recrystallized region, and the austenite grains that have already been rolled and refined to a certain extent in the recrystallized region can be rolled and extended by using a large strain rate, and the grain boundary area of austenite per unit volume can be increased, and at the same time, many deformation bands and high-density dislocations can be generated in the crystal, so as to increase the nucleation rate of ferrite and obtain the microstructure after the phase transformation. If the rolling start temperature of the finishing rolling is too high, the deformation amount of the austenite non-recrystallized region during the finishing rolling process is insufficient, which is disadvantageous for the refinement of the structure. If the final rolling temperature is too low, the difference from the rolling start temperature is large, so the cooling rate of the finishing rolling process becomes too fast, and there is a risk that the frames of the last few passes of the finishing rolling will be rolled in the two-phase region, which will reduce the comprehensive performance of the product. If the final rolling temperature is too high, the deformation amount of the non-recrystallized region is insufficient, which is disadvantageous for the refinement of the final structure. Therefore, in the present invention, 7 passes of finishing rolling are performed in the finishing rolling stage, and the frame reduction ratios of the last 3 passes are set to ≥17%, ≥13%, and ≥10%, respectively. The rolling start temperature of the finishing rolling is set to ≤1030℃, and the final rolling temperature is set to 840 to 880℃.
또한, 층류냉각 단계에서, 전단계 냉각 모드를 사용하면 더 큰 과냉각을 달성하고 최종조직을 미세화할 수 있으며, 큰 냉각속도를 사용하면 중심부의 밴드상 조직을 어느 정도 개선할 수 있으며 동시에 미세하게 확산된 두 번째 상을 석출하여 미세결정 강화 및 석출 강화 효과를 높일 수 있지만, 냉각 속도가 너무 높으면 베이나이트, 마르텐사이트와 같은 중저온 조직이 쉽게 생성되어 항복비가 증가하고 항복점 연신율이 감소하게 된다. 따라서 본 발명에서는 40~80℃/s의 냉각 속도를 갖는 전단계 냉각 모드를 채택한다.In addition, in the laminar cooling stage, using the pre-cooling mode can achieve greater supercooling and refine the final structure, and using a large cooling rate can improve the band-like structure in the center to a certain extent, and at the same time, the finely diffused second phase can be precipitated to enhance the microcrystal strengthening and precipitation strengthening effects, but if the cooling rate is too high, medium and low temperature structures such as bainite and martensite are easily generated, which increases the yield ratio and reduces the yield point elongation. Therefore, the present invention adopts a pre-cooling mode with a cooling rate of 40 to 80°C/s.
또한, 권취단계에서, 권취온도가 너무 낮으면 냉각 과정에서 냉각속도가 너무 높아 베이나이트, 마르텐사이트와 같은 중저온 조직이 생성되어 항복비가 증가하고 항복점 연신율이 저하되게 되며, 권취온도가 너무 높으면 결정립과 제2상 입자가 두꺼워져 강도와 인성이 저하된다. 따라서 본 발명에서는 권취온도를 650~690℃로 설정한다.In addition, in the coiling step, if the coiling temperature is too low, the cooling rate is too high during the cooling process, which causes low- and medium-temperature structures such as bainite and martensite to be generated, which increases the yield ratio and reduces the yield point elongation, and if the coiling temperature is too high, the crystal grains and second phase particles become thicker, which reduces the strength and toughness. Therefore, in the present invention, the coiling temperature is set to 650 to 690°C.
본 발명은 하기와 같은 장점을 구비한다.The present invention has the following advantages.
본 발명은 일정량의 Si, Cr, Ni, Cu와 같은 원소를 첨가하여 내대기부식성지수 I ≥ 6.5를 실현하여, 제품의 내대기부식성능을 향상시켰고, V-N 미세합금화 방법을 통해 미세결정강화 및 석출강화 효과를 발휘하여 제품이 우수한 강도, 가소성 및 인성을 얻을 수 있도록 함과 동시에 압연 및 냉각 공정에 대한 제어를 진행하여 제품의 조직 성능을 조절하였으며, 제품의 금속 미세조직은 균일한 다각형 페라이트 + 펄라이트이며 항복비가 낮고 항복점 연신율과 고변형저주기피로 성능이 높다. 본 발명의 성분 및 그 제조방법을 이용하여 제조된 건축구조용 강철은 항복강도 ≥550MPa, 인장강도 ≥600MPa, 파단 신장율 ≥20%, 항복비 ≤0.85, 항복점 연신율 Ae ≥2.0%, 180° 굽힘 시험 D=2a, 전체 크기 V-노치 -40℃ 충격 에너지 KV2 ≥70J이며, Q355B 대한 상대적부식율 ≤45%, 변형진폭 범위가 ±2%인 고변형저주기피로 시험에서의 피로수명은 200주기 이상이며, 우수한 내대기부식성 및 내진성을 실현하였다.The present invention improves the atmospheric corrosion resistance of the product by adding a certain amount of elements such as Si, Cr, Ni, and Cu, so that the atmospheric corrosion resistance index is I ≥ 6.5, and the V-N microalloying method exerts the effects of microcrystal strengthening and precipitation strengthening, so that the product obtains excellent strength, plasticity and toughness, and at the same time, the rolling and cooling processes are controlled to adjust the organizational performance of the product, and the metal microstructure of the product is uniform polygonal ferrite + pearlite, and the yield ratio is low, the yield point elongation and the high strain low-cycle fatigue performance are high. The structural steel manufactured using the components of the present invention and the manufacturing method thereof has a yield strength ≥ 550 MPa, a tensile strength ≥ 600 MPa, an elongation at break ≥ 20%, a yield ratio ≤ 0.85, an elongation at yield point Ae ≥ 2.0%, a 180° bending test D = 2a, an impact energy KV2 ≥ 70 J at full size V-notch -40°C, a relative corrosion rate ≤ 45% with respect to Q355B, and a fatigue life of more than 200 cycles in a high-strain low-cycle fatigue test with a strain amplitude range of ±2%, thereby realizing excellent atmospheric corrosion resistance and earthquake resistance.
