KR20210108381A - 다양한 레벨들의 자율성을 갖는 차량들 사이의 상호작용들을 관리하기 위한 방법들 및 시스템들 - Google Patents

다양한 레벨들의 자율성을 갖는 차량들 사이의 상호작용들을 관리하기 위한 방법들 및 시스템들 Download PDF

Info

Publication number
KR20210108381A
KR20210108381A KR1020217019364A KR20217019364A KR20210108381A KR 20210108381 A KR20210108381 A KR 20210108381A KR 1020217019364 A KR1020217019364 A KR 1020217019364A KR 20217019364 A KR20217019364 A KR 20217019364A KR 20210108381 A KR20210108381 A KR 20210108381A
Authority
KR
South Korea
Prior art keywords
vehicle
autonomous
vehicles
processor
determining
Prior art date
Application number
KR1020217019364A
Other languages
English (en)
Inventor
존 앤서니 도허티
조던 스콧 버클런드
크리스틴 바그너 세라세
스티븐 마크 차베스
로스 에릭 케슬러
폴 다니엘 마틴
다니엘 워렌 멜린저 3세
마이클 조슈아 쇼민
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201962787569P priority Critical
Priority to US201962787560P priority
Priority to US62/787,569 priority
Priority to US62/787,560 priority
Priority to US16/727,179 priority patent/US20200207360A1/en
Priority to US16/727,179 priority
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Priority to PCT/US2019/068671 priority patent/WO2020142356A1/en
Publication of KR20210108381A publication Critical patent/KR20210108381A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0017Planning or execution of driving tasks specially adapted for safety of other traffic participants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0018Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions
    • B60W60/00186Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions related to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0055Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements
    • G05D1/0066Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements for limitation of acceleration or stress
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • B60W2050/046Monitoring control system parameters involving external transmission of data to or from the vehicle, e.g. via telemetry, satellite, Global Positioning System [GPS]
    • B60W2050/048Monitoring control system parameters involving external transmission of data to or from the vehicle, e.g. via telemetry, satellite, Global Positioning System [GPS] displaying data transmitted between vehicles, e.g. for platooning, control of inter-vehicle distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2201/00Application
    • G05D2201/02Control of position of land vehicles
    • G05D2201/0213Road vehicle, e.g. car or truck

Abstract

방법들, 디바이스들 및 시스템들은 자율 차량의 임계 거리 내에 있는 차량들을 식별하고, 식별된 차량들 각각의 자율 능력 메트릭을 결정하고, 식별된 차량들 각각의 결정된 자율 능력 메트릭에 기초하여 자율 차량의 주행 파라미터를 조정함으로써 자율 차량을 제어하는 것을 가능하게 한다. 주행 파라미터를 조정하는 것은 최소 분리 거리, 최소 추종 거리, 속도 파라미터 또는 가속 레이트 파라미터 중 하나 이상을 조정하는 것을 포함할 수 있다.

Description

다양한 레벨들의 자율성을 갖는 차량들 사이의 상호작용들을 관리하기 위한 방법들 및 시스템들
[0001] 본 출원은, 2019년 1월 2일에 출원되고 발명의 명칭이 "Methods And Systems For Managing Interactions Between Vehicles With Varying Levels Of Autonomy"인 미국 가출원 제62/787,560호, 및 2019년 1월 2일에 출원되고 발명의 명칭이 "Methods And Systems For Establishing Cooperative Driving Engagements With Vehicles Having Varying Levels Of Autonomy"인 미국 가출원 제62/787,569호에 대한 우선권 이익을 주장하며, 상기 가출원들 둘 모두의 전체 내용은 이로써 모든 목적들을 위해 인용에 의해 통합된다.
[0002] 산업이 인간의 입력이 거의 또는 전혀 없이 차량을 동작시킬 수 있는 점점 더 정교한 자율 주행 기술들을 배치하는 쪽으로 이동함에 따라 자동차들은 더 지능적이 되고 있다. 이러한 자율 및 반-자율 차량들은 (예를 들어, 레이더, LIDAR, GPS, 주행 거리계들, 가속도계들, 카메라들 및 다른 센서들을 사용하여) 자신들의 위치 및 주변에 관한 정보를 검출할 수 있고, 전형적으로, 위험들을 식별하기 위해 감각 정보를 해석하고 따를 내비게이션 경로들을 결정하는 제어 시스템들을 포함할 수 있다.
[0003] 이러한 경향들과 동시에, 5G NR(5G New Radio)과 같은 새로운 그리고 신흥 셀룰러 및 무선 통신 기술들은 다양한 새로운 특징들 및 서비스들을 제공하기 시작했으며, 이는 자동차들 및 운송 자원들의 더 안전하고 더 효율적인 사용을 위해 차량-기반 통신들을 활용하는 ITS(intelligent transportation systems)를 개발하도록 지상 운송 산업을 장려해왔다. 자율 차량들은 인간이 차량을 제어할 때 안전하지 않은(또는 심지어 가능하지 않은) 방식들로 협력하고 동작하기 위해 그러한 차량-기반 통신들을 사용할 수 있다. 예를 들어, 자율 차량들은 차량-기반 통신들을 사용하여 캐러밴을 형성하고, 교통 처리율을 증가시키기 위해 훨씬 더 빠르고 서로 더 가깝게 주행할 수 있다.
[0004] 다양한 양상들은 자율 차량을 제어하는 방법들을 포함하고, 방법은, 자율 차량의 프로세서를 통해, 자율 차량의 임계 거리 내에 있는 차량들을 식별하는 단계, 식별된 차량들 각각의 자율 능력 메트릭을 결정하는 단계, 및 식별된 차량들 각각의 결정된 자율 능력 메트릭에 기초하여 자율 차량의 주행 파라미터를 조정하는 단계를 포함할 수 있다.
[0005] 일 양상에서, 식별된 차량들 각각의 자율 능력 메트릭을 결정하는 단계는 각각의 식별된 차량의 자율성의 레벨을 결정하는 단계를 포함할 수 있다. 추가적인 실시예에서, 각각의 식별된 차량의 결정된 자율 능력 메트릭에 기초하여 자율 차량의 주행 파라미터를 조정하는 단계는, 자율 차량과 식별된 차량들 중 적어도 하나의 차량 사이에 유지될 최소 분리 거리를 조정하는 단계를 포함할 수 있다. 추가적인 실시예에서, 자율 차량과 식별된 차량들 중 적어도 하나의 차량 사이에 유지될 최소 분리 거리를 조정하는 단계는, 적어도 하나의 차량의 자율 능력 메트릭 및 적어도 하나의 차량의 거동 모델에 기초하여 최소 분리 거리를 조정하는 단계를 포함할 수 있다. 추가적인 양상에서, 각각의 식별된 차량의 결정된 자율 능력 메트릭에 기초하여 자율 차량의 주행 파라미터를 조정하는 단계는, 자율 차량과 식별된 차량들 중 적어도 하나의 차량 사이에 유지될 최소 추종 거리를 조정하는 단계를 포함할 수 있다.
[0006] 추가적인 양상에서, 자율 차량과 식별된 차량들 중 적어도 하나의 차량 사이에 유지될 최소 추종 거리를 조정하는 단계는, 적어도 하나의 차량의 자율 능력 메트릭 및 적어도 하나의 차량의 거동 모델에 기초하여 최소 추종 거리를 조정하는 단계를 포함할 수 있다. 추가적인 양상에서, 식별된 차량들 각각의 결정된 자율 능력 메트릭에 기초하여 자율 차량의 주행 파라미터를 조정하는 단계는, 자율 차량의 속도를 조정하는 단계 또는 자율 차량이 속도를 변경할 가속 레이트를 조정하는 단계를 포함할 수 있다.
[0007] 추가적인 양상에서, 자율 차량의 속도를 조정하는 단계 또는 자율 차량이 속도를 변경할 가속 레이트를 조정하는 단계는, 식별된 차량들 중 적어도 하나의 차량의 자율 능력 메트릭 및 적어도 하나의 차량의 거동 모델에 기초하여 속도 또는 가속 레이트를 조정하는 단계를 포함할 수 있다.
[0008] 추가적인 양상에서, 식별된 차량들 각각의 자율 능력 메트릭을 결정하는 단계는 식별된 차량들 중 적어도 하나의 차량으로부터 자율 능력 메트릭을 수신하는 단계를 포함할 수 있다. 추가적인 양상에서, 자율 차량의 임계 거리 내에 있는 차량들을 식별하는 단계는, 현재 조건들에 적절한 임계 거리를 동적으로 결정하는 단계 및 동적으로 결정된 임계 거리 내에 있는 차량들을 식별하는 단계를 포함할 수 있다. 추가적인 양상에서, 식별된 차량들 각각의 자율 능력 메트릭을 결정하는 단계는 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들을 결정하는 단계를 포함할 수 있다. 추가적인 양상에서, 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들을 결정하는 단계는, 인근 차량의 주행 거동을 관찰하는 단계, 인근 차량의 컴퓨팅 또는 센서 능력을 결정하는 단계, 또는 C-V2X 통신들을 통해 인근 차량의 등급 또는 인증들에 관한 정보를 수신하는 단계 중 하나 이상에 기초하여 값들을 결정하는 단계를 포함할 수 있다.
[0009] 추가적인 양상에서, 방법은, 관찰된 주행 거동에 기초하여 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들 중 적어도 하나를 결정하는 단계를 포함할 수 있고, 값은, 차량 동작들의 일관성, 규칙성 또는 균일성, 미래의 차량 동작들에 대한 예측가능성의 레벨, 운전자 공격성의 레벨, 인근 차량이 주행 차선의 중심을 추적하는 정도, 단위 시간당 주행 에러들의 수, 지역 도로 규칙들의 준수, 안전 규칙들의 준수, 자율 차량의 반응 시간, 또는 관찰가능한 이벤트들에 대한 자율 차량의 반응성 중 하나 이상을 표현한다. 추가적인 양상에서, 방법은, 결정된 센서 능력에 기초하여 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들 중 적어도 하나를 결정하는 단계를 포함할 수 있고, 값은, 센서 타입, 센서 제조사 또는 모델, 센서 제조자, 인근 차량에서 동작하는 자율 주행 센서들의 수, 센서 정확도, 또는 하나 이상의 센서들의 정밀도 중 하나를 표현한다. 추가적인 양상들에서, 방법은 C-V2X 통신들을 통해 수신된 정보에 기초하여 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 하나 이상의 값들을 결정하는 단계를 포함할 수 있고, 하나 이상의 값들은, KPI(key performance indicator), 표면 성능 등급, 날씨 성능 등급, 차량 능력, 차량 특징, 지원되는 알고리즘, 또는 예측 및 제어 전략 중 하나를 표현한다.
[0010] 추가적인 양상들은 앞서 요약된 방법들 중 임의의 것의 다양한 동작들을 수행하기 위한 프로세서 실행가능 명령들로 구성된 프로세서를 갖는 차량을 포함할 수 있다. 추가적인 양상들은 앞서 요약된 방법들 중 임의의 것의 다양한 동작들을 수행하기 위한 프로세서 실행가능 명령들로 프로세서가 구성되는 차량에서 사용하기 위한 프로세서를 포함할 수 있다. 추가적인 양상들은 앞서 요약된 방법들 중 임의의 것의 기능들을 수행하기 위한 다양한 수단을 갖는 차량을 포함할 수 있다. 추가적 양상들은 프로세서 실행가능 소프트웨어 명령들이 저장된 비일시적 프로세서 판독가능 저장 매체를 포함할 수 있고, 프로세서 실행가능 명령들은 차량 내의 프로세서로 하여금 앞서 요약된 방법들 중 임의의 것의 동작들을 수행하게 하도록 구성된다.
[0011] 본원에 통합되고 본 명세서의 일부를 구성하는 첨부된 도면들은 본 발명의 예시적인 양상들을 예시하고, 앞서 주어진 일반적인 설명 및 아래에서 주어지는 상세한 설명과 함께 본 발명의 특징들을 설명하도록 기능한다.
[0012] 도 1a 및 도 1b는 다양한 실시예들을 구현하기에 적합한 차량을 예시하는 컴포넌트 블록도들이다.
[0013] 도 1c는 다양한 실시예들을 구현하기에 적합한 차량의 컴포넌트들을 예시하는 컴포넌트 블록도이다.
[0014] 도 2는 다양한 실시예들에 따른 예시적인 차량 관리 시스템의 컴포넌트들을 예시하는 컴포넌트 블록도이다.
[0015] 도 3은 다양한 실시예들에 따라 센서 정보를 수집 및 분석하도록 구성될 수 있는, 차량에서 사용하기 위한 예시적인 시스템 온 칩의 컴포넌트들을 예시하는 블록도이다.
[0016] 도 4는 교통 처리율을 증가시키기 위해 다양한 실시예들에 따라 서로 매우 근접하게 안전하게 이동하기 위해 차량-기반 통신들을 사용하도록 구성된 자율 차량들을 포함하는 6차선 고속도로의 예시이다.
[0017] 도 5는 수동-주행 자동차 주위에 증가된 안전 마진들을 유지하도록 구성된 자율 접속 차량들을 포함하는 6차선 고속도로의 예시이다.
[0018] 도 6은 다른 차량이 이들을 통과하거나 캐러밴에서 나갈 수 있게 하기 위해 경로를 클리어하도록 구성된 자율 접속 차량들을 포함하는 6차선 고속도로의 예시이다.
[0019] 도 7은 밀접하게 그룹화된 캐러밴들을 형성하고 협력 주행 관여들에 관여하도록 구성된 자율 접속된 차량들을 포함하는 2차선 고속도로의 예시이다.
[0020] 도 8은 일 실시예에 따라 자율성의 검출된 또는 추정된 레벨들에 기초하여 자율 차량(또는 자율 차량들의 캐러밴)의 동작들 또는 주행 거동들에 영향을 미치는 방법을 예시하는 프로세스 흐름도이다.
[0021] 도 9a 및 도 9b는 일부 실시예들에 따라 다른 주위 차량들의 결정된 능력들에 기초하여 자율 차량의 거동/동작들을 조정하는 방법들을 예시하는 프로세스 흐름도들이다.
[0022] 도 10 및 도 11은 일부 실시예들에 따라 다른 주위 차량들의 결정된 능력들에 기초하여 자율 차량의 거동/동작들을 조정하는 추가적인 방법들을 예시하는 프로세스 흐름도들이다.
[0023] 도 12a 및 도 12b는 일부 실시예들에 따라 차량이 자율 차량에 동작 이점을 제공할 것이라고 결정하는 것에 대한 응답으로 다른 차량과의 협력 주행 관여를 개시하는 방법들을 예시하는 프로세스 흐름도들이다.
[0024] 도 13은 일 실시예에 따른, 자율 차량이 협력 주행 관여에 관여하는 경우, 식별된 차량이 자율 차량에 동작 이점을 제공할지 여부를 결정하는 방법을 예시하는 프로세스 흐름도이다.
[0025] 도 14는 일 실시예에 따른, 자율 차량이 협력 주행 관여에 관여하는 경우, 식별된 차량이 자율 차량에 동작 이점을 제공할지 여부를 결정하는 방법을 예시하는 프로세스 흐름도이다.
[0026] 도 15는 일 실시예에 따라 인근 차량의 자율성의 레벨 또는 성능을 결정하는 방법을 예시하는 프로세스 흐름도이다.
[0027] 다양한 양상들은 첨부된 도면들을 참조하여 상세히 설명될 것이다. 가능한 경우에는 어디에서든, 동일한 참조 부호들은 도면들 전반에 걸쳐 동일하거나 유사한 부분들을 지칭하기 위해 사용될 것이다. 특정 예들 및 구현들에 대해 행해진 참조들은 예시의 목적들을 위한 것이고, 본 발명 또는 청구항들의 범위를 제한하는 것으로 의도되지 않는다.
[0028] 자율 차량들이 효과적으로 함께 작동하기 위해, 각각의 자율 차량은 각각의 순간에 효과적인 주위 차량들의 다양한 레벨들의 능력 및 자율성을 고려할 수 있다. 또한, 자율 차량들은 주변 차량들의 거동을 변경할 수 있지만 차량이 동작중인 동안 차량을 관찰하고 분석함으로써만 알 수 있는 동적 팩터들에 적응할 수 있다. 자율 차량들이 주위 차량들의 동적 거동들 및 능력들을 더 양호하게 식별, 분석, 해석 및 대응할 수 있게 하는 개선된 차량-기반 통신들 및 자동차 제어 시스템들은 교통 효율 및 안전을 향상시킬 것이다.
[0029] 개요에서, 다양한 실시예들은, 하나 이상의 인근 차량들(예를 들어, 전방, 후방, 좌측, 우측 등의 차량)에 대한 ACM(autonomous capability metric)을 결정하기 위해 하나 이상의 주위 차량들로부터 V2V 통신들을 통해 수신된 정보와 함께 차량의 센서들(예를 들어, 카메라, 레이더, LIDAR 등)로부터 수집된 정보를 사용하는 VADS(vehicle autonomous driving system)가 구비된 차량들을 포함한다. ACM은 인근 차량의 자율성의 레벨 및/또는 다양한 성능 능력들을 집합적으로 식별, 추정 또는 예측하는 하나 이상의 이산 값들 또는 값들의 연속체를 포함할 수 있다. 일부 실시예들에서, ACM은 차량의 자율성의 전체 레벨 및/또는 성능 특성들을 요약하는 단일 숫자 또는 카테고리일 수 있다. 일부 실시예들에서, ACM은 ACM의 각각의 값이 인근 차량과 연관된 예측된, 수집된 또는 관찰된 특징, 팩터 또는 데이터 포인트의 상이한 양상을 표현하는 값들의 벡터 또는 행렬일 수 있다. 일부 실시예들에서, ACM은 인근 차량을 특성화하거나 표현하는 맵, 행렬 또는 벡터 데이터 구조로 포맷될 수 있고, 이들은 임계치들과 비교되고 그리고/또는 분류기 모델 또는 판정 노드들에 적용되어, 이산/연속체 값들의 집합을 해석하기에 적합한 분석 결과를 생성할 수 있다.
[0030] 다양한 실시예들에서, VADS 컴포넌트는 속도, 최소 분리 거리, 차선 변경 규칙들, 최소 추종 거리, 자율 차량이 속도를 변경할 가속 레이트 등과 같은 자율 차량의 다양한 주행 파라미터들(즉, 자신의 주행 거동)을 조정하기 위해 ACM들을 생성 및 사용할 수 있다. 예를 들어, 자율 차량의 바로 앞에 있는 차량이 인간 운전자에 의해 수동으로 동작되고 있음을 ACM이 표시하면, VADS 컴포넌트는 인간 운전자의 반응 시간을 처리하기 위해 그 차량에 대한 자신의 추종 거리 주행 파라미터를 조정할 수 있다. 다른 예로서, 후방 차량이 새로운 브레이크 패드들을 필요로 한다고 ACM이 표시하면, VADS 컴포넌트는 마모된 브레이크 패드들로부터 초래될 수 있는 더 긴 정지 거리를 고려하여 그 차량에 대한 자신의 최소 분리 거리 주행 파라미터를 조정할 수 있다.
