KR20220055486A - 업링크 제어 정보 생략을 위한 방법 및 장치 - Google Patents

업링크 제어 정보 생략을 위한 방법 및 장치 Download PDF

Info

Publication number
KR20220055486A
KR20220055486A KR1020227011293A KR20227011293A KR20220055486A KR 20220055486 A KR20220055486 A KR 20220055486A KR 1020227011293 A KR1020227011293 A KR 1020227011293A KR 20227011293 A KR20227011293 A KR 20227011293A KR 20220055486 A KR20220055486 A KR 20220055486A
Authority
KR
South Korea
Prior art keywords
components
group
sub
csi
pmi
Prior art date
Application number
KR1020227011293A
Other languages
English (en)
Inventor
엠디 사이푸르 라흐만
에코 누그로호 옹고사누시
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20220055486A publication Critical patent/KR20220055486A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 IOT(Internet of Things) 기술을 이용하여 4G(4th-Generation) 시스템보다 높은 데이터 전송률을 지원하는 5G 통신 시스템을 컨버징하기 위한 통신 방법 및 시스템에 관한 것이다. 본 개시는 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카, 커넥티드 카, 헬스 케어, 디지털 교육, 스마트 소매, 보안 및 안전 서비스들과 같은 IoT 관련 기술 및 5G 통신 기술에 기반한 지능형 서비스들에 적용될 수 있다. CSI 보고를 위해 UE를 동작시키는 방법이 제공된다.