위와 같은 이유로 본 발명은 내진내후성강판 등의 분야에서 널리 보급될 수 있다.For the above reasons, the present invention can be widely used in the fields of earthquake-resistant and weather-resistant steel plates, etc.
본 발명의 실시예 또는 선행기술의 기술적 방안을 보다 명확하게 설명하기 위해 실시예 또는 선행기술 설명에 필요한 도면을 간략하게 소개하며, 아래에 설명된 도면은 본 발명의 일부 실시예이며, 당업자에게 있어서, 창조적인 노력을 기울이지 않고 이러한 도면을 기반으로 다른 도면을 얻을 수 있는 것은 자명한 것이다.
도 1은 본 발명 실시예 1의 V계 550MPa급 건축구조용 내진내후성 강판의 금속 미세조직도이다.In order to more clearly explain the embodiments of the present invention or the technical solutions of the prior art, drawings necessary for the description of the embodiments or the prior art are briefly introduced. The drawings described below are some embodiments of the present invention, and it is obvious to those skilled in the art that other drawings can be obtained based on these drawings without making creative efforts.
Figure 1 is a metal microstructure diagram of a V-type 550 MPa grade earthquake-resistant weather-resistant steel plate for building structures of Example 1 of the present invention.
설명이 필요한 부분으로서는, 본 발명의 실시예와 실시예의 특징은 충돌이 없는 한 서로 결합될 수 있다. 이하 도면을 참조하면서 실시예를 결합하여 본 발명을 상세하게 설명한다. 본 발명의 실시예의 목적, 기술방안 및 이점을 보다 명확하게 설명하고, 본 발명 실시예의 기술방안을 명확하고 완전하게 설명하기 위하여, 설명한 실시예가 전체 실시예가 아니라 본 발명의 일부인 것이 자명하다.As a part that requires explanation, the embodiments of the present invention and the features of the embodiments can be combined with each other as long as there is no conflict. Hereinafter, the present invention will be described in detail by combining the embodiments with reference to the drawings. In order to more clearly explain the purpose, technical solution and advantage of the embodiments of the present invention and to clearly and completely explain the technical solution of the embodiments of the present invention, it is obvious that the described embodiments are not the entire embodiments but a part of the present invention.
아래의 적어도 하나의 실시예에 대한 설명은 실제로는 단지 설명적인 것에 불과하며 본 발명 및 그 적용 또는 사용에 대한 그 어떠한 제한이 아니다. 본 발명의 실시예에 따르면, 이 분야의 일반 기술자가 창조적 노동을 하지 않고 얻은 다른 모든 실시예는 본 발명의 보호범위에 속한다.The description of at least one embodiment below is actually merely illustrative and does not constitute any limitation to the present invention and its application or use. According to the embodiment of the present invention, all other embodiments obtained by a person skilled in the art without creative labor fall within the protection scope of the present invention.
본 발명의 이해를 용이하게 하기 위하여, 실시예 및 비교예를 결합하여 본 발명을 진일보로 설명한다. In order to facilitate understanding of the present invention, the present invention is further explained by combining examples and comparative examples.
본 발명이 제공하는 V계 550MPa급 건축구조용 내진내후성 강판은, 화학 성분이 질량백분율에 따라 C:0.07~0.12%, Si:0.35~0.45%, Mn:1.30~1.40%, P≤0.020%, S≤0.008%, Cr:0.60~0.70%, Ni:0.25~0.35%, Cu:0.30~0.40%, V:0.08~0.12%, Als:0.015~0.055%, N:0.0200~0.0220%를 포함하고, 나머지는 Fe 및 불가피한 불순물이다.The V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures provided by the present invention contains, in chemical compositions according to mass percentage, C: 0.07 to 0.12%, Si: 0.35 to 0.45%, Mn: 1.30 to 1.40%, P≤0.020%, S≤0.008%, Cr: 0.60 to 0.70%, Ni: 0.25 to 0.35%, Cu: 0.30 to 0.40%, V: 0.08 to 0.12%, Als: 0.015 to 0.055%, N: 0.0200 to 0.0220%, and the remainder is Fe and unavoidable impurities.