[0031] 일부 실시예들에서, VADS 컴포넌트는 자율 차량으로부터 임계 거리(예를 들어, 10 피트, 20 피트 등) 내에 있는 모든 차량들을 식별하고, 식별된 차량들 각각에 대한 ACM을 수신 또는 결정하고, 수신된/결정된 ACM들에 기초하여 자신의 주행 파라미터들을 조정하도록 구성될 수 있다. 예를 들어, VADS 컴포넌트는, 자율 차량 직전에 있는 차량의 ACM(예를 들어, 자율성의 레벨 등)에 기초하여, 자율 차량의 최소 추종 거리, 속도, 또는 자율 주행 차량이 속도를 변경할 가속 레이트를 조정할 수 있다. 다른 예로서, VADS 컴포넌트는 주위 차량들의 개개의 ACM들에 기초하여 자율 차량과 각각의 주위 차량 사이에서 VADS가 유지할 최소 분리 거리들을 조정할 수 있다. 일부 실시예들에서, 임계 거리는 검출된 조건들에 기초하여 동적으로 결정되고 그리고/또는 조정될 수 있다. 예를 들어, 임계 거리는 차량 속도(예를 들어, 고속도로들 상에서의 임계 거리가 저속 도로들 등에서보다 훨씬 더 클 수 있음), 도로 조건들, 날씨, 또는 본 출원에 논의된 임의의 다른 팩터의 함수일 수 있다.
[0032] 일부 실시예들에서, 자율 차량 내의 VADS는, 자율 차량의 효율, 안전성, 허용 속도 및/또는 자율성의 레벨을 증가시키기 위해 상보적인 센서 능력을 갖는 차량들을 탐색하고, 식별하고, 하나 이상의 식별된 차량들의 능력들에 기초하여 (예를 들어, 하나의 다른 차량과) 차량들의 캐러밴을 형성하도록 구성될 수 있다. 즉, 상이한 차량들이 상이한 센서들을 구비할 수 있고 그리고/또는 상이한 능력들을 가질 수 있기 때문에, VADS 컴포넌트는 자율 차량의 센서 수트(suite)를 보완할 수 있는 하나 이상의 다른 차량들을 능동적으로 탐색할 수 있다. 하나 이상의 보완 차량들과 캐러밴을 형성하거나 결합함으로써, 자율 차량은 캐러밴 내의 모든 차량들의 (예를 들어, 효율, 안전성, 허용가능한 속도, 자율성의 레벨 등의 측면에서) 이익을 위해 캐러밴 내의 다른 차량(들)과 자율 동작들과 연관된 자신의 지각 및 프로세싱 부하들을 공유할 수 있다.
[0033] 일부 실시예들에서, VADS 컴포넌트는, 식별된 차량들 중 임의의 차량이 협력 주행 관여(예를 들어, 식별된 차량을 갖는 플래툰(platoon) 내의 자율 차량을 동작시키는 것, 다른 차량들과 센서 데이터를 통신하는 것 등)에 관여하면 자율 차량에 동작 이점을 제공할지 여부를 결정하기 위해 ACM들을 사용하도록 구성될 수 있다. 예를 들어, VADS 컴포넌트는, 식별된 차량의 목적지 또는 계획된 이동 루트를 결정하고, 식별된 차량이 자율 차량의 목적지와 일치하는 루트를 따라 이동할 지속기간을 결정하고, 식별된 차량이 적어도 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 이동할 것이라고 결정하는 것에 대한 응답으로 협력 주행 어레인지먼트(예를 들어, 센서 데이터를 공유하거나 캐러밴을 형성하는 것)에 관여하는 것에 대한 동작 이점이 있을지 여부를 결정하기 위해 V2V 통신들을 사용할 수 있다. 협력 주행 어레인지먼트에 관여하는 것이 동작 이점이 있을 것이라고 결정하는 것에 대한 응답으로, VADS 컴포넌트는, 자율 차량이 식별된 차량(들)과 센서 데이터를 공유하고 그리고/또는 식별된 다른 차량(들)에 대한 특정 위치에서 주행하여 각각의 차량의 센서들을 최상으로 레버리지하는 협력 주행 관여를 개시할 수 있다. 예를 들어, 자율 차량 및 식별된 다른 차량(들)은 캐러밴의 선두에 최상의 전향 센서를 갖는 차량을 포지셔닝하도록 협력할 수 있다.
[0034] 일부 실시예들에서, VADS 컴포넌트는, 식별된 차량 내의 센서가 자율 차량에 의해 소유되지 않는 센서 능력을 제공할 것이라는 결정에 대한 응답으로 자율 차량에 동작 이점이 있을 것이라고 결정하고, 식별된 차량의 센서로부터 데이터를 수신하는 것이 자율 차량의 안전 또는 동작 성능에 유리할 것이라고 결정하도록 구성될 수 있다. 응답으로, VADS 컴포넌트는 자율 차량이 개개의 센서 능력들을 레버리지하기 위해 식별된 차량과 조정하는 협력 주행 관여를 개시할 수 있다.
[0035] 일부 실시예들에서, VADS 컴포넌트는, 식별된 차량의 자율성 레벨에 기초하여, 예를 들어, 식별된 차량이 고도로 자율적이고 자율 차량이 보다 안전하게 또는 개선된 성능으로 동작할 수 있게 할 프리미엄 센서들을 포함하는지 여부에 기초하여, 협력 주행 관여에 관여하는 것에 대한 동작 이점이 있을 것이라고 결정할 수 있다.
[0036] 일부 실시예들에서, VADS 컴포넌트는 도로 조건, 날씨 조건, 도로의 타입, 도로 상의 차량 교통 레벨, 도로의 속도 제한, 도로를 따른 위험들 또는 장애물들, 조명 조건들 등과 같은 주행 조건들에 기초하여 협력 주행 관여에 관여하는 것에 대한 동작 이점이 있을지 여부를 결정하도록 구성될 수 있다. 일부 실시예들에서, VADS 컴포넌트는, 주행 조건들과 주위 차량들의 ACM들의 조합에 기초하여 협력 주행 관여에 관여하는 것에 대한 동작 이점이 있을지 여부를 결정하도록 구성될 수 있다.
[0037] 일부 실시예들에서, VADS 컴포넌트는, 자율 차량이 협력 주행 관여의 이익들을 거둘 수 있도록 자율 차량의 계획된 루트를 수정하는 것에 대한 동작 이점이 있을지 여부를 결정하기 위해 ACM들을 사용하도록 구성될 수 있다. 예를 들어, VADS 컴포넌트는 (현재의 고속도로 내에서만이 아니라) 대안적인 루트들을 따라 탐색하여, 자신이 협력 주행 관여에 진입할 수 있는 그러한 루트들을 따라 다른 차량들이 있는지 여부를 결정하고, 그러한 차량들과 협력 주행 관여에 진입하는 것에 상당한 이익들이 있을지 여부를 결정하고, 추가된 이익들이 대안적인 루트를 취하는 비용 또는 추가된 시간을 능가하는지 여부를 결정할 수 있다. 호스트 차량은, 대안적인 루트를 따르도록 자신의 계획된 루트를 변경하고, 추가된 이익들이 비용 또는 추가된 시간을 능가한다고 결정하는 것에 대한 응답으로 협력 주행 관여를 개시/참여할 수 있다.
[0038] 일부 실시예들에서, VADS 컴포넌트는 협력 주행 관여에의 참여를 요청하는 통신 메시지를 다른 차량에 전송함으로써 협력 주행 관여를 개시하도록 구성될 수 있다. 다른 차량이 참여할 것임을 표시하는 확인 메시지를 VADS 컴포넌트가 수신하는 것에 대한 응답으로, VADS 컴포넌트는 다른 차량에 대한 직접 통신 링크들을 확립하고, 이어서, 직접 통신 링크들을 통해 정보를 수신하기 시작할 수 있다. 수신된 정보는 원시 센서 데이터 또는 프로세싱된 센서 데이터와 같은 센서 정보일 수 있다. 수신된 정보는 또한 상위 레벨 주행 지시들, 및/또는 사전-프로세싱된 정보, 이를 테면 주위 차량들에 대한 상태 추정치들, 집계된 데이터 등을 포함할 수 있다. VADS 컴포넌트는 자율 차량의 주행 파라미터들 중 하나 이상을 조정하기 위해 수신된 정보 중 임의의 것 또는 전부를 사용할 수 있어서, 차량은 협력 주행 관여에 참여할 수 있다.
[0039] 본원에서 사용된 바와 같이, 용어들 "컴포넌트", "시스템", "유닛" 등은 특정 동작들 또는 기능들을 수행하도록 구성되는 하드웨어, 펌웨어, 하드웨어와 소프트웨어의 결합, 소프트웨어, 또는 실행중인 소프트웨어와 같은(그러나 이에 제한되는 것은 아님) 컴퓨터-관련 엔티티를 포함한다. 예를 들어, 컴포넌트는 프로세서 상에서 실행되는 프로세스, 프로세서, 오브젝트, 실행가능한 것, 실행 스레드, 프로그램, 및/또는 컴퓨터일 수 있다(그러나 이에 제한되지 않는다). 예시의 방식으로, 통신 디바이스 상에서 실행되는 애플리케이션 및 통신 디바이스 둘 모두가 컴포넌트로 지칭될 수 있다. 하나 이상의 컴포넌트들은 프로세스 및/또는 실행 스레드 내에 상주할 수 있고, 컴포넌트는 하나의 프로세서 또는 코어 상에서 로컬화될 수 있고 그리고/또는 2개 이상의 프로세서들 또는 코어들 사이에서 분산될 수 있다. 또한, 이러한 컴포넌트들은 다양한 명령들 및/또는 데이터 구조들이 저장된 다양한 비일시적 컴퓨터 판독가능 매체들로부터 실행될 수 있다. 컴포넌트들은 로컬 및/또는 원격 프로세스들, 함수 또는 절차 호출들, 전자 신호들, 데이터 패킷들, 메모리 판독/기록들 및 다른 공지된 컴퓨터, 프로세서 및/또는 프로세스 관련 통신 방법들을 통해 통신할 수 있다.
[0040] 다수의 상이한 셀룰러 및 모바일 통신 서비스들 및 표준들이 장래에 이용 가능하거나 고려되며, 이들 모두는 다양한 양상들을 구현하고 그로부터 이익을 얻을 수 있다. 그러한 서비스들 및 표준들은, 예를 들어, 3GPP(third generation partnership project), LTE(long term evolution) 시스템들, 3세대 무선 모바일 통신 기술(3G), 4세대 무선 모바일 통신 기술(4G), 5세대 무선 모바일 통신 기술(4G), GSM(global system for mobile communications), UMTS(universal mobile telecommunications system), 3GSM, GPRS(general packet radio service), CDMA(code division multiple access) 시스템들(예를 들어, cdmaOne, CDMA2000TM), EDGE(enhanced data rates for GSM evolution), AMPS(advanced mobile phone system), IS-136/TDMA(digital AMPS), EV-DO(evolution-data optimized), DECT(digital enhanced cordless telecommunications), WiMAX(Worldwide Interoperability for Microwave Access), WLAN(wireless local area network), WPA, WPA2(Wi-Fi Protected Access I & II), 및 iden(integrated digital enhanced network)을 포함한다. 이러한 기술들 각각은, 예를 들어, 음성, 데이터, 시그널링 및/또는 콘텐츠 메시지들의 송신 및 수신을 수반한다. 개별 전기 통신 표준 또는 기술과 관련된 용어 및/또는 기술적 세부사항들에 대한 임의의 참조들은 단지 예시적인 목적들을 위한 것이며, 청구항 언어에서 구체적으로 인용되지 않으면 청구항들의 범위를 특정 통신 시스템 또는 기술로 제한하려는 의도가 아님을 이해해야 한다.
[0041] "컴퓨팅 디바이스"라는 용어는 차량, 특히 자율 차량 내에 통합된 컴퓨터들과 같은 적어도 프로세서를 갖는 전자 디바이스들을 지칭하기 위해 본원에서 사용되지만, 또한 자율 차량과 통신하도록 구성된 모바일 통신 디바이스들(예를 들어, 셀룰러 전화들, 스마트 폰들, 웹 패드들, 태블릿 컴퓨터들, 인터넷 가능 셀룰러 전화들, 랩톱 컴퓨터들 등), 서버들, 개인용 컴퓨터들 등을 포함할 수 있다. 다양한 실시예들에서, 컴퓨팅 디바이스는 다른 디바이스들과의 통신들을 확립하기 위한 하나 이상의 네트워크 트랜시버들 또는 인터페이스들로 구성될 수 있다. 예를 들어, 컴퓨팅 디바이스들은 WAN(wide area network) 접속(예를 들어, 롱 텀 에볼루션 셀룰러 네트워크 접속 등), 단거리 무선 접속(예를 들어, Bluetooth®, RF), 및/또는 LAN(local area network) 접속(예를 들어, Wi-Fi® 라우터에 대한 유선 또는 무선 접속 등)을 확립하기 위한 네트워크 인터페이스를 포함할 수 있다.
[0042] 다양한 실시예들은 차량-기반 무선 통신들을 사용하여 통신하도록 구성된 자율 차량들을 포함한다. C-V2X(cellular vehicle-to-everything) 프로토콜은 차량-기반 무선 통신들을 위한 기반으로서의 역할을 한다. 특히, C-V2X는, 강화된 도로 안전 및 자율 주행을 위해 360° 비-가시선 인식 및 더 높은 레벨의 예측가능성을 함께 제공하는 2개의 송신 모드들을 정의한다. 제1 송신 모드는, V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), 및 V2P(vehicle-to-pedestrian)를 포함하며 셀룰러 네트워크와 독립적인 전용 ITS 5.9 기가헤르츠(GHz) 스펙트럼에서 향상된 통신 범위 및 신뢰가능성을 제공하는 다이렉트 C-V2X를 포함한다. 제2 송신 모드는, 이를 테면, 3세대 무선 모바일 통신 기술들(3G)(예를 들어, EDGE(GSM(global system for mobile communications) evolution) 시스템들, CDMA(code division multiple access) 2000 시스템들, 등), 4세대 무선 모바일 통신 기술들(4G)(예를 들어, LTE(long term evolution) 시스템들, LTE-어드밴스드 시스템들, 모바일 WiMAX(mobile Worldwide Interoperability for Microwave Access) 시스템들 등), 5세대 무선 모바일 통신 기술들(5G NR 시스템들 등) 등과 같은 모바일 브로드밴드 시스템들 및 기술들에서의 V2N(vehicle-to-network communications)을 포함한다.
[0043] 자율 주행에 대한 특히 유용한 것은 자동차들 사이의 V2V 통신들이다. V2V 시스템들 및 기술들은, 충돌 방지 및 다른 안전 기능들에 대해 다른 차량들에 유용할 수 있는, 자신들의 위치, 속도, 이동 방향, 제동 및 다른 팩터들에 관한 정보를 차량들이 공유할 수 있게 함으로써 교통 흐름들 및 차량 안전을 개선할 가능성이 크다. V2V 온보드 장비가 구비된 차량들은 빈번하게(예를 들어, 초당 최대 20회) BSM(Basic Safety Message)으로 지칭되는 패킷들에서 자신들의 차량 정보를 송신할 것이다. ADAS(Advanced Driver Assistance System)가 구비된 자율 차량들은 이러한 V2V 통신들을 수신 및 사용하여 다른 차량들에 대한 자신들의 속도 및 위치를 제어할 수 있고, 그들이 조정된 기동 및 내비게이션 결정들을 내릴 수 있게 하는 캐러밴을 형성할 수 있다.
[0044] 상이한 차량들에 설치된 ADAS 시스템들은 극적으로 다를 수 있다. 예를 들어, 고급 차량들(Tesla P100D, 메르세데스 S-클래스 등)은 주행 차선의 에지들의 특정 거리 내에서 그리고 다른 차량들로부터 특정 거리 내에서 등에서, 차량을 특정 속도로 신뢰성있게 유지하는 정밀한 센서들 및 완전 자율 주행 시스템들을 포함할 수 있다. 그러나, 더 오래된 또는 덜 비싼 차량들의 ADAS 시스템들은 정확하거나 신뢰가능하지 않을 수 있다. 또한, 일부 차량들은, 이를 테면 인간 운전자가 차량의 수동 제어를 취할 때와 같이 항상 완전히 자율적이지는 않을 것이다. 추가로, 차량들 중 일부는 정상적인 마모, 부적절한 유지 보수 또는 노후화로 인해 감소된 능력들을 가질 수 있다. 더 오래된 차량들은 오래된 센서들 및 더 적은 자율성 정도(예를 들어, 브레이크들을 적용하는 사고 회피 시스템, 다른 차량들로부터의 특정 거리를 유지하는 적응형 순항 제어 등)를 가질 수 있다.
[0045] 자율 차량들이 캐러밴의 일부로서 함께 효과적으로 작동하기 위해, 각각의 차량의 ADAS 시스템들은 각각의 순간에 효과적인 주위 차량들의 다양한 레벨들의 능력 및 자율성을 고려할 수 있다. 추가하여, ADAS 시스템들은 주위 차량들의 거동을 변경할 수 있는 다른 동적 팩터들, 이를 테면, 이들의 운전자 선호도들, 운전자 관여, 개별 프로그래밍, 유지 보수 및 사용의 레벨들 등에 적응할 수 있다. 이러한 팩터들은 주위 차량들의 능력들, 거동들 및 자율성 레벨에 영향을 미치지만, 일반적으로 차량이 동작하는 동안 차량을 관찰하고 분석함으로써만 알 수 있다.
[0046] 다른 주위 차량들의 예측된 또는 동적으로 결정된 능력들에 기초하여 다른 차량들의 거동들 또는 동작들을 조정하는 VADS 자동차 제어 시스템을 차량들에 구비함으로써, 다양한 실시예들은 자율 차량들의 성능 및 기능들을 개선하고, 교통 효율 및 안전을 증가시키기 위해 다수의 자율 차량들이 캐러밴의 일부로서 더 효과적으로 작동할 수 있게 한다.
[0047] 일부 실시예들에서, VADS 컴포넌트는 조정할 차량들, 및 조정의 성질 및 범위를 식별하기 위해 주위 차량들의 ACM들(또는 자율성의 레벨들)을 결정 및 사용하도록 구성될 수 있다. 예를 들어, VADS 컴포넌트는 임계값을 초과하는 자율성의 레벨(또는 ACM 값)을 갖는 주위 차량들과만 조정하도록 구성될 수 있다. 다른 예로서, VADS 컴포넌트는, 모든 주위 차량들이 임계값을 초과하는 자율성(또는 ACM 값)의 레벨을 가질 때에만 특정 조정된 기동들을 수행하도록 구성될 수 있다.
[0048] 일부 실시예들에서, VADS 컴포넌트는 근처의 차량들의 능력들에 다소 의존하도록 자신의 주행 파라미터들을 조정하도록 구성될 수 있다.
[0049] 일부 실시예들에서, VADS 컴포넌트는 결정된 능력들 및 자율성 레벨에 기초하여 다른 차량과 연관된 데이터/거동 모델을 수정함으로써 자율 차량이 제어되는 방식을 조정하도록 구성될 수 있다. 즉, VADS 컴포넌트는 다른 차량들이 어떻게 거동할지(속도, 선회, 제동 등)를 예상하고 다른 차량들과 협력하여 이동하는 동안 적절한 주행 파라미터들(예를 들어, 분리 거리들 등)이 관찰되는 것을 보장하기 위해 다른 차량들의 ACM들 및 데이터/거동 모델들을 사용할 수 있다. 결정된 ACM들이 대응하는 차량에 대한 거동 모델에서 추정되는 것보다 적다면, VADS 컴포넌트는 결정된 자율성 레벨 또는 능력을 더 정확하게 반영하도록 다른 차량의 거동 모델을 조정하거나 수정할 수 있다. 이러한 방식으로, VADS는 다른 차량들이 어떻게 거동하고 기동할지를 예상함으로써 다른 차량들로부터 안전하고 적절한 분리 거리들을 유지하기 위해 기동하는 방법을 더 잘 결정할 수 있다.