Description

업링크 제어 정보 생략을 위한 방법 및 장치
본 개시는 일반적으로 무선 통신 시스템에 관한 것이며, 보다 구체적으로는 채널 상태 정보(channel state information, CSI) 보고 및 다중화에 관한 것이다.
4G 통신 시스템 구축 이후 증가하는 무선 데이터 트래픽에 대한 수요를 충족시키기 위해 개선된 5G 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 또는 pre-5G 통신 시스템은 '비욘드(Beyond) 4G 네트워크' 또는 '포스트(Post) LTE(Long Term Evolution) 시스템'이라 불리어지고 있다. 더 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60GHz 대역)에서의 구현이 고려되고 있다. 무선파의 전파 손실을 줄이고 송신 거리를 늘리기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔포밍(analog beam forming), 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다. 또한, 시스템 네트워크 개선을 위해, 5G 통신 시스템에서는 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network, cloud RAN), 초고밀도 네트워크(ultra-dense network), D2D(device-to-device) 통신, 무선 백홀(wireless backhaul), 이동 네트워크, 협력 통신, CoMP(Coordinated Multi-Points), 및 수신단 간섭 제거 등의 기술 개발이 이루어지고 있다. 5G 시스템에서는, 진보된 코딩 변조(advanced coding modulation, ACM) 기술인 FQAM(hybrid frequency shift keying and quadrature amplitude modulation) 및 SWSC(sliding window superposition coding)와, 진보된 액세스 기술인 FBMC(filter bank multi carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
인간이 정보를 생성하고 소비하는 인간 중심의 연결 네트워크인 인터넷은 이제 사물과 같은 분산된 엔티티들이 인간의 개입없이 정보를 교환하고 처리하는 IOT(Internet of Things)로 진화하고 있다. 클라우드 서버와의 연결을 통해 IoT 기술과 빅 데이터 처리 기술이 결합된 IoE(Internet of Everything)가 또한 등장했다. IoT 구현을 위한 "센싱 기술", "유/무선 통신 및 네트워크 인프라스트럭처", "서비스 인터페이스 기술" 및 "보안 기술"과 같은 기술 요소들이 요구됨에 따라, 센서 네트워크, M2M(Machine-to-Machine) 통신, MTC(Machine Type Communication) 등이 최근 연구되고 있다. 이러한 IoT 환경은 연결된 사물들간에 생성되는 데이터를 수집하고 분석함으로써 인간의 삶에 새로운 가치를 창출하는 지능형 인터넷 기술 서비스를 제공할 수 있다. IoT는 기존의 정보 기술(IT)과 다양한 산업 응용들 간의 융합 및 결합을 통해 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전 및 첨단 의료 서비스 등의 다양한 분야에 적용될 수 있다.
이에 따라, 5G 통신 시스템을 IoT 네트워크에 적용하기 위한 다양한 시도가 이루어지고 있다. 예를 들어, 센서 네트워크, MTC 및 M2M 통신과 같은 기술은 빔포밍, MIMO 및 어레이 안테나로 구현될 수 있다. 또한, 전술한 빅 데이터 처리 기술로서 클라우드 RAN(Radio Access Network)의 응용은 5G 기술과 IoT 기술 간의 컨버전스의 예로 간주될 수 있다.
사용자 장비(UE)와 기지국(BS)(예를 들어, gNode B(gNB)) 사이의 채널을 이해하고 정확하게 추정하는 것은 효율적이고 효과적인 무선 통신을 위해 중요하다. 다운링크 채널 조건을 정확하게 추정하기 위해, gNB는 다운링크 채널 측정을 위해 CSI-RS와 같은 기준 신호를 UE에게 송신할 수 있고, UE는 예를 들어 CSI와 같은 채널 측정에 대한 정보를 gNB에게 보고(예를 들면, 피드백)할 수 있다. 이 DL 채널 측정을 통해, gNB는 UE와의 무선 데이터 통신을 효율적이고 효과적으로 수행하기 위해 적절한 통신 파라미터를 선택할 수 있다.
본 개시의 실시예들은 무선 통신 시스템에서 CSI 보고 및 다중화를 위한 방법 및 장치를 제공한다.
일 실시예에서, 무선 통신 시스템에서 CSI 보고를 위한 UE가 제공된다. UE는 CSI 보고를 위한 구성 정보를 수신하도록 구성된 트랜시버를 포함한다. UE는 트랜시버에 동작 가능하게 연결된 프로세서를 더 포함한다. 프로세서는 제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 CSI 보고를 결정하도록 구성되며, 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, PMI는 복수의 PMI 컴포넌트들을 포함하고, PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함하다. 프로세서는 또한 PMI 컴포넌트들 중 일부의 서브-컴포넌트들에 대한 우선 순위 값을 결정하고, 결정된 서브-컴포넌트들에 대한 우선 순위 값들에 기초하여 PMI 컴포넌트들 중 일부의 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지게 되도록 제 2 CSI 부분을 그룹 0, 그룹 1 및 그룹 2로 파티셔닝(partitioning)하도록 구성된다. 서브-컴포넌트들의 우선 순위 값들은 우선 순위 값들이
Figure pct00001
로서 내림차순으로 정렬되도록 - 여기서
Figure pct00002
Figure pct00003
는 인덱스 m에 대한 값들
Figure pct00004
의 세트의 두 부분들임 - 서브-컴포넌트들과 연관된 인덱스 m의 값들
Figure pct00005
을 순열하는 함수 F1(m)을 기반으로 한다. 트랜시버는 또한 CSI 보고에 대한 리소스 할당에 기초하여 제 1 CSI 부분, 및 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 업링크(UL) 채널을 통해 송신하도록 구성된다.
다른 실시예에서, 무선 통신 시스템의 BS가 제공된다. BS는 CSI 구성 정보를 생성하도록 구성된 프로세서를 포함한다. BS는 프로세서에 동작 가능하게 연결된 트랜시버를 더 포함한다. 트랜시버는 제 1 CSI 부분과 제 2 CSI 부분을 포함하는 CSI 보고에 대한 CSI 구성 정보를 송신하고, CSI 보고에 대한 리소스 할당을 기초로 하여 제 1 CSI 부분과, 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 업링크(UL) 채널을 통해 수신하도록 구성된다. 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, PMI는 복수의 PMI 컴포넌트들을 포함하고, PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함한다. 제 2 CSI 부분은 서브-컴포넌트들에 대한 우선 순위 값들에 기초하여 PMI 컴포넌트들 중 일부의 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지도록 그룹 0, 그룹 1, 그룹 2로 파티셔닝된다. 서브-컴포넌트들의 우선 순위 값들은 우선 순위 값들이
Figure pct00006
로서 내림차순으로 정렬되도록 - 여기서
Figure pct00007
Figure pct00008
는 인덱스 m에 대한 값들
Figure pct00009
의 세트의 두 부분들임 - 서브-컴포넌트들과 연관된 인덱스 m의 값들
Figure pct00010
을 순열하는 함수 F1(m)을 기반으로 한다.
또 다른 실시예에서, 무선 통신 시스템에서 CSI 보고를 위해 UE를 동작시키는 방법이 제공된다. 이 방법은 CSI 보고에 대한 구성 정보를 수신하는 단계, 제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 CSI 보고를 결정하는 단계 - 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, PMI는 복수의 PMI 컴포넌트들을 포함하고, PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함함 -, PMI 컴포넌트들 중 일부의 서브-컴포넌트들에 대한 우선 순위 값들을 결정하는 단계, 결정된 서브-컴포넌트들에 대한 우선 순위 값들에 기초하여 PMI 컴포넌트들 중 일부의 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지게 되도록, 제 2 CSI 부분을 그룹 0, 그룹 1 및 그룹 2로 파티셔닝하는 단계, 및 CSI 보고에 대한 리소스 할당에 기초하여 제 1 CSI 부분, 및 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 업링크(UL) 채널을 통해 송신하는 단계를 포함한다. 서브-컴포넌트들의 우선 순위 값들은 우선 순위 값들이
Figure pct00011
로서 내림차순으로 정렬되도록 - 여기서
Figure pct00012
Figure pct00013
는 인덱스 m에 대한 값들
Figure pct00014
의 세트의 두 부분들임 - 서브-컴포넌트들과 연관된 인덱스 m의 값들
Figure pct00015
을 순열하는 함수 F1(m)을 기반으로 한다.
다른 기술적 특징은 다음의 도면, 설명 및 청구 범위로부터 당업자에게 쉽게 명백해질 수 있다.
본 발명의 실시예들에 따르면, CSI 보고 절차가 효율적으로 수행될 수 있고, 이에 따라 시그널링 오버헤드가 감소될 수 있으며 데이터 속도의 효율성이 진보된 무선 통신 시스템에서 달성될 수 있다.
본 개시 및 그 이점에 대한 보다 완전한 이해를 위해, 이제 첨부 도면과 함께 취해지는 다음의 설명에 대한 참조가 이루어지며, 도면에서 유사한 참조 부호는 유사한 부분을 나타낸다.
도 1은 본 개시의 실시예들에 따른 예시적인 무선 네트워크를 도시한 것이다.
도 2는 본 개시의 실시예들에 따른 예시적인 gNB를 도시한 것이다.
도 3은 본 개시의 실시예들에 따른 예시적인 UE를 도시한 것이다.
도 4a는 본 개시의 실시예들에 따른 직교 주파수 분할 다중 액세스 송신 경로의 하이-레벨 다이어그램을 도시한 것이다.
도 4b는 본 개시의 실시예들에 따른 직교 주파수 분할 다중 액세스 수신 경로의 하이-레벨 다이어그램을 도시한 것이다.
도 5는 본 개시의 실시예들에 따른 서브프레임에서 PDSCH에 대한 송신기 블록도의 예를 도시한 것이다.
도 6은 본 개시의 실시예들에 따른 서브프레임에서 PDSCH에 대한 수신기 블록도의 예를 도시한 것이다.
도 7은 본 개시의 실시예들에 따른 서브프레임에서 PUSCH에 대한 송신기 블록도의 예를 도시한 것이다.
도 8은 본 개시의 실시예들에 따른 서브프레임에서 PUSCH에 대한 수신기 블록도의 예를 도시한 것이다.
도 9는 본 개시의 실시예들에 따른 2 개의 슬라이스들의 예시적인 다중화를 도시한 것이다.
도 10은 본 개시의 실시예들에 따른 예시적인 안테나 블록들을 도시한 것이다.
도 11은 본 개시의 실시예들에 따른 예시적인 안테나 포트 레이아웃을 도시한 것이다.
도 12는 본 개시의 실시예들에 따라 UE에 의해 수행될 수 있는 2-파트 UCI 다중화 프로세스의 예를 도시한 것이다.
도 13은 본 개시의 실시예들에 따른 오버샘플링된 DFT 빔들의 3D 그리드의 예를 도시한 것이다.
도 14는 본 개시의 실시예들에 따라 UE에 의해 수행될 수 있는 2-파트 UCI 다중화 프로세스의 예를 도시한 것이다.
도 15는 본 개시의 실시예들에 따라 UE에 의해 수행될 수 있는 2-파트 UCI 다중화 프로세스의 예를 도시한 것이다.
도 16은 본 개시의 실시예들에 따른 예시적인 정렬 방식을 도시한 것이다.
도 17은 본 개시의 실시예들에 따라 UE에 의해 수행될 수 있는, CSI 보고를 포함하는 UL 전송을 송신하기 위한 방법의 흐름도를 도시한 것이다.
도 18은 본 개시의 실시예들에 따른 BS에 의해 수행될 수 있는, CSI 보고를 포함하는 UL 전송을 수신하기 위한 다른 방법의 흐름도를 도시한 것이다.
아래의 상세한 설명에 들어가기 전에, 본 특허 명세서 전체에 걸쳐 사용되는 특정 단어 및 어구들의 정의를 기재하는 것이 도움이 될 수 있다. 용어 "커플(couple)" 및 그 파생어는 두 개 이상의 요소 사이의 어떤 직접 또는 간접 통신을 나타내거나, 이들 요소가 서로 물리적으로 접촉하고 있는지의 여부를 나타낸다. 용어 "송신(transmit)", "수신(receive)" 및 "통신(communicate)" 그리고 그 파생어는 직접 통신 및 간접 통신 모두를 포함한다. 용어 "포함한다(include)" 및 "구성한다(comprise)" 그리고 그 파생어는 제한이 아닌 포함을 의미한다. 용어 "또는(or)"은 포괄적 용어로써, '및/또는'을 의미한다. 어구 "~와 관련되다(associated with)" 및 그 파생어는 ~을 포함한다(include), ~에 포함된다(be included within), ~와 결합하다(interconnect with), ~을 함유하다(contain), ~에 함유되어 있다(be contained within), ~에 연결한다(connect to or with), ~와 결합하다(couple to or with), ~ 전달한다(be communicable with), 와 협력하다(cooperate with), ~를 끼우다(interleave), ~을 나란히 놓다(juxtapose), ~에 인접하다(be proximate to), 구속하다/구속되다(be bound to or with), 소유하다(have), 속성을 가지다(have a property of), ~와 관계를 가지다(have a relationship to or with) 등을 의미한다. 용어 "컨트롤러(controller)"는 적어도 하나의 동작을 제어하는 어떤 장치, 시스템 또는 그 일부를 의미한다. 이러한 컨트롤러는 하드웨어 또는 하드웨어와 소프트웨어 및/또는 펌웨어의 조합으로 구현될 수 있다. 특정 컨트롤러와 관련된 기능은 로컬 또는 원격으로 중앙 집중식으로 처리(centralized)되거나 또는 분산식으로 처리(distributed)될 수 있다. 어구 "적어도 하나"는, 그것이 항목들의 나열과 함께 사용될 경우, 나열된 항목들 중 하나 이상의 상이한 조합이 사용될 수 있음을 의미한다. 예를 들어, "A, B, 및 C 중 적어도 하나"는 다음의 조합, 즉 A, B, C, A와 B, A와 C, B와 C, 그리고 A와 B와 C 중 어느 하나를 포함한다.
또한, 후술하는 각종 기능들은 컴퓨터 판독 가능한 프로그램 코드로 형성되고 컴퓨터 판독 가능한 매체에서 구현되는 하나 이상의 컴퓨터 프로그램 각각에 의해 구현 또는 지원될 수 있다. 용어 "애플리케이션" 및 "프로그램"은 하나 이상의 컴퓨터 프로그램, 소프트웨어 컴포넌트, 명령 세트, 프로시저, 함수, 객체, 클래스, 인스턴스, 관련 데이터, 혹은 적합한 컴퓨터 판독 가능한 프로그램 코드에서의 구현용으로 구성된 그것의 일부를 지칭한다. 어구 "컴퓨터 판독 가능한 프로그램 코드"는 소스 코드, 오브젝트 코드, 및 실행 가능한 코드를 포함하는 컴퓨터 코드의 종류를 포함한다. 어구 "컴퓨터 판독 가능한 매체"는 ROM(read only memory), RAM(random access memory), 하드 디스크 드라이브, 컴팩트 디스크(CD), 디지털 비디오 디스크(DVD), 혹은 임의의 다른 타입의 메모리와 같은, 컴퓨터에 의해 액세스될 수 있는 임의의 타입의 매체를 포함한다. "비일시적인" 컴퓨터 판독 가능한 매체는 유선, 무선, 광학, 일시적인 전기적 또는 다른 신호들을 전달시키는 통신 링크를 제외한다. 비일시적 컴퓨터 판독 가능한 매체는 데이터가 영구적으로 저장되는 매체 그리고 재기록이 가능한 광디스크 또는 소거 가능한 메모리 장치와 같은, 데이터가 저장되어 나중에 덮어 씌어지는 매체를 포함한다.
다른 특정 단어 및 어구에 대한 정의가 이 특허 명세서 전반에 걸쳐 제공된다. 당업자는 대부분의 경우가 아니더라도 다수의 경우에 있어서, 이러한 정의는 종래에 뿐만 아니라 그러한 정의된 단어 및 어구의 향후 사용에 적용될 수 있음을 이해해야 한다.
이하에 설명되는 도 1 내지 도 18, 및 이 특허 명세서에 있어서의 본 개시의 원리들을 설명하기 위해 사용되는 각종 실시예들은 오직 예시의 방법에 의한 것이며, 어떤 방식으로도 본 개시의 범위를 제한하는 것으로 해석되어서는 안된다. 본 개시의 원리들은 임의의 적절하게 구성된 무선 통신 시스템 또는 장치에서 구현될 수 있다는 것을 당업자는 이해할 수 있을 것이다.
다음의 문헌들 및 표준 설명들 즉, 3GPP TS 36.211 v16.2.0, "E-UTRA, Physical channels and modulation"(본 명세서에서 "REF 1"); 3GPP TS 36.212 v16.2.0, "E-UTRA, Multiplexing and Channel coding"(본 명세서에서 "REF 2"); 3GPP TS 36.213 v16.2.0, "E-UTRA, Physical Layer Procedures"(본 명세서에서 "REF 3"); 3GPP TS 36.321 v16.2.0, "E-UTRA, Medium Access Control(MAC) protocol specification"(본 명세서에서 "REF 4"); 3GPP TS 36.331 v16.2.0, "E-UTRA, Radio Resource Control(RRC) protocol specification"(본 명세서에서 "REF 5"); 3GPP TR 22.891 v14.2.0(본 명세서에서 "REF 6"); 3GPP TS 38.212 v16.2.0, "E-UTRA, NR, Multiplexing and channel coding"(본 명세서에서 "REF 7"); 3GPP TS 38.214 v16.2.0, "E-UTRA, NR, Physical layer procedures for data"(본 명세서에서 "REF 8"); 및 3GPP TS 38.213 v16.2.0, "E-UTRA, NR, Physical Layer Procedures for control"(본 명세서에서 "REF 9")은 본 명세서에서 완전히 설명된 것처럼 참조로서 본 개시에 통합된다.
본 개시의 양태, 특징 및 이점은 본 개시를 수행하기 위해 고려되는 최선의 모드를 포함하는 다수의 특정 실시예 및 구현을 단순히 예시함으로써 다음의 상세한 설명으로부터 용이하게 명백해진다. 본 개시는 또한 그 밖의 상이한 실시예들도 가능하고, 그 몇몇 세부 사항은 본 개시의 사상 및 범위를 벗어나지 않고 각종 명백한 측면에서 수정될 수 있다. 따라서, 도면 및 설명은 제한적인 것이 아니라 본질적으로 예시적인 것으로 간주되어야 한다. 본 개시는 첨부 도면에서 제한이 아닌 예로서 도시되어 있다.
이하에서는, 간결함을 위해 FDD와 TDD를 모두 DL 및 UL 시그널링을 위한 이중 방식으로 간주한다.
다음의 예시적인 설명 및 실시예가 직교 주파수 분할 다중화(OFDM) 또는 직교 주파수 분할 다중 액세스(OFDMA)을 가정하지만, 본 개시는 다른 OFDM 기반 송신 파형 또는 필터링된 OFDM(F-OFDM)과 같은 다중 액세스 방식으로 확장될 수 있다.
4G 통신 시스템 구축 이후 증가하는 무선 데이터 트래픽에 대한 수요를 충족시키기 위해 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 따라서, 5G 또는 pre-5G 통신 시스템은 '비욘드(Beyond) 4G 네트워크' 또는 '포스트(Post) LTE 시스템'이라고도 한다.
5G 통신 시스템은 더 높은 데이터 송신률을 달성하기 위해 더 높은 주파수(mmWave) 대역, 예를 들어 60GHz 대역에서 구현되는 것으로 간주된다. 무선파의 전파 손실을 줄이고 송신 범위를 늘리기 위해, 5G 통신 시스템의 설계에서는 빔포밍, 거대 배열 다중입력 다중출력(massive MIMO), 전차원 MIMO(FD-MIMO), 어레이 안테나, 아날로그 빔포밍, 및 대규모 안테나 기술들이 논의되고 있다.
또한, 시스템 네트워크 개선을 위해, 5G 통신 시스템에서는 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud RAN), 초고밀도 네트워크, D2D(device-to-device) 통신, 무선 백홀 통신, 이동 네트워크, 협력 통신, CoMP(Coordinated Multi-Points) 송수신, 간섭 완화 및 제거 등의 기술 개발이 이루어지고 있다.
아래의 도 1 내지 도 4b에서는 무선 통신 시스템들에서 구현되고 또한 OFDM(orthogonal frequency division multiplexing) 또는 OFDMA(orthogonal frequency division multiple access) 통신 기술들을 사용하여 구현되는 다양한 실시예들을 설명한다. 도 1 내지 도 3의 설명은 상이한 실시예들이 구현될 수 있는 방식에 대한 물리적 또는 구조적 제한을 나타내는 것을 의미하지 않는다. 본 개시의 상이한 실시예들은 임의의 적절하게 구성된 통신 시스템에서 구현될 수 있다. 본 개시는 함께 또는 서로 조합하여 사용될 수 있거나 독립형 방식으로 동작할 수 있는 여러 구성 요소를 포함한다.
도 1은 본 개시의 실시예들에 따른 예시적 무선 네트워크를 도시한 것이다. 도 1에 나타낸 무선 네트워크의 실시예는 단지 설명을 위한 것이다. 무선 네트워크(100)에 대한 다른 실시예들이 본 개시의 범위를 일탈하지 않는 범위 내에서 사용될 수 있다.
도 1에 도시된 바와 같이, 무선 네트워크는 gNB(101), gNB(102), 및 gNB(103)을 포함한다. gNB(101)는 gNB(102) 및 gNB(103)와 통신한다. 또한, gNB(101)는 적어도 하나의 네트워크(130), 예를 들어, 인터넷, 전용 IP(Internet Protocol) 네트워크, 또는 다른 데이터 네트워크와도 통신한다.
gNB(102)는 gNB(102)의 커버리지 영역(120) 내에 있는 제 1 복수의 사용자 장비(UE)들에게, 네트워크(130)에의 무선 광대역 액세스를 제공한다. 제 1 복수의 UE들은 중소기업(SB)에 위치할 수 있는 UE(111); 대기업(E)에 위치할 수 있는 UE(112); 와이파이 핫 스팟(HS)에 위치할 수 있는 UE(113); 제 1 주거지역(R)에 위치할 수 있는 UE(114); 제 2 주거지역(R)에 위치할 수 있는 UE(115); 및 휴대 전화, 무선 랩탑, 무선 PDA 등과 같은 모바일 장치(M)일 수 있는 UE(116)를 포함한다. gNB(103)는 gNB(103)의 커버리지 영역(125) 내에 있는 제 2 복수의 UE들에게, 네트워크(130)에의 무선 광대역 액세스를 제공한다. 제 2 복수의 UE들은 UE(115) 및 UE(116)를 포함한다. 일부 실시예들에서, gNB들(101-103) 중 하나 이상의 gNB들은 5G, LTE, LTE-A, WiMAX, WiFi 또는 다른 무선 통신 기술들을 사용하여 서로 간에 및 UE들(111-116)과 통신할 수 있다.
네트워크 타입에 따라 "기지국" 또는 "BS"라는 용어는 네트워크에 무선 액세스를 제공하도록 구성된 컴포넌트(또는 컴포넌트 집합), 예를 들면, 송신 포인트(TP), 송-수신 포인트(TRP), 향상된 기지국(eNodeB 또는 gNB), 5G 기지국(gNB), 매크로셀, 펨토셀, WiFi 액세스 포인트(AP) 또는 기타 무선 가능 장치를 지칭할 수 있다. 기지국은 하나 이상의 무선 통신 프로토콜, 예컨대 5G 3GPP 새로운 무선 인터페이스/액세스(NR), LTE(long term evolution), LTE-A(LTE-advanced), HSPA(high speed packet access), Wi-Fi 802.11a/b/g/n/ac 등에 따라 무선 액세스를 제공할 수 있다. 편의상, 용어 "BS" 및 "TRP"는 본 특허 명세서에서 원격 단말에 대한 무선 액세스를 제공하는 네트워크 인프라스트럭처를 나타내기 위해 상호 교환적으로 사용된다. 또한, 네트워크 타입에 따라, "사용자 장비" 또는 "UE"라는 용어는 "이동국", "가입자국", "원격 단말", "무선 단말", "수신 포인트" 또는 "사용자 장치"와 같은 임의의 컴포넌트를 지칭할 수 있다. 편의상, 용어들 "사용자 장비" 및 "UE"는, UE가 이동 장치(예컨대, 휴대 전화기 또는 스마트 폰)이든 일반적으로 고려되는 고정 장치(예컨대, 데스크탑 컴퓨터 또는 벤딩 머신)이든 간에, BS에 무선으로 액세스하는 원격 무선 장비를 지칭하는 것으로 본 특허 명세서에서는 사용된다.
점선은, 단지 예시 및 설명의 목적으로 대략의 원형으로 나타낸 커버리지 영역들(120 및 125)의 대략적인 범위들을 나타낸다. gNB들과 연관된 커버리지 영역들, 예를 들어 커버리지 영역들(120 및 125)은 gNB들의 구성, 및 자연 및 인공 장애물들과 관련된 무선 환경의 변화에 따라, 불규칙한 형태들을 포함하는 다른 형태들을 가질 수 있음을 명확하게 이해해야 한다.
아래에서 더 상세히 설명되는 바와 같이, UE들(111-116) 중 하나 이상은 제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 CSI 보고를 결정하는 것 - 제 2 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, PMI는 복수의 PMI 컴포넌트들을 포함하며, PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함함 -; PMI 컴포넌트들의 일부의 서브-컴포넌트들에 대한 우선 순위 값들을 결정하는 것; 및 결정된 우선 순위 값들에 기초하여 복수의 PMI 컴포넌트들 중 일부의 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지게 되도록 제 2 CSI 부분을 그룹 0, 그룹 1 및 그룹 2로 파티셔닝하는 것을 포함하는 CSI 보고를 위한 회로, 프로그래밍 또는 이들의 조합을 포함한다. 특정 실시예들에서, gNB(101-103) 중 하나 이상은 무선 통신 시스템에서 CSI 획득을 위한 회로, 프로그래밍 또는 이들의 조합을 포함한다.
도 1이 무선 네트워크의 일 예를 도시한 것이지만, 다양한 변화들이 도 1에 대하여 이루어질 수 있다. 예를 들어, 무선 네트워크는 임의의 적절한 배열로 임의의 개수의 gNB들 및 임의의 개수의 UE들을 포함할 수 있다. 또한, gNB(101)는 임의의 개수의 UE들과 직접 통신하여, 이 UE들에게 네트워크(130)로의 무선 광대역 액세스를 제공할 수 있다. 유사하게, 각 gNB(102-103)은 네트워크(130)와 직접 통신하여, UE들에게 네트워크(130)로의 직접 무선 광대역 액세스를 제공할 수 있다. 또한, gNB들(101, 102, 및/또는 103)은 외부 전화 네트워크들 또는 다른 타입의 데이터 네트워크들과 같은 다른 또는 추가의 외부 네트워크들에의 액세스를 제공할 수 있다.
도 2는 본 개시의 실시예들에 따른 예시적 gNB(102)를 도시한 것이다. 도 2에 도시된 gNB(102)의 실시예는 단지 설명을 위한 것이며, 도 1의 gNB들(101 및 103)은 동일하거나 유사한 구성을 가질 수 있다. 그러나, gNB들은 각종의 다양한 구성들로 이루어지며, 도 2는 gNB에 대한 임의의 특정 구현으로 본 개시의 범위를 제한하지 않는다.
도 2에 도시된 바와 같이, gNB(102)는 복수의 안테나들(205a-205n), 복수의 RF 송수신기들(210a-210n), 송신(TX) 처리 회로(215), 및 수신(RX) 처리 회로(220)를 포함한다. 또한, gNB(102)는 컨트롤러/프로세서(225), 메모리(230), 백홀 또는 네트워크 인터페이스(235)를 포함한다.
RF 트랜시버들(210a-210n)은, 안테나들(205a-205n)로부터, 네트워크(100) 내에서 UE들에 의해 송신되는 신호들과 같은 내향(incoming) RF 신호들을 수신한다. RF 트랜시버들(210a-210n)은 내향 RF 신호들을 하향 변환(down-convert)하여, IF 또는 기저대역 신호들을 생성한다. IF 또는 기저대역 신호들은, 기저대역 또는 IF 신호들을 필터링하고, 디코딩하고, 및/또는 디지털화하는 것에 의하여 처리된 기저대역 신호들을 생성하는 RX 처리 회로(220)로 전송된다. RX 처리 회로(220)는 이 처리된 기저대역 신호들을, 추가의 처리를 위하여 컨트롤러/프로세서(225)로 송신한다.
TX 처리 회로(215)는, 컨트롤러/프로세서(225)로부터 아날로그 또는 디지털 데이터(예컨대, 음성 데이터, 웹 데이터, 이-메일, 또는 쌍방향 비디오 게임 데이터)를 수신한다. TX 처리 회로(215)는, 외향(outgoing) 기저대역 데이터를 인코딩, 멀티플렉싱, 및/또는 디지털화하여, 처리된 기저대역 또는 IF 신호들을 생성한다. RF 트랜시버들(210a-210n)은 TX 처리 회로(215)로부터, 외향 처리된 기저대역 또는 IF 신호들을 수신하고, 그 기저대역 또는 IF 신호들을, 안테나들(205a-205n)을 통해 송신되는 RF 신호들로 상향 변환한다.
컨트롤러/프로세서(225)는 gNB(102)의 전반적인 동작을 제어하는 하나 이상의 프로세서들 또는 다른 처리 장치들을 포함할 수 있다. 예를 들어, 컨트롤러/프로세서(225)는, 잘 알려진 원리들에 따라 RF 트랜시버들(210a-210n), RX 처리 회로(220), 및 TX 처리 회로(215)에 의해 순방향 채널 신호들의 수신 및 역방향 채널 신호들의 송신을 제어할 수 있다. 컨트롤러/프로세서(225)는 더 진보된 무선 통신 기능들과 같은 추가 기능들도 지원할 수 있다.