본 발명을 더욱 이해하기 위하여 본 발명에 기술된 건축구조용 내진내후성강판의 조성 및 제조방법을 적용한 3개의 실시예와 2개의 비교예를 제공한다.In order to further understand the present invention, three examples and two comparative examples are provided in which the composition and manufacturing method of the earthquake-resistant weather-resistant steel plate for building structures described in the present invention are applied.
상기의 건축구조용 내진내후성강판의 내대기부식성지수 I=26.01(%Cu)+ 3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Cu)(%Ni)-9.10(%Ni)(%P)- 33.39(%Cu)2이다.The atmospheric corrosion resistance index I of the above earthquake-resistant weathering steel plate for building structures is I = 26.01(%Cu) + 3.88(%Ni) + 1.20(%Cr) + 1.49(%Si) + 17.28(%P) - 7.29(%Cu)(%Ni) - 9.10(%Ni)(%P) - 33.39(%Cu) 2 .
상기 건축구조용 내진내후성강판의 항복강도, 인장강도 및 파단 신장율은 《금속재료 인장시험 제1부: 상온시험방법》 (GB/T 228.1)에 따라 시험하고, 굽힘성능은 《금속재료 굽힘시험방법》 (GB/T 232)에 따라 시험하며, 충격성능은 《금속재료 샤르피 펜둘럼 충격시험방법》(GB/T 229)에 따라 시험한다. 내부식성은 《철도용 내후성강 주기침윤부식시험방법》(TB/T 2375)에 따라 72시간 동안 시험하고, 고변형저주기피로성능은 《금속재료 피로시험 축변형 제어방법》 에 따라 시험하며, 그중 변형진폭(strain amplitude) 이 ±2%, 변형률 R=-1, 변형속도가 2Х10-3, 하중은 3kN이며, 파단 또는 응력값이 안정응력값의 30%로 감소시 샘플 무효로 판단한다.The yield strength, tensile strength and elongation at break of the above earthquake-resistant weathering steel plate for building structures are tested in accordance with “Tensile Test for Metallic Materials, Part 1: Test Method at Room Temperature” (GB/T 228.1), the bending performance is tested in accordance with “Bending Test Method for Metallic Materials” (GB/T 232), and the impact performance is tested in accordance with “Charpy Pendulum Impact Test Method for Metallic Materials” (GB/T 229). Corrosion resistance is tested for 72 hours in accordance with the “Cyclic Corrosion Test Method for Railway Weathering Steel” (TB/T 2375), and high-strain low-cycle fatigue performance is tested in accordance with the “Axial Strain Control Method for Fatigue Test of Metallic Materials”, where the strain amplitude is ±2%, strain R=-1, strain rate is 2Х10 -3 , and load is 3 kN. If the sample is fractured or the stress value decreases to 30% of the stable stress value, the sample is judged to be invalid.
실시예 1Example 1
V계 550MPa급 건축구조용 내진내후성 강판의 화학성분은 표 1에 나타내었으며, 나머지는 Fe 및 불가피한 불순물이다.The chemical composition of the V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures is shown in Table 1, and the remainder is Fe and unavoidable impurities.
V계 550MPa급 건축구조용 내진내후성 강판의 제조방법은 다음과 같다. 화학성분에 따라 통상적인 방법으로 슬래브를 제련하고, 제련하여 얻은 슬래브를 가열, 조압연, 마무리압연, 층류냉각 및 권취를 차례로 진행하여 진일보로 가공한다. 구체적인 가공공정은 가열온도 1190℃, 가열시간 220분이고, 6패스의 조압연을 진행하며 그중 각 패스의 변형량은 18% 이상이며, 중간슬래브의 두께는 51mm이다. 7패스의 마무리압연을 진행하며, 그중 마지막 3패스의 프레임 압하율은 각각 ≥17%, ≥13% 및 ≥10%이고, 마무리압연의 압연개시 온도는 1010~1020℃, 최종압연 온도는 850~860℃이다. 전단계 냉각 모드를 채택하여 목표권취온도까지 냉각하며, 그중 냉각 속도는 약 70℃/s이고, 권취온도는 650~660℃이다. 금속 미세조직은 균일한 다각형 페라이트 + 펄라이트이며 도 1에 표시한 바와 같이 페라이트의 부피분율은 75%, 펄라이트의 부피분율은 25%이다.The manufacturing method of V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures is as follows. According to the chemical composition, the slab is refined by the conventional method, and the slab obtained by the refinement is further processed by heating, rough rolling, finish rolling, laminar cooling and coiling in sequence. The specific processing process is that the heating temperature is 1190℃, the heating time is 220 minutes, 6 passes of rough rolling are performed, of which the deformation of each pass is 18% or more, and the thickness of the intermediate slab is 51mm. 7 passes of finish rolling are performed, of which the frame reduction ratios of the last 3 passes are ≥17%, ≥13% and ≥10%, respectively, and the rolling start temperature of the finish rolling is 1010~1020℃, and the final rolling temperature is 850~860℃. The pre-cooling mode is adopted to cool to the target coiling temperature, of which the cooling speed is about 70℃/s and the coiling temperature is 650~660℃. The metal microstructure is uniform polygonal ferrite + pearlite, and the volume fraction of ferrite is 75% and the volume fraction of pearlite is 25%, as shown in Fig. 1.