[0050] 일부 실시예들에서, VADS 컴포넌트는 ACM들 또는 주위 차량들의 거동들에 기초하여 반응형 액션들을 취하도록 구성될 수 있다. 예를 들어, 차량이 자율 차량을 테일게이팅(tailgating)하고 있고 차량이 수동으로 동작되고 있음을 V2V 통신들이 표시하면, VADS는 차량이 통과할 수 있게 하기 위해 자율 차량으로 하여금 차선들을 변경하게 할 수 있다. 그러한 차선 변경은, 그러한 다른 주위 차량들이 그러한 조정을 지원하고 그에 따라 그들의 차량들을 제어하기에 충분한 자율성을 갖는다는 결정에 기초하여 V2V 통신들을 통해 다른 주위 차량들과 조정될 수 있다.
[0051] 다른 예로서, VADS는 자율 차량들의 캐러밴 내의 차량이 수동으로 동작되는 것으로 전환했거나, 또는 캐러밴을 떠나도록 요청했으며, 빠져 나갈 때까지 수동 제어로 전환하도록 허용되지 않는다고 결정할 수 있다. 이에 대한 응답으로, VADS는 캐러밴에서 다른 자율 차량들(즉, 충분한 레벨의 자율성을 갖는 것으로 결정된 차량들)과 협력하여 차량이 캐러밴을 떠나기 위한 경로를 클리어할 수 있다. VADS 컴포넌트는, 차량이 차선들을 변경하기 위한 경로를 클리어하고, 추종 거리를 증가시키고, 차량을 둘러싸는 다른 자율 차량들이 이동할 수 있게 하는 것 등에 의해, 차량이 캐러밴을 떠날 수 있게 할 수 있다.
[0052] 다른 예로서, 차량들의 그룹 각각의 VADS들은, 더 낮은 레벨들의 자율성을 갖는 차량들이 캐러밴의 후방으로 이동하는 동안 캐러밴을 리드하기 위해 최고 레벨의 자율성 및 최상의 전향 센서들을 갖는 차량을 선택함으로써 캐러밴을 형성하거나 수행하기 위한 액션들을 조정할 수 있다. 따라서, (예를 들어, 캐러밴에 의한) 교통 효율 및 (예를 들어, 속도, 제동 및 분리 거리들을 조정하는 것에 의한) 주위 차량들과 주행 거동들을 조정하는 것의 일부로서, VADS 컴포넌트는 조정될 차량들 및 캐러밴 내의 각각의 차량의 적절한 위치들을 식별하기 위해 각각의 주위 차량에 대해 결정된 자율성의 레벨을 사용할 수 있다.
[0053] 일부 실시예들에서, VADS 컴포넌트는 인근 차량들과의 C-V2X 또는 V2V 통신들을 통해 직접 인근 차량들의 자율성 레벨들을 검출하도록 구성될 수 있다. 예를 들어, VADS 컴포넌트는 인근 차량을 높은 레벨의 자율성(예를 들어, 카테고리 5 자율성, 레벨 65 자율성 등)을 갖는 것으로 식별하는 ACM을 인근 차량으로부터 수신할 수 있다. 즉, 일부 실시예들에서, 자율성의 레벨은 C-V2X 또는 V2V 통신들을 사용하여 직접 질의될 수 있다.
[0054] 일부 실시예들에서, VADS 컴포넌트는 다양한 관찰, 모니터링, 기계 학습 및/또는 예측 기술들을 구현하거나 사용함으로써 인근 차량들의 자율성 레벨을 검출하도록 구성될 수 있다. 예를 들어, VADS 컴포넌트는, 인근 차량에 평판이 좋은 제조자로부터의 정교한 LIDAR 센서가 구비되어 있음을 관찰하는 것에 기초하여, 인근 차량이 높은 레벨의 자율성을 갖는다고 예측할 수 있다. 유사하게, VADS 컴포넌트는, 인근 차량이 V2V 통신들을 지원하기에 적합한 통신 회로를 적절하게 구비하지 않거나 또는 그렇지 않으면 특정 감지 또는 통신 모듈들이 결여된 것을 관찰하는 것에 기초하여, 인근 차량이 낮은 레벨의 자율성을 갖는다고 예측할 수 있다. VADS 컴포넌트는 또한 관찰된 주행 거동들 및 다른 유사한 팩터들에 기초하여 자율성의 레벨을 예측할 수 있다.
[0055] 일부 실시예들에서, VADS 컴포넌트는 다른 차량들의 결정된 자율성 레벨들에 기초하여 ACM들, 안전 임계치들, 거동 예측 모델들, 모션 계획 정책들, 제어/주행 파라미터들 등을 동적으로 결정 또는 조정하도록 구성될 수 있다. VADS 컴포넌트는 교통 흐름을 개선하거나, 교통 및 혼잡을 감소시키거나, 도로 안전을 증가시키거나, 또는 다른 목표들 또는 목적들을 달성하기 위해 임의의 또는 모든 이러한 값/파라미터들을 조정할 수 있다.
[0056] 위에서 언급된 바와 같이, VADS 컴포넌트는 V2V 통신들을 통해 수신된 정보와 함께 차량의 센서들로부터 수집된 정보를 사용하여, 인근 차량의 자율성 및/또는 능력의 레벨을 식별하는 ACM을 결정할 수 있다. 일부 실시예들에서, ACM은 그 차량의 능력들의 정교함을 반영하는 정보를 통해 자율성의 레벨을 식별할 수 있으며, 이는 차량의 컴퓨팅 능력(예를 들어, 프로세서 속도), 센서들, 프로세싱 알고리즘들, 예측 및 제어 전략들 등에 관한 정보를 포함할 수 있다. 일부 실시예들에서, ACM은 완전 수동 주행으로부터 인간 개입이 없는 완전 자동 주행까지의 범위인 연속체 값(예를 들어, 스펙트럼) 또는 값들의 관점에서 자율성의 레벨을 식별할 수 있다. 일부 실시예들에서, ACM은 이산 카테고리 값들의 세트(예를 들어, L0 내지 L5)를 통해 자율성의 레벨을 식별할 수 있다. 실시예들에서, ACM은 차량의 컴퓨팅 능력, 센서들, 프로세싱 알고리즘들, 예측 및 제어 전략들, 현재 자율성 설정(예를 들어, 수동, 반자율 또는 완전 자율) 등 각각과 연관된 값들과 같은 자율성 및 차량 성능의 상이한 양상들을 반영하는 값들의 벡터 또는 행렬을 통해 자율성의 레벨을 식별할 수 있다.
[0057] VADS 컴포넌트는 ACM을 구성하는 복수의 값들을 수신, 생성, 컴퓨팅 또는 달리 결정하고, 인근 차량의 자율성의 레벨 또는 성능 능력들을 식별 또는 예측하기 위해 ACM 값들을 집합적으로 프로세싱함으로써 ACM을 결정할 수 있다. 일부 실시예들에서, 이러한 ACM 값들 중 하나 이상은 관찰된 주행 거동을 분류, 표현 또는 특성화할 수 있다. ACM 값들의 비제한적인 예들은, 불규칙한 주행 거동; 부드러운 주행 거동; 예측가능한 주행 거동; 차량 동작들의 일관성, 규칙성 또는 균일성; 미래의 차량 동작들을 위한 예측가능성의 레벨; 운전자의 공격성 또는 운전자 공격성의 레벨; (예를 들어, 측방향 에러들 및 측방향 에러 레이트들을 분석함으로써, 더 낮은 측방향 에러 레이트들은 자율 시스템들의 더 큰 정교함을 표시함) 차량이 주행 차선의 중심을 추적하는 정도; 단위 시간당(예를 들어, 분당) 관찰된 주행 에러들의 수; 차량이 지역 도로 규칙들(예를 들어, 속도 제한, 게시된 표지판, 방향 지시등 등)을 준수하는 정도; 안전 규칙 준수; 반응 시간들(예를 들어, 다른 차량들의 액션들에 반응하기 위한 관찰된 시간); 차량이 외부 자극들에 반응하는 반응성 또는 방법(예를 들어, 차량이 2, 3, 또는 그 초과의 전방 차량들의 제동에 반응하는지 대 단지 바로 앞의 차량에 반응하는지 여부를 결정하는 것); 등 중 하나 이상을 표현한다.
[0058] 일부 실시예들에서, 하나 이상의 ACM 값들은 관찰된 또는 수신된 정보에 기초하여 VADS 컴포넌트에 의해 결정되는 센서 능력을 분류, 표현 또는 특성화할 수 있다. 예를 들어, ACM 값들은 다른 차량에 존재하는 센서들의 타입들, 다른 차량의 센서들의 제조사 및/또는 제조자, 다른 차량에 포함된 자율 주행 센서들의 수, 다른 차량의 센서들의 정확도 및/또는 정밀도 등을 표현할 수 있다.
[0059] 일부 실시예들에서, 하나 이상의 ACM 값들은 C-V2X 통신들을 통해 수신된 인증된 정보(또는 인증서들)에 기초할 수 있다. 예를 들어, ACM 값들은 KPI(key performance indicator), 표면 성능 등급(예를 들어, 아스팔트, 콘크리트 등), 날씨 성능 등급(예를 들어, 습윤 조건들, 빙결 조건들, 눈 등), 차량 능력, 차량 특징, 지원되는 알고리즘 등을 식별하거나 표현할 수 있고, 이들 중 임의의 것 또는 전부는 적절한 인증 기관(예를 들어, 국도 교통 안전 관리부, 타이어 산업 협회, 원 장비 제조자 등)에 의해 차량에 대해 인증되었을 수 있다.
[0060] 일부 실시예들에서, 자율 차량 내의 VADS는 식별된 주위 차량들의 자율성의 레벨들을 추정하도록 구성될 수 있다. 다양한 실시예들에서, 이는 자율성 레벨에 대한 추정치를 집합적으로 식별하는 단일 값 또는 값들의 연속체를 생성함으로써 달성될 수 있다. 일부 실시예들에서, 값들의 연속체 내의 값들 각각은 식별된 주위 차량과 연관된 상이한 예측, 수집 또는 관찰된 특징, 팩터 또는 데이터 포인트를 표현할 수 있다. 일부 실시예들에서, 값들의 연속체는 차량의 자율성 레벨의 추정치를 특성화하거나 표현하는 맵, 행렬 또는 벡터 데이터 구조로 포맷될 수 있다. 일부 실시예들에서, VADS 컴포넌트는 추정치들에 대한 신뢰도 또는 불확실성 값들을 결정하도록 추가로 구성될 수 있다. VADS 컴포넌트는 추정치들 및 추정치들과 연관된 신뢰도/불확실성 값들에 기초하여 자율 차량의 주행 파라미터들을 조정할 수 있다. VADS 컴포넌트는 환경 또는 교통 조건들에 적응하기 위해 그리고/또는 교통 처리율의 관점에서 안전과 효율성 사이의 균형을 맞추기 위해 주행 파라미터들을 조정할 수 있다.
[0061] 일부 실시예들에서, VADS 컴포넌트는 협력적인 동작 어레인지먼트(예를 들어, 캐러밴)에서 차량의 역할 또는 분류(예를 들어, 선두 차량, 후행 차량, 인접한 차선들에 있는 차량들) 및 그 자율성 레벨의 조합에 기초하여 이산적인 방식으로 주행 파라미터들을 조정할 수 있다. 일부 실시예들에서, VADS 컴포넌트는 연속체 및 그의 연관된 불확실성을 따라 추정된 자율성 레벨에 기초하여 연속적인 방식으로 주행 파라미터들을 조정할 수 있다. 예를 들어, VADS 컴포넌트는 리더 차량의 자율성 레벨에 대한 자신의 평가에 기초하여 자신의 추종 거리 파라미터를 수정하여, 인간-주행 차량이 예측불가능한 정지들을 허용하기 위한 많은 양의 공간 및 주위 차량들과 자신의 상태 및 세계에 대한 자신의 추정치를 공유할 수 있는 완전 자율 및 접속 차량을 위한 매우 적은 양의 공간을 남겨둘 수 있다.
[0062] 일부 실시예들에서, VADS 컴포넌트는 자율 차량들의 그룹이 밀접하게 그룹화된 캐러밴을 형성할 수 있게 하도록 구성될 수 있다. 이는, 모션 계획들 및 거동 예측들과 같은 상태 정보를 공유하고, 더 낮은 레벨들의 자율성을 갖는 차량들이 그룹을 안전하게 통과할 수 있게 함으로써 달성될 수 있다. 높은 레벨들의 자율성을 갖는 밀접하게 그룹화된 캐러밴을 테일게이팅하는 인간-주행 차량은 차선을 클리어하기 위해 서로 조정하는 차량들에 의해 통과될 수 있게 될 수 있다. 엄격하게 그룹화된 자율 차량들의 팩(pack) 내에 승차하는 운전자는 수동 제어를 인계하도록 요청할 수 있고, 그에 따라, 차량이 캐러밴을 빠져 나가기 위한 출구 경로를 차량들이 클리어하고, 잠재적으로 차량이 안전하게 캐러밴을 빠져 나간 후에만 운전자에게 수동 제어를 제공할 수 있다.
[0063] 일부 실시예들에서, VADS 컴포넌트는, 그룹으로서 달성될 수 있는 유효 레벨의 자율성을 증가시키거나 또는 공유된 컴퓨테이셔널 자원들, 상태 추정 등으로부터 이익을 얻기 위해, 더 높은 레벨들의 자율성을 갖는 인근 차량들의 자율 능력들 및 센서 패키지들을 레버리지하도록 구성될 수 있다. 하나의 예는, 선두 차량이 가장 높은 레벨들의 자율성을 갖고 자기 자신의 완전한 자율성을 가질 수 없는 후행 차량들이 밀접하게 뒤따르기 위한 자신의 자율 능력들을 레버리지하는 차량들의 캐러밴을 갖는 것을 포함한다. 일부 실시예들에서, 차량들은 자율적 캐러밴들을 형성하기 위해 더 높은 레벨들의 자율성을 갖는 인근 차량들을 능동적으로 탐색하여, 그룹의 능력들로부터 이익을 얻기 위해 지각 및 프로세싱 부하를 공유할 수 있다. 일부 실시예들에서, 차량들은 전력을 절약하기 위해 자신들의 지각 및 프로세싱을 온라인으로 감소시킬 수 있다. 예를 들어, 캐러밴의 중간에 있는 차량들은 단순히 선두 차량을 따라갈 수 있고 더 긴 범위 추정에 자원들을 사용하지 않을 수 있는 반면, 선두 차량은 장거리 추정 및 예측에 상당한 자원들을 할애할 수 있다. 추가적으로, 차량들은 잠재적으로, 캐러밴 내의 모든 차량들의 총 컴퓨테이셔널 자원들을 더 잘 사용하기 위해 그들의 프로세싱을 특정 체제들에 집중시킬 수 있다. 예를 들어, 선두 차량은 캐러밴 앞의 영역에 센서들 및 센서 데이터 프로세싱을 집중시킬 수 있고, 후방 차량은 그 뒤에 있는 영역에 센서들 및 센서 데이터 프로세싱을 집중시킬 수 있다. 일부 실시예들에서, 자율 차량들은 전력 효율을 최대화하도록 그러한 협력 그룹들을 형성하기 위해 다른 차량들을 능동적으로 찾을 수 있다.
[0064] 다양한 실시예들은 다양한 호스트 차량들 내에서 구현될 수 있으며, 이들의 예시적인 차량(100)은 도 1a 및 도 1b에 예시된다. 도 1a 및 도 1b를 참조하면, 호스트 차량(100)은 호스트 차량(100) 내의 또는 상의 객체들 및 사람들에 관한 센서 데이터뿐만 아니라 자율 및 반자율 내비게이션들에 수반되는 다양한 목적들을 위해 사용되는 호스트 차량 내에 또는 상에 배치된 복수의 센서들(102-138)을 포함할 수 있다. 센서들(102-138)은 내비게이션 및 충돌 회피에 유용한 다양한 정보를 검출할 수 있는 매우 다양한 센서들 중 하나 이상을 포함할 수 있다. 센서들(102-138) 각각은 제어 유닛(140)과 뿐만 아니라 서로 유선 또는 무선 통신할 수 있다. 특히, 센서들은 하나 이상의 카메라들(122, 136) 또는 다른 광학 센서들 또는 포토 광학 센서들을 포함할 수 있다 센서들은 다른 타입들의 객체 검출 및 거리 측정 센서들, 이를 테면 레이더(132), LIDAR(138), IR 센서들 및 초음파 센서들을 더 포함할 수 있다. 센서들은 타이어 압력 센서들(114, 120), 습도 센서들, 온도 센서들, 위성 지오포지셔닝 센서들(108), 가속도계들, 진동 센서들, 자이로스코프들, 중력계들, 충격 센서들(130), 힘 계측기들, 응력 계측기들, 스트레인 센서들, 유체 센서들, 화학 센서들, 가스 함량 분석기들, pH 센서들, 방사 센서들, 가이거(Geiger) 카운터들, 중성자 검출기들, 생물학적 재료 센서들, 마이크로폰들(124, 134), 점유 센서들(112, 116, 118, 126, 128), 근접 센서들, 및 다른 센서들을 더 포함할 수 있다.
[0065] 호스트 차량 제어 유닛(140)은 다양한 센서들, 이를 테면 카메라들(122, 136)로부터 수신된 정보를 사용하여 다양한 실시예들을 수행하도록 프로세서 실행가능 명령들로 구성될 수 있다. 일부 실시예들에서, 제어 유닛(140)은 레이더(132) 및/또는 라이다(138) 센서들로부터 획득될 수 있는 거리 및 상대적 포지션(예를 들어, 상대적인 베어링 각도)을 사용하여 카메라 이미지들의 프로세싱을 보충할 수 있다. 제어 유닛(140)은 추가로, 다양한 실시예들을 사용하여 결정된 다른 차량들에 관한 정보를 사용하여 자율 또는 반자율 모드에서 동작할 때 호스트 차량(100)의 스티어링, 브레이크 및 속도를 제어하도록 구성될 수 있다. 일부 실시예들에서, 제어 유닛(140)은 본 출원 전반에 걸쳐 논의된 VADS(vehicle autonomous driving system)의 전부 또는 부분들을 구현하도록 구성될 수 있다.
[0066] 도 1c는 다양한 실시예들을 구현하기에 적합한 컴포넌트들 및 지원 시스템들의 시스템(150)을 예시하는 컴포넌트 블록도이다. 도 1a, 도 1b 및 도 1c를 참조하면, 호스트 차량(100)은 호스트 차량(100)의 동작을 제어하는 데 사용되는 다양한 회로들 및 디바이스들을 포함할 수 있는 제어 유닛(140)을 포함할 수 있다. 제어 유닛(140)은 호스트 차량(100)의 주행 제어 컴포넌트들(154), 내비게이션 컴포넌트들(156), 및 하나 이상의 센서들(102-138)에 커플링되어 제어하도록 구성될 수 있다.