예를 들어, 컨트롤러/프로세서(225)는 복수의 안테나들(205a-205n)로부터의 외향 신호들이 원하는 방향으로 효과적으로 조종하기 위해 다르게 가중처리되는 빔포밍 또는 지향성 라우팅 동작들을 지원할 수 있다. 다양한 다른 기능들 중 임의의 기능이 컨트롤러/프로세서(225)에 의해 gNB(102)에서 지원될 수 있다.
또한, 컨트롤러/프로세서(225)는 메모리(230)에 상주하는 프로그램들 및 다른 프로세스들, 예를 들어 OS를 실행할 수 있다. 컨트롤러/프로세서(225)는 실행 프로세스에 의한 요구에 따라 데이터를 메모리(230) 내로 또는 외부로 이동시킬 수 있다.
또한, 컨트롤러/프로세서(225)는 백홀 또는 네트워크 인터페이스(235)에 커플링된다. 백홀 또는 네트워크 인터페이스(235)는, gNB(102)가 백홀 연결을 통해 또는 네트워크를 통해 다른 장치들 또는 시스템들과 통신하는 것을 가능하게 한다. 인터페이스(235)는 임의의 적절한 유선 또는 무선 연결(들)을 통한 통신들을 지원할 수 있다. 예를 들어, gNB(102)가 셀룰러 통신 시스템(예컨대, 5G, LTE, 또는 LTE-A를 지원하는 것)의 일부로서 구현되는 경우, 인터페이스(235)는, gNB(102)가 유선 또는 무선 백홀 연결을 통해 다른 gNB들과 통신하는 것을 가능하게 할 수 있다. gNB(102)가 액세스 포인트로서 구현되는 경우, 인터페이스(235)는, gNB(102)가 유선 또는 무선 로컬 영역 네트워크를 통해 또는 유선 또는 무선 연결을 통해 더 큰 네트워크(예컨대, 인터넷)로 전송하는 것을 가능하게 한다. 인터페이스(235)는 유선 또는 무선 연결, 예를 들어 이더넷 또는 RF 트랜시버를 통한 통신들을 지원하는 임의의 적절한 구조를 포함한다.
메모리(230)는 컨트롤러/프로세서(225)에 커플링된다. 메모리(230)의 일부는 RAM을 포함할 수 있으며, 메모리(230)의 다른 일부는 플래시 메모리 또는 다른 ROM을 포함할 수 있다.
도 2가 gNB(102)의 일 예를 도시하고 있지만, 다양한 변화들이 도 2에 대하여 이루어질 수 있다. 예를 들어, gNB(102)는 도 2에 나타낸 각 컴포넌트에 대한 임의의 개수를 포함할 수 있다. 일 특정 예로서, 액세스 포인트는 다수의 인터페이스들(235)을 포함할 수 있고, 컨트롤러/프로세서(225)는 상이한 네트워크 주소들 사이에서 데이터를 라우팅하는 라우팅 기능들을 지원할 수 있다. 다른 특정 예로서, 단일 인스턴스의 TX 처리 회로(215) 및 단일 인스턴스의 RX 처리 회로(220)를 포함하는 것으로 도시되어 있지만, gNB(102)는 각각에 대한 복수의 인스턴스들을 포함할 수 있다(예컨대, RF 트랜시버당 하나). 또한, 도 2의 각종 컴포넌트들이 조합되거나, 더 세분화되거나, 생략될 수 있으며, 특정 필요들에 따라 추가의 컴포넌트들이 부가될 수도 있다.
도 3은 본 개시의 실시예들에 따른 예시적 UE(116)를 도시한 것이다. 도 3에 도시된 UE(116)의 실시예는 단지 설명을 위한 것이며, 도 1의 UE들(111-115)은 동일하거나 유사한 구성을 가질 수 있다. 그러나, UE들은 각종의 다양한 구성들로 이루어지며, 도 3은 UE에 대한 임의의 특정 구현으로 본 개시의 범위를 제한하지 않는다.
도 3에 도시된 바와 같이, UE(116)는 안테나(305), 무선 주파수(radio frequency, RF) 트랜시버(310), TX 처리 회로(315), 마이크로폰(320), 및 수신(RX) 처리 회로(325)를 포함한다. 또한, UE(116)는 스피커(330), 컨트롤러/프로세서(340), 입/출력(I/O) 인터페이스(IF)(345), 터치스크린(350), 디스플레이(355), 및 메모리(360)를 포함한다. 메모리(360)는 운영 시스템(OS)(361) 및 하나 이상의 애플리케이션들(362)을 포함한다.
RF 트랜시버(310)는 네트워크(100)의 gNB에 의해 송신되는 내향 RF 신호를 안테나(305)로부터 수신한다. RF 트랜시버(310)는 내향 RF 신호를 하향 변환하여, 중간 주파수(intermediate frequency, IF) 또는 기저대역 신호를 생성한다. IF 또는 기저대역 신호는, 그 기저대역 또는 IF 신호를 필터링하고, 디코딩하고, 및/또는 디지털화하는 것에 의해 처리된 기저대역 신호를 생성하는 RX 처리 회로(325)로 전송된다. RX 처리 회로(325)는 그 처리된 기저대역 신호를, 스피커(330)로 송신하거나(예컨대, 음성 데이터), 또는 추가 처리를 위해 컨트롤로/프로세서(340)로 송신한다(예컨대, 웹 브라우징 데이터).
TX 처리 회로(315)는 마이크로폰(320)으로부터 아날로그 또는 디지털 음성 데이터를 수신하거나 또는 컨트롤로/프로세서(340)로부터 다른 외향 기저대역 데이터(예컨대, 웹 데이터, 이-메일, 또는 쌍방향 비디오 게임 데이터)를 수신한다. TX 처리 회로(315)는 그 외향 기저대역 데이터를 인코딩, 멀티플렉싱, 및/또는 디지털화하여, 처리된 기저대역 또는 IF 신호를 생성한다. RF 트랜시버(310)는 TX 처리 회로(315)로부터 외향 처리된 기저대역 또는 IF 신호를 수신하고, 그 기저대역 또는 IF 신호를, 안테나(305)를 통해 송신되는 RF 신호로 상향 변환한다.
컨트롤로/프로세서(340)는 하나 이상의 프로세서들 또는 다른 처리 장치들을 포함할 수 있으며, 메모리(360)에 저장된 OS(361)를 실행함으로써 UE(116)의 전반적인 동작을 제어할 수 있다. 예를 들어, 컨트롤로/프로세서(340)는 잘 알려진 원리들에 따라 RF 트랜시버(310), RX 처리 회로(325), 및 TX 처리 회로(315)에 의해 순방향 채널 신호들의 수신 및 역방향 채널 신호들을 송신을 제어할 수 있다. 일부 실시예들에서, 컨트롤로/프로세서(340)는 적어도 하나의 마이크로프로세서 또는 마이크로컨트롤러를 포함한다.
컨트롤러/프로세서(340)는 또한 제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 CSI 보고를 결정하고 - 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, PMI는 복수의 PMI 컴포넌트들을 포함하며, PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함함 -, PMI 컴포넌트들 중 일부의 서브-컴포넌트들에 대한 우선 순위 값들을 결정하고, 이들 결정된 우선 순위 값들에 기초하여 복수의 PMI 컴포넌트들 중 일부의 서브-컴포넌트들이 그룹 1 및 그룹 2로 나누어지게 되도록 제 2 CSI 파트를 그룹 0, 그룹 1, 및 그룹 2로 파티셔닝하기 위한 프로세스와 같이 메모리(360)에 상주하는 다른 프로세스 및 프로그램을 실행할 수 있다. 컨트롤로/프로세서(340)는 실행 프로세스에 의한 요구에 따라 메모리(360) 내로 또는 외부로 데이터를 이동할 수 있다. 일부 실시예들에서, 컨트롤로/프로세서(340)는 OS(361)에 기초하여 또는 gNB들 또는 오퍼레이터로부터 수신된 신호들에 따라 애플리케이션들(362)을 실행하도록 구성된다. 또한, 컨트롤로/프로세서(340)는, 랩탑 컴퓨터 및 휴대용 컴퓨터와 같은 다른 장치들에 연결되는 능력을 UE(116)에게 제공하는 I/O 인터페이스(345)에 커플링되어 있다. I/O 인터페이스(345)는 이 주변기기들과 컨트롤로/프로세서(340) 간의 통신 경로이다.
또한, 컨트롤로/프로세서(340)는 터치스크린(350) 및 디스플레이(355)에 커플링된다. UE(116)의 오퍼레이터는 터치스크린(350)을 사용하여 UE(116)에 데이터를 입력할 수 있다. 디스플레이(355)는 예를 들어, 웹 사이트들로부터의 텍스트 및/또는 적어도 제한된 그래픽들을 렌더링할 수 있는 액정 표시 장치, 발광 다이오드 디스플레이, 또는 다른 디스플레이일 수 있다.
메모리(360)는 컨트롤로/프로세서(340)에 커플링된다. 메모리(360)의 일부는 랜덤 액세스 메모리(random access memory, RAM)를 포함할 수 있으며, 메모리(360)의 다른 일부는 플래시 메모리 또는 다른 판독 전용 메모리(read-only memory, ROM)를 포함할 수 있다.
도 3이 UE(116)의 일 예를 도시하고 있지만, 다양한 변화들이 도 3에 대하여 이루어질 수 있다. 예를 들어, 도 3의 각종 컴포넌트들은 조합되거나, 더 세분화되거나, 생략될 수 있으며, 특정 필요들에 따라 추가 컴포넌트들이 부가될 수도 있다. 일 특정 예로서, 컨트롤로/프로세서(340)는 복수의 프로세서들, 예를 들어 하나 이상의 중앙 처리 유닛(CPU)들 및 하나 이상의 그래픽 처리 유닛(GPU)들로 분할될 수 있다. 또한, 도 3이 모바일 전화기나 스마트 폰과 같이 구성된 UE(116)를 도시하고 있지만, UE들은 다른 타입의 모바일 또는 고정 장치들로서 동작하도록 구성될 수도 있다.
도 4a는 송신 경로 회로의 하이-레벨 도면이다. 예를 들어, 송신 경로 회로는 OFDMA(orthogonal frequency division multiple access) 통신을 위해 사용될 수 있다. 도 4b는 수신 경로 회로의 하이-레벨 도면이다. 예를 들어, 수신 경로 회로는 OFDMA(orthogonal frequency division multiple access) 통신을 위해 사용될 수 있다. 도 4a 및 도 4b에서, 다운링크 통신의 경우, 송신 경로 회로는 기지국(gNB)(102) 또는 중계국에서 구현될 수 있으며, 수신 경로 회로는 사용자 장비(예컨대, 도 1의 사용자 장비(116))에서 구현될 수 있다. 다른 예들에서, 업링크 통신의 경우, 수신 경로 회로(450)는 기지국(예컨대, 도 1의 gNB(102)) 또는 중계국에서 구현될 수 있으며, 송신 경로 회로는 사용자 장비(예컨대, 도 1의 사용자 장비(116))에서 구현될 수 있다.
송신 경로 회로는 채널 코딩 및 변조 블록(405), 직렬-병렬(S-to-P) 블록(410), 사이즈 N 역 고속 푸리에 변환(Inverse Fast Fourier Transform, IFFT) 블록(415), 병렬-직렬(P-to-S) 블록(420), 가산 사이클릭 프리픽스 블록(425), 및 업-컨버터(up-converter, UC)(430)를 포함한다. 수신 경로 회로(450)는 다운-컨버터(down-converter, DC)(455), 제거 사이클릭 프리픽스 블록(460), 직렬-병렬(S-to-P) 블록(465), 사이즈 N 고속 푸리에 변환(Fast Fourier Transform, FFT) 블록(470), 병렬-직렬(P-to-S) 블록(475), 및 채널 디코딩 및 복조 블록(480)을 포함한다.
도 4a(400) 및 도 4b(450)에서의 컴포넌트들 중 적어도 몇몇은 소프트웨어로 구현될 수 있는 한편, 다른 컴포넌트들은 설정 가능한 하드웨어 또는 소프트웨어와 구성 가능한 하드웨어의 혼합에 의해 구현될 수도 있다. 특히, 본 개시의 명세서에서 설명되는 FFT 블록들 및 IFFT 블록들은 구성 가능한 소프트웨어 알고리즘들로서 구현될 수 있으며, 여기서 사이즈 N의 값은 그 구현에 따라 변경될 수 있음에 유의한다.
또한, 본 개시가 고속 푸리에 변환 및 역 고속 푸리에 변환을 구현하는 실시예에 관한 것이지만, 이것은 단지 예시에 의한 것일 뿐이며, 본 개시의 범위를 한정하는 것으로 해석되어서는 아니 된다. 본 개시의 다른 실시예들에서는, 고속 푸리에 변환 함수들 및 역 고속 푸리에 변환 함수들이 이산 푸리에 변환(DFT) 함수들 및 역 이산 푸리에 변환(IDFT) 함수들로 각각 용이하게 대체될 수도 있음을 이해할 것이다. DFT 및 IDFT 함수들의 경우, 변수 N의 값은 임의의 정수(예컨대, 1, 2, 3, 4 등)가 될 수 있으며, FFT 및 IFFT 함수들의 경우, 변수 N의 값은 2의 제곱(즉, 1, 2, 4, 8, 16 등)인 임의의 정수가 될 수 있음을 이해할 것이다.
송신 경로 회로(400)에서, 채널 코딩 및 변조 블록(405)은 정보 비트들의 세트를 수신하여, 코딩(예컨대, LDPC 코딩)을 적용하고, 그 입력 비트들을 변조(예컨대, QPSK(Quadrature Phase Shift Keying) 또는 QAM(Quadrature Amplitude Modulation))함으로써, 주파수-영역 변조 심볼들의 시퀀스를 생성한다. 직렬-병렬 블록(410)은 직렬 변조된 심볼들을 병렬 데이터로 변환(즉, 역다중화)하여 N 병렬 심볼 스트림들을 생성하며, 여기서 N은 BS(102) 및 UE(116)에서 사용되는 IFFT/FFT 크기이다. 그 후에, 사이즈 N IFFT 블록(415)은 N 병렬 심볼 스트림들 상에서 IFFT 동작을 수행하여, 시간-도메인 출력 신호들을 생성한다. 병렬-직렬 블록(420)은 사이즈 N IFFT 블록(415)로부터의 병렬 시간-도메인 출력 심볼들을 변환(즉, 다중화)하여, 직렬 시간-도메인 신호를 생성한다. 그 후에, 가산 사이클릭 프리픽스 블록(425)는 시간-도메인 신호에 사이클릭 프리픽스를 삽입한다. 마지막으로, 업-컨버터(430)는 무선 채널을 통한 송신을 위해 가산 사이클릭 프리픽스 블록(425)의 출력을 RF 주파수로 변조(즉, 상향 변환)한다. 또한, 이 신호는 RF 주파수로 변환하기 이전에, 기저대역에서 필터링될 수도 있다.
송신된 RF 신호는 무선 채널을 통과한 이후에 UE(116)에 도달하여, gNB(102)에서의 동작들에 대한 역 동작들이 수행된다. 다운-컨버터(455)는 수신된 신호를 기저대역 주파수로 하향 변환하며, 제거 사이클릭 프리픽스 블록(460)은 그 사이클릭 프리픽스를 제거하여, 직렬 시간-도메인 기저대역 신호를 생성한다. 직렬-병렬 블록(465)은 시간-도메인 기저대역 신호를 병렬 시간-도메인 신호들로 변환한다. 그 후에, 사이즈 N FFT 블록(470)은 FFT 알고리즘을 수행하여 N 병렬 주파수-도메인 신호들을 생성한다. 병렬-직렬 블록(475)은 병렬 주파수-도메인 신호들을 변조된 데이터 심볼들의 시퀀스로 변환한다. 채널 디코딩 및 복조 블록(480)은 그 변조된 심볼들에 대한 복조를 행한 후에 디코딩함으로써, 원래의 입력 데이터 스트림을 복구한다.
gNB들(101-103) 각각은 사용자 장비(111-116)로의 다운링크 송신과 유사한 송신 경로를 구현할 수 있으며, 사용자 장비(111-116)로부터의 업링크 수신과 유사한 수신 경로를 구현할 수도 있다. 유사하게, 사용자 장비(111-116) 각각은 gNB들(101-103)로의 업링크 송신을 위한 아키텍처에 대응하는 송신 경로를 구현할 수 있으며, gNB들(101-103)로부터의 다운링크 수신을 위한 아키텍처에 대응하는 수신 경로를 구현할 수도 있다.
5G 통신 시스템 유스 케이스가 확인되고 설명되었다. 이러한 유스 케이스들은 크게 세 가지 그룹으로 분류될 수 있다. 일 예로, eMBB(enhanced mobile broadband)는 보다 덜 엄격한 레이턴시(latency) 및 신뢰성 요구사항들(less stringent latency and reliability requirements)로 높은 bits/sec 요구사항이 수행되도록 결정된다. 다른 예에 있어서, URLL(ultra-reliable and low latency)은 보다 덜 엄격한 bits/sec 요구사항으로 결정된다. 또 다른 예에 있어서, mMTC(massive machine type communication)는 장치들의 개수가 km2 당 십만에서 백만에 달할 수 있지만 안정성/처리량/레이턴시 요구사항은 보다 덜 엄격할 수 있도록 결정된다. 이러한 시나리오는 또한 배터리 소비가 가능한 최소화되어야 한다는 점에서 전력 효율 요구사항을 포함할 수도 있다.
통신 시스템은 기지국(BS) 또는 NodeB와 같은 송신 포인트에서 사용자 장비(UE)로 신호를 전달하는 다운링크(DL)와 UE에서 NodeB와 같은 수신 포인트로 신호를 전달하는 업링크(UL)를 포함한다. 일반적으로 단말 또는 이동국이라고도 하는 UE는 고정형 또는 이동형일 수 있으며 휴대 전화, 개인용 컴퓨터 장치 또는 자동화된 장치일 수 있다. 일반적으로 고정된 스테이션인 eNodeB는 액세스 포인트 또는 기타 동등한 용어로 지칭될 수 있다. LTE 시스템의 경우, NodeB를 종종 eNodeB라고 한다.
LTE 시스템과 같은 통신 시스템에서, DL 신호는 정보 컨텐츠를 전달하는 데이터 신호, DL 제어 정보(DCI)를 전달하는 제어 신호, 파일럿 신호라고도 알려진 기준 신호(RS)를 포함할 수 있다. eNodeB는 PDSCH(physical DL shared channel)를 통해 데이터 정보를 송신한다. eNodeB는 PDCCH(Physical DL Control Channel) 또는 EPDCCH(Enhanced PDCCH)를 통해 DCI를 송신한다.
eNodeB는 물리 하이브리드 ARQ 인디케이터 채널(PHICH)에서 UE로부터의 데이터 전송 블록(TB) 송신에 대한 응답으로 확인응답 정보를 송신한다. eNodeB는 CRS(UE-common RS), CSI-RS(channel state information RS) 또는 DMRS(demodulation RS)를 포함하는 여러 타입의 RS 중 하나 이상을 송신한다. CRS는 DL 시스템 대역폭(BW)을 통해 송신되며 UE가 데이터를 복조하거나 정보를 제어하거나 측정을 수행하기 위한 채널 추정치를 획득하는데 사용할 수 있다. CRS 오버헤드를 줄이기 위해, eNodeB는 CRS보다 시간 및/또는 주파수 도메인에서 더 작은 밀도로 CSI-RS를 송신할 수 있다. DMRS는 각각의 PDSCH 또는 EPDCCH의 BW에서만 송신될 수 있으며, UE는 DMRS를 사용하여 PDSCH 또는 EPDCCH에서 각각 데이터 또는 제어 정보를 복조할 수 있다. DL 채널에 대한 송신 시간 간격을 서브프레임이라고 하며, 예를 들어 1 밀리 초의 듀레이션을 가질 수 있다.
DL 신호는 또한 시스템 제어 정보를 전달하는 논리 채널의 송신을 포함한다. BCCH는 DL 신호가 마스터 정보 블록(MIB)을 전달할 때 브로드 캐스트 채널(BCH)이라고 하는 전송 채널에 매핑되고, DL 신호가 시스템 정보 블록(SIB)을 전달할 때 DL-SCH(DL shared channel)에 매핑된다. 대부분의 시스템 정보는 DL-SCH를 사용하여 송신되는 서로 다른 SIB들에 포함된다. 서브프레임 내 DL-SCH 상의 시스템 정보의 존재는 SI-RNTI(System Information RNTI)로 스크램블된 CRC(Cyclic Redundancy Check)와 함께 코드워드를 전달하는 해당 PDCCH의 송신에 의해 표시될 수 있다. 대안적으로, SIB 송신을 위한 스케줄링 정보는 이전 SIB에서 제공될 수 있으며 첫 번째 SIB(SIB-1)에 대한 스케줄링 정보가 MIB에 의해 제공될 수 있다.
DL 리소스 할당은 서브프레임 유닛과 물리 리소스 블록(PRB) 그룹으로 수행된다. 송신 BW는 리소스 블록(RB)이라고 하는 주파수 리소스 유닛을 포함한다. 각 RB는
Figure pct00016
개의 서브캐리어 또는 12 개의 RE와 같은 리소스 요소(RE)를 포함한다. 하나의 서브프레임에서의 하나의 RB 유닛을 PRB라고 한다. UE는 PDSCH 송신 BW에 대하여 총
Figure pct00017
개의 RE를 위한
Figure pct00018
RB를 할당받을 수 있다.
UL 신호는 데이터 정보를 전달하는 데이터 신호, UL 제어 정보(UCI)를 전달하는 제어 신호 및 UL RS를 포함할 수 있다. UL RS에는 DMRS 및 SRS(Sounding RS)가 포함된다. UE는 각각의 PUSCH 또는 PUCCH의 BW에서만 DMRS를 송신한다. eNodeB는 DMRS를 사용하여 데이터 신호 또는 UCI 신호를 복조할 수 있다. UE는 UL CSI를 eNodeB에 제공하기 위해 SRS를 송신한다. UE는 각각의 PUSCH(physical UL shared channel) 또는 PUCCH(physical UL control channel)를 통해 데이터 정보 또는 UCI를 송신한다. UE가 동일한 UL 서브프레임에서 데이터 정보와 UCI를 송신해야 하는 경우, UE는 PUSCH에서 양쪽 모두를 다중화할 수 있다. UCI는 PDSCH에서 데이터 TB에 대한 올바른(ACK) 또는 잘못된(NACK) 검출을 표시하거나 또는 PDCCH 검출(DTX)의 부존재를 나타내는 하이브리드 자동 반복 요청 확인(HARQ-ACK) 정보, UE의 버퍼에 데이터가 있는지 여부를 나타내는 SR(Scheduling Request), RI(Rank Indicator), 및 eNodeB가 UE에 대한 PDSCH 송신을 위한 링크 적응을 수행할 수 있도록 하는 CSI(Channel State Information)를 포함한다. HARQ-ACK 정보는 또한 반영구적으로 스케줄링된 PDSCH의 해제를 나타내는 PDCCH/EPDCCH의 검출에 응답하여 UE에 의해 송신된다.
UL 서브프레임은 두 개의 슬롯을 포함한다. 각 슬롯은 데이터 정보, UCI, DMRS 또는 SRS를 송신하기 위한
Figure pct00019
개의 심볼을 포함한다. UL 시스템 BW의 주파수 리소스 단위는 리소스 블록(RB)이다. UE는 송신 BW을 위해 총
Figure pct00020
개의 RE에 대한
Figure pct00021
RB를 할당받는다. PUCCH의 경우, NRB=1이다. 마지막 서브프레임 심볼은 하나 이상의 UE로부터의 SRS 송신을 다중화하는데 사용될 수 있다. 데이터/UCI/DMRS 송신에 사용할 수 있는 서브프레임 심볼의 수는
Figure pct00022
이며, 여기서 마지막 서브프레임 심볼이 SRS 송신에 사용되는 경우 NSRS=1이며, 그렇지 않은 경우 NSRS=0이다.
도 5는 본 개시의 실시예들에 따른 서브프레임에서 PDSCH에 대한 예시적인 송신기 블록도(500)를 도시한 것이다. 도 5에 도시된 송신기 블록도(500)의 실시예는 단지 설명을 위한 것이다. 도 5에 도시된 하나 이상의 구성 요소는 언급된 기능을 수행하도록 구성된 특수 회로로 구현될 수 있거나 하나 이상의 구성 요소는 언급된 기능을 수행하기 위한 명령을 실행하는 하나 이상의 프로세서에 의해 구현될 수 있다. 도 5는 본 개시의 범위를 블록도(500)의 임의의 특정 구현으로 제한하지 않는다.
도 5에 도시된 바와 같이, 정보 비트들(510)이 터보 인코더와 같은 인코더(520)에 의해 인코딩되어, 예를 들어 QPSK(Quadrature Phase Shift Keying) 변조를 사용하여 변조기(530)에 의해 변조된다. 직렬-병렬(S/P) 변환기(540)는 할당된 PDSCH 송신 BW를 위한 송신 BW 선택 유닛(555)에 의해 선택된 RE들에 매핑되도록 매퍼(550)에 후속적으로 제공되는 M 개의 변조 심볼들을 생성하고, 유닛(560)은 역 고속 푸리에 변환(IFFT)을 적용하고, 그 출력이 병렬-직렬(P/S) 변환기(570)에 의해 직렬화되어 시간 도메인 신호를 생성하고, 필터(580)에 의해 필터링이 적용되고, 신호가 송신된다(590). 데이터 스크램블링, 사이클릭 프리픽스 삽입, 타임 윈도윙, 인터리빙, 및 본 기술 분야에 잘 알려진 다른 기능들과 같은 부가적인 기능들은 간략화를 위해 나타내지 않는다.
도 6은 본 개시의 실시예들에 따른 서브프레임의 PDSCH에 대한 수신기 블록도(600)를 도시한 것이다. 도 6에 도시된 블록도(600)의 실시예는 단지 설명을 위한 것이다. 도 6에 도시된 하나 이상의 구성 요소는 언급된 기능을 수행하도록 구성된 특수 회로로 구현될 수 있거나 하나 이상의 구성 요소는 언급된 기능을 수행하기 위한 명령을 실행하는 하나 이상의 프로세서에 의해 구현될 수 있다. 도 6은 본 개시의 범위를 블록도(600)의 임의의 특정 구현으로 제한하지 않는다.
도 6에 도시된 바와 같이, 수신 신호(610)가 필터(620)에 의해 필터링되고, 할당된 수신 BW에 대한 RE들(630)이 BW 선택기(635)에 의해 선택되고, 유닛(640)이 고속 푸리에 변환(FFT)을 적용하고, 출력이 병렬-직렬 변환기(650)에 의해 직렬화된다. 후속적으로서, 복조기(660)는 DMRS 또는 CRS(미도시)로부터 얻어진 채널 추정치를 적용하여 데이터 심볼들을 코히런트하게 복조한 후, 터보 디코더와 같은 디코더(670)가 복조된 데이터를 디코딩하여 정보 데이터 비트들(680)의 추정을 제공한다. 시간-윈도윙, 사이클릭 프리픽스 제거, 디-스크램블링, 채널 추정, 및 디-인터리빙과 같은 부가적인 기능들은 간략화를 위해 나타내지 않는다.
도 7은 본 개시의 실시예들에 따른 서브프레임에서 PUSCH에 대한 송신기 블록도(700)를 도시한 것이다. 도 7에 도시된 블록도(700)의 실시예는 단지 설명을 위한 것이다. 도 7에 도시된 하나 이상의 구성 요소는 언급된 기능을 수행하도록 구성된 특수 회로로 구현될 수 있거나 하나 이상의 구성 요소는 언급된 기능을 수행하기 위한 명령을 실행하는 하나 이상의 프로세서에 의해 구현될 수 있다. 도 7은 본 개시의 범위를 블록도(700)의 임의의 특정 구현으로 제한하지 않는다.
도 7에 도시된 바와 같이, 정보 데이터 비트들(710)이 터보 인코더와 같은 인코더(720)에 의해 인코딩되고, 변조기(730)에 의해 변조된다. 이산 푸리에 변환(DFT) 유닛(740)이 변조된 데이터 비트들에 DFT를 적용하고, 할당된 PUSCH 송신 BW에 대응하는 RE들(750)이 송신 BW 선택 유닛(755)에 의해 선택되고, 유닛(760)이 IFFT를 적용하고, 사이클릭 프리픽스 삽입 이후에(미도시), 필터(770)에 의해 필터링이 적용되어 신호가 송신된다(780).
도 8은 본 개시의 실시예들에 따른 서브프레임에서 PUSCH에 대한 수신기 블록도(800)를 도시한 것이다. 도 8에 도시된 블록도(800)의 실시예는 단지 설명을 위한 것이다. 도 8에 도시된 하나 이상의 구성 요소는 언급된 기능을 수행하도록 구성된 특수 회로로 구현될 수 있거나 하나 이상의 구성 요소는 언급된 기능을 수행하기 위한 명령을 실행하는 하나 이상의 프로세서에 의해 구현될 수 있다. 도 8은 본 개시의 범위를 블록도(800)의 특정 구현으로 제한하지 않는다.
도 8에 도시된 바와 같이, 수신 신호(810)가 필터(820)에 의해 필터링된다. 후속적으로, 사이클릭 프리픽스가 제거된 이후에(미도시), 유닛(830)이 FFT를 적용하고, 할당된 PUSCH 수신 BW에 대응하는 RE들(840)이 수신 BW 선택기(845)에 의해 선택되고, 유닛(850)이 역 DFT(IDFT)를 적용하고, 복조기(860)가 DMRS(미도시)로부터 얻어진 채널 추정을 적용함으로써 데이터 심볼들을 코히어런트하게 복조하고, 터보 디코더와 같은 디코더(870)가 복조된 데이터를 디코딩하여 정보 데이터 비트들(880)의 추정을 제공한다.
차세대 셀룰러 시스템에서는, LTE 시스템의 능력을 넘어서 다양한 유스 케이스들이 상정된다. 5G 또는 5 세대 셀룰러 시스템에서는, 6GHz 미만 및 6GHz 이상(예를 들면, mmWave 체제)에서 작동할 수 있는 시스템이 요구 사항 중 하나가 된다. 3GPP TR 22.891에서는, 74 개의 5G 유스 케이스들이 확인되고 설명되었다. 이러한 유스 케이스들은 크게 세 가지 그룹으로 분류될 수 있다. 첫 번째 그룹은 "eMBB(Enhanced Mobile Broadband)"라고 불리며, 대기 시간 및 안정성 요구 사항이 덜 엄격한 고속 데이터 서비스를 대상으로 한다. 두 번째 그룹은 "URLL(Ultra-reliable and low latency)"이라고 불리며, 데이터 속도 요구 사항이 덜 엄격하지만 대기 시간에 대한 관용이 낮은 애플리케이션을 대상으로 한다. 세 번째 그룹은 "mMTC(massive MTC)"라고 불리며, 신뢰성, 데이터 속도 및 대기 시간 요구 사항이 덜 엄격한 km2 당 1 백만 개와 같은 많은 수의 저전력 장치 연결을 대상으로 한다.
5G 네트워크가 이러한 서로 다른 QoS(Quality of Services)를 가진 다양한 서비스를 지원하기 위해, 3GPP 사양에서는 네트워크 슬라이싱(network slicing)이라는 한 가지 방법이 식별되었다. DL-SCH에서 PHY 리소스들을 효율적으로 활용하고 다양한 슬라이스(상이한 리소스 할당 방식들, 뉴머롤로지들, 스케줄링 전략들을 가짐)를 다중화하기 위해, 유연하고 독립적인 프레임 또는 서브프레임 설계가 사용된다.
도 9는 본 개시의 실시예에 따른 2 개의 슬라이스(900)의 예시적인 다중화를 도시한 것이다. 도 9에 도시된 2 개의 슬라이스(900)의 다중화의 실시예는 단지 설명을 위한 것이다. 도 9에 도시된 하나 이상의 구성 요소는 언급된 기능을 수행하도록 구성된 특수 회로로 구현될 수 있거나 하나 이상의 구성 요소는 언급된 기능을 수행하기 위한 명령을 실행하는 하나 이상의 프로세서에 의해 구현될 수 있다. 도 9는 본 개시의 범위를 2 개의 슬라이스(900)의 다중화의 임의의 특정 구현으로 제한하지 않는다.
공통 서브프레임 또는 프레임 내에서 2 개의 슬라이스를 다중화하는 2 개의 예시적인 인스턴스가 도 9에 도시되어 있다. 이러한 예시적인 실시예들에서, 슬라이스는 하나의 송신 인스턴스가 제어(CTRL) 컴포넌트(예를 들어, 920a, 960a, 960b, 920b, 또는 960c) 및 데이터 컴포넌트(예를 들어, 930a, 970a, 970b, 930b 또는 970c)를 포함하는 하나 또는 두 개의 인스턴스로 구성된다. 실시예 910에서는, 2 개의 슬라이스가 주파수 도메인에서 다중화되는 반면, 실시예 950에서는 2 개의 슬라이스가 시간 도메인에서 다중화된다. 이 2 개의 슬라이스는 상이한 뉴머롤로지 세트들로 송신될 수 있다.
3GPP 사양은 최대 32 개의 CSI-RS 안테나 포트를 지원하여 gNB에 많은 수의 안테나 요소(예를 들면, 64 개 또는 128 개)를 장착시킬 수 있다. 이 경우, 하나의 CSI-RS 포트에 다수의 안테나 요소가 매핑된다. 5G와 같은 차세대 셀룰러 시스템의 경우, CSI-RS 포트의 최대 수는 동일하게 유지되거나 증가할 수 있다.