실시예 2Example 2
V계 550MPa급 건축구조용 내진내후성 강판의 화학성분은 표 1에 나타내었으며, 나머지는 Fe 및 불가피한 불순물이다.The chemical composition of the V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures is shown in Table 1, and the remainder is Fe and unavoidable impurities.
V계 550MPa급 건축구조용 내진내후성 강판의 제조방법은 다음과 같다. 화학성분에 따라 통상적인 방법으로 슬래브를 제련하고, 제련하여 얻은 슬래브를 차례로 가열, 조압연, 마무리압연, 층류냉각 및 권취를 진행하여 진일보로 가공한다. 구체적인 가공공정은 가열온도 1210℃, 가열시간 250분이고, 6패스의 조압연을 진행하며 그중 각 패스의 변형량은 18% 이상이며, 중간슬래브의 두께는 54mm이다. 7패스의 마무리압연을 진행하며, 그중 마지막 3패스의 프레임 압하율은 각각 ≥17%, ≥13% 및 ≥10%이고, 마무리압연의 압연개시 온도는 1010~1030℃, 최종압연 온도는 860~870℃이다. 전단계 냉각 모드를 채택하여 목표권취온도까지 냉각하며, 그중 냉각 속도는 약 65℃/s이고, 권취온도는 660~690℃이다. 금속 미세조직은 균일한 다각형 페라이트 + 펄라이트이며 페라이트의 부피분율은 78%, 펄라이트의 부피분율은 22%이다.The manufacturing method of V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures is as follows. According to the chemical composition, the slab is refined by the conventional method, and the slab obtained by the refinement is further processed by heating, rough rolling, finish rolling, laminar cooling and coiling in sequence. The specific processing process is that the heating temperature is 1210℃, the heating time is 250 minutes, and 6 passes of rough rolling are performed, of which the deformation of each pass is 18% or more, and the thickness of the intermediate slab is 54mm. 7 passes of finish rolling are performed, of which the frame reduction ratios of the last 3 passes are ≥17%, ≥13% and ≥10%, respectively, and the rolling start temperature of the finish rolling is 1010~1030℃, and the final rolling temperature is 860~870℃. The pre-cooling mode is adopted to cool to the target coiling temperature, of which the cooling speed is about 65℃/s and the coiling temperature is 660~690℃. The metal microstructure is uniform polygonal ferrite + pearlite, with a volume fraction of ferrite of 78% and a volume fraction of pearlite of 22%.
실시예 3Example 3
V계 550MPa급 건축구조용 내진내후성 강판의 화학성분은 표 1에 나타내었으며, 나머지는 Fe 및 불가피한 불순물이다.The chemical composition of the V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures is shown in Table 1, and the remainder is Fe and unavoidable impurities.
V계 550MPa급 건축구조용 내진내후성 강판의 제조방법은 다음과 같다. 화학성분에 따라 통상적인 방법으로 슬래브를 제련하고, 제련하여 얻은 슬래브를 차례로 가열, 조압연, 마무리압연, 층류냉각 및 권취를 진행하여 진일보로 가공한다. 구체적인 가공공정은 가열온도 1185℃, 가열시간 235분이고, 6패스의 조압연을 진행하며 그중 각 패스의 변형량은 18% 이상이며, 중간슬래브의 두께는 56mm이다. 7패스의 마무리압연을 진행하며, 그중 마지막 3패스의 프레임 압하율은 각각 ≥17%, ≥13% 및 ≥10%이고, 마무리압연의 압연개시 온도는 1010~1030℃, 최종압연 온도는 850~870℃이다. 전단계 냉각 모드를 채택하여 목표권취온도까지 냉각하며, 그중 냉각 속도는 약 50℃/s이고, 권취온도는 670~680℃이다. 금속 미세조직은 균일한 다각형 페라이트 + 펄라이트이며 페라이트의 부피분율은 80%, 펄라이트의 부피분율은 20%이다.The manufacturing method of V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures is as follows. According to the chemical composition, the slab is refined by the conventional method, and the slab obtained by the refinement is further processed by heating, rough rolling, finish rolling, laminar cooling and coiling in sequence. The specific processing process is that the heating temperature is 1185℃, the heating time is 235 minutes, and 6 passes of rough rolling are performed, of which the deformation of each pass is 18% or more, and the thickness of the intermediate slab is 56mm. 7 passes of finish rolling are performed, of which the frame reduction ratios of the last 3 passes are ≥17%, ≥13% and ≥10%, respectively, and the rolling start temperature of the finish rolling is 1010~1030℃, and the final rolling temperature is 850~870℃. The pre-cooling mode is adopted to cool to the target coiling temperature, of which the cooling speed is about 50℃/s and the coiling temperature is 670~680℃. The metal microstructure is uniform polygonal ferrite + pearlite, with a volume fraction of ferrite of 80% and a volume fraction of pearlite of 20%.