[0067] 제어 유닛(140)은 다양한 실시예들의 동작들을 포함하여 호스트 차량(100)의 기동, 내비게이션, 및 다른 동작들을 제어하기 위한 프로세서 실행가능 명령들로 구성된 프로세서(164)를 포함할 수 있다. 프로세서(164)는 메모리(166)에 커플링될 수 있다. 제어 유닛(140)은, 입력 모듈(168), 출력 모듈(170) 및 라디오 모듈(172)을 포함할 수 있다. 일부 실시예들에서, 프로세서(164)는 본 출원 전반에 걸쳐 논의된 VADS(vehicle autonomous driving system)의 기능들을 구현하도록 구성될 수 있다.
[0068] 라디오 모듈(172)은 무선 통신을 위해 구성될 수 있다. 라디오 모듈(172)은 네트워크 트랜시버(180)와 신호들(182)(예를 들어, 기동을 제어하기 위한 커맨드 신호들, 내비게이션 설비들로부터의 신호들 등)을 교환할 수 있고, 신호들(182)을 프로세서(164) 및/또는 내비게이션 유닛(156)에 제공할 수 있다. 일부 실시예들에서, 라디오 모듈(172)은 호스트 차량(100)이 무선 통신 링크(192)를 통해 무선 통신 디바이스(190)와 통신하는 것을 가능하게 할 수 있다. 무선 통신 링크(192)는 양방향 또는 단방향 통신 링크일 수 있고, 하나 이상의 통신 프로토콜들을 사용할 수 있다.
[0069] 입력 모듈(168)은 하나 이상의 차량 센서들(102-138)로부터의 센서 데이터뿐만 아니라 주행 제어 컴포넌트들(154) 및 내비게이션 컴포넌트들(156)을 포함하는 다른 컴포넌트들로부터의 전자 신호들을 수신할 수 있다. 출력 모듈(170)은 주행 제어 컴포넌트들(154), 내비게이션 컴포넌트들(156) 및 센서(들)(102-138)를 포함하는 호스트 차량(100)의 다양한 컴포넌트들과 통신하거나 이를 활성화시키는 데 사용될 수 있다.
[0070] 제어 유닛(140)은 호스트 차량의 기동 및 내비게이션과 관련된 호스트 차량(100)의 물리적 엘리먼트들, 이를 테면 엔진, 모터들, 스로틀들, 스티어링 엘리먼트들, 비행 제어 엘리먼트들, 제동 또는 감속 엘리먼트들 등을 제어하기 위해 주행 제어 컴포넌트들(154)에 커플링될 수 있다. 주행 제어 컴포넌트들(154)은 또한, 환경 제어들(예를 들어, 공기 조절 및 가열), 외부 및/또는 내부 조명, 내부 및/또는 외부 정보 디스플레이들(정보를 디스플레이하기 위한 디스플레이 스크린 또는 다른 디바이스들을 포함할 수 있음), 및 다른 유사한 디바이스들을 포함하는, 호스트 차량의 다른 디바이스들을 제어하는 컴포넌트들을 포함할 수 있다.
[0071] 제어 유닛(140)은 내비게이션 컴포넌트들(156)에 커플링될 수 있고, 내비게이션 컴포넌트들(156)로부터 데이터를 수신할 수 있고, 호스트 차량(100)의 현재 포지션 및 배향 뿐만 아니라 목적지를 향한 적절한 코스를 결정하기 위해 그러한 데이터를 사용하도록 구성될 수 있다. 다양한 실시예들에서, 내비게이션 컴포넌트들(156)은 호스트 차량(100)이 GNSS 신호들을 사용하여 자신의 현재 포지션을 결정할 수 있게 하는 GNSS(global navigation satellite system) 수신기 시스템(예를 들어, 하나 이상의 GPS(Global Positioning System) 수신기들)을 포함하거나 그에 커플링될 수 있다. 대안적으로 또는 추가적으로, 내비게이션 컴포넌트들(156)은 내비게이션 비콘들 또는 라디오 노드들, 예를 들어, Wi-Fi 액세스 포인트들, 셀룰러 네트워크 사이트들, 라디오 스테이션, 원격 컴퓨팅 디바이스들, 다른 차량들 등으로부터의 다른 신호들을 수신하기 위한 라디오 내비게이션 수신기들을 포함할 수 있다. 주행 제어 엘리먼트들(154)의 제어에 따라, 프로세서(164)는 내비게이션 및 기동을 위해 호스트 차량(100)을 제어할 수 있다. 프로세서(164) 및/또는 내비게이션 컴포넌트들(156)은, 기동을 제어하고, 내비게이션에서 유용한 데이터를 수신하고, 실시간 포지션 보고들을 제공하고, 다른 데이터를 평가하기 위한 커맨드들을 수신하기 위해 셀룰러 데이터 네트워크(180)와의 무선 접속(182)을 사용하여 네트워크(186)(예를 들어, 인터넷) 상의 서버(184)와 통신하도록 구성될 수 있다.
[0072] 제어 유닛(140)은 설명된 바와 같이 하나 이상의 센서들(102-138)에 커플링될 수 있고, 프로세서(164)에 다양한 데이터를 제공하도록 구성될 수 있다.
[0073] 제어 유닛(140)은 별개의 컴포넌트들을 포함하는 것으로 설명되지만, 일부 실시예들에서, 컴포넌트들(예를 들어, 프로세서(164), 메모리(166), 입력 모듈(168), 출력 모듈(170) 및 라디오 모듈(172)) 중 일부 또는 전부는 단일 디바이스 또는 모듈, 이를 테면 SOC(system-on-chip) 프로세싱 디바이스에 통합될 수 있다. 이러한 SOC 프로세싱 디바이스는 차량들에서 사용하도록 구성될 수 있고, 이를 테면, 호스트 차량에 설치될 때 다양한 실시예들의 동작들을 수행하도록 프로세서(164)에서 실행되는 프로세서 실행가능 명령들로 구성될 수 있다.
[0074] 도 2는 호스트 차량(100) 내에서 활용될 수 있는 차량 관리 시스템(200) 내의 서브 시스템들, 계산 엘리먼트들, 컴퓨팅 디바이스들 또는 유닛들의 예를 예시한다. 일부 실시예들에서, 차량 관리 시스템(200) 내의 다양한 컴퓨테이셔널 엘리먼트들, 컴퓨팅 디바이스들 또는 유닛들은 데이터 및 커맨드들을 서로 통신하는 상호접속된 컴퓨팅 디바이스들(즉, 서브시스템들)의 시스템 내에서 구현될 수 있다(예를 들어, 도 2의 화살표들로 표시됨). 다른 실시예들에서, 차량 관리 시스템(200) 내의 다양한 컴퓨테이셔널 엘리먼트들, 컴퓨팅 디바이스들 또는 유닛들은 별개의 스레드들, 프로세스들, 알고리즘들 또는 컴퓨테이셔널 엘리먼트들과 같은 단일 컴퓨팅 디바이스 내에서 구현될 수 있다. 따라서, 도 2에 예시된 각각의 서브시스템/컴퓨테이셔널 엘리먼트는 또한, 차량 관리 시스템(200)을 구성하는 컴퓨테이셔널 "스택" 내의 "계층"으로서 본원에서 일반적으로 지칭된다. 그러나, 다양한 실시예들을 설명할 때 계층 및 스택이라는 용어들의 사용은, 대응하는 기능이 단일 자율(또는 반-자율) 차량 제어 시스템 컴퓨팅 디바이스 내에서 구현될 것을 암시하거나 요구하도록 의도되지 않지만, 이는 잠재적인 구현 실시예이다. 오히려, "계층"이라는 용어의 사용은, 독립적인 프로세서들, 하나 이상의 컴퓨팅 디바이스들에서 실행되는 컴퓨테이셔널 엘리먼트들(예를 들어, 스레드들, 알고리즘들, 서브루틴들 등), 및 서브시스템들과 컴퓨테이셔널 엘리먼트들의 조합들을 갖는 서브시스템들을 포괄하는 것으로 의도된다.
[0075] 도 1a 내지 도 2를 참조하면, 차량 관리 시스템 스택(200)은 레이더 지각 계층(202), 카메라 지각 계층(204), 포지셔닝 엔진 계층(206), 맵 융합 및 중재 계층(208), 루트 계획 계층(210), 센서 융합 및 RWM(road world model) 관리 계층(212), 모션 계획 및 제어 계층(214), 및 거동 계획 및 예측 계층(216)을 포함할 수 있다. 층들(202-216)은 단지 차량 관리 시스템 스택(200)의 일 예시적인 구성에서 일부 계층들의 예들일 뿐이며, 다른 구성들에서는 다른 지각 센서들(예를 들어, LIDAR 지각 계층 등)을 위한 추가적인 계층들, 계획 및/또는 제어를 위한 추가적인 계층들, 모델링을 위한 추가적인 계층들, VADS(vehicle autonomous driving system)을 구현하기 위한 추가적인 계층들 등과 같은 다른 계층들이 포함될 수 있고, 그리고/또는 계층들(202-216) 중 특정 계층은 차량 관리 시스템 스택(200)으로부터 배제될 수 있다. 계층들(202-216) 각각은 도 2의 화살표들에 의해 예시된 바와 같이 데이터, 컴퓨테이셔널 결과들 및 커맨드들을 교환할 수 있다. 추가로, 차량 관리 시스템 스택(200)은 센서들(예를 들어, 레이더, 라이다, 카메라들, IMU(inertial measurement units) 등), 내비게이션 시스템들(예를 들어, GPS 수신기들, IMU들 등), 차량 네트워크들(예를 들어, CAN(Controller Area Network) 버스), 및 메모리 내의 데이터베이스들(예를 들어, 디지털 맵 데이터)로부터 데이터를 수신 및 프로세싱할 수 있다. 차량 관리 시스템 스택(200)은 차량 제어 커맨드들 또는 신호들을, 차량 스티어링, 스로틀 및 브레이크 제어들과 직접적으로 인터페이싱하는 시스템, 서브시스템 또는 컴퓨팅 디바이스인 DBW(drive by wire) 시스템/제어 유닛(220)에 출력할 수 있다.
[0076] 레이더 지각 계층(202)은 레이더(132) 및/또는 라이다(138)와 같은 하나 이상의 검출 및 거리 측정 센서들로부터 데이터를 수신하고, 호스트 차량(100)의 인근 내의 다른 차량들 및 객체들의 위치들을 인식 및 결정하기 위해 데이터를 프로세싱할 수 있다. 레이더 지각 계층(202)은 객체들 및 차량들을 인식하고, 그러한 정보를 센서 융합 및 RWM 관리 계층(212)에 전달하기 위한 신경 네트워크 프로세싱 및 인공 지능 방법들의 사용을 포함할 수 있다.
[0077] 카메라 지각 계층(204)은 카메라들(122, 136)과 같은 하나 이상의 카메라들로부터 데이터를 수신하고, 호스트 차량(100)의 인근 내의 다른 차량들 및 객체들의 위치들을 인식 및 결정하기 위해 데이터를 프로세싱할 수 있다. 카메라 지각 계층(204)은 객체들 및 차량들을 인식하고, 그러한 정보를 센서 융합 및 RWM 관리 계층(212)에 전달하기 위한 신경 네트워크 프로세싱 및 인공 지능 방법들의 사용을 포함할 수 있다.
[0078] 포지셔닝 엔진 계층(206)은 다양한 센서들로부터 데이터를 수신하고, 호스트 차량(100)의 포지션을 결정하기 위해 데이터를 프로세싱할 수 있다. 다양한 센서들은 GPS 수신기, IMU, 및/또는 CAN 버스를 통해 접속된 다른 센서들을 포함할 수 있다(그러나 이에 제한되지 않음). 포지셔닝 엔진 계층(206)은 또한, 카메라들(122, 136)과 같은 하나 이상의 카메라들 및/또는 레이더들, LIDAR들 등과 같은 임의의 다른 이용가능한 센서로부터의 입력들을 활용할 수 있다.
[0079] 맵 융합 및 중재 계층(208)은 고선명(HD) 맵 데이터베이스 내의 데이터에 액세스하고, 포지셔닝 엔진 계층(206)으로부터 수신된 출력을 수신하고, 맵 내의 호스트 차량(100)의 포지션, 이를 테면 교통 차선 내의 위치, 거리 맵 내의 포지션 등을 추가로 결정하기 위해 데이터를 프로세싱할 수 있다. HD 맵 데이터베이스는 메모리(166)와 같은 메모리에 저장될 수 있다. 예를 들어, 맵 융합 및 중재 계층(208)은 GPS로부터의 위도 및 경도 정보를 HD 맵 데이터베이스에 포함된 도로들의 표면 맵 내의 위치들로 변환할 수 있다. GPS 포지션 픽스들은 에러들을 포함하므로, 맵 융합 및 중재 계층(208)은 GPS 좌표들과 HD 맵 데이터 사이의 중재에 기초하여 도로 내의 호스트 차량의 최상의 추측 위치를 결정하도록 기능할 수 있다. 예를 들어, GPS 좌표들은 HD 맵에서 2차선 도로의 중간 근처에 호스트 차량을 배치할 수 있지만, 맵 융합 및 중재 계층(208)은 이동 방향으로부터 호스트 차량이 이동 방향과 일치하는 이동 차선과 정렬될 가능성이 가장 높음을 결정할 수 있다. 맵 융합 및 중재 계층(208)은 맵-기반 위치 정보를 센서 융합 및 RWM 관리 계층(212)에 전달할 수 있다.
[0080] 루트 계획 계층(210)은 호스트 차량(100)이 특정 목적지까지 따라갈 루트를 계획하기 위해 조작자 또는 디스패처로부터의 입력들뿐만 아니라 HD 맵을 활용할 수 있다. 루트 계획 계층(210)은 맵-기반 위치 정보를 센서 융합 및 RWM 관리 계층(212)에 전달할 수 있다. 그러나, 센서 융합 및 RWM 관리 계층(212) 등과 같은 다른 계층들에 의한 이전 맵의 사용은 요구되지 않는다. 예를 들어, 다른 스택들은 제공된 맵 없이 지각 데이터에만 기초하여 차량을 동작 및/또는 제어하여, 차선들, 경계들, 및 지각 데이터가 수신될 때의 로컬 맵의 개념을 구성할 수 있다.
[0081] 센서 융합 및 RWM 관리(212)는 레이더 지각 계층(202), 카메라 지각 계층(204), 맵 융합 및 중재 계층(208), 및 루트 계획 계층(210)에 의해 생성된 데이터 및 출력들을 수신하고, 이러한 입력들 중 일부 또는 전부를 사용하여 도로, 도로 상의 다른 차량들, 및 호스트 차량(100) 인근 내의 다른 객체들에 대한 호스트 차량(100)의 위치 및 상태를 추정 또는 개선할 수 있다. 예를 들어, 센서 융합 및 RWM 관리(212)는 카메라 지각 계층(204)으로부터의 이미저리 데이터를 맵 융합 및 중재 계층(208)으로부터의 중재된 맵 위치 정보와 조합하여 교통 차선 내에서 호스트 차량의 결정된 포지션을 개선할 수 있다. 다른 예로서, 센서 융합 및 RWM 관리(212)는 카메라 지각 계층(204)으로부터의 객체 인식 및 이미저리 데이터를 레이더 지각 계층(202)으로부터의 객체 검출 및 거리 측정 데이터와 조합하여, 호스트 차량 인근의 다른 차량들 및 객체들의 상대적인 포지션을 결정 및 개선할 수 있다. 다른 예로서, 센서 융합 및 RWM 관리(212)는 다른 차량 포지션들 및 이동 방향들에 관해 (이를 테면, CAN 버스를 통해) V2V(vehicle-to-vehicle) 통신들로부터 정보를 수신하고, 그 정보를 레이더 지각 계층(202) 및 카메라 지각 계층(204)으로부터의 정보와 조합하여, 다른 차량들의 위치들 및 모션들을 개선할 수 있다. 센서 융합 및 RWM 관리(212)는 호스트 차량(100)의 개선된 위치 및 상태 정보뿐만 아니라, 호스트 차량 인근의 다른 차량들 및 객체들의 개선된 위치 및 상태 정보를 모션 계획 및 제어 계층(214) 및/또는 거동 계획 및 예측 계층(216)에 출력할 수 있다.
[0082] 거동 계획 및 예측 계층(216)은 호스트 차량(100)의 개선된 위치 및 상태 정보, 및 센서 융합 및 RWM 관리 계층(212)으로부터 출력된 다른 차량들 및 객체들의 위치 및 상태 정보를 사용하여 다른 차량들 및/또는 다른 객체들의 미래 거동들을 예측할 수 있다. 예를 들어, 거동 계획 및 예측 계층(216)은 자신의 차량 포지션 및 속도 및 다른 차량 포지션들 및 속도에 기초하여 호스트 차량 인근의 다른 차량들의 미래의 상대적 포지션들을 예측하기 위해 이러한 정보를 사용할 수 있다. 그러한 예측들은, 호스트 및 다른 차량들이 도로를 따를 때 상대적인 차량 포지션들의 변화들을 예상하기 위해 HD 맵 및 루트 계획으로부터의 정보를 고려할 수 있다. 거동 계획 및 예측 계층(216)은 다른 차량 및 객체 거동 및 위치 예측들을 모션 계획 및 제어 계층(214)에 출력할 수 있다.
[0083] 추가적으로, 거동 계획 및 예측 계층(216)은 호스트 차량(100)의 모션을 제어하기 위한 제어 신호들을 계획 및 생성할 수 있다. 예를 들어, 루트 계획 정보, 도로 정보에서의 개선된 위치, 및 다른 차량들의 상대적인 위치들 및 모션들에 기초하여, 거동 계획 및 예측 계층(216)은 호스트 차량(100)이 이를 테면, 다른 차량들로부터 최소 간격을 유지 또는 달성하고 그리고/또는 회전 또는 출구를 준비하기 위해 차선들을 변경하고 가속할 필요가 있다고 결정할 수 있다. 결과적으로, 거동 계획 및 예측 계층(216)은, 그러한 차선 변경 및 가속을 시행하기 위해 필요한 그러한 다양한 파라미터들과 함께, 모션 계획 및 제어 계층(214) 및 DBW 시스템 제어 계층(220)에 명령될 스로틀에 대한 변화 및 휠들에 대한 스티어링 각도를 계산하거나 또는 다른 방식으로 결정할 수 있다. 하나의 그러한 파라미터는 컴퓨팅된 스티어링 휠 커맨드 각도일 수 있다.
[0084] 모션 계획 및 제어 계층(214)은 센서 융합 및 RWM 관리 계층(212)으로부터의 데이터 및 정보 출력들, 및 다른 차량 및 객체 거동뿐만 아니라 거동 계획 및 예측 계층(216)으로부터의 위치 예측들을 수신하고, 이러한 정보를 사용하여 호스트 차량(100)의 모션을 제어하기 위한 제어 신호들을 계획 및 생성하고 이러한 신호들이 호스트 차량(100)에 대한 안전 요건을 충족시키는 것을 검증할 수 있다. 예를 들어, 루트 계획 정보, 도로 정보에서의 개선된 위치, 및 다른 차량들의 상대적인 위치들 및 모션들에 기초하여, 모션 계획 및 제어 계층(214)은 다양한 제어 커맨드들 또는 명령들을 검증하고, DBW 시스템/제어 유닛(220)에 전달할 수 있다.
[0085] DBW 시스템/제어 유닛(220)은 모션 계획 및 제어 계층(214)으로부터 커맨드들 또는 명령들을 수신하고, 그러한 정보를 호스트 차량(100)의 휠 각도, 브레이크 및 스로틀을 제어하기 위한 기계적 제어 신호들로 변환할 수 있다. 예를 들어, DBW 시스템/제어부(220)는 대응하는 제어 신호들을 스티어링 휠 제어기에 전송함으로써 컴퓨팅된 스티어링 휠 커맨드 각도에 응답할 수 있다.