도 10은 본 개시의 실시예에 따른 예시적인 안테나 블록(1000)을 도시한 것이다. 도 10에 도시된 안테나 블록(1000)의 실시예는 단지 설명을 위한 것이다. 도 10은 본 개시의 범위를 안테나 블록(1000)의 임의의 특정 구현으로 제한하지 않는다.
mmWave 대역의 경우, 주어진 폼 팩터에 대해 안테나 요소의 수가 더 많을 수 있지만, CSI-RS 포트의 수(디지털적으로 프리코딩된 포트 수에 해당할 수 있음)는 하드웨어 제약(mmWave 주파수에서 많은 수의 ADC/DAC를 설치할 수 있는 가능성 등)으로 인해 제한되는 경향이 있다(이것이 도 10에 도시되어 있음). 이 경우, 하나의 CSI-RS 포트가 아날로그 위상 시프터들의 뱅크에 의해 제어될 수 있는 많은 수의 안테나 요소에 매핑된다. 그러면 하나의 CSI-RS 포트가 아날로그 빔포밍을 통해 좁은 아날로그 빔을 생성하는 하나의 서브 어레이에 대응할 수 있다. 이 아날로그 빔은 심볼들 또는 서브프레임들에서 위상 시프터 뱅크를 변경하여 더 넓은 범위의 각도에서 스위핑하도록 구성될 수 있다. 서브 어레이의 수(RF 체인 수와 동일)는 CSI-RS 포트의 수 N CSI-PORT과 동일하다. 디지털 빔포밍 유닛은 N CSI-PORT 아날로그 빔에 걸쳐 선형 조합을 수행함으로써 프리코딩 이득을 더욱 증가시킨다. 아날로그 빔들은 광대역(따라서 주파수 선택이 아님)이지만, 디지털 프리코딩은 주파수 하위 대역들 또는 리소스 블록들에 걸쳐 달라질 수 있다.
이하의 모든 구성 요소 및 실시예는 CP-OFDM(cyclic prefix OFDM) 파형뿐만 아니라 DFT-SOFDM(DFT-spread OFDM) 및 SC-FDMA(single-carrier FDMA) 파형을 사용한 UL 송신에 적용 가능하다. 또한, 스케줄링 유닛이 하나의 서브프레임(하나 또는 다중 슬롯으로 구성될 수 있음) 또는 하나의 슬롯인 경우, 다음의 모든 구성 요소 및 실시예가 UL 송신에 적용될 수 있다.
본 개시에서 CSI 보고의 주파수 해상도(보고 그래뉼래러티, reporting granularity) 및 스팬(보고 대역폭)은 각각 주파수 "서브대역(subband)" 및 "CSI 보고 대역(CRB)"으로 정의될 수 있다.
CSI 보고를 위한 서브대역은 CSI 보고를 위한 최소 주파수 단위를 나타내는 일련의 연속적인 PRB로 정의된다. 서브대역의 PRB 수는 주어진 DL 시스템 대역폭 값에 대해 고정될 수 있으며, 상위 계층/RRC 시그널링을 통해 반-정적으로 구성되거나 L1 DL 제어 시그널링 또는 MAC 제어 요소(MAC CE)를 통해 동적으로 구성될 수 있다. 서브대역의 PRB 수는 CSI 보고 설정에 포함될 수 있다.
"CSI 보고 대역"은 연속적이거나 비연속적인 서브대역의 세트/집합으로 정의되며, 여기서 CSI 보고가 수행된다. 예를 들어, CSI 보고 대역은 DL 시스템 대역폭 내의 모든 서브대역을 포함할 수 있다. 이를 "전대역(full-band)"이라고도 한다. 대안적으로, CSI 보고 대역은 DL 시스템 대역폭 내의 서브대역의 집합만을 포함할 수 있다. 이를 "부분 대역(partial band)"이라고도 한다.
"CSI 보고 대역"이라는 용어는 기능을 나타내는 예시로만 사용된다. "CSI 보고 서브대역 세트" 또는 "CSI 보고 대역폭"과 같은 다른 용어도 사용될 수 있다.
UE 구성의 관점에서, UE는 적어도 하나의 CSI 보고 대역으로 구성될 수 있다. 이 구성은 반-정적(상위 계층 시그널링 또는 RRC를 통해) 또는 동적(MAC CE 또는 L1 DL 제어 시그널링을 통해)일 수 있다. (예를 들어, RRC 시그널링을 통해) 다중(N) CSI 보고 대역으로 구성된 경우, UE는 n ≤ N CSI 보고 대역과 관련된 CSI를 보고할 수 있다. 예를 들어, 6GHz를 초과하는 대형 시스템 대역폭에는 여러 CSI 보고 대역이 필요할 수 있다. n 값은 반-정적(상위 계층 시그널링 또는 RRC를 통해) 또는 동적(MAC CE 또는 L1 DL 제어 시그널링을 통해)으로 구성될 수 있다. 또는 UE는 UL 채널을 통해 권장 값 n을 보고할 수 있다.
따라서, CSI 파라미터 주파수 그래뉼래러티는 다음과 같이 CSI 보고 대역별로 정의될 수 있다. CSI 파라미터는 CSI 보고 대역 내의 모든 Mn 개의 서브대역에 대해 하나의 CSI 파라미터가 있을 때 Mn 개의 서브대역이 있는 CSI 보고 대역에 대한 "단일" 보고로 구성된다. CSI 파라미터는 CSI 보고 대역 내의 Mn 개의 서브대역 각각에 대해 하나의 CSI 파라미터가 보고될 때 Mn개의 서브대역을 갖는 CSI 보고 대역에 대한 "서브대역"으로 구성된다.
도 11은 본 개시의 실시예들에 따른 예시적인 안테나 포트 레이아웃(1100)을 도시한 것이다. 도 11에 도시된 안테나 포트 레이아웃(1100)의 실시예는 단지 설명을 위한 것이다. 도 11은 본 개시의 범위를 안테나 포트 레이아웃(1100)의 임의의 특정 구현으로 제한하지 않는다.
도 11에 도시된 바와 같이, N1 및 N2는 각각 제 1 차원 및 제 2 차원에서 동일한 편광을 갖는 안테나 포트의 수이다. 2D 안테나 포트 레이아웃의 경우, N1 > 1, N2 > 1 이며, 1D 안테나 포트 레이아웃의 경우, N1 > 1 및 N2 = 1이다. 따라서, 이중 편파 안테나 포트 레이아웃의 경우, 총 안테나 포트 수는 2N1N2이다.
3GPP NR 사양에서, UE는 'typeII' 또는 'typeII-PortSelection'로 설정된 상위 레이어 파라미터 codebookType으로 구성되며, 각각의 PMI 값은 코드북 인덱스들
Figure pct00023
Figure pct00024
에 대응한다. codebookType = 'typeII'인 경우, 제 1 PMI i1은 다음을 나타내는 두 개의 레이어 공통(즉, UE가 RI = 2를 보고하는 경우 두 개의 레이어에 대해 공통으로 보고됨) 컴포넌트들을 포함한다.
● N1N2 직교 이산 푸리에 변환(DFT) 빔/벡터(회전 팩터(q1, q2)를 나타내는 인디케이터 i 1,1을 사용하여 표시됨)를 포함하는 직교 기저 세트 및
● N1N2 중 L 빔/벡터 선택(인디케이터 i 1,2를 사용하여 표시됨), 및 다음을 나타내는 두 개의 레이어 특정(즉, UE가 RI = 2를 보고하는 경우 두 개의 레이어 각각에 대해 보고됨) 컴포넌트들
○ 가장 강한 계수(인디케이터들 i 1,3,1 i 1,3,2를 사용하여 표시됨) 및
○ WB 진폭 계수
Figure pct00025
(인디케이터들 i 1,4,1 i 1,4,2를 사용하여 표시됨).
codebookType = 'typeII-PortSelection'인 경우, 제 1 PMI i1
Figure pct00026
중 L 포트 선택을 나타내는 레이어 공통(즉, UE가 RI = 2를 보고하는 경우 두 개의 레이어에 대해 공통으로 보고됨) 컴포넌트를 포함한다(인디케이터 i 1,1를 사용하여 표시됨).
N1 및 N2의 값들은 상위 레이어 파라미터 n1-n2-codebookSubsetRestriction으로 구성된다. 주어진 수의 CSI-RS 포트들에 대해 지원되는
Figure pct00027
의 구성들과
Figure pct00028
의 대응 값들이 제공된다. CSI-RS 포트 수는
Figure pct00029
이다. CSI-RS 포트의 수는 상위 레이어 파라미터 nrofPorts에 의해 구성된 대로
Figure pct00030
에 의해 주어진다. L의 값은 상위 레이어 파라미터 numberOfBeams에 의해서 구성된다.
제 1 PMI i1는 다음과 같이 주어진다.
codebookType이 'typeII'로 설정된 경우
Figure pct00031
codebookType이 'typeII-PortSelection'으로 설정된 경우
Figure pct00032
.
제 2 PMI
Figure pct00033
다음을 나타내는 두 개의 레이어 특정 컴포넌트들을 포함한다.
● 인디케이터들 i 2,1,1 i 2,1,2를 사용하여 표시되는 SB 위상 계수
Figure pct00034
, 및
● 인디케이터들 i 2,2,1i 2,2,2를 사용하여 표시되는 SB 진폭 계수
Figure pct00035
(subbandAmplitude를 통한 RRC 시그널링에 의해서 턴 온되거나 또는 턴 오프될 수 있음).
제 1 PMI는 광대역(WB) 방식으로 보고되며, 제 2 PMI는 광대역 또는 서브대역(SB) 방식으로 보고될 수 있다.
도 12는 UE(116)와 같은 UE에 의해 수행될 수 있는, 본 개시의 실시예들에 따른 예시적인 2-파트 UCI 다중화 프로세스(1200)를 도시한 것이다. 도 12에 도시된 2-파트 UCI 다중화 프로세스(1200)의 실시예는 단지 설명을 위한 것이다. 도 12는 본 개시의 범위를 프로세스(1200)의 임의의 특정 구현으로 제한하지 않는다.
도 12에 도시된 바와 같이, 2-파트 UCI 다중화(1200)는 codebookType = 'typeII' 또는 'typeII-PortSelection'일 때 PUSCH(또는 PUCCH)를 통해 Type II CSI를 보고하는데 사용되며, 여기서
● CQI, RI 및
Figure pct00036
는 파트 1에서 함께 다중화되어 인코딩되고, 여기서
Figure pct00037
Figure pct00038
은 각각 레이어 1 및 레이어 2에 대해 비-제로(즉,
Figure pct00039
)인 보고된 WB 진폭 수를 나타내며; 또한
● 나머지 CSI는 파트 2에서 함께 다중화되어 인코딩되고, 여기서 나머지 CSI는 제 1 PMI(i1)와 제 2 PMI(i2)를 포함한다. 또한 나머지 CSI는 레이어 인디케이터(LI)를 포함할 수도 있다.
파트 1 UCI는 UE가 하나보다 많은 CSI-RS 리소스로 구성된 경우 CRI를 포함할 수도 있다. cqi-FormatIndicator=widebandCQI인 경우, 파트 1 UCI에서 보고되는 CQI는 WB CQI에 대응하고, cqi-FormatIndicator=subbandCQI인 경우, 파트 1에서 보고되는 CQI는 WB CQI 및 SB 차등 CQI에 대응하며, 여기서 WB CQI는 모든 SB에 대해 공통적으로 보고되고, SB 차등 CQI는 각각의 SB에 대해 보고되며, SB의 수(또는 SB 인덱스 세트)가 UE에 대하여 구성된다.
파트 1에서 보고되는
Figure pct00040
의 값을 기반으로, 파트 2에 대한 CSI 보고 페이로드(비트)가 결정된다. 특히, 제 2 PMI i2의 컴포넌트들은 보고된 해당 WB 진폭들이 비-제로인 계수들에 대해서만 보고된다.
본 명세서에 그 전체 내용이 참조로서 포함되는, 발명의 명칭이 "Method and Apparatus for Explicit CSI Reporting in Advanced Wireless Communication Systems"인 2020년 5월 19일에 발행된 미국 특허 번호 제10,659,118호에 설명되어 있는 바와 같이, UE는 고-레졸루션(예를 들어, 타입 II) CSI 보고로 구성되며 여기서는 선형 조합 기반 타입 II CSI 보고 프레임워크가 제 1 및 제 2 안테나 포트 차원들에 추가하여 주파수 차원을 포함하는 것으로 확장된다.
도 13은 본 개시의 실시예들에 따른 오버샘플링된 DFT 빔들(제 1 포트 차원, 제 2 포트 차원, 주파수 차원)의 예시적인 3D 그리드(1300)를 도시한 것이다. 도 13에 도시된 3D 그리드(1300)의 실시예는 단지 설명을 위한 것이다. 도 13은 본 개시의 범위를 그리드(1300)의 임의의 특정 구현으로 제한하지 않는다.
도시된 바와 같이, 도 13은 오버샘플링된 DFT 빔들(제 1 포트 차원, 제 2 포트 차원, 주파수 차원)의 3D 그리드(1300)를 보여준다.
● 제 1 차원은 제 1 포트 차원과 연관되고,
● 제 2 차원은 제 2 포트 차원과 연관되며, 또한
● 제 3 차원은 주파수 차원과 연관된다.
제 1 및 제 2 포트 도메인 표현에 대한 기저 세트들은 각각의 길이 N1 및 길이 N2의, 각각의 오버샘플링 팩터들 O1 및 O2를 갖는 오버샘플링된 DFT 코드북들이다. 마찬가지로, 주파수 도메인 표현(즉, 제 3 차원)에 대한 기저 세트는 길이 N3의, 오버샘플링 팩터 O3을 갖는 오버샘플링된 DFT 코드북이다. 일 예에서, O1 = O2 = O3 = 4이다. 다른 예에서, 오버샘플링 팩터들 Oi는 {2, 4, 8}에 속한다. 또 다른 예에서, O1, O2 및 O3 중 적어도 하나는 (RCC 시그널링을 통해) 구성되는 상위 레이어이다.
UE는 향상된 타입 II CSI 보고를 위한 'TypeII-Compression' 또는 'TypeIII'로 설정된 상위 레이어 파라미터 CodebookType으로 구성되며 여기서는 모든 SB 및 주어진 레이어
Figure pct00041
에 대한 프리코더가(여기서 ν는 연관된 RI 값) 다음 중 하나에 의해 주어진다
Figure pct00042
, (Eq. 1)
또는
Figure pct00043
, (Eq. 2)
여기서
N1은 제 1 안테나 포트 차원에서의 안테나 포트 수이고,
N2는 제 2 안테나 포트 차원에서의 안테나 포트 수이고,
N3은 PMI 보고(CSI 보고 대역을 포함)를 위한 SB 또는 주파수 도메인(FD) 유닛/컴포넌트의 수이며, CQI 보고를 위한 SB의 수와 다를 수 있다(예를 들면, 더 적음).
Figure pct00044
Figure pct00045
(Eq. 1) 또는
Figure pct00046
(Eq. 2) 열 벡터이고,
Figure pct00047
Figure pct00048
열 벡터이고,
Figure pct00049
는 복소 계수이다.
본 개시의 나머지 부분에서, "PMI 보고를 위한 SB" 및 "PMI 보고를 위한 FD 유닛"이라는 용어는 동등하기 때문에 상호 교환적으로 사용된다.
일 변형에서, 서브세트 K < 2LM 계수(여기서 K는 고정이거나, gNB에 의해 구성되거나, UE에 의해 보고됨)일 때, 프리코더 수학식 Eq. 1 또는 Eq. 2에서 계수
Figure pct00050
Figure pct00051
로 대체되며, 여기서:
● 본 개시의 일부 실시예들에 따라 계수
Figure pct00052
가 UE에 의해 보고되는 경우,
Figure pct00053
이다.
● 그렇지 않은 경우(즉,
Figure pct00054
가 UE에 의해 보고되지 않음),
Figure pct00055
이다.
v(l,i,m) = 1 또는 0 여부의 표시는 본 개시의 일부 실시예들에 따른다.
일 변형에서, 프리코더 수학식 Eq. 1 또는 Eq. 2는 각각 다음과 같이 일반화되며
Figure pct00056
(Eq. 3)
Figure pct00057
(Eq. 4),
여기서 주어진 i에 대해, 기저 벡터의 수는 Mi이고 대응하는 기저 벡터들은
Figure pct00058
이다. Mi는 주어진 i에 대해 UE에 의해 보고되는 계수들
Figure pct00059
의 수이며, 여기서 Mi≤M이다(여기서
Figure pct00060
또는
Figure pct00061
은 고정되거나, gNB에 의해 구성되거나, UE에 의해 보고됨).
Figure pct00062
의 열들은 놈(norm) 1로 정규화된다. 랭크 R 또는 R 레이어들(ν=R)의 경우, 프리코딩 매트릭스는
Figure pct00063
에 의해 주어진다. Eq. 2가 본 개시의 나머지 부분에서 가정된다. 그러나, 본 개시의 실시예들은 일반적인 것이며 Eq. 1, Eq. 3 및 Eq. 4에 적용될 수도 있다.
여기서 L ≤ 2N1N2 및 K ≤ N3이다. L = 2N1N2인 경우, A는 아이덴티티 매트릭스이므로, 보고되지 않는다. 마찬가지로, K = N3인 경우, B는 아이덴티티 매트릭스이므로, 보고되지 않는다. 일 예에서 L < 2N1N2라고 가정하면, A의 열들을 보고하기 위해, 오버샘플링된 DFT 코드북이 사용된다. 예를 들어,
Figure pct00064
이며, 여기서 퀀티티(quantity)
Figure pct00065
는 다음과 같이 주어진다:
Figure pct00066
유사하게, 일 예에서 K < N3이라고 가정하면, B의 열들을 보고하기 위해, 오버샘플링된 DFT 코드북이 사용된다. 예를 들어,
Figure pct00067
이며, 수량
Figure pct00068
는 다음과 같이 주어진다:
Figure pct00069
.
다른 예에서, 이산 코사인 변환 DCT 기저가 제 3 차원에 대한 기저 B를 구성/보고하는데 사용된다. DCT 압축 매트릭스의 m 번째 열은 다음과 같이 간단히 주어진다
Figure pct00070
, 및
Figure pct00071
, 및
Figure pct00072
.
DCT가 실수 값 계수들에 적용되기 때문에, DCT는 (채널 또는 채널 고유 벡터들의) 실수 및 허수 컴포넌트들에 개별적으로 적용된다. 대안적으로, DCT는 (채널 또는 채널 고유 벡터들의) 크기 및 위상 컴포넌트들에 개별적으로 적용된다. DFT 또는 DCT 기저의 사용은 설명 목적만을 위한 것이다. 본 개시는 A 및 B를 구성/보고하기 위한 임의의 다른 기저 벡터들에 적용 가능하다.
또한, 일 대안에서, 상호성 기반 타입 II CSI 보고의 경우, UE는 모든 SB 및 주어진 레이어
Figure pct00073
(여기서 ν는 연관 RI 값)에 대한 프리코더들이
Figure pct00074
에 의해 주어지는(여기서 N1, N2, N3 및 cl,i,m는 매트릭스 A가 포트 선택 벡터들을 포함하는 것을 제외하고는 위와 같이 정의됨) 포트 선택을 갖는 향상된 타입 II CSI 보고를 위해 'TypeII-PortSelection-Compression' 또는 'TypeIII-PortSelection'으로 설정된 상위 레이어 파라미터 CodebookType으로 구성된다. 예를 들어, 편파 당 L 안테나 포트들 또는 A의 열 벡터들은 인덱스
Figure pct00075
에 의해 선택되며, 여기서
Figure pct00076
(이것은
Figure pct00077
비트를 필요로 함)이며, d의 값은 상위 레이어 파라미터 PortSelectionSamplingSize로 구성된다(여기서
Figure pct00078
Figure pct00079
). A의 열들을 보고하기 위해, 포트 선택 벡터들이 사용되며, 예를 들어
Figure pct00080
이고, 여기서 퀀티티
Figure pct00081
는 요소
Figure pct00082
에 1의 값을 포함하고 다른 곳에 0(첫 번째 요소는 요소 0)을 포함하는
Figure pct00083
요소 열 벡터이다.
하이 레벨에서, 프리코더
Figure pct00084
는 다음과 같이 설명될 수 있다.
Figure pct00085
, (5)
여기서
Figure pct00086
은 Type II CSI 코드북의 W1에 대응하며 즉,
Figure pct00087
Figure pct00088
이다.
Figure pct00089
매트릭스는 필요한 모든 선형 조합 계수(예를 들면, 진폭 및 위상 또는 실수 또는 허수)로 구성된다. 계수 매트릭스
Figure pct00090
는 2LM 개의 계수를 포함함에 유의한다. 본 개시의 나머지 부분에서는, 위에서 확인된 프레임워크(Eq. 5)에 따라 결정되는 PMI를 사용하여 계산된 CSI를 전달하는 업링크 제어 정보(uplink control information, UCI)에 대한 몇 가지 방식이 제안된다.
일 예에서, R = ν 레이어들에 대한 프리코딩 매트릭스
Figure pct00091
을 나타내는 PMI는 제 1 PMI i1 및 제 2 PMI i2를 포함한다. 제 1 PMI는 PMI의 광대역(WB) 컴포넌트에 대응하고, 제 2 PMI는 PMI의 서브대역(SB) 컴포넌트에 대응한다.
제 1 PMI i1은 다음 컴포넌트들을 포함한다:
● W1 및 Wf에 대한 직교 기저 세트(예를 들어, 회전 팩터들(q1, q2, q3)을 나타내는 인덱스 i1,1을 사용하여 표시될 수 있음),
Figure pct00092
; 일 예에서, O3 = 1, 따라서 q3은 예를 들어 q3 = 0으로 고정되어, 보고되지 않을 수 있고;
● W1에 대한 L 개의 빔 선택 및 Wf에 대한 M 개의 빔 선택(예를 들어 인덱스 i1,2를 사용하여 표시될 수 있음);
Figure pct00093
를 포함하는 2LM 계수들 중 가장 강한 계수를 나타내는 SCI(strongest coefficient indicator)(예를 들어, 인덱스 i1,3을 사용하여 표시될 수 있음); 및
● 각 레이어
Figure pct00094
에 대한
Figure pct00095
비-제로(NZ) 계수들의 인덱스(예를 들어, 인덱스 i1,4를 사용하여 표시될 수 있음).
여기서 i 1,1, i 1,2, i 1,3i 1,4는 제 1 PMI i 1의 컴포넌트들이다. NZ 계수들의 인덱스들은 길이가 2LM인 비트 맵 Bl 또는 조합 인덱스
Figure pct00096
를 사용하여 명시적으로 보고되거나, 예를 들어 W1 및/또는 Wf를 포함하는 빔들의 진폭 또는 파워에 기초하여 암시적으로 도출된다. 본 개시의 나머지 부분에서는 비트 맵 Bl이 가정된다.
제 2 PMI i2는 다음 컴포넌트들을 포함한다:
● 계수들
Figure pct00097
의 위상
Figure pct00098
(예를 들어, 인덱스 i2,1을 사용하여 표시될 수 있음); 및
● 계수들
Figure pct00099
의 진폭
Figure pct00100
(예를 들어, 인덱스 i2,2를 사용하여 표시될 수 있음).
여기서, i2,1 및 i2,2는 제 2 PMI i2의 컴포넌트들이다. 일 예에서, 진폭
Figure pct00101
이며 여기서
Figure pct00102
Figure pct00103
는 각각 제 1 및 제 2 진폭 컴포넌트이다.
레이어 전체에 걸친 NZ 계수들의 총(합계) 수를
Figure pct00104
이라고 한다.
Figure pct00105
를 SCI에 의해 표시되는 레이어 l에 대한 가장 강한 계수
Figure pct00106
의 인덱스라고 한다.
실시예 A에서,
Figure pct00107
NZ 계수들의 진폭을 양자화/보고하기 위해 다음과 같은 양자화 방식이 사용된다. UE는
Figure pct00108
에서 NZ 계수들의 양자화에 대해 다음을 보고 한다
● 가장 강한 계수 인덱스
Figure pct00109
에 대한
Figure pct00110
비트 인디케이터. 일 예에서, X = KNZ.
○ 가장 강한 계수
Figure pct00111
(따라서 진폭/위상은 보고되지 않음)
● 2 개의 안테나 편파 특정 기준 진폭들:
○ 가장 강한 계수
Figure pct00112
과 연관된 편파의 경우, 기준 진폭
Figure pct00113
= 1이므로, 이것은 보고되지 않음
○ 다른 편파의 경우, 기준 진폭
Figure pct00114
는 A 비트로 양자화됨.
■ 일 예에서, A=4이고, 4 비트 진폭 알파벳은
Figure pct00115
.
Figure pct00116
의 경우:
○ 각 편파에 대해, 관련 편파 특정 기준 진폭에 대해 계산되고 B 비트로 양자화된 계수들의 차등 진폭
Figure pct00117
.
■ 일 예에서, B=3이고, 3 비트 진폭 알파벳은
Figure pct00118
.
■ 참고: 최종 양자화된 진폭
Figure pct00119
Figure pct00120
로 주어지며, 계수는
Figure pct00121
으로 주어짐
Figure pct00122
임에 유의한다. 일 대안에서, 기준 진폭에 대한 4 비트 진폭 알파벳의 "제로"가 제거되고 관련 코드 포인트가 "예비됨"으로 지정되며 이것은 관련 코드 포인트가 기준 진폭 보고에 사용되지 않음을 의미한다. RI∈ {2,3,4}의 경우, 서로 다른 레이어들이 독립적으로 양자화된다.
일 예에서, 컴포넌트 SCI, NZ 계수들의 인덱스들, 진폭 및 위상은 레이어 특정적으로 보고되며, 즉 각 레이어에 대해 독립적으로 보고된다. 이 경우, 인덱스 i 1,3, i 1,4, i 2,1i 2,2가 ν 하위 인덱스를 구성한다. 예를 들어, ν = 2인 경우, 이러한 인덱스들은
Figure pct00123
,
Figure pct00124
,
Figure pct00125
Figure pct00126
로 더 표현된다.
Figure pct00127
,
Figure pct00128
Figure pct00129
Figure pct00130
는 RI = 2가 보고될 때에만 보고된다.
일 예에서, 단일 PMI i = [i 1, i 2, i 3, i 4, i 5, i 6]는 다음의 매핑 즉 i 1 = i 1,1, i 2 = i 1,2, i 3 = i 1,3, i 4 = i 1,4, i 5 = i 2,1, 및 i 6 = i 2,2를 사용하여 제 1 PMI 인덱스들 i 1,1, i 1,2, i 1,3, 및 i 1,4, 그리고 제 2 PMI 인덱스들 i 2,1 i 2,2를 보고하는데 사용된다.
도 14는 UE(116)와 같은 UE에 의해 수행될 수 있는, 본 개시의 실시예들에 따른 예시적인 2-파트 UCI 프로세스(1400)를 도시한 것이다. 도 14에 도시된 2-파트 UCI 다중화 프로세스(1400)의 실시예는 단지 설명을 위한 것이다. 도 14는 본 개시의 범위를 프로세스(1400)의 임의의 특정 구현으로 제한하지 않는다.
실시예 1에서는, 도 14에 도시된 바와 같이, 상기 언급된 프레임워크(Eq. 5)에 따라 CSI를 다중화 및 보고하기 위해 2-파트 UCI 다중화 프로세스(1400)가 사용되며, 여기서:
● CQI, RI 및
Figure pct00131
로 구성되는 CSI 파트 1은 UCI 파트 1에서 함께 다중화되고 인코딩되며, 여기서
Figure pct00132
은 레이어 l에 대한 비-제로(NZ) 계수의 수를 나타내며; 또한
● LI, 제 1 PMI(i1) 및 제 2 PMI(i2)로 구성되는 CSI 파트 2는 UCI 파트 2에서 함께 다중화되고 인코딩된다.
CSI 파트 2는 2 개의 세그먼트 또는 3 개의 그룹으로 분할된다.
● CSI 파트 2 광대역 또는 그룹 G0: LI 및 제 1 PMI i1로 구성됨; 및
● CSI 파트 2 서브대역: 제 2 PMI i2로 구성되며, 제 2 PMI의 컴포넌트들은 다음과 같은 2 개의 그룹으로 그룹핑됨
○ G1: 제 2 PMI 컴포넌트들의 제 1 그룹(예를 들면, NZ 계수들의 제 1 그룹의 진폭 및 위상)로 구성됨
○ G2: 제 2 PMI 컴포넌트들의 제 2 그룹(예를 들어, NZ 계수들의 제 2 그룹의 진폭 및 위상)으로 구성됨.
여기서, 모든 레이어
Figure pct00133
에 대한 비트 맵 Bl은 제 1 PMI i1에 포함된다.
일 예에서, 가장 강한 계수(들)와 관련된 진폭 및 위상 인덱스들이 G1 또는/및 G2에도 포함된다. 다른 예에서, 가장 강한 계수(들)와 관련된 진폭 및 위상 인덱스들이 G1 및/또는 G2에서 제외된다(포함되지 않음).
일 변형에서, LI가 UCI 파트 2 광대역 또는 그룹 G0에 포함되지 않는다. 또 다른 변형에서, LI가 UCI 파트 1에 포함된다(UCI 파트 2에는 포함되지 않음).
파트 1 UCI는 UE가 하나보다 많은 CSI-RS 리소스로 구성되는 경우 CRI를 포함할 수도 있다. cqi-FormatIndicator=widebandCQI인 경우, 파트 1 UCI에서 보고되는 CQI는 WB CQI에 대응하고, cqi-FormatIndicator=subbandCQI인 경우, 파트 1에서 보고되는 CQI는 WB CQI 및 SB 차등 CQI에 대응하며, 여기서 WB CQI는 모든 SB에 대해 공통으로 보고되고, SB 차등 CQI가 각 SB에 대해 보고되며, SB의 수(또는 SB 인덱스 세트)가 UE에 구성된다.
일 예에서, RI의 최대 값은 4이다. 다른 예에서, RI의 최대 값은 4보다 클 수 있다. 이 이후의 예에서, UCI 파트 1의 CQI는 제 1 코드워드(CW1) 또는 전송 블록(TB1)에 매핑된 최대 4 개의 레이어에 대응하고, RI > 4인 경우, 제 2 CQI가 UCI 파트 2에서 보고되며, 이것은 제 2 코드워드(CW2) 또는 전송 블록(TB2)에 매핑된 추가 RI-4 레이어들에 대응한다.
일 예에서, 제 2 CQI는 CSI 파트 2 광대역에 포함된다. 다른 예에서, 제 2 CQI는 CSI 파트 2 서브대역에 포함된다. 일 예에서, 제 2 CQI는 CSI 파트 2 광대역에 포함된다. 다른 예에서, cqi-FormatIndicator=subbandCQI인 경우, 제 2 CQI는 CSI 파트 2 광대역에 포함된 WB 제 2 CQI 및 CSI 파트 2 서브대역에 포함된 SB 차등 제 2 CQI를 포함한다.
파트 1에서 보고되는
Figure pct00134
의 값에 기초하여, 파트 2에 대한 CSI 보고 페이로드(비트)가 결정된다. 특히, 제 2 PMI i2의 컴포넌트들은 비-제로인 계수들에 대해서만 보고된다.
도 15는 UE(116)와 같은 UE에 의해 수행될 수 있는, 본 개시의 실시예들에 따른 예시적인 2-파트 UCI 다중화 프로세스(1500)를 도시한 것이다. 도 15에 도시된 2-파트 UCI 다중화 프로세스(1500)의 실시예는 단지 설명을 위한 것이다. 도 15는 본 개시의 범위를 프로세스(1500)의 임의의 특정 구현으로 제한하지 않는다.
실시예 1X에서는, 도 15에 도시된 바와 같이, 2-파트 UCI 다중화 프로세스(1500)에 포함된 CSI 파트 2가 2 개의 세그먼트 또는 3 개의 그룹으로 분할된다:
● CSI 파트 2 광대역 또는 그룹 G0: LI, (q1, q2, q3)를 나타내는 SD 회전 팩터들, W1에 대한 L 빔 선택을 나타내는 SD 기저 인디케이터 및 SCI(들)(제 1 PMI i1을 통해 표시됨)로 구성됨; 및
● CSI 파트 2 서브대역: 제 2 PMI i2로 구성되며, 제 2 PMI의 컴포넌트들은 다음과 같은 2 개의 그룹으로 그룹핑됨
○ G1: 제 2 PMI 컴포넌트들의 제 1 그룹(예를 들어, NZ 계수들의 제 1 그룹의 진폭 및 위상), 및 Wf에 대한 M 빔 선택을 나타내는 FD 인디케이터(제 1 PMI i1,2를 통해 표시됨);
○ G2: 제 2 PMI 컴포넌트들의 제 2 그룹(예를 들어, NZ 계수들의 제 2 그룹의 진폭 및 위상)으로 구성됨.
실시예 1의 나머지 세부 사항도 이 실시예에서 적용 가능하다.
실시예 1 또는 1X의 변형인 실시예 1A에서, 상기 언급된 프레임워크(Eq. 5)에 따라 CSI를 다중화 및 보고하기 위해 2-파트 UCI 다중화 프로세스가 사용되며, 여기서