비교예 1Comparative Example 1
(비교예 1의 구체적인 내용은 《큰 두께 Q500GJCD 고강도 건축구조용 강판 및 그의 제조방법》(CN107385324A)의 실시예 2를 참조)(For specific details of Comparative Example 1, refer to Example 2 of “Large Thickness Q500GJCD High-Strength Building Structural Steel Plate and Manufacturing Method Thereof” (CN107385324A))
건축구조용 강철의 화학성분은 표 1과 같으며 나머지는 Fe 및 불가피한 불순물이다.The chemical composition of structural steel for construction is as shown in Table 1, and the remainder is Fe and unavoidable impurities.
건축구조용 강철의 제조방법은 다음과 같다. 화학성분에 따라 통상적인 방법으로 슬래브를 제련하고, 제련하여 얻은 슬래브는 와이드후판압연기로 차례로 가열, 조압연, 마무리압연, 층류냉각 및 권취를 진행하여 진일보로 가공한다. 구체적인 가공공정은 가열온도 1200~1220℃, 가열시간 375분이고, 조압연을 진행하여 압연하며 대기온도하의 두께는 50mm이며 대기온도후 마무리압연기로 압연개시 온도 900℃로 마무리압연을 진행하며 마무리압연의 최종압연 온도는 ≥796℃이다. 압연이 끝난 후 압연재를 Acc 장비에 보내어 물을 뿌려서 냉각속도를 빨리하며 냉각속도는 6~7℃/s이며, 최종 냉각온도는 690~710℃이다. 그후 열간교정기에 의해 교정한 후 냉상으로 보내져 320℃까지 오프라인(비생산라인)하에서 스택이 되게 쌓아 올려 24시간 동안 천천히 자연 냉각시킨다.The manufacturing method of structural steel for building construction is as follows. According to the chemical composition, the slab is smelted by the conventional method, and the slab obtained by smelting is further processed by heating, rough rolling, finish rolling, laminar cooling and coiling in sequence in a wide plate rolling mill. The specific processing process is that the heating temperature is 1200~1220℃, the heating time is 375 minutes, and the rough rolling is performed and rolled. The thickness under the atmospheric temperature is 50mm, and after the atmospheric temperature, the finish rolling is performed at the rolling start temperature of 900℃ in the finish rolling mill, and the final rolling temperature of the finish rolling is ≥796℃. After the rolling is completed, the rolled material is sent to the Acc equipment and water is sprayed to accelerate the cooling speed. The cooling speed is 6~7℃/s, and the final cooling temperature is 690~710℃. Afterwards, after being straightened by a hot straightener, it is sent to a cold room and stacked offline (non-production line) at 320℃, and then slowly cooled naturally for 24 hours.
비교예 2Comparative Example 2
(비교예 2의 구체적인 내용은 《고강도 Q500GJD 조질상태 건축구조용 강판 및 그의 제조방법》(CN107604248A)의 실시예 2를 참조)(For specific details of Comparative Example 2, refer to Example 2 of “High-strength Q500GJD tempered-state structural steel plate for building structures and its manufacturing method” (CN107604248A))
건축구조용 강철의 화학성분은 표 1과 같으며 나머지는 Fe 및 불가피한 불순물이다.The chemical composition of structural steel for construction is as shown in Table 1, and the remainder is Fe and unavoidable impurities.
건축구조용 강철의 제조방법은 다음과 같다. 화학성분에 따라 통상적인 방법으로 슬래브를 제련하고, 제련하여 얻은 슬래브는 와이드후판압연기로 차례로 가열, 조압연, 마무리압연, 층류냉각 및 권취를 진행하여 진일보로 가공한다. 구체적인 가공공정은 가열온도 1180~1220℃, 가열시간 220분이고, 조압연을 진행하며 두께 65mm까지 압연하여 마무리압연기로 보내어 마무리압연을 진행하며 마무리압연의 최종압연온도는 795℃이다. 압연이 끝난 후 압연재를 직접 열간교정기로 보내어 교정한다. 그후, 냉상으로 보내어 자연냉각 시킨다. 합격된 플레이트를 열처리 공정으로 옮기며, 그중 담금질 온도는 905℃, 용로에 머무는 시간은 25분이고, 물로 냉각하며, 템퍼링 온도는 660℃, 용로에 머무는 시간은 27분이며, 실온까지 공냉식으로 냉각시킨다.The manufacturing method of structural steel for building is as follows. According to the chemical composition, the slab is smelted in a conventional way, and the slab obtained by smelting is further processed by heating, rough rolling, finish rolling, laminar cooling, and coiling in a wide plate rolling mill in sequence. The specific processing process is heating temperature 1180~1220℃, heating time 220 minutes, rough rolling is performed, and the thickness is rolled to 65mm, and then sent to the finish rolling mill for finish rolling, and the final rolling temperature of the finish rolling is 795℃. After rolling is completed, the rolled material is directly sent to a hot straightening machine for straightening. After that, it is sent to a cold bed for natural cooling. The qualified plate is transferred to the heat treatment process, where the quenching temperature is 905℃, the furnace residence time is 25 minutes, and it is cooled with water. The tempering temperature is 660℃, the furnace residence time is 27 minutes, and it is cooled to room temperature by air cooling.