[0086] 다양한 실시예들에서, 차량 관리 시스템 스택(200)은 차량 및 탑승자 안전에 영향을 미칠 수 있는 다양한 계층들의 다양한 커맨드들, 계획 또는 다른 판정들의 안전 체크들 또는 감독을 수행하는 기능을 포함할 수 있다. 이러한 안전 체크 또는 감독 기능은 전용 계층(미도시) 내에서 구현되거나 다양한 계층들 사이에 분산되어 기능의 일부로서 포함될 수 있다. 일부 실시예들에서, 다양한 안전 파라미터들이 메모리에 저장될 수 있고, 안전 체크들 또는 감독 기능은 결정된 값(예를 들어, 인근 차량과의 상대적인 간격, 도로 중심선으로부터의 거리 등)을 대응하는 안전 파라미터(들)와 비교하고, 안전 파라미터가 위반되거나 위반되려는 경우 경고 또는 커맨드를 발행할 수 있다. 예를 들어, 거동 계획 및 예측 계층(216)(또는 도시되지 않은 별개의 계층)의 안전 또는 감독 기능은 (센서 융합 및 RWM 관리 계층(212)에 의해 개선된 바와 같이) 다른 차량과 호스트 차량 사이의 현재 또는 미래의 별개의 거리를 (예를 들어, 센서 융합 및 RWM 관리 계층(212)에 의해 개선된 세계 모델에 기초하여) 결정하고, 그 분리 거리를 메모리에 저장된 안전 분리 거리 파라미터와 비교하고, 현재 또는 예측된 분리 거리가 안전 분리 거리 파라미터를 위반하는 경우, 가속, 감속 또는 회전하라는 명령들을 모션 계획 및 제어 계층(214)에 발행할 수 있다. 다른 예로서, 모션 계획 및 제어 계층(214)(또는 도시되지 않은 별개의 계층)의 안전 또는 감독 기능은 결정된 또는 명령된 스티어링 휠 커맨드 각도를 안전 휠 각도 제한 또는 파라미터와 비교하고, 명령된 각도가 안전 휠 각도 제한을 초과하는 것에 대한 응답으로 오버라이드 커맨드 및/또는 경보를 발생할 수 있다.
[0087] 메모리에 저장된 일부 안전 파라미터들은 최대 차량 속도와 같이 정적일 수 있다(즉, 시간이 지남에 따라 변하지 않음). 메모리에 저장된 다른 안전 파라미터들은, 파라미터들이 차량 상태 정보 및/또는 환경 조건들에 기초하여 연속적으로 또는 주기적으로 결정되거나 업데이트된다는 점에서 동적일 수 있다. 안전 파라미터들의 비-제한적인 예들은 최대 안전 속도, 최대 브레이크 압력, 최대 가속도, 및 안전 휠 각도 제한을 포함하며, 이들 모두는 도로 및 날씨 조건들의 함수일 수 있다.
[0088] 도 3은 차량들에서 다양한 실시예들을 구현하기에 적합한 프로세싱 디바이스 SOC(system-on-chip)(300)의 예시적인 SOC 아키텍처를 예시한다. 도 1a 내지 도 3을 참조하면, 프로세싱 디바이스 SOC(300)는 다수의 이종 프로세서들, 이를 테면 DSP(digital signal processor)(303), 모뎀 프로세서(304), 이미지 및 객체 인식 프로세서(306), MDP(mobile display processor)(307), 애플리케이션 프로세서(308), 및 RPM(resource and power management) 프로세서(317)를 포함할 수 있다. 프로세싱 디바이스 SOC(300)는 또한 이종 프로세서들(303, 304, 306, 307, 308, 317) 중 하나 이상에 접속된 하나 이상의 코프로세서들(310)(예를 들어, 벡터 코-프로세서)을 포함할 수 있다. 프로세서들 각각은 하나 이상의 코어들 및 독립/내부 클럭을 포함할 수 있다. 각각의 프로세서/코어는 다른 프로세서들/코어들과 독립적으로 동작들을 수행할 수 있다. 예를 들어, 프로세싱 디바이스 SOC(300)는 제1 타입의 운영 시스템(예를 들어, FreeBSD, LINUX, OS X 등)을 실행하는 프로세서 및 제2 타입의 운영 시스템(예를 들어, Microsoft Windows)을 실행하는 프로세서를 포함할 수 있다. 일부 실시예들에서, 애플리케이션 프로세서(308)는 SOC(300)의 메인 프로세서, CPU(central processing unit), MPU(microprocessor unit), ALU(arithmetic logic unit) 등일 수 있다. 그래픽 프로세서(306)는 GPU(graphics processing unit)일 수 있다.
[0089] 일부 실시예들에서, 이종 프로세서들(303, 304, 306, 307, 308, 317) 중 하나 이상은 본 출원 전반에 걸쳐 논의된 VADS(vehicle autonomous driving system)의 전부 또는 부분들을 구현하도록 구성될 수 있다.
[0090] 프로세싱 디바이스 SOC(300)는 또한 센서 데이터, 아날로그-디지털 변환들, 무선 데이터 송신들을 관리하기 위한 그리고 웹 브라우저에서 렌더링하기 위해 인코딩된 오디오 및 비디오 신호들을 프로세싱하는 것과 같은 다른 특수화된 동작들을 수행하기 위한 아날로그 회로 및 주문형 회로(314)를 포함할 수 있다. 프로세싱 디바이스 SOC(300)는 시스템 컴포넌트들 및 자원들(316), 예를 들어, 전압 조절기들, 오실레이터들, 위상-고정 루프들, 주변 브릿지들, 데이터 제어기들, 메모리 제어기들, 시스템 제어기들, 액세스 포트들, 타이머들 및 컴퓨팅 디바이스 상에서 실행되는 프로세서들 및 소프트웨어 클라이언트들(예를 들어, 웹 브라우저)을 지원하기 위해 사용되는 다른 유사한 컴포넌트들을 더 포함할 수 있다.
[0091] 프로세싱 디바이스 SOC(300)는 또한, 하나 이상의 카메라들(122, 136)(예를 들어, 주 카메라, 웹캠, 3D 카메라 등)의 동작들, 카메라 펌웨어로부터의 비디오 디스플레이 데이터, 이미지 프로세싱, 비디오 전처리, VFE(video front-end), 인-라인 JPEG, 고선명 비디오 코덱 등을 포함, 제공, 제어 및/또는 관리하는 특수 회로(CAM)(305)를 포함한다. CAM(305)은 독립적인 프로세싱 유닛일 수 있고 그리고/또는 독립적인 또는 내부적 클럭을 포함할 수 있다.
[0092] 일부 실시예들에서, 이미지 및 객체 인식 프로세서(306)는 다양한 실시예들에 수반되는 이미지 프로세싱 및 객체 인식 분석들을 수행하도록 구성된 프로세서 실행가능 명령들 및/또는 전문화된 하드웨어로 구성될 수 있다. 예를 들어, 이미지 및 객체 인식 프로세서(306)는 다른 차량들을 인식 및/또는 식별하고, 그렇지 않으면 설명된 바와 같이 카메라 인지 계층(204)의 기능들을 수행하기 위해 CAM(305)을 통해 카메라들(예를 들어, 122, 136)로부터 수신된 이미지들을 프로세싱하는 동작들을 수행하도록 구성될 수 있다. 일부 실시예들에서, 프로세서(306)는 설명된 바와 같이, 레이더 또는 라이다 데이터를 프로세싱하고 레이더 지각 계층(202)의 기능들을 수행하도록 구성될 수 있다.
[0093] 시스템 컴포넌트들 및 자원들(316), 아날로그 및 커스텀 회로(314), 및/또는 CAM(305)은 주변 디바이스들, 이를 테면, 카메라들(122, 136), 레이더(132), 라이다(138), 전자 디스플레이들, 무선 통신 디바이스들, 외부 메모리 칩들 등과 인터페이싱하기 위한 회로를 포함할 수 있다. 프로세서들(303, 304, 306, 307, 308)은, 재구성가능한 로직 게이트들의 어레이를 포함하고 그리고/또는 버스 아키텍처(예를 들어, CoreConnect, AMBA 등)를 구현할 수 있는 상호연결/버스 모듈(324)을 통해 하나 이상의 메모리 엘리먼트들(312), 시스템 컴포넌트들 및 자원들(316), 아날로그 및 커스텀 회로(314), CAM(305) 및 RPM 프로세서(317)에 상호접속될 수 있다. 통신들은 어드밴스드 상호접속들, 예를 들어, 고성능 NoC들(networks-on chip)에 의해 제공될 수 있다.
[0094] 프로세싱 디바이스 SOC(300)는 SOC 외부의 자원들, 예를 들어, 클럭(318) 및 전압 조절기(320)와 통신하기 위한 입력/출력 모듈(예시되지 않음)을 더 포함할 수 있다. SOC 외부의 자원들(예를 들어, 클럭(318), 전압 조절기(320))은 내부 SOC 프로세서들/코어들 중 둘 이상(예를 들어, DSP(303), 모뎀 프로세서(304), 그래픽 프로세서(306), 애플리케이션 프로세서(308) 등)에 의해 공유될 수 있다.
[0095] 일부 실시예들에서, 프로세싱 디바이스 SOC(300)는 차량(예를 들어, 100)에서 사용하기 위한 제어 유닛(예를 들어, 140)에 포함될 수 있다. 제어 유닛은 설명된 바와 같이, 전화 네트워크(예를 들어, 180), 인터넷 및/또는 네트워크 서버(예를 들어, 184)와의 통신을 위한 통신 링크들을 포함할 수 있다.
[0096] 프로세싱 디바이스 SOC(300)는 또한, 모션 센서들(예를 들어, IMU의 가속도계들 및 자이로스코프들), 사용자 인터페이스 엘리먼트들(예를 들어, 입력 버튼들, 터치 스크린 디스플레이 등), 마이크로폰 어레이들, 물리적 조건들(예를 들어, 위치, 방향, 모션, 배향, 진동 압력 등)을 모니터링하기 위한 센서들, 카메라들, 나침반들, GPS 수신기들, 통신 회로(예를 들어, Bluetooth®, WLAN, WiFi 등) 및 현대의 전자 디바이스들의 다른 널리 공지된 컴포넌트들을 포함하는, 센서들로부터의 센서 데이터를 수집하기에 적합한 추가적인 하드웨어 및/또는 소프트웨어 컴포넌트들을 포함할 수 있다.
[0097] 도 4는 자율 자동차들이 서로의 주위에 상당히 더 작은 마진들로 어떻게 안전하게 동작할 수 있는지를 예시한다. 도 1a 내지 도 4를 참조하면, 자율 차량(402)은 주위 차량들(404-418)과 통신하기 위해 V2V 통신들을 사용하고, 주행 파라미터들(예를 들어, 최소 분리 거리)에 따라 그리고 주위 차량들의 거동 모델들로부터의 입력들을 이용하여 주행 제어들(스티어링, 스로틀 및 브레이크)을 실행하여 교통 처리율을 증가시키기 위해 주위(404-418)에 물리적으로 매우 근접하게 안전하게 이동한다. 예를 들어, 자율 차량(402)은 주위 차량들(404-418) 각각에 대한 ACM들을 결정하기 위해 주위 차량들(404-418)로부터 V2V 통신들을 통해 수신된 정보와 함께 차량의 센서들(예를 들어, 카메라, 레이더, LIDAR 등)로부터 수집된 정보를 사용하는 VADS를 구비할 수 있다. VADS 컴포넌트는 자율 차량(402)의 주행 파라미터들, 이를 테면, 자율 차량(402)과 바로 앞의 차량(406) 사이의 최소 추종 거리 및/또는 자율 차량(402)과 측면 차량들(408 및 410) 사이의 최소 분리 거리를 조정하기 위해 ACM들을 사용할 수 있다.
[0098] 도 5는 자율 접속된 차량들이 수동으로 주행되는 자동차 주위에서 증가된 안전 마진들을 유지하도록 조정하는 예를 예시한다. 도 1a 내지 도 5를 참조하면, 자율 차량(402)의 VADS는 V2V를 사용하여 바로 앞의 차량(404)에 자율성 레벨을 문의하고(또는 차량(404)의 관찰된 주행 거동들에 기초하여 자율성 레벨을 예측하고), 차량(404)이 인간 운전자에 의해 수동으로 동작되고 있고 그리고/또는 그렇지 않으면 가까운 거리에서 따르는 데 필요한 레벨의 자율성을 갖지 않는다고 결정한다. 응답으로, VADS 컴포넌트는 인간 운전자의 반응 시간, 차량(404) 내의 더 오래된 센서들의 고장 레이트 등을 설명하기 위해 다음의 거리 주행 파라미터를 증가시킬 수 있다.
[0099] 도 6은 자율 차량들이 다른 차량이 나머지 차량들을 추월하거나 캐러밴에서 나갈 수 있게 하기 위해 경로를 클리어하는 예를 예시한다. 도 1a 내지 도 6을 참조하면, 자율 차량(402)의 VADS는 ACM을 생성 및 사용하여 차량(406)이 인간 운전자에 의해 수동으로 작동되고 있다고 또는 그렇지 않으면 자신의 현재 테일게이팅 거리에서 따르기 위해 요구되는 자율성 레벨을 갖지 않는다고 결정할 수 있다. 응답으로, VADS 컴포넌트는 후방 주위 차량(406)이 통과할 수 있게 하기 위해 자율 차량들이 차선들을 변경하는 조정된 기동을 수행하기 위해 다른 차량들(404, 408, 410, 412, 418)과 통신할 수 있다. 유사하게, 차량들(404, 408, 410, 412, 418)은 그들의 주위 차량들(602, 606)과 통신하여 이들이 차선들을 변경하고 후방 차량(406)이 지나갈 수 있게 하도록 추가적인 조정된 기동들을 수행할 수 있다.
[0100] 다른 예로서, 자율 차량(402)은 차량(404)의 운전자가 수동 주행 모드에 진입하도록 요청했음을 표시하는 메시지를 후방 차량(406)으로부터 수신할 수 있다. 응답으로, 자율 차량(402)은 다른 차량들(404, 408, 410, 412, 418)과 통신하여, 차량(404)이 캐러밴에서 나가기 시작하는 것을 가능하게 하는 경로를 클리어하기 위한 조정된 기동을 수행할 수 있다. 차량(404)의 운전자는 경로가 클리어되고 차량(404)이 상이한 차선으로 이동된 후에 수동 제어를 받을 수 있다.
[0101] 도 7은 자율 차량들의 VADS들이 자율 차량들의 그룹들이 밀접하게 그룹화된 캐러밴들을 형성할 수 있게 하도록 구성될 수 있음을 예시한다. VADS들은, 그룹으로서 달성될 수 있는 유효 레벨의 자율성을 증가시키고 그리고/또는 공유된 컴퓨테이셔널 자원들, 상태 추정 등으로부터 이익을 얻기 위해, 더 높은 레벨들의 자율성을 갖는 인근 차량들의 자율 능력들 및 센서 패키지들을 레버리지하도록 구성될 수 있다.
[0102] 도 1a 내지 도 7을 참조하면, 제1 캐러밴(704)의 선두 차량(702)은 최고 레벨들의 자율성을 가지며, 그 자체로 완전한 자율성을 가질 수 없는 후행 차량들(706)은 밀접하게 뒤에 따르는 선두 차량(702)의 자율 능력들을 레버리지한다. 후행 차량들(706)은 전력을 절약하기 위해 자신들의 지각 및 프로세싱 동작들을 감소시킬 수 있다. 즉, 후행 차량들(706)은 단순히 선두 차량(702)을 따라갈 수 있고 더 긴 범위 추정에 자원들을 사용하지 않을 수 있는 반면, 선두 차량(702)은 장거리 추정 및 예측에 상당한 자원들을 할애할 수 있다.
[0103] 일부 실시예들에서, 제2 캐러밴(710) 내의 차량들은 그룹의 능력들로부터 이익을 얻기 위해 지각 및 프로세싱 부하를 공유하도록 구성될 수 있다. 추가적으로, 차량들은 잠재적으로, 팀의 총 컴퓨테이셔널 자원들을 더 잘 사용하기 위해 그들의 프로세싱을 특정 체제들에 집중시킬 수 있다. 예를 들어, 선두 차량(712)은 캐러밴 앞의 영역(716)에 초점을 맞출 수 있고, 후방 차량(714)은 캐러밴 뒤의 영역(718)에 초점을 맞출 수 있다. 일부 실시예들에서, 자율 차량들은 전력 효율을 최대화하기 위해 이러한 그룹들(예를 들어, 제1 캐러밴(704), 제2 캐러밴(710) 등)을 능동적으로 찾을 수 있다.
[0104] 도 8은 일 실시예에 따라 자율 차량을 제어하는 방법(800)을 예시한다. 도 1a 내지 도 8을 참조하면, 방법(800)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(800)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0105] 블록(802)에서, VADS 컴포넌트는 인근 차량들의 자율성의 레벨들을 검출 또는 추정할 수 있다. 설명된 바와 같이, VADS 컴포넌트는 방법들 중 임의의 하나 또는 조합을 사용하여 각각의 차량의 레벨들을 결정할 수 있다. 그러한 방법들의 비제한적인 예들은, V2V 통신들을 통해 다른 차량들로부터 자율성 레벨에 관한 정보를 수신하는 것, 다른 차량들을 관찰하는 것, 및 주행 거동들의 관찰들에 기초하여 자율성의 레벨을 추정하는 것, 메모리에 또는 (예를 들어, 차량 식별자, 제조사/모델/연도 정보 등을 사용하여) 인터넷으로의 무선 액세스를 통해 원격에 저장된 데이터베이스에서 자율성의 레벨들을 검색하는 것, 및 이들의 조합들을 포함한다. 설명된 바와 같이, VADS 컴포넌트는 각각의 차량에 대한 결정된 또는 추정된 자율성 레벨을 반영하는 ACM 값 또는 값들의 벡터를 생성할 수 있다.
[0106] 블록(804)에서, VADS 컴포넌트는 검출된 또는 추정된 자율성 레벨들에 기초하여 하나 이상의 자율 차량들(또는 자율 차량들의 캐러밴)의 동작들 또는 주행 거동들에 영향을 미칠 수 있다.
[0107] 블록들(802 및 804)의 동작들은 자율 차량의 동작들을 제어하기 위해 연속적으로 또는 반복적으로 수행될 수 있다. 일부 실시예들에서, 방법(800)의 동작들은 동시에, 임의의 순서로, 그리고/또는 도 4 내지 도 7 및 도 9 내지 도 14를 참조하여 논의된 동작들을 포함하여, 애플리케이션에서 논의된 동작들 중 임의의 것 또는 전부와 함께 수행될 수 있다.
[0108] 도 9a는 다른 실시예에 따라 자율 차량을 제어하는 방법(900)을 예시한다. 도 1a 내지 도 9a를 참조하면, 방법(900)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(900)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0109] 블록(902)에서, VADS 컴포넌트는 자율 차량의 임계 거리 내에 있는 차량들을 식별할 수 있다. 일부 실시예들에서, 임계 거리는 미리 결정되고 메모리에 저장된 거리, 이를 테면 표준 안전 분리 거리일 수 있다. 일부 실시예들에서, 임계 거리는 동적으로, 이를 테면 현재 조건들에 기초하여 VADS 컴포넌트에 의해 결정될 수 있다. 이러한 실시예들에서, 블록(902)의 동작들은 현재 조건들에 적절한 임계 거리를 동적으로 결정하는 것 및 동적으로 결정된 임계 거리 내에 있는 차량들을 식별하는 것을 포함할 수 있다.