● CQI, RI 및
Figure pct00135
로 구성되는 CSI 파트 1은 UCI 파트 1에서 함께 다중화되고 인코딩되며, 여기서
Figure pct00136
은 ν 레이어들에 걸친 NZ 계수들의 총 수를 나타내며; 또한
● LI, 제 1 PMI(i1) 및 제 2 PMI(i2)로 구성되는 CSI 파트 2는 UCI 파트 2에서 함께 다중화되고 인코딩된다.
각 레이어에 대한 NZ 계수들의 수
Figure pct00137
는 UCI 파트 1에서 보고되지 않으며 그 합계(N0)가 대신 보고된다는 것에 유의한다. 실시예 11X(2 개의 세그먼트를 포함)의 나머지 세부 사항도 이 실시예에서 적용 가능하다.
실시예 1 또는 1X의 변형인 실시예 1B에서, UCI 파트 1에서 보고된
Figure pct00138
에 기초하여 CSI 파트 2 서브대역을 포함하는 두 개의 그룹 G1 및 G2가 결정되는 것을 제외하고는 실시예 1 또는 1X에서 설명된 바와 같이 CSI를 다중화 및 보고하는데 2-파트 UCI 다중화 프로세스가 사용된다. 특히:
● G1: 모든 레이어
Figure pct00139
에 대한 NZ 계수들
Figure pct00140
의 제1 절반의 진폭 및 위상으로 구성됨; 및
● G2: 모든 레이어
Figure pct00141
에 대한 NZ 계수들
Figure pct00142
의 제2 절반의 진폭 및 위상으로 구성됨.
도 16은 본 개시의 실시예들에 따른 예시적인 2 개의 빔 정렬(넘버링) 방식들(1600)을 도시한 것이다. 도 16에 도시된 2 개의 빔 정렬(넘버링) 방식(1600)의 실시예는 단지 설명을 위한 것이다. 도 16은 본 개시의 범위를 방식(1600)의 임의의 특정 구현으로 제한하지 않는다.
Figure pct00143
Figure pct00144
를 각각 레이어 l에 대한 NZ 계수들의 제1 및 제2 절반들에 있는 NZ 계수의 수라고 한다. 그 다음, 다음 예들 중 하나 이상을 사용하여
Figure pct00145
Figure pct00146
값들을 결정한다.
일 예 Ex 1B-0에서:
Figure pct00147
Figure pct00148
일 예 Ex 1B-1에서:
Figure pct00149
Figure pct00150
일 예 Ex 1B-2에서:
Figure pct00151
Figure pct00152
일 예 Ex 1B-3에서:
Figure pct00153
Figure pct00154
각 레이어 l에 대한, NZ 계수들의 위치 또는 인덱스가 CSI 파트 1 광대역에서 보고된 각 비트 맵을 통해 알려진다. NZ 계수들의 2 개의 절반들을 결정하기 위해,
Figure pct00155
NZ 계수들이 도 16에 도시된 바와 같이 다음의 방식들 중 하나 이상에 따라 정렬되거나 넘버링된다.
● 방식 1B-0:
Figure pct00156
NZ 계수들이 먼저 제 1 차원(또는 SD)에서 그 다음 제 2 차원(또는 FD)에서 0부터
Figure pct00157
- 1까지 순차적으로 정렬되거나 넘버링된다. 인덱스
Figure pct00158
가 있는 주어진 NZ 계수에 대해, 정렬된 계수 인덱스가
Figure pct00159
에 의해 주어지며 여기서 인덱스
Figure pct00160
는 k가 증가함에 따라
Figure pct00161
가 증가하게 되도록 할당되고;
● 방식 1B-1:
Figure pct00162
NZ 계수들이 먼저 제 2 차원(또는 FD)에서 그 다음 제 1 차원(또는 SD)에서 0부터
Figure pct00163
- 1까지 순차적으로 정렬되거나 넘버링된다. 인덱스
Figure pct00164
가 있는 주어진 NZ 계수에 대해, 정렬된 계수 인덱스가
Figure pct00165
에 의해 주어지며 여기서 인덱스
Figure pct00166
는 k가 증가함에 따라
Figure pct00167
가 증가하게 되도록 할당된다.
2Ll 및 Ml은 각각 레이어 l에 대한 SD 및 FD 기저 벡터들의 수이다.
실시예 1A의 변형인 실시예 1C에서, UCI 파트 1에서 보고된 NZ 계수들의 총(합계) 수
Figure pct00168
에 기초하여 CSI 파트 2 서브대역을 포함하는 두 개의 그룹 G1 및 G2가 결정되는 것을 제외하고는 실시예 1A에서 설명된 바와 같이 CSI를 다중화 및 보고하는데 2-파트 UCI가 사용된다. 특히,
● G1: N0 NZ 계수들
Figure pct00169
의 첫 번째 절반의 진폭 및 위상 포함하고, 및
● G2: N0 NZ 계수들
Figure pct00170
의 두 번째 절반의 진폭 및 위상을 포함한다.
Figure pct00171
Figure pct00172
를 각각 N0 NZ 계수들의 첫 번째 및 두 번째 절반들에 있는 NZ 계수들의 수라고 한다. 그 다음, 다음 예들 중 하나 이상을 사용하여
Figure pct00173
Figure pct00174
값들을 결정한다.
● 일 예 Ex 1C-0에서:
Figure pct00175
Figure pct00176
● 일 예 Ex 1C-1에서:
Figure pct00177
Figure pct00178
● 일 예 Ex 1C-2에서:
Figure pct00179
Figure pct00180
● 일 예 1C-3에서:
Figure pct00181
Figure pct00182
각 레이어 l에 대한, NZ 계수들의 위치 또는 인덱스가 CSI 파트 1 광대역에서 보고된 각 비트 맵을 통해 알려진다. NZ 계수들의 2 개의 절반들을 결정하기 위해, 총 N0 NZ 계수들이 다음 방식들 중 하나 이상에 따라 정렬되거나 넘버링된다:
● 방식 1C-0: N0 NZ 계수들이 레이어 → SD → FD 순서로 0부터 N0 - 1까지 순차적으로 정렬되거나 넘버링된다. 즉, 넘버링은 먼저 레이어 도메인(레이어 l = l=1..,ν에 걸쳐)에서 이루어지고, 그 다음 SD에서, 그 다음 FD에서 이루어진다. 인덱스
Figure pct00183
가 있는 주어진 NZ 계수에 대해, 정렬된 계수 인덱스는
Figure pct00184
로 주어지며 여기서 인덱스
Figure pct00185
는 k가 증가함에 따라
Figure pct00186
가 증가하게 되도록 할당된다.
● 방식 1C-1: N0 NZ 계수들이 레이어 → FD → SD 순서로 0부터 N0 - 1까지 순차적으로 정렬되거나 넘버링된다. 즉, 넘버링은 먼저 레이어 도메인(레이어 l = l=1..,ν에 걸쳐)에서 이루어지고, 그 다음 FD에서, 그 다음 SD에서 이루어진다. 인덱스
Figure pct00187
가 있는 주어진 NZ 계수에 대해, 정렬된 계수 인덱스는
Figure pct00188
로 주어지며 여기서 인덱스
Figure pct00189
는 k가 증가함에 따라
Figure pct00190
가 증가하게 되도록 할당된다.
여기서 2Ll 및 Ml은 각각 레이어 l에 대한 SD 및 FD 기저 벡터의 수이다. 실시예 1A 또는 1 또는 1X의 나머지 세부 사항(2 개의 세그먼트 포함)도 여기에 적용 가능하다.
실시예 1D에서, 실시예 A에 따라 NZ 계수들의 진폭이 보고될 때, A 비트 기준 진폭
Figure pct00191
이 다른(약한) 안테나 편파에 대해 보고된다. 다른(약한) 안테나 편파에 대한 이 기준 진폭의 보고는 다음 대안들 중 하나 이상에 따른다.
일 대안 Alt 1D-0에서: 다른 안테나 편파에 대한 기준 진폭이 UCI 파트 1을 통해 보고된다. 일 예에서, 이 보고는 별도의 UCI 파트 1 파라미터(CSI 파트 1 파라미터)로서 개별적으로 수행된다. 또 다른 예에서, 이 보고는 다른 UCI 파트 1 파라미터(CSI 파트 1 파라미터)와 공동으로 수행된다. 예를 들어, 기준 진폭은 UCI 파트 1에서 보고되는 NZ 계수의 수와 함께 보고될 수 있다.
일 대안 Alt 1D-1에서: 다른 안테나 편파에 대한 기준 진폭이 UCI 파트 2 광대역 또는 그룹 G0을 통해 보고된다. 일 예에서, 이 보고는 별도의 UCI 파트 2 광대역 파라미터(CSI 파트 2 광대역 파라미터)로서 개별적으로 수행된다. 다른 예에서, 이 보고는 또 다른 UCI 파트 2 광대역 파라미터(CSI 파트 2 광대역 파라미터)와 공동으로 수행된다. 예를 들어, 기준 진폭은 UCI 파트 2 광대역에서 보고되는 SCI와 함께 보고될 수 있다.
일 대안 Alt 1D-2에서: 다른 안테나 편파에 대한 기준 진폭이 UCI 파트 2 서브대역 G1 또는 제 1 세그먼트 또는 제 1 그룹 G1을 통해 보고된다. 일 예에서, 이 보고는 별도의 UCI 파트 2 서브대역 파라미터(CSI 파트 2 서브대역 파라미터)로서 개별적으로 수행된다. 다른 예에서, 이 보고는 또 다른 UCI 파트 2 서브대역 파라미터(CSI 파트 2 서브대역 파라미터)와 공동으로 수행된다. 예를 들어, 기준 진폭은 UCI 파트 2 서브대역에서 보고되는 차등 진폭과 함께 보고될 수 있다.
일 대안 Alt 1D-3에서: 다른 안테나 편파에 대한 기준 진폭이 UCI 파트 2 서브대역 G2 또는 제 2 세그먼트 또는 제 2 그룹 또는 G2를 통해 보고된다. 일 예에서, 이 보고는 별도의 UCI 파트 2 서브대역 파라미터(CSI 파트 2 서브대역 파라미터)로서 개별적으로 수행된다. 다른 예에서, 이 보고는 또 다른 UCI 파트 2 서브대역 파라미터(CSI 파트 2 서브대역 파라미터)와 공동으로 수행된다. 예를 들어, 기준 진폭은 UCI 파트 2 서브대역에서 보고되는 차등 진폭과 함께 보고될 수 있다.
실시예 2에서, UE는 실시예 1X/1C 및 Alt 1D-2의 조합에 따라 2-파트 UCI를 통해 CSI 보고하도록 구성되며, 여기서
● 그룹 G0에는 SD 회전 팩터들, SD 기저 인디케이터 및 SCI(들)가 적어도 포함되고,
● 그룹 G1에는 더 약한 편파를 위한 기준 진폭(Alt 1D-2 참조),
Figure pct00192
의 NZ 계수들의 진폭 및 위상 및 FD 기저 인디케이터가 적어도 포함되며, 또한
● 그룹 G2에는
Figure pct00193
의 NZ 계수들의 진폭 및 위상이 적어도 포함된다.
일 예에서, N3 > 19인 경우, 2M FD 기저 벡터를 포함하는 중간 FD 기저 세트 InS를 나타내는 Minitial 인디케이터가 각 레이어에 대한 FD 기저 인디케이터와 함께 G1에 포함된다.
일 예(예 E1)에서, 가장 강한 계수(들)와 관련된 진폭 및 위상 인덱스들이 G1 또는/및 G2에도 포함된다. 다른 예(예 E2)에서, 가장 강한 계수(들)와 관련된 진폭 및 위상 인덱스들이 G1 또는/및 G2에서 제외된다(포함되지 않음).
일 변형에서는, LI가 그룹 G0에 포함되지 않는다. 또 다른 변형에서는, LI가 (G0이 아닌) UCI 파트 1에 포함된다.
G1 및 G2를 결정하기 위한 우선 순위 규칙은 다음 대안들 중 적어도 하나에 따른다.
일 대안 Alt 2-1-1에서는, NZ LC 계수들이 (1,i,m) 인덱스 트리플렛(triplet)에 따라 높은 우선 순위에서 낮은 우선 순위로 우선 순위가 지정된다.
Figure pct00194
최고 우선 순위 계수들은 G1에 속하고,
Figure pct00195
최저 우선 순위 계수들은 G2에 속한다. 우선 순위 레벨은
Figure pct00196
로서 계산되며, 여기서 F1 및 F2는 FD 및 SD 인덱스들에 대한 고정 순열 함수들이다. FD에 순열이 없는 경우
Figure pct00197
이다. 마찬가지로, SD에 순열이 없는 경우
Figure pct00198
이다. 가장 강한 계수(들)와 관련된 진폭 및 위상 인덱스들이 예 E2에 따르는 경우, 다음 대안들 중 적어도 하나가 진폭 및 위상 보고에 사용된다.
일 대안 Alt 2-1-1-1에서: 가장 강한 계수(들)가 G1에 속하는 경우,
Figure pct00199
최고 우선 순위 계수들이 G1에 속하지만,
Figure pct00200
계수들의 진폭 및 위상 인덱스들은 G1에 포함되며, 여기서 -1은 가장 강한 계수의 진폭과 위상이 보고되지 않는다는 사실에 기인하는 것이다. ν = 랭크 > 1인 경우,
Figure pct00201
계수들의 진폭 및 위상 인덱스들이 G1에 포함된다.
일 대안 Alt 2-1-1-2에서: 가장 강한 계수(들)가 G2에 속하는 경우,
Figure pct00202
최저 우선 순위 계수들이 G2에 속하지만,
Figure pct00203
의 진폭 및 위상 인덱스들은 G2에 포함되며, 여기서 -1은 가장 강한 계수의 진폭과 위상이 보고되지 않는다는 사실에 기인하는 것이다. ν = 랭크 > 1인 경우,
Figure pct00204
계수들의 진폭 및 위상 인덱스들이 G2에 포함된다.
일 대안 Alt 2-1-2에서는, NZ 계수들
Figure pct00205
가 방식 1C-0 또는 1C-1에 따라 0에서 N0-1까지 순차적으로 정렬된다. 그룹 G1은 첫 번째
Figure pct00206
정렬된 계수들을 적어도 포함하고, 그룹 G2는 나머지 두 번째 정렬된 계수들을 포함한다.
일 대안 Alt 2-1-3에서, LC 계수들은 (l,i,m) 인덱스 트리플렛에 따라 높은 우선 순위에서 낮은 우선 순위로 우선 순위가 지정된다.
Figure pct00207
최고 우선 순위 계수들은 G1에 속하고,
Figure pct00208
최저 우선 순위 계수들은 G2에 속한다. 우선 순위 레벨은 Alt 2-1-1에 정의된 P(l,i,m)로서 계산된다.
비트 맵
Figure pct00209
은 다음 대안들 중 하나 이상에 따라 세 그룹(G0, G1 및 G2) 중 적어도 하나에 포함된다(실시예 2 참조).
일 대안 Alt 2-2-1에서, P(l,i,m) 값에 따른 처음의
Figure pct00210
비트들(즉, 높은 우선 순위 계수들)이 G1에 속하고, P(l,i,m) 값에 따른 마지막 X(즉, 낮은 우선 순위 계수)는 G2에 속한다. 일 예에서, 이 대안은 Alt 2-1-1과 결합된다. 일 예에서,
Figure pct00211
이다. 다른 예에서,
Figure pct00212
이다. 다른 예에서는,
Figure pct00213
이다.
일 대안 Alt 2-2-2에서, 비트 맵과 계수들은 M 개의 세그먼트로 함께 분할된다(여기서 M = FD 기본 인덱스 수). 그룹 G1에는 M1 세그먼트가 포함되고, G2 그룹에는 M2 세그먼트가 포함되며, 여기서 M = M1 + M2이다. 일 예에서, 각 세그먼트는 모든 RI = ν 레이어, 모든 SD 컴포넌트들 및 단일 FD 컴포넌트(세그먼트와 동일한 인덱스 가짐) 및 계수들의 대응 진폭/위상과 연관된 비트 맵(또는 비트 맵의 일부)을 포함한다. G1의 페이로드 크기는
Figure pct00214
로 주어지며, 여기서 T는 진폭 및 위상에 대한 비트 수이다. G2의 페이로드 크기는 X(a + b)이다. 일 예에서, 이 대안은 Alt 2-1-2와 결합된다. 일 예에서,
Figure pct00215
이다. 다른 예에서,
Figure pct00216
이다. 다른 예에서는,
Figure pct00217
이다.
일 대안 Alt 2-2-3에서, P(l,i,m) 값에 따른 처음의
Figure pct00218
비트들이 G1에 속하고, P(l,i,m) 값에 따른 마지막
Figure pct00219
이 G2에 속한다. 일 예에서, 이 대안은 Alt 2-1-3과 결합된다.
일 대안 Alt 2-2-4에서, P(l,i,m) 값에 따른 처음의
Figure pct00220
비트들이 G1에 속하고, P(l,i,m) 값에 따른 마지막
Figure pct00221
이 G2에 속한다. 일 예에서, 이 대안은 Alt 2-1-1과 결합된다.
일 대안 Alt 2-2-5에서는, 비트 맵
Figure pct00222
이 G0에 포함된다.
일 대안 Alt 2-2-6에서는, 비트 맵
Figure pct00223
이 G1에 포함된다.
일 예에서, 우선 순위 레벨은 다음과 같이 정의된다. 두 계수
Figure pct00224
Figure pct00225
의 우선 순위 레벨들이
Figure pct00226
인 경우, 계수
Figure pct00227
Figure pct00228
보다 높은 우선 순위를 갖는다. 일 예에서, NZ 계수들과 비트 맵들이 모두 G1 및 G2 그룹으로 파티셔닝되는 경우, 우선 순위를 정의하는데 사용되는 우선 순위 순서 또는 함수 P(.)는 NZ 계수들과 비트 맵들 모두에 대해 동일하다.
Figure pct00229
Figure pct00230
는 각각 순열 이후의 FD 및 SD 인덱스들을 나타내는 것으로 한다.
실시예 2A에서, 실시예 2의 순열 함수 F1은 다음 대안들 중 적어도 하나에 따른다.
일 대안 Alt 2A-1에서는:
Figure pct00231
이며, 즉 FD에 순열이 없다.
일 대안 Alt 2A-2에서: 순열 함수 F1은 FD 인덱스들 m = 0,1, .., M-1이
Figure pct00232
, …로 순열되도록 이루어지며, 이것은 중간 또는 중앙의 FD 기저 인덱스들이 우선 순위가 낮으며 따라서 먼저 드롭된다는 것을 나타낸다.
일 대안 Alt 2A-3에서: 순열 함수 F1
Figure pct00233
으로 주어지며, 이것은 FD 인덱스들
Figure pct00234
Figure pct00235
로 순열(매핑)한다.
일 대안 Alt 2A-3a에서, 순열 함수 F1
Figure pct00236
으로 주어지며, 이것은 FD 인덱스들
Figure pct00237
Figure pct00238
로 순열(매핑)한다.
일 대안 Alt 2A-3b에서, 순열 함수 F1
Figure pct00239
으로 주어지며, 이것은 FD 인덱스들
Figure pct00240
Figure pct00241
로 순열(매핑)한다.
일 대안 Alt 2A-3c에서, 순열 함수 F1
Figure pct00242
로 주어지며, 이것은 FD 인덱스들
Figure pct00243
Figure pct00244
로 순열(매핑)한다.
일 대안 Alt 2A-4에서: 순열 함수 F1은 가장 강한 계수(SCI를 통해 표시됨)의 FD 인덱스가 0으로 순열(매핑)되고, 나머지 FD 인덱스들이 순차적으로 인덱싱되도록 한다. 다음 예들 중 하나 이상이 사용된다.
○ 일 예 2A-4-1에서:
Figure pct00245
Figure pct00246
에 대하여,
Figure pct00247
Figure pct00248
에 대하여,
Figure pct00249
○ 일 예 Ex 2A-4-2에서:
Figure pct00250
인 경우
Figure pct00251
이며, 그렇지 않은 경우
Figure pct00252
이다. 이 예는 Ex 2A-4-1과 동일함(즉, 동일한 순열 결과)에 유의한다.
일 대안 Alt 2A-5에서: 순열 함수 F1은 먼저 인덱스 리매핑 또는 매핑을 수행한다(그 예가 아래에 설명되어 있음).
Figure pct00253
은 인덱스 리매핑 및 매핑 이후의 FD 인덱스들을 나타내는 것으로 한다. 그 다음 순열 함수가 다음 하위 대안들 중 하나 이상에 따라 리매핑된 SD 인덱스들을 순열(재정렬)한다.
일 대안 Alt 2A-5-1에서: 짝수 번호의 FD 인덱스들은 홀수 번호의 FD 인덱스들보다 선행하며(또는 이전에 인덱싱되거나 넘버링됨), 즉 리매핑된 FD 인덱스들
Figure pct00254
Figure pct00255
로 순열되며, 여기서
Figure pct00256
또는
Figure pct00257
또는
Figure pct00258
이다. 이것은 다음 예들과 같다.
■ 일 예 Ex 2A-5-1-1에서:
Figure pct00259
의 경우,
Figure pct00260
로 하고,
Figure pct00261
의 경우,
Figure pct00262
또는
Figure pct00263
로 하며
■ 일 예 Ex 2A-5-1-2에서:
Figure pct00264
■ 일 예 Ex 2A-5-1-3에서:
Figure pct00265
일 대안 Alt 2A-5-2에서: 홀수 번호의 FD 인덱스들이 짝수 번호의 FD 인덱스들에 선행하며(또는 이전에 인덱싱되거나 넘버링됨), 즉 리매핑된 FD 인덱스들
Figure pct00266
Figure pct00267
로 순열되고
Figure pct00268
로 순열되며, 여기서
Figure pct00269
또는
Figure pct00270
또는
Figure pct00271
이다.
일 대안 Alt 2A-6에서: Alt 2A-5와 동일한 것은 제 1 단계(인덱스 리매핑)가 수행되지 않을 것으로 예상한다.
일 예에서, Alt 2A-5의 인덱스 리매핑 또는 매핑이 다음과 같이 수행된다.
인덱스 리매핑 또는 매핑 이전에 레이어 l에 대한 가장 강한 계수의 위치 또는 인덱스가
Figure pct00272
인 것으로 한다. 레이어 l의 경우, 모든 비-제로(NZ) 계수들
Figure pct00273
의 인덱스
Figure pct00274
Figure pct00275
으로
Figure pct00276
으로 리매핑 또는 매핑되어 SCI(strongest coefficient index)가
Figure pct00277
로 리매핑 또는 매핑되도록 한다. 모든 NZ 계수
Figure pct00278
와 관련된 FD 기저 인덱스들
Figure pct00279
Figure pct00280
으로
Figure pct00281
으로 리매핑 또는 매핑되어 가장 강한 계수의 FD 기저 인덱스가
Figure pct00282
으로 리매핑 또는 매핑되도록 한다.
리매핑 또는 매핑은 FD에서만 수행되므로(즉, SD 인덱스 il의 리매핑 또는 매핑 없음), 다음은 동일한 리매핑/매핑이다. 레이어 l의 경우, 각각의 비-제로(NZ) 계수
Figure pct00283
의 인덱스 ml
Figure pct00284
으로
Figure pct00285
으로 리매핑 또는 매핑되어 SCI(strongest coefficient index)가
Figure pct00286
으로 리매핑 또는 매핑되도록 한다. 각각의 NZ 계수
Figure pct00287
와 관련된 FD 기저 인덱스들
Figure pct00288
Figure pct00289
으로
Figure pct00290
으로 리매핑 또는 매핑되어 가장 강한 계수의 FD 기저 인덱스가
Figure pct00291
으로서 리매핑 또는 매핑되도록 한다.
일 예에서, 리매핑 또는 매핑은 다음과 같이 수행된다. 각각의 비-제로(NZ) 계수
Figure pct00292
의 인덱스
Figure pct00293
Figure pct00294
로서 리매핑 또는 매핑된다. 대안적으로, 각각의 비-제로(NZ) 계수
Figure pct00295
의 인덱스 ml
Figure pct00296
로 리매핑 또는 매핑된다. 각각의 NZ 계수
Figure pct00297
와 관련된 FD 기저 인덱스
Figure pct00298
Figure pct00299
로 리매핑 또는 매핑된다.
실시예 2B에서, 실시예 2의 순열 함수 F2는 다음 대안들 중 적어도 하나에 따른다.
일 대안 Alt 2B-1에서: F2(i) = i, 즉 SD에서 순열이 없다.
일 대안 Alt 2B-2에서: 순열 함수 F2는 SD 인덱스들
Figure pct00300
Figure pct00301
로 순열되도록 하며, 여기서
Figure pct00302
는 가장 강한 계수의 SD 인덱스이다(SCI를 통해 표시됨).
일 대안 Alt 2B-3에서: 순열 함수 F2는 가장 강한 계수(SCI를 통해 표시됨)의 SD 인덱스가 0으로 순열(매핑)되고, 나머지 SD 인덱스들이 순차적으로 인덱싱되도록 한다. 다음 예들 중 하나 이상이 사용된다.
일 예 Ex 2B-3-1에서:
Figure pct00303
Figure pct00304
에 대하여,
Figure pct00305
Figure pct00306
에 대하여,
Figure pct00307
일 예 Ex 2B-3-2에서:
Figure pct00308
인 경우
Figure pct00309
이며, 그렇지 않은 경우
Figure pct00310
. 이 예는 Ex 2B-3-1과 동일함(즉, 동일한 순열 결과)에 유의한다.
일 예 Ex 2B-3-3에서:
Figure pct00311
Figure pct00312
또는
Figure pct00313
Figure pct00314
Figure pct00315
인 것으로 함
Figure pct00316
에 대하여,
Figure pct00317
Figure pct00318
에 대하여,
Figure pct00319
Figure pct00320
에 대하여,
Figure pct00321
일 대안 Alt 2B-4에서: 순열 함수 F2는 먼저 인덱스 리매핑 또는 매핑을 수행한다(그 예가 아래에 설명되어 있음).
Figure pct00322
는 인덱스 리매핑 및 매핑 이후의 SD 인덱스들을 나타낸다. 그 다음 순열 함수는 다음 하위 대안들 중 하나 이상에 따라 리매핑된 SD 인덱스들을 순열(재정렬)한다.
일 대안 Alt 2B-4-1에서: 짝수 번호의 SD 인덱스들이 홀수 번호의 SD 인덱스들에 선행하며(또는 이전에 인덱싱되거나 넘버링됨), 즉 리매핑된 SD 인덱스들
Figure pct00323
Figure pct00324
로 순열된다. 이것은 다음 예들과 동일하다.
일 예 Ex 2B-4-1-1에서:
Figure pct00325
인 경우,
Figure pct00326
로 하고,
Figure pct00327
인 경우,
Figure pct00328
또는
Figure pct00329
로 함
일 예 Ex 2B-4-1-2에서:
Figure pct00330
일 예 Ex 2B-4-1-3에서:
Figure pct00331
일 대안 Alt 2B-4-2에서: 홀수 번호의 SD 인덱스들이 짝수 번호의 SD 인덱스들에 선행하며(또는 이전에 인덱싱되거나 넘버링됨), 즉 리매핑된 SD 인덱스들
Figure pct00332
Figure pct00333
로 순열되고
Figure pct00334
로 순열된다.
일 대안 Alt 2B-5에서: Alt 2B-4와 동일한 것은 제 1 단계(인덱스 리매핑)가 수행되지 않을 것으로 예상한다.
일 대안 Alt 2B-6에서: 순열 함수 F2는 더 강한 안테나 편파의 SD 인덱스들이 더 약한 안테나 편파의 SD 인덱스들보다 선행(또는 이전에 인덱싱 또는 넘버링)되도록 한다. r∈{0,1}이 안테나 편파를 나타내는 것으로 한다. SD 인덱스들 i = 0,1 .., L-1은 하나의 안테나 편파(r=0)와 관련(또는 이에 대응하거나 포함)되며, SD 인덱스들 i = L, L+1,…, 2L-1은 다른 안테나 편파(r=1)와 관련(또는 이에 대응하거나 포함)된다. 일 예에서, 더 강한 안테나 편파는 가장 강한 계수(SCI를 통해 표시됨)의 안테나 편파에 대응한다. 특히,
Figure pct00335
은 가장 강한 계수의 안테나 편파이다. 그 다음, SD 인덱스들
Figure pct00336
이 더 강한 편파에 속하므로, 나머지 계수들(약한 편파에서)보다 선행한다.
Figure pct00337
Figure pct00338
인 것으로 하면, 순열 함수 F2는 SD 인덱스들
Figure pct00339
Figure pct00340
로 순열되도록 한다.
일 예에서, Alt 2B-4의 인덱스 리매핑 또는 매핑이 다음과 같이 수행된다.
인덱스 리매핑 또는 매핑 이전의 레이어 l에 대한 가장 강한 계수의 위치 또는 인덱스가
Figure pct00341
인 것으로 한다. 레이어 l에 대한, 모든 비-제로(NZ) 계수들
Figure pct00342
의 인덱스
Figure pct00343
Figure pct00344
Figure pct00345
로 리매핑되거나 매핑되어 SCI(strongest coefficient index)가
Figure pct00346
로 리매핑 또는 매핑되도록 한다. 모든 NZ 계수들
Figure pct00347
와 관련된 SD 기저 인덱스들
Figure pct00348
Figure pct00349
Figure pct00350
로 리매핑되거나 매핑되어 가장 강한 계수의 SD 기저 인덱스가
Figure pct00351
으로 리매핑 또는 매핑되도록 한다.
리매핑 또는 매핑은 SD에서만 수행되므로(즉, FD 인덱스 ml의 리매핑 또는 매핑 없음), 다음은 동일한 리매핑/매핑이다. 레이어 l에 대한, 각각의 비-제로(NZ) 계수들
Figure pct00352
의 인덱스 il
Figure pct00353
Figure pct00354
로 리매핑되거나 매핑되어 SCI(strongest coefficient index)가
Figure pct00355
로서 리매핑 또는 매핑되도록 한다. 각각의 NZ 계수
Figure pct00356
와 관련된 SD 기저 인덱스들
Figure pct00357
Figure pct00358
Figure pct00359
로 리매핑되거나 매핑되어 가장 강한 계수의 SD 기저 인덱스가
Figure pct00360
으로 리매핑 또는 매핑되도록 한다.
일 예에서, 리매핑 또는 매핑은 다음과 같이 수행된다. 각각의 비-제로(NZ) 계수
Figure pct00361
의 인덱스
Figure pct00362
Figure pct00363
로서 리매핑되거나 매핑된다. 대안적으로, 각각의 비-제로(NZ) 계수
Figure pct00364
의 인덱스 il
Figure pct00365
로서 리매핑되거나 매핑된다. 각각의 NZ 계수
Figure pct00366
와 관련된 SD 기저 인덱스
Figure pct00367
Figure pct00368
로서 리매핑되거나 매핑된다.
실시예 2C에서, NZ 계수들
Figure pct00369
및 비트 맵
Figure pct00370
이 Alt 2-1-1 및 Alt 2-2-에 따라 그룹 G1 및 G2로 파티셔닝되며, 여기서 Alt 2-1-1의 하위 대안 Alt 2-1-1-1 및 Alt 2-1-1-2 중 하나가 사용된다. 예를 들어,
● G1
Figure pct00371
최고 우선 순위 NZ 계수들
Figure pct00372
및 비트 맵
Figure pct00373
Figure pct00374
최고 우선 순위 비트들을 포함하고
● G2
Figure pct00375
최저 우선 순위 NZ 계수들
Figure pct00376
및 비트 맵
Figure pct00377
Figure pct00378
최저 우선 순위 비트들을 포함한다
우선 순위 레벨은 다음과 같이 정의된다. 두 계수
Figure pct00379
Figure pct00380
의 우선 순위 레벨들이
Figure pct00381
인 경우, 계수
Figure pct00382
Figure pct00383