[표 1] 실시예 및 비교예의 화학성분의 질량백분율/wt%[Table 1] Mass percentage/wt% of chemical components of examples and comparative examples
실시예 및 비교예의 구체적인 기계적 물성 시험 결과는 표 2에 나타내었다.The specific mechanical property test results of the examples and comparative examples are shown in Table 2.
[표 2] 실시예 및 비교예의 성능 시험 결과[Table 2] Performance test results for examples and comparative examples
비고 1: 벤딩 헤드의 직경 D, 시료의 두께 a.Note 1: Diameter D of the bending head, thickness a of the sample.
비고 2: 충격시험의 경우 실시예 1은 반치수 시료를 사용하고 실시예 2, 3과 비교예 1, 2는 전치수 시료를 사용한다. 실시예의 충격시험 온도는 -40℃이며, 비교예 1과 2의 충격시험 온도는 -20℃이다.Note 2: For the impact test, Example 1 uses a half-size sample, and Examples 2 and 3 and Comparative Examples 1 and 2 use a full-size sample. The impact test temperature of the Example is -40°C, and the impact test temperature of Comparative Examples 1 and 2 is -20°C.
세 그룹의 실시예와 세 그룹의 비교예의 제조방법 및 표 1의 화학 성분과 표 2의 실시예 및 비교예의 성능 시험 결과에 따르면, 실시예에서는 일정량의 Si, Cr, Ni, Cu와 같은 원소를 첨가하여 우수한 대기부식방지성능을 달성했으며, V-N 미세합금화 방식을 통해 미세결정 강화 및 석출 강화 효과를 발휘하여 제품이 우수한 강도, 가소성과 인성 매칭을 얻을 수 있도록 함과 동시에 압연 및 냉각공정에 대한 제어를 통하여 제품의 조직성능을 조절하였으며 제품의 항복비가 낮고 항복점 연신율과 고변형저주기피로 성능이 높다. 따라서 본 발명의 V계 550MPa급 건축구조용 내진내후성 강판 및 그의 제조방법은 우수한 내대기부식성 및 내진성 등 종합적인 성능 매칭을 실현하였으며 응용 전망이 좋다.According to the manufacturing methods of the three groups of examples and the three groups of comparative examples and the chemical components in Table 1 and the performance test results of the examples and comparative examples in Table 2, in the examples, excellent atmospheric corrosion prevention performance is achieved by adding a certain amount of elements such as Si, Cr, Ni and Cu, and the V-N microalloying method exerts the effects of microcrystal strengthening and precipitation strengthening so that the product obtains excellent strength, plasticity and toughness matching, and at the same time, the tissue performance of the product is adjusted through control of the rolling and cooling processes, and the product has a low yield ratio and high yield point elongation and high high-strain low-cycle fatigue performance. Therefore, the V series 550MPa grade earthquake-resistant weather-resistant steel plate for building structures of the present invention and its manufacturing method have realized excellent atmospheric corrosion resistance and earthquake resistance and other comprehensive performance matching, and have good application prospects.
마지막으로 설명해야 할 것은 상기 실시예들은 본 발명의 기술 방안을 설명하기 위한 것일 뿐 이를 제한하려는 것이 아니다. 본 발명은 상기 실시예들을 참조하여 상세하게 설명하였지만, 본 분야의 일반 기술자들은 상기 언급한 각 실시예에 기술된 기술 방안을 수정하거나 그 중의 일부 또는 전체 기술적 특징을 동등하게 대체할 수 있으며, 이러한 수정 또는 대체는 해당 기술 방안의 본질이 본 발명의 각 실시예의 기술 방안의 범위를 벗어나지 않는다는 점을 이해해야 한다.Finally, it should be noted that the above embodiments are only intended to illustrate the technical solutions of the present invention and are not intended to limit them. Although the present invention has been described in detail with reference to the above embodiments, it should be understood that those skilled in the art may modify the technical solutions described in each of the above-mentioned embodiments or replace some or all of the technical features thereof equally, and such modifications or replacements should be understood that the essence of the technical solutions does not go beyond the scope of the technical solutions of each embodiment of the present invention.
Claims (10)
상기 건축구조용 내진내후성 강판의 금속 미세조직은 다각형 페라이트+ 펄라이트이며, 부피분율은 페라이트 75~80%, 펄라이트 20~25%인 것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판.In the first paragraph,
The above earthquake-resistant weather-resistant steel plate for building structures is characterized by a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, wherein the metal microstructure is polygonal ferrite + pearlite, and the volume fraction is 75 to 80% ferrite and 20 to 25% pearlite.