[0110] 블록(904)에서, VADS 컴포넌트는 식별된 차량들의 ACM들에 기초하여 자율 차량의 주행 파라미터를 조정할 수 있다. 예를 들어, VADS 컴포넌트는 방법(800)의 블록(802)에서 결정된 ACM 값 또는 값들의 벡터들을 사용하여 자율 차량의 하나 이상의 주행 파라미터들을 조정할 수 있다.
[0111] 블록들(902및 904)의 동작들은 자율 차량의 동작들을 제어하기 위해 연속적으로 또는 반복적으로 수행될 수 있다. 방법(900)의 동작들은 동시에, 임의의 순서로, 그리고/또는 도 4 내지 도 8, 도 9b 및 도 10 내지 도 14를 참조하여 논의된 동작들을 포함하여, 애플리케이션에서 논의된 동작들 중 임의의 것 또는 전부와 함께 수행될 수 있다.
[0112] 도 9b는 일 실시예에 따라 자율 차량을 제어하는 방법(930)을 예시한다. 도 1a 내지 도 9b를 참조하면, 방법(930)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(930)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0113] 블록(902)에서, VADS 컴포넌트는 설명된 바와 같이 방법(900)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(902)에서, VADS 컴포넌트는 현재 조건들에 적절한 임계 거리를 동적으로 결정하고, 동적으로 결정된 임계 거리 내에 있는 차량들을 식별할 수 있다.
[0114] 블록(932)에서, VADS 컴포넌트는 식별된 차량들 각각의 ACM(autonomous capability metric)을 결정할 수 있다. 일부 실시예들에서, 블록(932)의 동작들의 일부로서, VADS 컴포넌트는, 차량이 완전 자율 모드에 있는지, 반-자율 모드에 있는지 또는 수동 모드(예를 들어, 차선-추종 보조 및/또는 차량 분리 보조가 관여된 수동 모드)에 있는지 여부와 같은 각각의 식별된 차량의 자율성의 레벨을 결정할 수 있다.
[0115] 일부 실시예들에서, 블록(932)에서, VADS 컴포넌트는 식별된 차량들 중 하나 이상으로부터 ACM들 중 하나 이상을 수신할 수 있다. 따라서, 일부 실시예들에서, 식별된 차량들 각각의 ACM을 결정하는 것은 식별된 차량들 중 적어도 하나로부터 수신된 ACM을 사용하는 것을 포함할 수 있다.
[0116] 일부 실시예들에서, 블록(932)에서, VADS 컴포넌트는 인근 차량의 자율성 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 하나 이상의 값들을 결정함으로써 식별된 차량의 ACM을 결정할 수 있다. 일부 실시예들에서, 이는, 블록(932)에서, VADS 컴포넌트가 인근 차량의 주행 거동을 관찰하고, 인근 차량의 컴퓨팅 또는 센서 능력을 결정하고, 그리고/또는 C-V2X 통신들을 통해 인근 차량의 등급 또는 인증들에 관한 정보를 수신함으로써 달성될 수 있다.
[0117] 일부 실시예들에서, 블록(932)에서, VADS 컴포넌트는 관찰된 주행 거동에 기초하여 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들 중 하나 이상을 결정할 수 있다. 일부 실시예들에서, 관찰된 주행 거동에 기초하여 결정된 값은, 차량 동작들의 일관성, 규칙성 또는 균일성, 미래의 차량 동작들에 대한 예측가능성의 레벨, 운전자 공격성의 레벨, 인근 차량이 주행 차선의 중심을 추적하는 정도, 단위 시간당 주행 에러들의 수, 지역 도로 규칙들의 준수, 안전 규칙들의 준수, 차량의 반응 시간, 관찰가능한 이벤트들에 대한 차량의 반응성, 또는 이들의 임의의 조합을 표현할 수 있다.
[0118] 일부 실시예들에서, 블록(932)에서, VADS 컴포넌트는 결정된 센서 능력에 기초하여 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들 중 하나 이상을 결정할 수 있다. 일부 실시예들에서, 결정된 센서 능력에 기초하여 결정된 값은 센서의 타입, 센서의 제조사, 센서의 모델, 센서의 제조자, 인근 차량에서 동작하는 자율 주행 센서들의 수, 센서의 정확도, 하나 이상의 센서들의 정밀도, 또는 이들의 임의의 조합을 표현할 수 있다.
[0119] 일부 실시예들에서, 블록(932)에서, VADS 컴포넌트는 C-V2X 통신들을 통해 수신된 정보에 기초하여 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들 중 하나 이상을 결정할 수 있다. 일부 실시예들에서, C-V2X 통신들을 통해 수신된 정보에 기초하여 결정된 값은 KPI, 표면 성능 등급, 날씨 성능 등급, 차량의 능력, 차량의 특징, 지원되는 알고리즘, 예측 및 제어 전략, 또는 이들의 임의의 조합을 표현할 수 있다.
[0120] 블록(904)에서, VADS 컴포넌트는 설명된 바와 같이 방법(900)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(904)에서, VADS 컴포넌트는 식별된 차량들의 ACM들에 기초하여 자율 차량의 주행 파라미터를 설정 또는 조정할 수 있다.
[0121] 일부 실시예들에서, 블록(904)에서 주행 파라미터를 조정하는 것은 자율 차량과 식별된 차량들 중 적어도 하나 사이에 유지될 최소 분리 거리를 조정하는 것을 포함할 수 있다. 일부 실시예들에서, VADS 컴포넌트는 차량의 ACM 및 그 차량의 거동 모델에 기초하여 블록(904)에서 최소 분리 거리를 조정할 수 있다.
[0122] 일부 실시예들에서, 블록(904)에서 주행 파라미터를 조정하는 것은 자율 차량과 식별된 차량들 중 적어도 하나 사이에 유지될 최소 추종 거리를 조정하는 것을 포함할 수 있다. 일부 실시예들에서, VADS 컴포넌트는 차량의 ACM 및 그 차량과 연관된 거동 모델에 기초하여 블록(904)에서 최소 추종 거리를 조정할 수 있다.
[0123] 일부 실시예들에서, VADS 컴포넌트는 차량의 속도 또는 자율 차량이 속도를 변경할 가속 레이트를 조정함으로써 블록(904)에서 주행 파라미터를 조정할 수 있다. 일부 실시예들에서, VADS 컴포넌트는 차량의 ACM 및 그 차량과 연관된 거동 모델에 기초하여 블록(904)에서 속도 또는 가속도 레이트를 조정할 수 있다.
[0124] 도 10은 다른 실시예에 따라 자율 차량을 제어하는 방법(1000)을 예시한다. 도 1a 내지 도 10을 참조하면, 방법(1000)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(1000)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0125] 블록(902)에서, VADS 컴포넌트는 설명된 바와 같이 방법(900)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(902)에서, VADS 컴포넌트는 자율 차량의 임계 거리 내에 있는 차량들을 식별할 수 있다.
[0126] 블록(1004)에서, VADS 컴포넌트는 식별된 차량들 각각의 ACM을 결정하고, 식별된 차량들의 리스트를 파퓰레이트할 수 있다. 설명된 바와 같이, 각각의 ACM은 식별된 차량의 정확한 자율성 레벨 및/또는 다양한 능력들을 집합적으로 식별, 추정 또는 예측하는 이산 또는 연속 값들을 포함할 수 있다. ACM의 값들 각각은 식별된 차량과 연관된 예측, 수집 또는 관찰된 특징, 팩터 또는 데이터 포인트의 상이한 양상을 표현할 수 있다. 일부 실시예들에서, ACM은 식별된 차량의 자율 능력들을 집합적으로 특성화하거나 표현하는 복수의 심볼들 또는 수치 값들을 포함하는 맵, 행렬 또는 벡터 데이터 구조일 수 있다. ACM 데이터 구조는 다양한 임계치들과 비교되고 그리고/또는 분류기 모델들/판정 노드들에 적용될 수 있다.
[0127] 블록(1006)에서, VADS 컴포넌트는 식별된 차량들의 리스트에서 제1 차량을 선택할 수 있다. 예를 들어, VADS 컴포넌트는 식별된 차량들의 리스트를 순차적으로 횡단하고, 조정, 평가, 비교, 수정 등을 위해 리스트에서 다음 차량을 선택할 수 있다. 블록(1008)에서, VADS 컴포넌트는 설명된 바와 같이 방법(900)의 블록(904)의 동작들을 수행할 수 있다. 예를 들어, 블록(1008)에서, VADS 컴포넌트는 블록(1006)의 동작들의 일부로서 선택된 차량의 ACM에 기초하여 (예를 들어, 최소 분리 거리, 최소 추종 거리, 속도, 가속도 레이트 등을 조정함으로써) 자율 차량의 주행 파라미터를 설정 또는 조정할 수 있다.
[0128] 결정 블록(1010)에서, VADS 컴포넌트는 식별된 차량들의 리스트에 포함된 모든 관련 차량들(예를 들어, 404-418)이 평가 또는 고려되었는지 여부를 결정할 수 있다. 예를 들어, VADS 컴포넌트는 현재 선택된 차량이 식별된 차량들의 리스트에 포함된 마지막 또는 최종 차량인지 여부를 결정할 수 있다.
[0129] 식별된 차량들의 리스트 내의 모든 관련 차량들이 아직 평가 또는 고려되지 않았다고 결정하는 것에 대한 응답으로(즉, 결정 블록(1010) = "아니오"), VADS 컴포넌트는 블록(1006)에서 식별된 차량들의 리스트에서 다음의 관련 차량을 선택하고, 블록(904)에서 선택된 차량의 ACM에 기초하여 (필요하다면) 자율 차량의 주행 파라미터들을 추가로 조정할 수 있다.
[0130] VADS 컴포넌트는 모든 관련 차량들(예를 들어, 전방 차량(404), 후방 차량(406) 등)이 평가 또는 고려될 때까지 블록들(1006, 904 및 1010)의 동작들을 수행할 수 있다.
[0131] 식별된 차량들의 리스트 내의 모든 관련 차량들이 평가 또는 고려되었다는 결정에 대한 응답으로(즉, 결정 블록(1010) = "예"), VADS 컴포넌트는 블록(1012)에서 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 제어 또는 조정할 수 있다. 블록들(902, 904 및 1004-1012)의 동작들은 자율 차량의 동작들을 제어하기 위해 연속적으로 또는 반복적으로 수행될 수 있다.
[0132] 방법(1000)의 동작들은 동시에, 임의의 순서로, 그리고/또는 도 4 내지 도 9, 및 도 11 내지 도 14를 참조하여 논의된 동작들을 포함하여, 애플리케이션에서 논의된 동작들 중 임의의 것 또는 전부와 함께 수행될 수 있다. 예를 들어, 일부 실시예들에서, VADS 컴포넌트는, 블록(904)에서 주행 파라미터를 설정/조정할 때마다, 그리고 모든 관련 차량들이 결정 블록(1010)에서 평가 또는 고려되었는지 여부를 결정하기 전에 블록(1012)의 동작들을 수행하도록 구성될 수 있다.
[0133] 도 11은 다른 실시예에 따라 자율 차량을 제어하는 방법(1100)을 예시한다. 도 1a 내지 도 11을 참조하면, 방법(1100)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(1100)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0134] 블록(902)에서, VADS 컴포넌트는 설명된 바와 같이 방법(900)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(902)에서, VADS 컴포넌트는 자율 차량의 임계 거리 내에 있는 차량들을 식별할 수 있다. 블록(1104)에서, VADS 컴포넌트는 식별된 차량의 ACM을 결정할 수 있다. ACM은 자율 차량의 전방에 있는 차량의 자율성 레벨을 식별할 수 있다. 일부 실시예들에서, ACM은 자율 차량의 전방에 있는 차량의 자율 능력을 식별, 추정 또는 예측하는 이산 또는 유한 값을 포함할 수 있다. 다른 실시예들에서, ACM은 자율 차량의 전방에 있는 차량과 연관된 예측된, 수집된 또는 관찰된 특징, 팩터 또는 데이터 포인트의 상이한 양상을 각각 표현하는 많은 값들을 포함할 수 있다.
[0135] 결정 블록(1106)에서, VADS 컴포넌트는 ACM(예를 들어, 자율성 레벨)이 제1 임계치를 초과하거나 그보다 큰지 여부를 결정할 수 있다. 제1 임계치는 단일 값(예를 들어, 자율 주행 레벨(4. 376) 등) 또는 많은 값들을 포함하거나 표현할 수 있다. 실시예에서, 제1 임계치는 상이한 특징, 팩터 또는 데이터 포인트를 각각 테스트하거나 평가하는 판정 노드들을 포함할 수 있다(예를 들어, V2V 통신 회로가 존재하고, LIDAR 센서 정확도 범위는 100미터보다 크며, 모든 브레이크 패드들은 적어도 5mm의 마찰 재료 등을 포함한다).
[0136] ACM이 제1 임계치를 초과하거나 그보다 크다고 결정하는 것에 대한 응답으로(즉, 결정 블록(1106= "예")), VADS 컴포넌트는 차량이 블록(1108)의 차량의 능력들을 더 신뢰하거나 의존하도록 자율 차량의 주행 파라미터를 조정할 수 있다. 예를 들어, VADS 컴포넌트는, 자율 차량의 바로 앞에 있는 차량이 높은 레벨의 자율성, 강력한 센서들, 진보된 자율 제어 시스템 등을 갖는다는 결정에 대한 응답으로 블록(1108)에서 추종 거리 파라미터를 낮출 수 있다. 블록(1012)에서, VADS 컴포넌트는 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 조정할 수 있다.
[0137] ACM이 제1 임계치보다 크지 않다는 결정에 대한 응답으로(즉, 결정 블록(1106) = "아니오"), VADS 컴포넌트는 결정 블록(1112)에서 ACM이 제2 임계값을 초과하는지 또는 그 미만인지 여부를 결정할 수 있다.
[0138] ACM이 제2 임계값 미만이라는 결정에 대한 응답으로(즉, 결정 블록(1112= "예")), VADS 컴포넌트는 차량이 블록(1114)의 차량의 능력들을 덜 신뢰하거나 의존하도록 자율 차량의 주행 파라미터를 조정할 수 있다. 예를 들어, VADS 컴포넌트는, 자율 차량의 바로 앞에 있는 차량이 정교한 센서들 또는 진보된 자율 제어 시스템을 포함하지 않는 구형 차량이라는 결정에 대한 응답으로 블록(1108)에서 추종 거리 파라미터를 증가시킬 수 있다. 블록(1012)에서, VADS 컴포넌트는 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 조정할 수 있다.
[0139] ACM이 제1 임계치 이상이라는 결정에 대한 응답으로(즉, 결정 블록(1112) = "아니오"), VADS 컴포넌트는 블록(1012)의 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 제어할 수 있다.
[0140] 방법(1100)의 동작들은 자율 차량의 동작들을 제어하기 위해 연속적으로 또는 반복적으로 수행될 수 있다. 방법(1100)의 동작들은 동시에, 임의의 순서로, 그리고/또는 도 4 내지 도 10, 및 도 12 내지 도 14를 참조하여 논의된 동작들을 포함하여, 애플리케이션에서 논의된 동작들 중 임의의 것 또는 전부와 함께 수행될 수 있다.
[0141] 도 12a는 다른 실시예에 따라 자율 차량을 제어하는 방법(1200)을 예시한다. 도 1a 내지 도 12a를 참조하면, 방법(1200)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(1200)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0142] 블록(902)에서, VADS 컴포넌트는 설명된 바와 같이 방법(900)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(902)에서, VADS 컴포넌트는 자율 차량의 임계 거리 내에 있는 차량들을 식별할 수 있다.
[0143] 블록(1004)에서, VADS 컴포넌트는 설명된 바와 같이 방법(1000)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(1004)에서, VADS 컴포넌트는 각각의 식별된 차량들의 ACM(autonomous capability metric)을 결정할 수 있다. 일부 실시예들에서, VADS 컴포넌트는 블록(1004)에서 식별된 차량들의 자율성 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들의 벡터 또는 행렬을 생성하고, 생성된 값들의 벡터 또는 행렬에 기초하여 식별된 차량들의 ACM들을 결정할 수 있다.
[0144] 블록(1205)에서, VADS 컴포넌트는, 결정된 ACM들에 기초하여, 하나 이상의 식별된 차량들이 협력 주행 관여(예를 들어, 식별된 차량을 갖는 캐러밴에서 자율 차량을 동작시키는 것, 다른 차량들과 센서 데이터를 통신하는 것 등)에서 동작 이점을 자율 차량에 제공할지 여부를 결정할 수 있다. 예를 들어, VADS 컴포넌트는, 식별된 차량의 목적지 또는 계획된 이동 루트를 결정하고, 식별된 차량이 자율 차량의 목적지와 일치하는 루트를 따라 이동할 지속기간을 결정하고, 식별된 차량이 적어도 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 이동할 것이라고 결정하는 것에 대한 응답으로 협력 주행 어레인지먼트(예를 들어, 센서 데이터를 공유하거나 캐러밴을 형성하는 것)에 관여하는 것에 대한 동작 이점이 있을지 여부를 결정하기 위해 V2V 통신들을 사용할 수 있다.
[0145] 일부 실시예들에서, 블록(1205)의 동작들의 일부로서, VADS 컴포넌트는 식별된 차량의 목적지 또는 계획된 이동 루트를 결정하고, 목적지 또는 계획된 여행 루트를 자율 차량의 목적지와 비교하고, 하나 이상의 식별된 차량들이 자율 차량의 목적지와 일치하는 루트를 따라 이동할 지속기간을 결정하고, 결정된 지속기간을 임계 시간 기간과 비교하여, 결정된 지속기간이 임계 시간 기간을 초과하는지 여부에 기초하여 협력 주행 어레인지먼트에서 관여(예를 들어, 센서 데이터를 공유하거나 캐러밴을 형성함)에 동작 이점이 있을지 여부를 결정하기 위해 식별된 차량들 중 적어도 하나와 통신할 수 있다.
[0146] 일부 실시예들에서, 블록(1205)에서, VADS 컴포넌트는, 식별된 차량의 하나 이상의 센서들이 자율 차량의 안전 또는 동작 성능에 유리할, 자율 차량이 소유하지 않은 센서 능력을 제공할지 여부를 결정할 수 있다. 일부 실시예들에서, 블록(1205)에서, VADS 컴포넌트는, 식별된 차량의 자율성의 레벨이 자율 차량이 더 안전하게 또는 협력 주행 관여에서 개선된 성능으로 동작하는 것을 가능하게 할지 여부를 결정할 수 있다.
[0147] 일부 실시예들에서, 블록(1205)에서, VADS 컴포넌트는, 결정된 ACM들에 기초하여, 도로 조건, 날씨 조건, 도로의 타입, 도로 상의 차량 통행량의 레벨, 도로의 제한 속도, 도로를 따른 위험 또는 장애물, 또는 조명 조건 중 적어도 하나를 포함하는 주행 조건을 고려하여 식별된 차량들 중 적어도 하나가 협력 주행 관여에서 자율 차량에 동작 이점을 제공할지 여부를 결정할 수 있다.