보다 높은 우선 순위를 갖는다. NZ 계수들
Figure pct00384
및 비트 맵
Figure pct00385
은 동일한 우선 순위 함수
Figure pct00386
를 사용하여 (l,i,m)에 따라 높은 우선 순위에서 낮은 우선 순위로 우선 순위화/정렬되며, 여기서 우선 순위 함수 F1(m)은 Alt 2A-1 내지 Alt 2A-6 중 적어도 하나에 따르며, 우선 순위 함수 F2(i)는 Alt 2B-1 내지 Alt 2B-6 중 적어도 하나에 따른다.
일 예에서, 순열 함수 F2는 Alt 2B-1에 따르며(즉 F2(i) = i), 즉 SD에 순열이 없다. 우선 순위 함수
Figure pct00387
이다. 우선 순위 함수 F1(m)은 Alt 2A-1 내지 Alt 2A-6 중 적어도 하나에 따른다.
다른 예에서, 우선 순위 레벨은
Figure pct00388
로서 계산되며, 여기서 F1(m)은 대응하는 FD 기저 컴포넌트/인덱스
Figure pct00389
(FD 기저 인덱스
Figure pct00390
이 UE에 의해 선택/보고되는 경우)의 다음 우선 순위/순열에 따라 인덱스 m을 매핑/순열한다. FD 인덱스들 m = 0,1,…, M-1과 UE에 의해 보고되는 FD 기저 인덱스들 k0, k1,… kM-1 사이에는 일대일 대응이 있음을 유의한다. FD 기저 컴포넌트들
Figure pct00391
은 순열 함수 G(.)를 사용하여
Figure pct00392
로 순열(매핑)된다. 함수 G(.)는 다음 대안들 중 적어도 하나에 따른다.
일 대안 Alt 2C-1에서: 순열 함수 G는
Figure pct00393
로 주어지며, 이것은 FD 기저 컴포넌트들
Figure pct00394
Figure pct00395
로 순열(매핑)한다.
일 대안 Alt 2C-2에서: 순열 함수 G는
Figure pct00396
로 주어지며, 이것은 FD 인덱스들
Figure pct00397
Figure pct00398
로 순열(매핑)한다.
일 대안 Alt 2C-3에서: 순열 함수 G는
Figure pct00399
로 주어지며, 이것은 FD 인덱스들
Figure pct00400
Figure pct00401
로 순열(매핑)한다.
일 대안 Alt 2C-4에서: 순열 함수 G는
Figure pct00402
로 주어지며 이것은 우선 순위들
Figure pct00403
을 FD 기저 컴포넌트들
Figure pct00404
에 각각 할당한다.
일 예에서, 인덱스 리매핑 또는 매핑(실시예 2A 참조)은 순열 함수 F1(m)을 적용하기 전에 수행된다. 인덱스 리매핑 또는 매핑의 세부 사항은 실시예 2A에서 설명된 바와 같다. M 개의 FD 기저 인덱스들
Figure pct00405
Figure pct00406
FD 인덱스들의 세트로부터 UE에 의해 보고된다.
다른 예에서, 순열 함수 F2는 Alt 2B-1에 따르며(즉 F2(i) = i), 즉 SD에 순열이 없다. 우선 순위 함수
Figure pct00407
이다. 우선 순위 함수 F1(m)은 Alt 2A-1 및 Alt X에서 구성되는 상위 레이어(예를 들면, RRC)이며, 여기서 X는 {Alt 2A-2 내지 Alt 2A-6 및 Alt 2C-1 내지 Alt 2C-3 중 적어도 하나이다.
실시예 3에서, NZ 계수들은 SCI 인덱스
Figure pct00408
및 NZ 계수들의 순서에 기초하여 그룹핑된다(실시예 2 참조). 다음 대안 중 적어도 하나가 사용될 수 있다.
일 대안 Alt 3-1에서, 주어진 레이어 l에 대해,
Figure pct00409
또는
Figure pct00410
을 만족하는 인덱스들
Figure pct00411
을 갖는 계수 세트 S1
Figure pct00412
Figure pct00413
을 만족하는 인덱스들
Figure pct00414
을 갖는 다른 계수 세트 S2보다 높은 우선 순위를 갖는다.
일 예에서, S1의 계수들에 대한, 우선 순위는 다음과 같이 결정된다.
● 단계 1: FD 인덱스가
Figure pct00415
인 S1의 계수들이
Figure pct00416
에 따라 우선 순위가 지정된다.
● 단계 2: SD 인덱스가
Figure pct00417
인 S1의 계수들이
Figure pct00418
에 따라 두 번째로 우선 순위가 지정되며, 여기서 X = 2νL은 단계 1로부터의 계수들의 수이다.
S2의 계수들에 대한, 우선 순위는
Figure pct00419
로서 결정되며, 여기서 Y = ν(2L + M -1)은 단계 1 및 단계 2로부터의 계수들의 수이다.
일 대안 Alt 3-2에서, 주어진 레이어 l에 대해,
Figure pct00420
또는
Figure pct00421
또는
Figure pct00422
을 만족하는 인덱스들
Figure pct00423
을 갖는 계수 세트 S1
Figure pct00424
,
Figure pct00425
Figure pct00426
을 만족하는 인덱스들
Figure pct00427
을 갖는 계수 세트 S2보다 높은 우선 순위를 갖는다.
일 예에서, S1의 계수들에 대해, 우선 순위는 다음과 같이 결정된다.
● 단계 1: FD 인덱스가
Figure pct00428
인 S1의 계수들이
Figure pct00429
에 따라 먼저 우선 순위가 지정된다.
● 단계 2: SD 인덱스가
Figure pct00430
인 S1의 계수들이
Figure pct00431
에 따라 두 번째로 우선 순위가 지정되며, 여기서 X = 2νL은 단계 1로부터의 계수들의 수이다.
S2의 계수들에 대한, 우선 순위는
Figure pct00432
로서 결정되며, 여기서
Figure pct00433
는 단계 1 및 단계 2로부터의 계수들의 수이다.
순열 함수 F1 및 F2는 본 개시에서의 적어도 하나의 대안에 따른다(실시예 2/2A/2B).
여기서 표기법
Figure pct00434
는 a가 a < x를 만족하는 가장 큰 정수가 되도록 x를 더 작은 정수 a에 매핑하는 플로어 함수(floor function)를 나타낸다. 마찬가지로, 표기법
Figure pct00435
는 a가 x < a를 만족하는 가장 작은 정수가 되도록 x를 더 큰 정수 a에 매핑하는 천장 함수(ceiling function)를 나타낸다. 또한, 표기법
Figure pct00436
는 x의 절대 값을 나타낸다.
일 실시예(예를 들어, 실시예 X)에서, 프레임워크(5)에 따른 프리코더 또는 프리코딩 매트릭스를 나타내는 각 PMI 값은 코드북 인덱스
Figure pct00437
Figure pct00438
에 대응하며, 여기서:
Figure pct00439
여기서:
Figure pct00440
는 SD 기저의 회전 팩터들이고(Type II CSI 코드북과 동일);
Figure pct00441
는 SD 기저 인디케이터이고(Type II CSI 코드북과 동일);
Figure pct00442
는 N3 > 19일 때의 Minitial 인디케이터로서, 2M FD 기저 벡터들을 포함하는 중간 FD 기저 세트 InS를 나타내고;
Figure pct00443
는 레이어 l에 대한 FD 기저 인디케이터로서, M 개의 FD 기저 벡터를 나타내고;
Figure pct00444
는 레이어 l에 대한 비트 맵으로서, 비-제로(NZ) 계수들의 위치를 나타내고;
Figure pct00445
는 레이어 l에 대한 가장 강한 계수 인디케이터(SCI)로서, 가장 강한 계수 = 1의 위치를 나타내고;
Figure pct00446
는 레이어 l에 대한 기준 진폭 (
Figure pct00447
)으로서, 약한 편파에 대한 기준 진폭 계수를 나타내고;
Figure pct00448
는 레이어 l에 대한 차등 진폭 값들 (
Figure pct00449
)의 매트릭스이고;
Figure pct00450
는 레이어 l에 대한 위상 값들 (
Figure pct00451
)의 매트릭스이다.
실시예 Y에서는, 실시예 2C가 UCI 생략 절차에 사용된다. codebookType=typeII-r16의 PMI에 대한 UCI 비트 폭이 표 1에 나와 있으며, 여기서
Figure pct00452
,
Figure pct00453
,
Figure pct00454
,
Figure pct00455
,
Figure pct00456
,
Figure pct00457
,
Figure pct00458
,
Figure pct00459
Figure pct00460
의 값들은 [REF8]의 하위 절 5.2.2.2.5에 의해 제공된다.
[표 1]
표 1: codebookType=typeIIr16의 PMI
Figure pct00461
Figure pct00462
Figure pct00463
Figure pct00464
여기서,
Figure pct00465
는 레이어 l에 대한 비-제로 계수들의 수이고,
Figure pct00466
는 비-제로 계수들의 총 수이며, ν는 랭크 인디케이터 값을 통해 표시되는 랭크 인디케이터 값이다.
codebookType=typeIIr16PortSelection의 PMI에 대한 비트 폭이 표 2에 제공되어 있으며, 여기서
Figure pct00467
,
Figure pct00468
,
Figure pct00469
,
Figure pct00470
,
Figure pct00471
,
Figure pct00472
,
Figure pct00473
,
Figure pct00474
Figure pct00475
의 값들은 [REF8]의 하위 절 5.2.2.2.6에 의해 제공된다.
[표 2]
표 2: codebookType = typeIIr16PortSelection의 PMI
Figure pct00476
Figure pct00477
Figure pct00478
Figure pct00479
여기서,
Figure pct00480
는 레이어 l에 대한 비-제로 계수들의 수이고,
Figure pct00481
는 비-제로 계수들의 총 수이며, ν는 랭크 인디케이터 값을 통해 표시되는 랭크 인디케이터 값이다.
PUSCH를 통한 CSI의 경우, 2 개의 UCI 비트 시퀀스가 생성되며,
Figure pct00482
Figure pct00483
이다. 모든 CSI 보고의 CSI 필드들은, 표 6.3.2.1.2-6 [REF7]의 상단에서 하단으로 순서로,
Figure pct00484
에서 시작되는 UCI 비트 시퀀스
Figure pct00485
에 매핑된다. 모든 CSI 보고의 CSI 필드는 표 3의 상단에서 하단으로 순서로,
Figure pct00486
에서 시작되는 UCI 비트 시퀀스
Figure pct00487
에 매핑된다.
[표 3]
표 3: 2-파트 CSI 보고(들)로, UCI 비트 시퀀스
Figure pct00488
에 대한 CSI 보고의 매핑 순서
Figure pct00489
Figure pct00490
Figure pct00491
여기서 표 6.3.2.1.2-7의 CSI 보고 #1, CSI 보고 #2,…, CSI 보고 #n은 [REF8]의 하위 절 5.2.5에 따른 CSI 보고 우선 순위 값들의 오름차순 CSI 보고에 해당한다.
[표 4]
표 4: 하나의 CSI 보고, codebookType=typeIIr16 또는 typeIIr16-PortSelection의 CSI 파트 2의 CSI 필드 매핑 순서
Figure pct00492
[표 5]
표 5: 하나의 CSI 보고, codebookType=typeIIr16 또는 typeIIr16-PortSelection의 CSI 파트 2의 CSI 필드 매핑 순서
Figure pct00493
상기 변형 실시예들 중 임의의 것이 독립적으로 또는 적어도 하나의 다른 변형 실시예와 조합하여 이용될 수 있다.
도 17은 본 개시의 실시예들에 따라, UE(116)와 같은 UE에 의해 수행될 수 있는, 무선 통신 시스템에서 채널 상태 정보(CSI) 보고를 위한 사용자 장비(UE)를 동작시키기 위한 방법(1700)의 흐름도를 도시한 것이다. 도 17에 도시된 방법(1700)의 실시예는 단지 설명을 위한 것이다. 도 17은 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
도 17에 도시된 바와 같이, 방법(1700)은 단계 1702에서 시작한다. 단계 1702에서, UE(예를 들어, 도 1에 도시된 111-116)는 CSI 보고를 위한 구성 정보를 수신한다.
단계 1704에서, UE는 제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 CSI 보고를 결정하고, 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(precoding matrix indicator, PMI)를 포함하고, PMI는 복수의 PMI 컴포넌트를 포함하며, 여기서 PMI 컴포넌트들의 일부는 서브-컴포넌트들로 구성된다.
단계 1706에서, UE는 PMI 컴포넌트들의 일부의 서브-컴포넌트들에 대한 우선 순위 값들을 결정한다.
단계 1708에서, UE는 결정된 우선 순위 값들에 기초하여 복수의 PMI 컴포넌트들 중 일부의 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지도록 제 2 CSI 부분을 그룹 0, 그룹 1, 그룹 2로 파티셔닝한다.
단계 1710에서, UE는 CSI 보고를 위한 리소스 할당을 기반으로 제 1 CSI 부분과 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 업링크(UL) 채널을 통해 송신한다.
서브-컴포넌트들의 우선 순위 값들은 우선 순위 값들이
Figure pct00494
로서 내림차순으로 정렬되도록 - 여기서
Figure pct00495
Figure pct00496
는 인덱스 m에 대한 값들
Figure pct00497
의 세트의 두 부분들임 - 서브-컴포넌트들과 연관된 인덱스 m의 값들
Figure pct00498
을 순열하는 함수 F1(m)을 기반으로 한다.
일 실시예에서,
Figure pct00499
,
Figure pct00500
, 및 우선 순위 값들은
Figure pct00501
로서 내림차순으로 정렬되며 여기서
Figure pct00502
은 천장 함수이다.
일 실시예에서, 인덱스 m에 대한 값 {0,1,2,…, M-1}은 주파수 도메인(FD) 기저 벡터 인덱스들 km = k0, k1,… kM-1에 대응하며, 여기서 km∈{0,1,…,N3-1} 및 N3은 UE에 구성된 FD 기저 벡터의 총 수이고, F1(m)은 해당 FD 기저 벡터 인덱스 km의 우선 순위 순서에 따른 값을 취하며,
Figure pct00503
으로 주어진다.
일 실시예에서, PMI 컴포넌트들 중 일부는
Figure pct00504
레이어들에 걸친 총
Figure pct00505
개의 비-제로 계수들에 대한 정보를 나타내며, 여기서:
Figure pct00506
이고 랭크 값이며;
Figure pct00507
이고; 또한 각 레이어
Figure pct00508
에 대해:
Figure pct00509
는 레이어 l에 대한 비-제로 계수들의 수이고,
Figure pct00510
비-제로 계수들은 2L 개의 행 및 M 개의 열을 포함하는 2L×M 계수 매트릭스 Cl의 비-제로 계수들에 대응하고, 또한 2L×M 계수 매트릭스 Cl의 나머지
Figure pct00511
계수들은 0이고, 계수 매트릭스 Cl의 계수
Figure pct00512
에 대한 우선 순위 값
Figure pct00513
는 계수
Figure pct00514
와 연관된 레이어 인덱스 (l), 행 인덱스 (i) 및 열 인덱스 (m), 그리고
Figure pct00515
로서 열 인덱스 m에 대한 함수 F1(m)을 기반으로 결정된다.
일 실시예에서, PMI 컴포넌트들 중 일부는 다음을 포함한다:
Figure pct00516
, 여기서
Figure pct00517
는 레이어 l에 대한
Figure pct00518
비-제로 계수들의 진폭들을 나타내고;
Figure pct00519
, 여기서
Figure pct00520
는 레이어 l에 대한
Figure pct00521
비-제로 계수들의 위상들을 나타내고; 또한
Figure pct00522
, 여기서
Figure pct00523
는 레이어 l에 대한
Figure pct00524
비-제로 계수들의 인덱스들
Figure pct00525
을 나타내고; 여기서 각각의
Figure pct00526
,
Figure pct00527
, 및
Figure pct00528
는 2LM 서브-컴포넌트를 포함한다.
일 실시예에서, 결정된
Figure pct00529
비-제로 계수들의 우선 순위 값들에 기초하여: 더 높은 우선 순위를 가진
Figure pct00530
Figure pct00531
서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
Figure pct00532
Figure pct00533
서브-컴포넌트들이 그룹 2에 포함되며, 가장 강한 계수들에 대응하는
Figure pct00534
Figure pct00535
서브-컴포넌트들이, 각 레이어마다 하나씩, 그룹 1 및 그룹 2로부터 제외되고; 더 높은 우선 순위를 가진
Figure pct00536
Figure pct00537
서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
Figure pct00538
Figure pct00539
서브-컴포넌트들이 그룹 2에 포함되며, 가장 강한 계수들에 대응하는
Figure pct00540
Figure pct00541
서브-컴포넌트들이, 각 레이어마다 하나씩, 그룹 1 및 그룹 2로부터 제외되며; 또한 더 높은 우선 순위를 가진
Figure pct00542
Figure pct00543
서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
Figure pct00544
Figure pct00545
서브-컴포넌트들이 그룹 2에 포함된다.
일 실시예에서, CSI 보고를 전달하는 업링크 제어 정보(UCI)에서 PMI 컴포넌트들의 비트-폭들의 매핑 순서는 다음과 같다: 왼쪽에서 오른쪽으로 그룹 0, 그룹 1 및 그룹 2; 그룹 0의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
Figure pct00546
,
Figure pct00547
,
Figure pct00548
,
Figure pct00549
,
Figure pct00550
, 및
Figure pct00551
가 매핑되고; 그룹 1의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
Figure pct00552
,
Figure pct00553
,
Figure pct00554
,
Figure pct00555
,
Figure pct00556
,
Figure pct00557
,
Figure pct00558
,
Figure pct00559
,
Figure pct00560
, 및
Figure pct00561
,
Figure pct00562
,
Figure pct00563
,
Figure pct00564
,
Figure pct00565
,
Figure pct00566
,
Figure pct00567
,
Figure pct00568
,
Figure pct00569
,
Figure pct00570
,
Figure pct00571
,
Figure pct00572
중 더 높은 우선 순위 PMI 컴포넌트들이 매핑되며; 또한 그룹 2의 경우, 왼쪽에서 오른쪽으로
Figure pct00573
,
Figure pct00574
,
Figure pct00575
,
Figure pct00576
,
Figure pct00577
,
Figure pct00578
,
Figure pct00579
,
Figure pct00580
,
Figure pct00581
,
Figure pct00582
,
Figure pct00583
,
Figure pct00584
중 더 낮은 우선 순위 PMI 컴포넌트들이 매핑되고, 여기서: 왼쪽 및 오른쪽은 각각 최상위 비트 및 최하위 비트에 대응하고,
Figure pct00585
는 L 개의 공간 도메인(SD) 기저 벡터들을 나타내고,
Figure pct00586
는 레이어 l에 대한 M 개의 FD 기저 벡터를 나타내고,
Figure pct00587
는 레이어 l에 대한 가장 강한 계수의 인덱스
Figure pct00588
를 나타내고,
Figure pct00589
는 레이어 l에 대한 기준 진폭을 나타내고,
Figure pct00590
는 그 각각이 레이어 l에 대한 비-제로 계수의 인덱스
Figure pct00591
를 나타내는, 2LM 개의 서브-컴포넌트들을 포함하고,
Figure pct00592
는 그 각각이 레이어 l에 대한 비-제로 계수의 진폭을 나타내는, 2LM 개의 서브-컴포넌트들을 포함하며, 또한
Figure pct00593
는 그 각각이 레이어 l에 대한 비-제로 계수의 위상을 나타내는, 2LM 개의 서브-컴포넌트들을 포함한다.
도 18은 본 개시의 실시예들에 따라, BS(102)와 같은 기지국(BS)에 의해 수행될 수 있는 다른 방법(1800)의 흐름도를 도시한 것이다. 도 18에 도시된 방법(1800)의 실시예는 단지 설명을 위한 것이다. 도 18은 본 개시의 범위를 임의의 특정 구현으로 제한하지 않는다.
도 18에 도시된 바와 같이, 방법(1800)은 단계 1802에서 시작한다. 단계 1802에서 BS(예를 들어, 도 1에 도시된 101-103)는 CSI 구성 정보를 생성한다.
단계 1804에서, 기지국은 제 1 CSI 파트와 제 2 CSI 파트를 포함하는 CSI 보고를 위한 CSI 구성 정보를 송신한다.
단계 1806에서, 기지국은 업링크(UL) 채널을 통해 UE로부터, CSI 보고에 대한 리소스 할당을 기반으로 하여 CSI 부분 및 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 수신한다.
제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, PMI는 복수의 PMI 컴포넌트들을 포함하며, PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함한다.
제 2 CSI 부분은 서브-컴포넌트들의 우선 순위 값들에 기초하여 복수의 PMI 컴포넌트들 중 일부의 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지도록 그룹 0, 그룹 1, 그룹 2로 파티셔닝된다.
서브-컴포넌트들의 우선 순위 값들은 우선 순위 값들이
Figure pct00594
로서 내림차순으로 정렬되도록 - 여기서
Figure pct00595
Figure pct00596
는 인덱스 m에 대한 값들
Figure pct00597
의 세트의 두 부분들임 - 서브-컴포넌트들과 연관된 인덱스 m의 값들
Figure pct00598
을 순열하는 함수 F1(m)을 기반으로 한다.
일 실시예에서,
Figure pct00599
,
Figure pct00600
, 및 우선 순위 값들은
Figure pct00601
로서 내림차순으로 정렬되며 여기서
Figure pct00602
은 천장 함수이다.
일 실시예에서, 인덱스 m에 대한 값 {0,1,2,…, M-1}은 주파수 도메인(FD) 기저 벡터 인덱스들 km = k0, k1,… kM-1에 대응하며, 여기서 km∈{0,1,…,N3-1} 및 N3은 UE에 구성된 FD 기저 벡터의 총 수이고, F1(m)은 해당 FD 기저 벡터 인덱스 km의 우선 순위 순서에 따른 값을 취하며,
Figure pct00603
으로 주어진다.
일 실시예에서, PMI 컴포넌트들 중 일부는
Figure pct00604
레이어들에 걸친 총
Figure pct00605
개의 비-제로 계수들에 대한 정보를 나타내며, 여기서:
Figure pct00606
이고 랭크 값이며;
Figure pct00607
이고; 또한 각 레이어
Figure pct00608
에 대해:
Figure pct00609
는 레이어 l에 대한 비-제로 계수들의 수이고,
Figure pct00610
비-제로 계수들은 2L 개의 행 및 M 개의 열을 포함하는 2L×M 계수 매트릭스 Cl의 비-제로 계수들에 대응하고, 또한 2L×M 계수 매트릭스 Cl의 나머지
Figure pct00611
계수들은 0이고, 계수 매트릭스 Cl의 계수
Figure pct00612
에 대한 우선 순위 값
Figure pct00613
는 계수
Figure pct00614
와 연관된 레이어 인덱스 (l), 행 인덱스 (i) 및 열 인덱스 (m), 그리고
Figure pct00615
로서 열 인덱스 m에 대한 함수 F1(m)을 기반으로 결정된다.
일 실시예에서, PMI 컴포넌트들 중 일부는 다음을 포함한다:
Figure pct00616
, 여기서
Figure pct00617
는 레이어 l에 대한
Figure pct00618
비-제로 계수들의 진폭들을 나타내고;
Figure pct00619
, 여기서
Figure pct00620
는 레이어 l에 대한
Figure pct00621
비-제로 계수들의 위상들을 나타내고; 또한
Figure pct00622
, 여기서
Figure pct00623
는 레이어 l에 대한
Figure pct00624
비-제로 계수들의 인덱스들
Figure pct00625
을 나타내고; 여기서 각각의
Figure pct00626
,
Figure pct00627
, 및
Figure pct00628
는 2LM 서브-컴포넌트를 포함한다.
일 실시예에서, 결정된
Figure pct00629
비-제로 계수들의 우선 순위 값들에 기초하여: 더 높은 우선 순위를 가진
Figure pct00630
Figure pct00631
서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
Figure pct00632
Figure pct00633
서브-컴포넌트들이 그룹 2에 포함되며, 가장 강한 계수들에 대응하는
Figure pct00634
Figure pct00635
서브-컴포넌트들이, 각 레이어마다 하나씩, 그룹 1 및 그룹 2로부터 제외되고; 더 높은 우선 순위를 가진
Figure pct00636
Figure pct00637
서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
Figure pct00638
Figure pct00639
서브-컴포넌트들이 그룹 2에 포함되며, 가장 강한 계수들에 대응하는
Figure pct00640
Figure pct00641
서브-컴포넌트들이, 각 레이어마다 하나씩, 그룹 1 및 그룹 2로부터 제외되며; 또한 더 높은 우선 순위를 가진
Figure pct00642
Figure pct00643
서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
Figure pct00644
Figure pct00645
서브-컴포넌트들이 그룹 2에 포함된다.
일 실시예에서, CSI 보고를 전달하는 업링크 제어 정보(UCI)에서 PMI 컴포넌트들의 비트-폭들의 매핑 순서는 다음과 같다: 왼쪽에서 오른쪽으로 그룹 0, 그룹 1 및 그룹 2; 그룹 0의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
Figure pct00646
,
Figure pct00647
,
Figure pct00648
,
Figure pct00649
,
Figure pct00650
, 및
Figure pct00651
가 매핑되고; 그룹 1의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
Figure pct00652
,
Figure pct00653
,
Figure pct00654
,
Figure pct00655
,
Figure pct00656
,
Figure pct00657
,
Figure pct00658
,
Figure pct00659
,
Figure pct00660
, 및
Figure pct00661
,
Figure pct00662
,
Figure pct00663
,
Figure pct00664
,
Figure pct00665
,
Figure pct00666
,
Figure pct00667
,
Figure pct00668
,
Figure pct00669
,
Figure pct00670
,
Figure pct00671
,
Figure pct00672
중 더 높은 우선 순위 PMI 컴포넌트들이 매핑되며; 또한 그룹 2의 경우, 왼쪽에서 오른쪽으로
Figure pct00673
,
Figure pct00674
,
Figure pct00675
,
Figure pct00676
,
Figure pct00677
,
Figure pct00678
,
Figure pct00679
,
Figure pct00680
,
Figure pct00681
,
Figure pct00682
,
Figure pct00683
,
Figure pct00684
중 더 낮은 우선 순위 PMI 컴포넌트들이 매핑되고, 여기서: 왼쪽 및 오른쪽은 각각 최상위 비트 및 최하위 비트에 대응하고,
Figure pct00685
는 L 개의 공간 도메인(SD) 기저 벡터들을 나타내고,
Figure pct00686
는 레이어 l에 대한 M 개의 FD 기저 벡터를 나타내고,
Figure pct00687
는 레이어 l에 대한 가장 강한 계수의 인덱스
Figure pct00688
를 나타내고,
Figure pct00689
는 레이어 l에 대한 기준 진폭을 나타내고,
Figure pct00690
는 그 각각이 레이어 l에 대한 비-제로 계수의 인덱스
Figure pct00691
를 나타내는, 2LM 개의 서브-컴포넌트들을 포함하고,
Figure pct00692
는 그 각각이 레이어 l에 대한 비-제로 계수의 진폭을 나타내는, 2LM 개의 서브-컴포넌트들을 포함하며, 또한
Figure pct00693
는 그 각각이 레이어 l에 대한 비-제로 계수의 위상을 나타내는, 2LM 개의 서브-컴포넌트들을 포함한다.
본 개시가 예시적인 실시예로 설명되었지만, 다양한 변경 및 수정이 당업자에게 제안될 수 있다. 본 개시는 첨부된 청구항들의 범위 내에 있는 그러한 변경 및 수정을 포함하는 것으로 의도된다. 본 출원의 어떠한 설명도 특정 요소, 단계 또는 기능이 청구 범위에 포함되어야 하는 필수 요소임을 나타내는 것으로 해석되어서는 안된다. 특허받는 대상의 범위는 청구 범위에 의해 정의된다.