상기 건축구조용 내진내후성 강판의 내대기부식성지수 I≥6.5이고,
상기 건축구조용 내진내후성 강판의 항복강도 ≥550MPa, 인장강도 ≥600MPa, 파단 신장율 ≥20%, 항복비 ≤0.85, 항복점 연신율 Ae ≥2.0%, 180° 굽힘 시험 D=2a, 전체 크기 V-노치 -40℃ 충격 에너지 KV2 ≥70J인 것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판.In the first paragraph,
The atmospheric corrosion resistance index of the earthquake-resistant weather-resistant steel plate for the above building structure is I≥6.5,
A V-series 550MPa earthquake-resistant weather-resistant steel plate for building structures, characterized in that the above earthquake-resistant weather-resistant steel plate for building structures has a yield strength of ≥550MPa, a tensile strength of ≥600MPa, an elongation at break of ≥20%, a yield ratio of ≤0.85, an elongation at yield point of Ae of ≥2.0%, a 180° bending test of D=2a, and an impact energy of full-size V-notch of -40°C of KV2 of ≥70J.
상기 건축구조용 내진내후성 강판의, Q355B에 대한 부식율은 ≤ 45% 이며, 변형진폭 범위가 ±2%인 고변형저주기피로 시험에서의 피로수명은 200주기 이상인 것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판.In the first paragraph,
A V-series 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, characterized in that the corrosion rate of the above earthquake-resistant weather-resistant steel plate for building structures with respect to Q355B is ≤ 45%, and the fatigue life in a high-strain low-cycle fatigue test with a strain amplitude range of ±2% is 200 cycles or more.
상기 건축구조용 내진내후성 강판의 두께는 6.0~16.0 mm인 것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판.In the first paragraph,
A V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, characterized in that the thickness of the earthquake-resistant weather-resistant steel plate for building structures is 6.0 to 16.0 mm.
상기 가열 단계에서, 가열 온도는 1180~1220℃이고, 가열 시간은 180~400분인것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판의 제조방법.In Article 6,
A method for manufacturing a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, characterized in that in the above heating step, the heating temperature is 1180 to 1220°C and the heating time is 180 to 400 minutes.
상기 조압연 단계에서, 6패스의 조압연을 진행하며, 그 중 각 패스의 변형량은 ≥18%이고, 완제품의 두께가 6.0~10.0mm일 때 중간 빌렛의 두께가 48~52mm이고, 완제품의 두께가 10.0~16.0mm일 때 중간 빌렛의 두께가 53~57mm이며,
상기 마무리 압연 단계에서, 7패스의 마무리 압연을 진행하며, 그 중 마지막 3패스의 프레임 압하율은 각각 ≥17%, ≥13% 및 ≥10%이고, 마무리압연의 압연개시 온도는 ≤1030℃, 최종압연 온도는 840~880℃인것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판의 제조방법.In Article 6,
In the above rough rolling step, 6 passes of rough rolling are performed, among which the deformation amount of each pass is ≥18%, and when the thickness of the finished product is 6.0 to 10.0 mm, the thickness of the intermediate billet is 48 to 52 mm, and when the thickness of the finished product is 10.0 to 16.0 mm, the thickness of the intermediate billet is 53 to 57 mm.
A method for manufacturing a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, characterized in that in the above-mentioned finishing rolling step, seven passes of finishing rolling are performed, among which the frame reduction ratios of the last three passes are ≥17%, ≥13%, and ≥10%, respectively, the rolling start temperature of the finishing rolling is ≤1030℃, and the final rolling temperature is 840 to 880℃.
상기 층류냉각 단계에서, 전단계 냉각 모드를 채택하고 냉각 속도는 40~80℃/s인것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판의 제조방법.In Article 6,
A method for manufacturing a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, characterized in that in the laminar cooling step, a pre-stage cooling mode is adopted and the cooling speed is 40 to 80°C/s.