[0148] 블록(1207)에서, VADS 컴포넌트는, 하나 이상의 식별된 차량들이 협력 주행 관여에서 자율 차량에 동작 이점을 제공할 것이라는 결정에 대한 응답으로 하나 이상의 식별된 차량들과의 협력 주행 관여를 개시할 수 있다. 즉, 협력 주행 어레인지먼트에 관여하는 것이 동작 이점이 있을 것이라고 결정하는 것에 대한 응답으로, VADS 컴포넌트는, 자율 차량이 식별된 차량(들)과 센서 데이터를 공유하고 그리고/또는 식별된 다른 차량(들)에 대한 특정 위치에서 주행하여 각각의 차량의 센서들을 최상으로 레버리지하는 협력 주행 관여를 개시할 수 있다. 예를 들어, 자율 차량 및 식별된 다른 차량(들)은 캐러밴의 선두에 최상의 전향 센서를 갖는 차량을 포지셔닝하도록 협력할 수 있다.
[0149] 일부 실시예들에서, 블록(1207)에서, VADS 컴포넌트는, 하나 이상의 식별된 차량들이 협력 주행 관여에서 자율 차량에 동작 이점을 제공할 것이라는 결정에 대한 응답으로, 하나 이상의 식별된 차량들이 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 이동할지 여부를 결정하고, 하나 이상의 식별된 차량들이 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 이동할 것이라는 결정에 대한 응답으로, 하나 이상의 식별된 차량들과의 협력 주행 관여를 개시한다.
[0150] 일부 실시예들에서, 블록(1207)에서, VADS 컴포넌트는 하나 이상의 식별된 차량들이 협력 주행 관여에 참여하도록 요청하기 위해 하나 이상의 식별된 차량들에 통신 메시지를 전송하고, 하나 이상의 식별된 차량들이 협력 주행 관여에 참여할 것임을 표시하는 확인 메시지를 수신하고, 하나 이상의 식별된 차량들이 협력 주행 관여에 참여할 것임을 표시하는 확인 메시지를 수신하는 것에 대한 응답으로, 하나 이상의 식별된 차량들에 대한 직접 통신 링크들을 확립하고, 직접 통신 링크들을 통해 하나 이상의 식별된 차량들로부터 정보를 수신하고, 하나 이상의 식별된 차량들로부터 수신된 정보에 기초하여 자율 차량의 주행 파라미터를 조정할 수 있다.
[0151] 도 12b는 다른 실시예에 따라 자율 차량을 제어하는 방법(1230)을 예시한다. 도 1a 내지 도 12b를 참조하면, 방법(1230)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(1230)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0152] 블록(902)에서, VADS 컴포넌트는 설명된 바와 같이 방법(900)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(902)에서, VADS 컴포넌트는 자율 차량의 임계 거리 내에 있는 차량들을 식별할 수 있다.
[0153] 블록(1004)에서, VADS 컴포넌트는 설명된 바와 같이 방법(1000)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(902)에서, VADS 컴포넌트는 각각의 식별된 차량들에 대한 ACM(autonomous capability metric)을 결정할 수 있다.
[0154] 결정 블록(1206)에서, VADS 컴포넌트는, 식별된 차량들 중 임의의 차량이 협력 주행 관여(예를 들어, 다른 차량들 중 하나 이상을 갖는 플래툰 내의 자율 차량을 동작시키는 것, 다른 차량들과 센서 데이터를 통신하는 것 등)에 관여하면 자율 차량에 동작 이점을 제공할지 여부를 결정하기 위해 ACM들을 사용할 수 있다. 예를 들어, VADS 컴포넌트는, 식별된 차량의 목적지 또는 계획된 이동 루트를 결정하고, 식별된 차량이 자율 차량의 목적지와 일치하는 루트를 따라 이동할 지속기간을 결정하고, 식별된 차량이 적어도 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 이동할 것이라고 결정하는 것에 대한 응답으로 협력 주행 관여에 관여하는 것에 대한 동작 이점이 있을 것이라고 결정하기 위해 V2V 통신들을 사용할 수 있다.
[0155] 일부 실시예들에서, VADS 컴포넌트는, 식별된 차량 내의 센서가 자율 차량에 의해 소유되지 않는 센서 능력을 제공할 것이라는 결정에 대한 응답으로 결정 블록(1206)에서 동작 이점이 있을 것이라고 결정하고, 센서 능력이 자율 차량의 안전 또는 동작 성능에 유리할 것이라고 결정하도록 구성될 수 있다. 일부 실시예들에서, VADS 컴포넌트는, 식별된 차량의 결정된 자율성 레벨에 기초하여, 예를 들어, 식별된 차량이 고도로 자율적이고 자율 차량이 보다 안전하게 또는 개선된 성능으로 동작할 수 있게 할 프리미엄 센서들을 포함하는지 여부에 기초하여, 결정 블록(1206)에서 동작 이점이 있을 것이라고 결정할 수 있다. 일부 실시예들에서, VADS 컴포넌트는 도로 조건, 날씨 조건, 도로의 타입, 도로 상의 차량 교통 레벨, 도로의 속도 제한, 도로를 따른 위험들 또는 장애물들, 조명 조건들 등과 같은 주행 조건들에 기초하여 결정 블록(1206)에서 동작 이점이 있을지 여부를 결정하도록 구성될 수 있다. 일부 실시예들에서, VADS 컴포넌트는, 주행 조건들과 주위 차량들의 ACM들의 조합에 기초하여 협력 주행 관여에 관여하는 것에 대한 동작 이점이 있을 것이라고 결정하도록 구성될 수 있다.
[0156] 자율 차량이 식별된 차량들과 협력 주행 관여에 관여하는 경우, 식별된 차량들 중 어느 것도 자율 차량에 동작 이점을 제공하지 않을 것이라는 결정에 대한 응답으로(즉, 결정 블록(1206) = "아니오"), VADS 컴포넌트는 블록(1012)에서 기존의 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 제어할 수 있다.
[0157] 자율 차량이 협력 주행 관여에 관여하는 경우, 식별된 차량들 중 적어도 하나가 자율 차량에 동작 이점을 제공할 것이라는 결정에 대한 응답으로(즉, 결정 블록(1206) = "예"), VADS 컴포넌트는 블록(1208)에서 식별된 차량들 중 적어도 하나와의 협력 주행 관여를 개시할 수 있다. 예를 들어, VADS 컴포넌트는, 자율 차량이 결정된 지속기간 동안 식별된 차량을 따르도록(또는 그렇지 않으면 식별된 차량의 센서들을 레버리지하도록) 블록(1208)에서 주행 파라미터들을 설정할 수 있다. 블록(1012)에서, VADS 컴포넌트는 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 제어 또는 조정할 수 있다.
[0158] 방법(1200)의 동작들은 자율 차량의 동작들을 제어하기 위해 연속적으로 또는 반복적으로 수행될 수 있다. 방법(1200)의 동작들은 동시에, 임의의 순서로, 그리고/또는 도 4 내지 도 11, 도 13 및 도 14를 참조하여 논의된 동작들을 포함하여, 애플리케이션에서 논의된 동작들 중 임의의 것 또는 전부와 함께 수행될 수 있다.
[0159] 도 13은 다른 실시예에 따른, 자율 차량이 협력 주행 관여에 관여하는 경우, 식별된 차량들 중 임의의 차량이 자율 차량에 동작 이점을 제공할지 여부를 결정하는 방법(1300)을 예시한다. 도 1a 내지 도 13을 참조하면, 방법(1300)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(1300)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0160] 블록(1302)에서, VADS 컴포넌트는 자율 차량의 임계 거리 내에 있는 것으로 식별된 차량과의 V2V 통신 링크들을 확립하기 위해 다양한 동작들을 수행할 수 있다.
[0161] 블록(1304)에서, VADS 컴포넌트는 식별된 차량의 목적지 또는 계획된 이동 루트를 결정하기 위해 V2V 통신을 사용할 수 있다. 예를 들어, VADS 컴포넌트는 각각의 차량이 자신의 목적지 또는 유사한 정보로 응답하기 위한 요청을 V2V 통신들을 통해 다른 차량들에 송신할 수 있다.
[0162] 블록(1306)에서, VADS 컴포넌트는 자율 차량의 목적지와 일치하는 루트를 따라 차량이 이동할 지속기간을 결정할 수 있다. 일부 실시예들에서, 이는, 자율 차량 및 다른 차량이 동일한 속도로 동일한 도로를 이동할 또는 이동할 수 있는 거리를 결정하기 위해 자신의 차량 이동 계획들과 조합하여 맵 데이터를 사용함으로써 달성될 수 있다. 이 동작의 일부로서, VADS 컴포넌트는 임계 시간양보다 더 많이 도달을 지연시키지 않을 경로 또는 루트를 따라 다른 차량을 따르도록 자신의 이동 계획을 변경하는 것을 평가할 수 있다.
[0163] 결정 블록(1308)에서, VADS 컴포넌트는, 식별된 차량이 적어도 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 이동할지 여부를 결정할 수 있다. 임계 시간 기간은 협력 주행 관여로부터 순 이익을 실현하기에 충분한 지속기간 또는 거리일 수 있다. 임계 시간 기간은 관여 타입에 기초하여 변할 수 있다. 예를 들어, 협력 주행 관여가 협력 차량들 사이에서 센서 데이터의 공유만을 수반할 경우, 차량 움직임들 및 조정 정도에 대한 영향이 최소일 수 있기 때문에 임계 시간 기간은 1분 이하일 수 있다. 다른 예로서, 협력 주행 관여가 협력 차량들 사이에서 조밀하게 패킹된 캐러밴을 형성하는 것을 수반하는 경우, 그러한 캐러밴을 형성하는 것은 달성하기에 수 분이 걸릴 수 있는 차량들 사이에서 상당한 기동을 수반하기 때문에, 임계 시간 기간은 30분 또는 수 시간의 문제일 수 있다.
[0164] 식별된 차량이 적어도 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 주행하지 않을 것이라고 결정하는 것에 대한 응답으로(즉, 결정 블록(1308) = "아니오"), VADS 컴포넌트는 블록(1012)에서 기존의 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 계속 제어할 수 있다.
[0165] 식별된 차량이 적어도 임계 시간 기간 동안 자율 차량과 동일한 또는 유사한 방향으로 주행할 것이라고 결정하는 것에 대한 응답으로(즉, 결정 블록(1308) = "예"), VADS 컴포넌트는 설명된 바와 같이 방법(1230)의 블록(1208)의 동작들을 수행할 수 있다. 예를 들어, 블록(1208)에서, VADS 컴포넌트는, 자율 차량이 협력 주행 관여에 관여하는 경우, 식별된 차량이 자율 차량에 동작 이점을 제공할 것이라고 결정하고, 협력 주행 관여를 개시할 수 있다.
[0166] 블록(1210)에서, VADS 컴포넌트는 설명된 바와 같이 방법(1230)의 유사하게 넘버링된 블록의 동작들을 수행할 수 있다. 예를 들어, 블록(1210)에서, VADS 컴포넌트는 협력 주행 관여에 기초하여 자율 차량의 주행 파라미터들을 조정할 수 있다. 예를 들어, VADS 컴포넌트는, 자율 차량이 결정된 지속기간 동안 식별된 차량을 따르도록(또는 그렇지 않으면 식별된 차량의 센서들을 레버리지하도록) 블록(1210)에서 주행 파라미터들을 설정할 수 있다. 블록(1012)에서, VADS 컴포넌트는 주행 파라미터들에 기초하여 자율 차량의 거동 또는 동작들을 제어 또는 조정할 수 있다.
[0167] 방법(1300)의 동작들은 자율 차량의 동작들을 제어하기 위해 연속적으로 또는 반복적으로 수행될 수 있다. 방법(1300)의 동작들은 동시에, 임의의 순서로, 그리고/또는 도 4 내지 도 12 및 도 14를 참조하여 논의된 동작들을 포함하여, 애플리케이션에서 논의된 동작들 중 임의의 것 또는 전부와 함께 수행될 수 있다.
[0168] 도 14는 다른 실시예에 따른, 자율 차량이 협력 주행 관여에 관여하는 경우, 식별된 차량들 중 임의의 차량이 자율 차량에 동작 이점을 제공할지 여부를 결정하는 방법(1400)을 예시한다. 도 1a 내지 도 14를 참조하면, 방법(1400)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(1400)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다.
[0169] 블록들(1302 및 1304)에서, VADS 컴포넌트는 설명된 바와 같이 방법(1300)의 유사하게 넘버링된 블록들의 동작들을 수행할 수 있다. 예를 들어, 블록(1302)에서, VADS 컴포넌트는 자율 차량의 임계 거리 내에 있는 것으로 식별된 차량과의 V2V 통신 링크들을 확립하기 위해 다양한 동작들을 수행할 수 있고, 블록(1304)에서, VADS 컴포넌트는 식별된 차량의 목적지 또는 계획된 이동 루트를 결정하기 위해 V2V 통신을 사용할 수 있다.
[0170] 결정 블록(1402)에서, VADS 컴포넌트는, 식별된 차량 내의 센서가 자율 차량에 현재 소유되지 않은 센서와 같은 자율 차량의 센서 능력보다 더 우수한 센서 능력을 자율 차량에 제공할 수 있는지 여부를 결정할 수 있다.
[0171] 식별된 차량 내의 센서가 자율 차량의 센서 능력보다 더 우수한 센서 능력을 자율 차량에 제공할 수 있다는 결정에 대한 응답으로(즉, 결정 블록(1402) = "예"), VADS 컴포넌트는 식별된 차량에서의 센서 능력이 결정 블록(1404)에서 자율 차량의 안전 또는 동작 성능에 유리한지 여부를 결정할 수 있다.
[0172] 식별된 차량에서의 센서 능력이 자율 차량의 안전 또는 동작 성능에 유리하다는 결정에 대한 응답으로(즉, 결정 블록(1404) = "예"), VADS 컴포넌트는, 자율 차량이 협력 주행 관여에 관여하는 경우, 식별된 차량이 자율 차량에 동작 이점을 제공할 것이라고 결정하고, 응답으로, 설명된 바와 같이 블록들(1208, 1210 및 102)의 동작들을 수행할 수 있다.
[0173] 식별된 차량 내의 센서들 중 어느 것도 자율 차량의 센서 능력들보다 더 우수하지 않거나(즉, 결정 블록(1402) = "아니오") 또는 센서 능력이 자율 차량의 안전 또는 동작 성능에 유리하지 않다고 결정한 것에 대한 응답으로(즉, 결정 블록(1404) = "아니오"), VADS 컴포넌트는 설명된 바와 같이 방법(1000)의 블록(101)의 동작들을 수행할 수 있다. 예를 들어, 블록(1012)에서, VADS 컴포넌트는 기존의 주행 파라미터들(2)에 기초하여 자율 차량의 거동 또는 동작들을 계속 제어할 수 있다.
[0174] 방법(1400)의 동작들은 자율 차량의 동작들을 제어하기 위해 연속적으로 또는 반복적으로 수행될 수 있다. 방법(1400)의 동작들은 동시에, 임의의 순서로, 그리고/또는 도 4 내지 도 13을 참조하여 논의된 동작들을 포함하여, 애플리케이션에서 논의된 동작들 중 임의의 것 또는 전부와 함께 수행될 수 있다.
[0175] 도 15는 일부 실시예들에 따라 인근 차량에 대한 ACM에 대한 값들을 결정하는 방법(1500)을 예시한다. 도 1a 내지 도 15를 참조하면, 방법(1500)은 자율 차량에서 VADS의 전부 또는 부분들을 포함하거나 구현하는 제어 유닛 또는 프로세서(예를 들어, 제어 유닛(140), 프로세서들(164, 303, 304, 306, 307, 308, 317), 프로세싱 디바이스 SOC(300) 등)에 의해 수행될 수 있다. 참조의 용이함을 위해 그리고 다양한 실시예들에서 방법을 구현할 수 있는 모든 프로세서들을 포함하기 위해, 방법(1500)의 동작들을 수행하는 디바이스는 다음의 설명에서 "VADS 컴포넌트"로 지칭된다. 추가로, 방법(1500)의 동작들 중 일부 또는 전부는 설명된 바와 같이 방법(800)의 블록(802), 방법들(1000 및 1200)의 블록(1004) 및/또는 방법(1100)의 블록(1104) 중 임의의 것의 동작들의 일부로서 수행될 수 있다.
[0176] 개요에서, 자율 차량의 VADS 컴포넌트는 인근 차량의 주행 거동을 관찰하고, 인근 차량의 컴퓨팅 또는 센서 능력을 결정하고, 그리고/또는 인근 차량의 등급 또는 인증들에 관한 정보를 C-V2X 통신들을 통해 수신함으로써 그 차량의 자율성 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 인근 차량에 대한 ACM에 대한 값들을 결정할 수 있다.
[0177] 더 구체적으로, 블록(1502)에서, VADS 컴포넌트는 다양한 관찰가능한 이벤트들에 대한 응답으로 인근 차량의 움직임들 및 주행 거동들을 관찰할 수 있다. 이는, 관찰된 이벤트들(예를 들어, 브레이크 등들, 교통 흐름 또는 속도의 변화들, 교통 신호들 등)에 대한 차량 움직임들 및 응답들을 식별하기 위해 이미징, LIDAR 및 다른 센서 데이터를 프로세싱하는 것을 수반할 수 있다. 액션들의 경향들 및 빈도들(예를 들어, 단위 시간당 속도 조정들의 급격한 스티어링 또는 주행 에러들의 수)가 분석될 수 있도록 이러한 관찰들은 시간이 지남에 따라 계속될 수 있다.
[0178] 블록(1504)에서, VADS 컴포넌트는 인근 차량의 관찰된 움직임들 및 주행 거동들을 특징짓는 하나 이상의 값들을 결정하기 위해 관찰들을 사용할 수 있다. ACM 값들에서 요약되거나 정량화될 수 있는 주행 거동들의 예들은, 차량 동작들의 일관성, 규칙성 또는 균일성; 미래의 차량 동작들에 대한 예측가능성의 레벨; 운전자 공격성의 레벨; 인근 차량이 주행 차선의 중심을 추적하는 정도; 단위 시간당 주행 에러들의 수; 지역 도로 규칙들의 준수; 안전 규칙들의 준수; 차량의 반응 시간; 및/또는 관찰가능한 이벤트들에 대한 차량의 반응성 중 하나 이상을 포함한다.
[0179] 블록(1506)에서, VADS 컴포넌트는 인근 차량과의, 또는 일부 실시예들에서, 인근 차량에 관한 정보를 저장하는 원격 서버와의 V2V 통신 링크들을 확립하고, 블록(1508)에서 그 차량 상에서 동작하는 센서들에 관한 인근 차량에 대한 또는 그로부터의 정보를 수신할 수 있다. 인근 차량의 동작 센서에 관한 정보의 유형은 예를 들어, 센서 타입, 하나 이상의 센서들의 제조사, 모델 또는 제조자, 인근 차량에서 동작하는 자율 주행 센서들의 수, 센서 정확도, 및/또는 하나 이상의 센서들의 정밀도를 포함할 수 있다. 그러한 정보는 인근 차량의 센서들의 능력들, 약점들 및 신뢰성을 드러낼 수 있다. 이러한 정보는, 예를 들어, V2V 통신 링크를 통해 송신되는 질의 모두에 대한 응답으로, 인근 차량으로부터 직접 수신될 수 있다. 대안적으로 또는 추가적으로, 그러한 정보는 무선 통신들을 통해 인터넷을 통해 액세스되는 원격 서버와 같은 원격 소스로부터 수신될 수 있다.