Claims (15)

  1. 무선 통신 시스템에서 채널 상태 정보(channel state information, CSI) 보고를 위한 사용자 장치(UE)로서,
    CSI 보고에 대한 구성 정보를 수신하도록 구성되는 트랜시버; 및
    상기 트랜시버에 동작 가능하게 연결되는 프로세서를 포함하며, 상기 프로세서는,
    제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 상기 CSI 보고를 결정하고 - 상기 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(precoding matrix indicator, PMI)를 포함하고, 상기 PMI는 복수의 PMI 컴포넌트들을 포함하고, 상기 PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함함 -,
    상기 PMI 컴포넌트들 중 상기 일부의 상기 서브-컴포넌트들에 대한 우선 순위 값들을 결정하며, 및
    상기 서브-컴포넌트들에 대한 상기 결정된 우선 순위 값들에 기초하여 상기 PMI 컴포넌트들 중 상기 일부의 상기 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지게 되도록, 상기 제 2 CSI 부분을 그룹 0, 그룹 1 및 그룹 2로 파티셔닝(partitioning)하도록 구성되고,
    상기 트랜시버는 상기 CSI 보고에 대한 리소스 할당에 기초하여 상기 제 1 CSI 부분, 및 상기 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 업링크(UL) 채널을 통해 송신하도록 더 구성되며,
    상기 서브-컴포넌트들에 대한 상기 우선 순위 값들은 상기 우선 순위 값들이
    Figure pct00694
    로서 내림차순으로 정렬되도록 -
    Figure pct00695
    Figure pct00696
    는 인덱스 m에 대한 값들
    Figure pct00697
    의 두 개의 부분임 -, 상기 서브-컴포넌트들과 연관된 상기 인덱스 m의 값들 {0,1,2,…, M-1}을 순열하는(permute) 함수 F1(m)을 기초로 하는, 사용자 장치(UE).
  2. 제 1 항에 있어서,
    Figure pct00698
    ,
    Figure pct00699
    , 및 상기 우선 순위 값들이
    Figure pct00700
    로서 내림차순으로 정렬되며, 여기서
    Figure pct00701
    는 천장 함수(ceiling function)인, 사용자 장치(UE).
  3. 제 2 항에 있어서,
    상기 인덱스 m의 값들
    Figure pct00702
    은 주파수 도메인(frequency domain, FD) 기저 벡터 인덱스들
    Figure pct00703
    에 대응하고, 여기서
    Figure pct00704
    Figure pct00705
    은 상기 UE에 구성된 FD 기저 벡터들의 총 수이며; 또한
    F1(m)은 대응하는 FD 기저 벡터 인덱스 km의 우선 순위 순서에 따른 값을 취하고,
    Figure pct00706
    에 의해 주어지는, 사용자 장치(UE).
  4. 제 3 항에 있어서,
    상기 PMI 컴포넌트들 중 상기 일부는 υ 개의 레이어들에 걸친 총
    Figure pct00707
    개의 비-제로(non-zero) 계수들에 대한 정보를 나타내며, 여기서:
    υ≥1이고 이것은 랭크 값(rank value)이고;
    Figure pct00708
    이며; 및
    각 레이어
    Figure pct00709
    에 대해:
    Figure pct00710
    는 레이어 l에 대한 비-제로 계수들의 수이고,
    상기
    Figure pct00711
    개의 비-제로 계수들은 2L 개의 행과 M 개의 열로 구성된 2L×M 계수 매트릭스 Cl의 비-제로 계수들에 대응하고, 상기 2L×M 계수 매트릭스 Cl의 나머지
    Figure pct00712
    개의 계수들은 0이며, 및
    상기 계수 매트릭스 Cl의 계수
    Figure pct00713
    에 대한 우선 순위 값 P(l,i,m)은
    Figure pct00714
    로서, 상기 계수
    Figure pct00715
    와 연관된 레이어 인덱스 (l), 행 인덱스 (i) 및 열 인덱스 (m), 그리고 열 인덱스 m에 대한 상기 함수 F1(m)을 기초로 하여 결정되는, 사용자 장치(UE).
  5. 제 4 항에 있어서,
    상기 PMI 컴포넌트들 중 상기 일부는,
    Figure pct00716
    - 여기서
    Figure pct00717
    는 레이어 l에 대한 상기
    Figure pct00718
    개의 비-제로 계수들의 진폭들을 나타냄 -;
    Figure pct00719
    - 여기서
    Figure pct00720
    는 레이어 l에 대한 상기
    Figure pct00721
    개의 비-제로 계수들의 위상들을 나타냄 -; 및
    Figure pct00722
    - 여기서
    Figure pct00723
    는 레이어 l에 대한 상기
    Figure pct00724
    개의 비-제로 계수들의 위상들의 인덱스들
    Figure pct00725
    을 나타냄 - 을 포함하며; 및
    각각의
    Figure pct00726
    ,
    Figure pct00727
    , 및
    Figure pct00728
    는 2LM 개의 서브-컴포넌트들로 구성되는, 사용자 장치(UE).
  6. 제 5 항에 있어서,
    상기 결정된 상기
    Figure pct00729
    개의 비-제로 계수들의 우선 순위 값들에 기초하여,
    더 높은 우선 순위를 가진
    Figure pct00730
    Figure pct00731
    개의 서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
    Figure pct00732
    Figure pct00733
    개의 서브-컴포넌트들이 그룹 2에 포함되며, 각 레이어에 대해 하나씩, 가장 강한 계수들에 대응하는
    Figure pct00734
    의 υ 개의 서브-컴포넌트들이 그룹 1과 그룹 2에서 제외되고;
    더 높은 우선 순위를 가진
    Figure pct00735
    Figure pct00736
    개의 서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
    Figure pct00737
    Figure pct00738
    개의 서브-컴포넌트들이 그룹 2에 포함되며, 각 레이어에 대해 하나씩, 가장 강한 계수들에 대응하는
    Figure pct00739
    의 υ 개의 서브-컴포넌트들이 그룹 1과 그룹 2에서 제외되고; 및
    더 높은 우선 순위를 가진
    Figure pct00740
    Figure pct00741
    개의 서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
    Figure pct00742
    Figure pct00743
    개의 서브-컴포넌트들이 그룹 2에 포함되는, 사용자 장치(UE).
  7. 제 6 항에 있어서,
    상기 CSI 보고를 전달하는 업링크 제어 정보(UCI)에서 상기 PMI 컴포넌트들의 비트-폭들의 매핑 순서는,
    왼쪽에서 오른쪽으로 그룹 0, 그룹 1 및 그룹 2를 따르고,
    그룹 0의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
    Figure pct00744
    ,
    Figure pct00745
    ,
    Figure pct00746
    ,
    Figure pct00747
    ,
    Figure pct00748
    , 및
    Figure pct00749
    가 매핑되고;
    그룹 1의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
    Figure pct00750
    ,
    Figure pct00751
    ,
    Figure pct00752
    ,
    Figure pct00753
    ,
    Figure pct00754
    ,
    Figure pct00755
    ,
    Figure pct00756
    ,
    Figure pct00757
    ,
    Figure pct00758
    , 및
    Figure pct00759
    ,
    Figure pct00760
    ,
    Figure pct00761
    ,
    Figure pct00762
    ,
    Figure pct00763
    ,
    Figure pct00764
    ,
    Figure pct00765
    ,
    Figure pct00766
    ,
    Figure pct00767
    ,
    Figure pct00768
    ,
    Figure pct00769
    ,
    Figure pct00770
    중 더 높은 우선 순위 PMI 컴포넌트들이 매핑되며; 또한
    그룹 2의 경우, 왼쪽에서 오른쪽으로
    Figure pct00771
    ,
    Figure pct00772
    ,
    Figure pct00773
    ,
    Figure pct00774
    ,
    Figure pct00775
    ,
    Figure pct00776
    ,
    Figure pct00777
    ,
    Figure pct00778
    ,
    Figure pct00779
    ,
    Figure pct00780
    ,
    Figure pct00781
    ,
    Figure pct00782
    중 더 낮은 우선 순위 PMI 컴포넌트들이 매핑되고,
    여기서:
    왼쪽 및 오른쪽은 각각 최상위 비트 및 최하위 비트에 대응하고,
    Figure pct00783
    는 L 개의 공간 도메인(SD) 기저 벡터들을 나타내고,
    Figure pct00784
    는 레이어 l에 대한 M 개의 FD 기저 벡터를 나타내고,
    Figure pct00785
    는 레이어 l에 대한 가장 강한 계수의 인덱스
    Figure pct00786
    를 나타내고,
    Figure pct00787
    는 레이어 l에 대한 기준 진폭을 나타내고,
    Figure pct00788
    는 그 각각이 레이어 l에 대한 비-제로 계수의 인덱스
    Figure pct00789
    를 나타내는, 2LM 개의 서브-컴포넌트들을 포함하고,
    Figure pct00790
    는 그 각각이 레이어 l에 대한 비-제로 계수의 진폭을 나타내는, 2LM 개의 서브-컴포넌트들을 포함하며, 또한
    Figure pct00791
    는 그 각각이 레이어 l에 대한 비-제로 계수의 위상을 나타내는, 2LM 개의 서브-컴포넌트들을 포함하는, 사용자 장치(UE).
  8. 무선 통신 시스템의 기지국(BS)으로서,
    채널 상태 정보(CSI) 구성 정보를 생성하도록 구성되는 프로세서; 및
    상기 프로세서에 동작 가능하게 연결되는 트랜시버를 포함하며, 상기 트랜시버는,
    제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 CSI 보고에 대한 상기 CSI 구성 정보를 송신하고,
    상기 CSI 보고에 대한 리소스 할당을 기초로 하여 상기 제 1 CSI 부분과, 상기 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 업링크(UL) 채널을 통해 수신하도록 구성되고,
    상기 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, 상기 PMI는 복수의 PMI 컴포넌트들을 포함하고, 상기 PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함하며,
    상기 제 2 CSI 부분은 상기 서브-컴포넌트들에 대한 우선 순위 값들에 기초하여 상기 PMI 컴포넌트들 중 상기 일부의 상기 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지도록 그룹 0, 그룹 1, 그룹 2로 파티셔닝되고, 및
    상기 서브-컴포넌트들에 대한 상기 우선 순위 값들은 상기 우선 순위 값들이
    Figure pct00792
    로서 내림차순으로 정렬되도록 - 여기서
    Figure pct00793
    Figure pct00794
    는 인덱스 m에 대한 값들
    Figure pct00795
    의 세트의 두 부분들임 - 상기 서브-컴포넌트들과 연관된 상기 인덱스 m의 상기 값들
    Figure pct00796
    을 순열하는 함수 F1(m)을 기초로 하는, 기지국(BS).
  9. 제 8 항에 있어서,
    Figure pct00797
    ,
    Figure pct00798
    , 및 상기 우선 순위 값들은
    Figure pct00799
    로서 내림차순으로 정렬되며 여기서
    Figure pct00800
    은 천장 함수인, 기지국(BS).
  10. 제 9 항에 있어서,
    상기 인덱스 m에 대한 상기 값들 {0,1,2,…, M-1}은 주파수 도메인(frequency domain, FD) 기저 벡터 인덱스들
    Figure pct00801
    에 대응하며, 여기서 km∈{0,1,…,N3-1} 및 N3은 FD 기저 벡터들의 총 수이고; 또한
    F1(m)은 대응하는 FD 기저 벡터 인덱스 km의 우선 순위 순서에 따른 값을 취하며,
    Figure pct00802
    으로 주어지는, 기지국(BS).
  11. 제 10 항에 있어서,
    상기 PMI 컴포넌트들 중 상기 일부는 υ 레이어들에 걸친 총
    Figure pct00803
    개의 비-제로 계수들에 대한 정보를 나타내고, 여기서:
    Figure pct00804
    이고 랭크 값(rank value)이며;
    Figure pct00805
    이고; 또한
    각 레이어
    Figure pct00806
    에 대해:
    Figure pct00807
    는 레이어 l에 대한 비-제로 계수들의 수이고,
    상기
    Figure pct00808
    비-제로 계수들은 2L 개의 행 및 M 개의 열을 포함하는 2L×M 계수 매트릭스 Cl의 비-제로 계수들에 대응하고, 또한 상기 2L×M 계수 매트릭스 Cl의 나머지
    Figure pct00809
    계수들은 0이며, 또한
    상기 계수 매트릭스 Cl의 계수
    Figure pct00810
    에 대한 우선 순위 값
    Figure pct00811
    Figure pct00812
    로서, 상기 계수
    Figure pct00813
    와 연관된 레이어 인덱스 (l), 행 인덱스 (i) 및 열 인덱스 (m), 그리고 상기 열 인덱스 m에 대한 상기 함수 F1(m)을 기초로 하여 결정되는, 기지국(BS).
  12. 제 11 항에 있어서,
    상기 PMI 컴포넌트들 중 상기 일부는,
    Figure pct00814
    - 여기서
    Figure pct00815
    는 레이어 l에 대한 상기
    Figure pct00816
    비-제로 계수들의 진폭들을 나타냄 -;
    Figure pct00817
    - 여기서
    Figure pct00818
    는 레이어 l에 대한 상기
    Figure pct00819
    비-제로 계수들의 위상들을 나타냄 -; 및
    Figure pct00820
    - 여기서
    Figure pct00821
    는 레이어 l에 대한 상기
    Figure pct00822
    비-제로 계수들의 인덱스들
    Figure pct00823
    을 나타냄 - 을 포함하며, 또한
    각각의
    Figure pct00824
    ,
    Figure pct00825
    , 및
    Figure pct00826
    는 2LM 개의 서브-컴포넌트를 포함하는, 기지국(BS).
  13. 제 12 항에 있어서,
    상기
    Figure pct00827
    비-제로 계수들의 상기 우선 순위 값들에 기초하여:
    더 높은 우선 순위를 가진
    Figure pct00828
    Figure pct00829
    서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
    Figure pct00830
    Figure pct00831
    서브-컴포넌트들이 그룹 2에 포함되며, 가장 강한 계수들에 대응하는
    Figure pct00832
    Figure pct00833
    서브-컴포넌트들이, 각 레이어마다 하나씩, 그룹 1 및 그룹 2로부터 제외되고;
    더 높은 우선 순위를 가진
    Figure pct00834
    Figure pct00835
    서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
    Figure pct00836
    Figure pct00837
    서브-컴포넌트들이 그룹 2에 포함되며, 상기 가장 강한 계수들에 대응하는
    Figure pct00838
    Figure pct00839
    서브-컴포넌트들이, 각 레이어마다 하나씩, 그룹 1 및 그룹 2로부터 제외되며; 또한
    더 높은 우선 순위를 가진
    Figure pct00840
    Figure pct00841
    서브-컴포넌트들이 그룹 1에 포함되고, 더 낮은 우선 순위를 가진
    Figure pct00842
    Figure pct00843
    서브-컴포넌트들이 그룹 2에 포함되며, 또한
    상기 CSI 보고를 전달하는 업링크 제어 정보(UCI)에서 상기 PMI 컴포넌트들의 비트-폭들의 매핑 순서는,
    왼쪽에서 오른쪽으로 그룹 0, 그룹 1 및 그룹 2를 따르고,
    그룹 0의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
    Figure pct00844
    ,
    Figure pct00845
    ,
    Figure pct00846
    ,
    Figure pct00847
    ,
    Figure pct00848
    , 및
    Figure pct00849
    가 매핑되고;
    그룹 1의 경우, 왼쪽에서 오른쪽으로 PMI 컴포넌트들
    Figure pct00850
    ,
    Figure pct00851
    ,
    Figure pct00852
    ,
    Figure pct00853
    ,
    Figure pct00854
    ,
    Figure pct00855
    ,
    Figure pct00856
    ,
    Figure pct00857
    ,
    Figure pct00858
    , 및
    Figure pct00859
    ,
    Figure pct00860
    ,
    Figure pct00861
    ,
    Figure pct00862
    ,
    Figure pct00863
    ,
    Figure pct00864
    ,
    Figure pct00865
    ,
    Figure pct00866
    ,
    Figure pct00867
    ,
    Figure pct00868
    ,
    Figure pct00869
    ,
    Figure pct00870
    중 더 높은 우선 순위 PMI 컴포넌트들이 매핑되며; 또한
    그룹 2의 경우, 왼쪽에서 오른쪽으로
    Figure pct00871
    ,
    Figure pct00872
    ,
    Figure pct00873
    ,
    Figure pct00874
    ,
    Figure pct00875
    ,
    Figure pct00876
    ,
    Figure pct00877
    ,
    Figure pct00878
    ,
    Figure pct00879
    ,
    Figure pct00880
    ,
    Figure pct00881
    ,
    Figure pct00882
    중 더 낮은 우선 순위 PMI 컴포넌트들이 매핑되고,
    여기서:
    왼쪽 및 오른쪽은 각각 최상위 비트 및 최하위 비트에 대응하고,
    Figure pct00883
    는 L 개의 공간 도메인(SD) 기저 벡터들을 나타내고,
    Figure pct00884
    는 레이어 l에 대한 M 개의 FD 기저 벡터를 나타내고,
    Figure pct00885
    는 레이어 l에 대한 상기 가장 강한 계수의 인덱스
    Figure pct00886
    를 나타내고,
    Figure pct00887
    는 레이어 l에 대한 기준 진폭을 나타내고,
    Figure pct00888
    는 그 각각이 레이어 l에 대한 비-제로 계수의 인덱스
    Figure pct00889
    를 나타내는, 2LM 개의 서브-컴포넌트들을 포함하고,
    Figure pct00890
    는 그 각각이 레이어 l에 대한 비-제로 계수의 진폭을 나타내는, 2LM 개의 서브-컴포넌트들을 포함하며, 또한
    Figure pct00891
    는 그 각각이 레이어 l에 대한 비-제로 계수의 위상을 나타내는, 2LM 개의 서브-컴포넌트들을 포함하는, 기지국(BS).
  14. 무선 통신 시스템에서 채널 상태 정보(CSI) 보고를 위한 사용자 장치(UE)를 동작시키는 방법으로서,
    CSI 보고에 대한 구성 정보를 수신하는 단계;
    제 1 CSI 부분 및 제 2 CSI 부분을 포함하는 상기 CSI 보고를 결정하는 단계 - 상기 제 2 CSI 부분은 프리코딩 매트릭스 인디케이터(PMI)를 포함하고, 상기 PMI는 복수의 PMI 컴포넌트들을 포함하고, 상기 PMI 컴포넌트들 중 일부는 서브-컴포넌트들을 포함함 -;
    상기 PMI 컴포넌트들 중 상기 일부의 상기 서브-컴포넌트들에 대한 우선 순위 값들을 결정하는 단계;
    상기 서브-컴포넌트들에 대한 상기 결정된 우선 순위 값들에 기초하여 상기 PMI 컴포넌트들 중 상기 일부의 상기 서브-컴포넌트들이 그룹 1과 그룹 2로 나누어지게 되도록, 상기 제 2 CSI 부분을 그룹 0, 그룹 1 및 그룹 2로 파티셔닝하는 단계; 및
    상기 CSI 보고에 대한 리소스 할당에 기초하여 상기 제 1 CSI 부분, 및 상기 제 2 CSI 부분의 그룹 0 또는 (그룹 0, 그룹 1) 또는 (그룹 0, 그룹 1, 그룹 2)를 업링크(UL) 채널을 통해 송신하는 단계를 포함하며,
    상기 서브-컴포넌트들에 대한 상기 우선 순위 값들은 상기 우선 순위 값들이
    Figure pct00892
    로서 내림차순으로 정렬되도록 -
    Figure pct00893
    Figure pct00894
    는 인덱스 m에 대한 값들
    Figure pct00895
    의 두 개의 부분임 -, 상기 서브-컴포넌트들과 연관된 상기 인덱스 m의 값들 {0,1,2,…, M-1}을 순열하는 함수 F1(m)을 기초로 하는, 방법.
  15. 제 15 항에 있어서,
    Figure pct00896
    ,
    Figure pct00897
    , 및 상기 우선 순위 값들이
    Figure pct00898
    로서 내림차순으로 정렬되며, 여기서
    Figure pct00899
    는 천장 함수인, 방법.
KR1020227011293A 2019-09-06 2020-09-04 업링크 제어 정보 생략을 위한 방법 및 장치 KR20220055486A (ko)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201962897215P 2019-09-06 2019-09-06
US62/897,215 2019-09-06
US201962914910P 2019-10-14 2019-10-14
US62/914,910 2019-10-14
US201962915303P 2019-10-15 2019-10-15
US62/915,303 2019-10-15
US201962928593P 2019-10-31 2019-10-31
US62/928,593 2019-10-31
US201962937479P 2019-11-19 2019-11-19
US62/937,479 2019-11-19
US17/009,529 2020-09-01
US17/009,529 US11463142B2 (en) 2019-09-06 2020-09-01 Method and apparatus for uplink control information omission
PCT/KR2020/011953 WO2021045566A1 (en) 2019-09-06 2020-09-04 Method and apparatus for uplink control information omission