상기 권취단계에서, 권취온도가 650~690℃인것을 특징으로 하는 V계 550MPa급 건축구조용 내진내후성 강판의 제조방법.In Article 6,
A method for manufacturing a V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures, characterized in that in the above-mentioned coiling step, the coiling temperature is 650 to 690°C.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211575300.3 | 2022-12-08 | ||
CN202211575300.3A CN116083792A (en) | 2022-12-08 | 2022-12-08 | V-series 550MPa grade building structure anti-seismic and weather-resistant steel plate and preparation method thereof |
PCT/CN2023/102695 WO2024119783A1 (en) | 2022-12-08 | 2023-06-27 | Anti-seismic and weather-proof steel plate for v-series 550 mpa building structure, and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240170550A true KR20240170550A (en) | 2024-12-03 |
Family
ID=86211115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247035363A Pending KR20240170550A (en) | 2022-12-08 | 2023-06-27 | V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures and its manufacturing method |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20240170550A (en) |
CN (1) | CN116083792A (en) |
WO (1) | WO2024119783A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116083792A (en) * | 2022-12-08 | 2023-05-09 | 攀钢集团攀枝花钢铁研究院有限公司 | V-series 550MPa grade building structure anti-seismic and weather-resistant steel plate and preparation method thereof |
CN116891985B (en) * | 2023-06-15 | 2024-10-29 | 包头钢铁(集团)有限责任公司 | Thick-specification high-nitrogen weather-resistant anti-seismic H-shaped steel and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101497969A (en) * | 2009-03-13 | 2009-08-05 | 武汉钢铁(集团)公司 | High-performance weather-resisting anti-seismic steel for building and production method thereof |
CN106947913B (en) * | 2017-03-21 | 2019-03-19 | 马钢(集团)控股有限公司 | A kind of high-strength high-toughness hot rolls weather-resistant steel plate and preparation method thereof |
CN109628836B (en) * | 2019-01-02 | 2020-10-09 | 北京科技大学 | A kind of anti-seismic fire-resistant steel for high-strength building structure and preparation method thereof |
CN110205554B (en) * | 2019-06-28 | 2021-06-01 | 东北大学 | 690 MPa-grade steel for anti-seismic, fire-resistant and weather-resistant building structure and preparation method thereof |
CN112593155B (en) * | 2020-12-08 | 2022-04-22 | 东北大学 | A kind of high-strength building structure with anti-seismic fire-resistant weathering steel plate and preparation method |
CN113462966A (en) * | 2021-06-18 | 2021-10-01 | 马鞍山钢铁股份有限公司 | Economical 630MPa high-strength anti-seismic steel bar steel and production method thereof |
CN116083792A (en) * | 2022-12-08 | 2023-05-09 | 攀钢集团攀枝花钢铁研究院有限公司 | V-series 550MPa grade building structure anti-seismic and weather-resistant steel plate and preparation method thereof |
-
2022
- 2022-12-08 CN CN202211575300.3A patent/CN116083792A/en active Pending
-
2023
- 2023-06-27 KR KR1020247035363A patent/KR20240170550A/en active Pending
- 2023-06-27 WO PCT/CN2023/102695 patent/WO2024119783A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2024119783A1 (en) | 2024-06-13 |
CN116083792A (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114959460B (en) | Low-yield-ratio easy-welding weather-resistant bridge steel and manufacturing method thereof | |
CN112981235B (en) | Hardened and tempered steel plate with yield strength of 420MPa grade for building structure and production method thereof | |
CN102712972B (en) | High-strength steel plate and method for producing same | |
CN104894474B (en) | A kind of V-N micro-alloyed Q550 grade medium-thick steel plate and its preparation method | |
CN115141974A (en) | High-strength high-plasticity hot-rolled strip steel with high weather resistance and manufacturing method thereof | |
JPH11140582A (en) | High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production | |
CN108486492A (en) | 1200MPa grade high-strengths high-ductility low-density steel plate and its manufacturing method | |
CN114592153A (en) | A kind of high-strength steel with excellent weather resistance and its manufacturing method | |
KR20240170550A (en) | V-type 550MPa grade earthquake-resistant weather-resistant steel plate for building structures and its manufacturing method | |
CN115094322A (en) | 80 mm-thick 690 MPa-grade ultrahigh-strength and toughness marine steel plate and preparation method thereof | |
CN108660395A (en) | Manganese high-strength cut deal and quenching-dynamic partition production technology preparation method in a kind of 690MPa grades of low-carbon | |
CN102312158A (en) | Nb, Ti alloyed low-carbon high-intensity high-plasticity TWIP steel and preparation method thereof | |
CN111057965B (en) | A kind of low yield-strength ratio marine engineering steel and preparation method thereof | |
CN110358970A (en) | 1100MPa grades of yield strength of welding structure bainite high-strength steel and preparation method thereof | |
CN107841689A (en) | A kind of weather-resistant steel plate and its manufacture method | |
CN113846269A (en) | Cold-rolled high-weather-resistance steel plate with high strength and plasticity and preparation method thereof | |
CN110117759B (en) | Manufacturing process of austenitic stainless steel for roll forming high-strength steel structural member | |
CN113025882B (en) | Hot-base galvanized ferrite bainite high-strength steel plate and preparation method thereof | |
CN115989327A (en) | Thick steel plate and manufacturing method thereof | |
CN102766820B (en) | Hot rolled strip steel with yield strength higher than 600MPa for mine rescue capsule and preparation method of hot rolled strip steel | |
CN116043107A (en) | Nb 450 MPa-level building structure anti-seismic weather-resistant steel plate and preparation method thereof | |
WO2024016419A1 (en) | Low-yield-ratio weather-resistant bridge steel and manufacturing method | |
CN108866443A (en) | Normalizing type low-yield-ratio high-strength steel plate and preparation method thereof | |
CN113755759A (en) | Thick-specification high-toughness low-alloy high-strength structural steel and production method thereof | |
RU2839969C2 (en) | High-strength steel with corresponding atmospheric resistance and method of its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20241023 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application |