Publications (1)

Publication Number Publication Date
KR20220055486A true KR20220055486A (ko) 2022-05-03

Family

ID=74849604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227011293A KR20220055486A (ko) 2019-09-06 2020-09-04 업링크 제어 정보 생략을 위한 방법 및 장치

Country Status (5)

Country Link
US (2) US11463142B2 (ko)
EP (1) EP3861647A4 (ko)
KR (1) KR20220055486A (ko)
CN (1) CN113169790B (ko)
WO (1) WO2021045566A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895330B1 (en) * 2018-12-12 2023-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Reporting of coefficients for channel state information
EP4064585A4 (en) * 2019-08-15 2023-08-23 LG Electronics Inc. METHOD FOR REPORTING CHANNEL STATUS INFORMATION IN A WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREFOR
CN113596908B (zh) * 2019-09-23 2023-04-25 Oppo广东移动通信有限公司 确定信道状态信息报告的优先级的方法及装置、用户终端
FI129704B (en) * 2019-10-16 2022-07-15 Nokia Technologies Oy Method and apparatus for omitting feed-back coefficients
JP2024516347A (ja) * 2021-03-19 2024-04-15 フラウンホーファー-ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 線形結合ポート選択コードブックのチャネル状態情報csi省略を伴う方法および装置
US20220393743A1 (en) * 2021-05-11 2022-12-08 Nokia Technologies Oy Precoding information
WO2023206232A1 (en) * 2022-04-28 2023-11-02 Apple Inc. Uplink control information omission for coherent joint transmission multi-transmission-reception-point operation
WO2024026649A1 (en) * 2022-08-01 2024-02-08 Nec Corporation Methods, devices, and medium for communication
CN117792444A (zh) * 2022-09-21 2024-03-29 维沃移动通信有限公司 Pmi组合系数的发送方法、装置及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200103B2 (en) 2016-11-23 2019-02-05 Samsung Electronics Co., Ltd. Method and apparatus to enable multi-resolution CSI reporting in advanced wireless communication systems
WO2019069296A1 (en) 2017-10-02 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) ORDERING OF CSI IN UCI
WO2020150700A1 (en) * 2019-01-18 2020-07-23 Apple Inc. Frequency domain channel state information (csi) compression
EP4008069B1 (en) * 2019-08-01 2024-02-28 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a channel state information report adapted to support a partial omission

Also Published As

Publication number Publication date
CN113169790A (zh) 2021-07-23
WO2021045566A1 (en) 2021-03-11
US20210075487A1 (en) 2021-03-11
CN113169790B (zh) 2024-04-19
US20230121462A1 (en) 2023-04-20
US11463142B2 (en) 2022-10-04
EP3861647A1 (en) 2021-08-11
EP3861647A4 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
KR102599782B1 (ko) 채널 상태 정보(channel stat information)의 다중화 및 생략을 위한 방법 및 장치
CN112075031B (zh) 启用基于非均匀空频压缩的csi报告的方法和装置
KR102453737B1 (ko) 첨단 무선 통신 시스템에서의 더 높은 랭크의 csi 보고 방법 및 장치
KR102534939B1 (ko) 무선 통신 시스템에서 csi 보고를 가능하게 하는 방법 및 장치
US10547368B2 (en) Method and apparatus for codebook subset restriction for CSI reporting in advanced wireless communication systems
EP4274114A2 (en) Method and apparatus for resource-based csi acquisition in advanced wireless communication systems
KR102612534B1 (ko) 코드북 서브세트 제한을 위한 방법 및 장치
JP7464608B2 (ja) 無線通信システムにおける分割csi報告を可能にする方法及びその装置
CN113169790B (zh) 无线通信系统中收发csi报告的方法和设备
JP2023036643A (ja) チャンネル状態情報をマルチプレクシングする方法及び装置
KR102331127B1 (ko) 상향링크 이동통신 시스템을 위한 자원할당 및 프리코딩 방법 및 장치
KR20220052988A (ko) 멀티 빔 동작들을 위한 방법 및 장치
KR20210029281A (ko) 무선 통신 시스템에서 다중 빔 동작을 위한 방법 및 장치
KR20220075397A (ko) 부분 csi를 멀티플렉싱하기 위한 방법 및 장치
KR20190130560A (ko) 진보된 무선 통신 시스템에서의 비균등 비트 할당을 기반으로 하는 고해상 csi 보고
KR20200018730A (ko) 고분해능 채널 상태 정보(csi)를 다중화하기 위한 방법 및 장치
US12052078B2 (en) Method and apparatus for CSI parameter configuration in wireless communication systems
KR20220057618A (ko) 무선 통신 시스템에서 포트 선택을 위한 방법 및 장치
KR20220123226A (ko) 상호성 기반 csi-rs 송신 및 수신을 위한 방법 및 장치
KR20210131423A (ko) 무선 통신 시스템에서 하이 랭크 csi 보고를 가능하게 하는 방법 및 장치
KR20210121000A (ko) 무선 통신 시스템에서 하이 랭크 csi 보고를 위한 방법 및 장치
KR20200028491A (ko) 진보된 무선 통신 시스템에서 csi 보고를 위한 빔 선택 방법 및 장치
CN115668793A (zh) 用于用信号通知能力以启用全功率上行链路传输的方法和装置
KR20240067901A (ko) Ul 송신을 위한 방법 및 장치