[0180] 블록(1510)에서, VADS 컴포넌트는 인근 차량 상에서 동작하는 센서를 특징짓는 하나 이상의 값들을 결정할 수 있다. 예를 들어, VADS 컴포넌트는 센서 타입, 센서 제조사 또는 모델, 센서 제조자, 인근 차량에서 동작하는 자율 주행 센서들의 수, 센서 정확도, 및/또는 하나 이상의 센서들의 정밀도 중 하나 이상을 표현하는 ACM 값들을 결정할 수 있다.
[0181] 블록(1512)에서, VADS 컴포넌트는 그 차량의 등급들, 동작 소프트웨어 및 인증된 능력들에 관한 인근 차량에 대한 또는 그로부터의 정보를 수신할 수 있다. 이러한 정보는, 예를 들어, V2V 통신 링크를 통해 송신되는 질의 모두에 대한 응답으로, 인근 차량으로부터 직접 수신될 수 있다. 대안적으로 또는 추가적으로, 그러한 정보는 무선 통신들을 통해 인터넷을 통해 액세스되는 원격 서버와 같은 원격 소스로부터 수신될 수 있다. 인근 차량에 관한 등급들 및 인증된 정보의 예들은, KPI(key performance indicator); 표면 성능 등급; 날씨 성능 등급; 차량 능력; 차량 특징; 지원되는 알고리즘; 및/또는 예측 및 제어 전략을 포함한다.
[0182] 블록(1514)에서, VADS 컴포넌트는 수신된 등급들 및/또는 인증서 정보에 기초하여 인근 차량의 자율성 또는 성능 능력을 특징짓는 하나 이상의 값들을 결정할 수 있다. 결정된 값들은, KPI(key performance indicator); 표면 성능 등급; 날씨 성능 등급; 차량 능력; 차량 특징; 지원되는 알고리즘; 및/또는 예측 및 제어 전략 중 하나 이상을 표현할 수 있다.
[0183] 일부 실시예들에서, 방법(1500)의 동작들 중 일부만이 수행될 수 있다. 예를 들어, VADS 컴포넌트는 관찰된 주행 거동들에만 기초하여 ACM 값들을 결정할 수 있다(즉, 블록들(1502 및 1504)에서의 동작들만을 수행함). 다른 예로서, VADS 컴포넌트는 인근 차량의 등급들 및/또는 인증들에 관한 정보와 결합하여 관찰된 주행 거동들에 기초하여 ACM 값들을 결정할 수 있다(즉, 블록들(1502-1506 및 1512-1514)에서의 동작들만을 수행함). 추가로, 방법(1500)은 각각의 식별된 인근 차량에 대해 수행될 수 있고, 이를 테면, 주행 거동들의 관찰들에 기초하여 ACM 값들을 업데이트하기 위해 연속적으로 또는 주기적으로 수행될 수 있다.
[0184] 전술한 방법 설명들 및 프로세스 흐름 도면들은 단지 예시적인 예들로서 제공되며, 다양한 양상들의 블록들이 제시된 순서로 수행되어야 함을 요구 또는 의미하도록 의도되지 않는다. 당업자에 의해 인식될 바와 같이, 전술한 양상들의 블록들의 순서는 임의의 순서로 수행될 수 있다. "그 후, "그 다음", "다음으로" 등과 같은 단어들은 블록들의 순서를 제한하는 것으로 의도되지 않으며; 이러한 단어들은 단지 방법들의 설명을 통해 독자를 안내하기 위해 사용된다. 추가로, 예를 들어, 단수형 표현을 사용하여 엘리먼트들을 단수로 청구하기 위한 임의의 참조는 엘리먼트를 단수로 제한하는 것으로 해석하지 않아야 한다.
[0185] 본원에 개시된 양상들과 관련하여 설명되는 다양한 예시적인 로직 블록들, 모듈들, 회로들, 및 알고리즘 블록들은 전자 하드웨어, 컴퓨터 소프트웨어, 또는 이 둘의 조합으로서 구현될 수 있다. 하드웨어와 소프트웨어의 이러한 상호 호환성을 명확하게 설명하기 위해, 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들, 및 블록들이 일반적으로 이들의 기능적 관점에서 앞서 설명되었다. 이러한 기능이 하드웨어로 구현되는지, 또는 소프트웨어로 구현되는지 여부는 특정 애플리케이션 및 전체 시스템에 대해 부과된 설계 제한들에 의존한다. 당업자들은 설명된 기능을 각각의 특정 애플리케이션에 대해 다양한 방식들로 구현할 수 있지만, 이러한 구현 결정들이 본 발명의 범주를 벗어나는 것으로 해석되어서는 안 된다.
[0186] 본 명세서에서 개시된 양상들과 관련하여 설명되는 다양한 예시적인 로직들, 로직 블록들, 모듈들, 및 회로들을 구현하기 위해 사용되는 하드웨어는 범용 프로세서, 디지털 신호 프로세서(DSP), 주문형 집적회로(ASIC), 필드 프로그래머블 게이트 어레이(FPGA) 또는 다른 프로그래머블 논리 디바이스, 이산 게이트 또는 트랜지스터 로직, 이산 하드웨어 컴포넌트들 또는 본 명세서에 설명된 기능들을 수행하도록 설계된 이들의 임의의 조합으로 구현 또는 수행될 수 있다. 범용 프로세서는 마이크로프로세서일 수도 있지만, 대안으로 프로세서는 임의의 종래 프로세서, 제어기, 마이크로제어기 또는 상태 머신일 수도 있다. 프로세서는 또한 컴퓨팅 디바이스들의 조합, 예를 들어 DSP 및 마이크로프로세서의 조합, 복수의 마이크로프로세서들, DSP 코어와 결합된 하나 이상의 마이크로프로세서들, 또는 임의의 다른 이러한 구성으로서 구현될 수 있다. 대안적으로, 일부 블록들 또는 방법들은 주어진 기능에 특정된 회로에 의해 수행될 수 있다.
[0187] 하나 이상의 예시적인 양상들에서, 설명된 기능들은 하드웨어, 소프트웨어, 펌웨어 또는 이들의 임의의 조합으로 구현될 수 있다. 소프트웨어로 구현되면, 기능들은 하나 이상의 명령들 또는 코드로서 비일시적 컴퓨터 판독가능 저장 매체 또는 비일시적 프로세서 판독가능 저장 매체 상에 저장될 수 있다. 본원에 개시된 방법 또는 알고리즘의 단계들은 비일시적 컴퓨터 판독가능 또는 프로세서 판독가능 저장 매체 상에 상주할 수 있는 프로세서 실행가능 소프트웨어 모듈로 구현될 수 있다. 비일시적 컴퓨터 판독가능 또는 프로세서 판독가능 저장 매체는 컴퓨터 또는 프로세서에 의해 액세스될 수 있는 임의의 저장 매체일 수 있다. 제한이 아닌 예로써, 이러한 비일시적 컴퓨터 판독가능 또는 프로세서 판독가능 매체는 RAM, ROM, EEPROM, FLASH 메모리, CD-ROM, 또는 다른 광학 디스크 저장소, 자기 디스크 저장소 또는 다른 자기 저장 디바이스들, 또는 명령들 또는 데이터 구조들의 형태로 요구되는 프로그램 코드를 저장하기 위해 사용될 수 있으며 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 본 명세서에서 사용된 것과 같은 디스크(disk 및 disc)는 콤팩트 디스크(CD: compact disc), 레이저 디스크(laser disc), 광 디스크(optical disc), 디지털 다기능 디스크(DVD: digital versatile disc), 플로피 디스크(floppy disk) 및 블루레이 디스크(disc)를 포함하며, 여기서 디스크(disk)들은 보통 데이터를 자기적으로 재생하는 한편, 디스크(disc)들은 데이터를 레이저들에 의해 광학적으로 재생한다. 상기의 것들의 결합들이 또한 비일시적 컴퓨터 판독가능 및 프로세서 판독가능 매체의 범위 내에 포함된다. 추가적으로, 알고리즘 또는 방법의 동작들은, 컴퓨터 프로그램 물건에 통합될 수 있는 비일시적 프로세서 판독가능 매체 및/또는 컴퓨터 판독가능 매체 상에 명령들 및/또는 코드들 중 하나 또는 이들의 임의의 조합 또는 이들의 세트로서 상주할 수 있다.
[0188] 개시된 양상들의 선행 설명은 임의의 당업자가 본 발명을 사용하거나 실시할 수 있게 하도록 제공된다. 이러한 양상들에 대한 다양한 수정들이 해당 기술분야에서 통상의 지식을 가진 자들에게 쉽게 명백할 것이며, 본 명세서에 정의된 일반 원리들은 본 발명의 사상 또는 범위를 벗어나지 않으면서 다른 양상들에 적용될 수 있다. 따라서, 본 발명은 본원에 제시된 양상들로 한정되는 것으로 의도되는 것이 아니라, 하기 청구항들 및 본원에 개시된 원리들 및 신규한 특징들에 부합하는 가장 넓은 범위에 따르는 것이다.

Claims (30)

  1. 자율 차량을 제어하는 방법으로서,
    상기 자율 차량의 프로세서를 통해, 상기 자율 차량의 임계 거리 내에 있는 차량들을 식별하는 단계;
    상기 식별된 차량들 각각의 자율 능력 메트릭을 결정하는 단계; 및
    상기 식별된 차량들 각각의 상기 결정된 자율 능력 메트릭에 기초하여 상기 자율 차량의 주행 파라미터를 조정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  2. 제1 항에 있어서,
    상기 식별된 차량들 각각의 상기 자율 능력 메트릭을 결정하는 단계는 각각의 식별된 차량의 자율성의 레벨을 결정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  3. 제1 항에 있어서,
    각각의 식별된 차량의 상기 결정된 자율 능력 메트릭에 기초하여 상기 자율 차량의 주행 파라미터를 조정하는 단계는,
    상기 자율 차량과 상기 식별된 차량들 중 적어도 하나의 차량 사이에 유지될 최소 분리 거리를 조정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  4. 제3 항에 있어서,
    상기 자율 차량과 상기 식별된 차량들 중 상기 적어도 하나의 차량 사이에 유지될 상기 최소 분리 거리를 조정하는 단계는, 상기 적어도 하나의 차량의 상기 자율 능력 메트릭 및 상기 적어도 하나의 차량의 거동 모델에 기초하여 상기 최소 분리 거리를 조정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  5. 제1 항에 있어서,
    각각의 식별된 차량의 상기 결정된 자율 능력 메트릭에 기초하여 상기 자율 차량의 주행 파라미터를 조정하는 단계는,
    상기 자율 차량과 상기 식별된 차량들 중 적어도 하나의 차량 사이에 유지될 최소 추종 거리를 조정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  6. 제5 항에 있어서,
    상기 자율 차량과 상기 식별된 차량들 중 상기 적어도 하나의 차량 사이에 유지될 상기 최소 추종 거리를 조정하는 단계는, 상기 적어도 하나의 차량의 상기 자율 능력 메트릭 및 상기 적어도 하나의 차량의 거동 모델에 기초하여 상기 최소 추종 거리를 조정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  7. 제1 항에 있어서,
    상기 식별된 차량들 각각의 상기 결정된 자율 능력 메트릭에 기초하여 상기 자율 차량의 주행 파라미터를 조정하는 단계는,
    상기 자율 차량의 속도를 조정하는 단계; 또는
    상기 자율 차량이 속도를 변경할 가속 레이트를 조정하는 단계
    중 하나 이상을 포함하는, 자율 차량을 제어하는 방법.
  8. 제7 항에 있어서,
    상기 자율 차량의 속도 또는 상기 자율 차량이 속도를 변경할 상기 가속 레이트를 조정하는 단계는, 상기 식별된 차량들 중 적어도 하나의 차량의 상기 자율 능력 메트릭 및 상기 적어도 하나의 차량의 거동 모델에 기초하여 상기 속도 또는 상기 가속 레이트를 조정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  9. 제1 항에 있어서,
    상기 식별된 차량들 각각의 상기 자율 능력 메트릭을 결정하는 단계는 상기 식별된 차량들 중 적어도 하나의 차량으로부터 상기 자율 능력 메트릭을 수신하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  10. 제1 항에 있어서,
    상기 자율 차량의 임계 거리 내에 있는 차량들을 식별하는 단계는,
    현재 조건들에 적절한 임계 거리를 동적으로 결정하는 단계; 및
    상기 동적으로 결정된 임계 거리 내에 있는 차량들을 식별하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  11. 제1 항에 있어서,
    상기 식별된 차량들 각각의 상기 자율 능력 메트릭을 결정하는 단계는 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들을 결정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  12. 제11 항에 있어서,
    상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들을 결정하는 단계는,
    상기 인근 차량의 주행 거동을 관찰하는 것;
    상기 인근 차량의 컴퓨팅 또는 센서 능력을 결정하는 것; 또는
    C-V2X 통신들을 통해 상기 인근 차량의 등급 또는 인증들에 관한 정보를 수신하는 것
    중 하나 이상에 의해 상기 값들을 결정하는 단계를 포함하는, 자율 차량을 제어하는 방법.
  13. 제12 항에 있어서,
    상기 관찰된 주행 거동에 기초하여 상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들 중 적어도 하나를 결정하는 단계를 더 포함하고, 상기 결정된 적어도 하나의 값은,
    차량 동작들의 일관성, 규칙성 또는 균일성;
    미래의 차량 동작들에 대한 예측가능성의 레벨;
    운전자 공격성의 레벨;
    상기 인근 차량이 주행 차선의 중심을 추적하는 정도;
    단위 시간당 주행 에러들의 수;
    지역 도로 규칙들의 준수;
    안전 규칙들의 준수;
    상기 자율 차량의 반응 시간; 또는
    관찰가능한 이벤트들에 대한 상기 자율 차량의 반응성
    중 하나 이상을 표현하는, 자율 차량을 제어하는 방법.
  14. 제11 항에 있어서,
    상기 결정된 센서 능력에 기초하여 상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들 중 적어도 하나를 결정하는 단계를 더 포함하고, 상기 결정된 적어도 하나의 값은,
    센서 타입;
    센서 제조사 또는 모델;
    센서 제조자;
    상기 인근 차량에서 동작하는 자율 주행 센서들의 수;
    센서 정확도; 또는
    하나 이상의 센서들의 정밀도
    중 하나를 표현하는, 자율 차량을 제어하는 방법.
  15. 제11 항에 있어서,
    C-V2X 통신들을 통해 수신된 정보에 기초하여 상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들 중 하나 이상을 결정하는 단계를 더 포함하고, 상기 하나 이상의 값들은,
    KPI(key performance indicator);
    표면 성능 등급;
    날씨 성능 등급;
    차량 능력;
    차량 특징;
    지원되는 알고리즘; 또는
    예측 및 제어 전략
    중 하나 이상을 표현하는, 자율 차량을 제어하는 방법.
  16. 차량을 위한 프로세서로서,
    상기 프로세서는,
    상기 차량의 임계 거리 내에 있는 차량들을 식별하고;
    상기 식별된 차량들 각각의 자율 능력 메트릭을 결정하고;
    상기 식별된 차량들 각각의 상기 결정된 자율 능력 메트릭에 기초하여 주행 파라미터를 조정하기 위한 프로세서 실행가능 명령들로 구성되는, 차량을 위한 프로세서.
  17. 제16 항에 있어서,
    상기 프로세서는, 각각의 식별된 차량의 자율성의 레벨을 결정함으로써 상기 식별된 차량들 각각의 상기 자율 능력 메트릭을 결정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  18. 제16 항에 있어서,
    상기 프로세서는,
    상기 차량과 상기 식별된 차량들 중 적어도 하나의 차량 사이에 유지될 최소 분리 거리;
    상기 차량과 상기 식별된 차량들 중 상기 적어도 하나의 차량 사이에 유지될 최소 추종 거리;
    상기 차량의 속도; 또는
    상기 차량이 속도를 변경할 가속 레이트
    중 적어도 하나를 조정함으로써, 각각의 식별된 차량의 상기 결정된 자율 능력 메트릭에 기초하여, 상기 차량의 상기 주행 파라미터를 조정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  19. 제18 항에 있어서,
    상기 프로세서는,
    상기 적어도 하나의 차량의 상기 자율 능력 메트릭 및 상기 적어도 하나의 차량의 거동 모델에 기초하여 상기 최소 분리 거리를 조정하거나;
    상기 적어도 하나의 차량의 상기 자율 능력 메트릭 및 상기 적어도 하나의 차량의 상기 거동 모델에 기초하여 상기 최소 추종 거리를 조정하거나;
    상기 식별된 차량들 중 상기 적어도 하나의 차량의 상기 자율 능력 메트릭 및 상기 적어도 하나의 차량의 상기 거동 모델에 기초하여 상기 속도를 조정하거나; 또는
    상기 식별된 차량들 중 상기 적어도 하나의 차량의 상기 자율 능력 메트릭 및 상기 적어도 하나의 차량의 상기 거동 모델에 기초하여 상기 가속 레이트를 조정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  20. 제16 항에 있어서,
    상기 프로세서는, 상기 식별된 차량들 중 적어도 하나의 차량으로부터 상기 자율 능력 메트릭을 수신함으로써 상기 식별된 차량들 각각의 상기 자율 능력 메트릭을 결정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  21. 제16 항에 있어서,
    상기 프로세서는,
    현재 조건들에 적절한 임계 거리를 동적으로 결정하고;
    상기 동적으로 결정된 임계 거리 내에 있는 차량들을 식별함으로써,
    상기 차량의 상기 임계 거리 내에 있는 차량들을 식별하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  22. 제16 항에 있어서,
    상기 프로세서는, 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들을 결정함으로써 상기 식별된 차량들 각각의 상기 자율 능력 메트릭을 결정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  23. 제22 항에 있어서,
    상기 프로세서는,
    상기 인근 차량의 주행 거동을 관찰하는 것;
    상기 인근 차량의 컴퓨팅 또는 센서 능력을 결정하는 것; 또는
    C-V2X 통신들을 통해 상기 인근 차량의 등급 또는 인증들에 관한 정보를 수신하는 것
    중 하나 이상에 의해 상기 값들을 결정함으로써, 상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들을 결정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  24. 제23 항에 있어서,
    상기 프로세서는,
    차량 동작들의 일관성, 규칙성 또는 균일성;
    미래의 차량 동작들에 대한 예측가능성의 레벨;
    운전자 공격성의 레벨;
    상기 인근 차량이 주행 차선의 중심을 추적하는 정도;
    단위 시간당 주행 에러들의 수;
    지역 도로 규칙들의 준수;
    안전 규칙들의 준수;
    상기 차량의 반응 시간; 또는
    관찰가능한 이벤트들에 대한 상기 차량의 반응성
    중 하나 이상을 표현하는 값을 결정함으로써, 상기 관찰된 주행 거동에 기초하여 상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들을 결정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  25. 제23 항에 있어서,
    상기 프로세서는,
    센서 타입;
    센서 제조사 또는 모델;
    센서 제조자;
    상기 인근 차량에서 동작하는 자율 주행 센서들의 수;
    센서 정확도; 또는
    하나 이상의 센서들의 정밀도
    중 하나 이상을 표현하는 값을 결정함으로써, 상기 결정된 센서 능력에 기초하여 상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들을 결정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  26. 제23 항에 있어서,
    상기 프로세서는,
    KPI(key performance indicator);
    표면 성능 등급;
    날씨 성능 등급;
    차량 능력;
    차량 특징;
    지원되는 알고리즘; 또는
    예측 및 제어 전략
    중 하나 이상을 표현하는 값을 결정함으로써, C-V2X 통신들을 통해 수신된 정보에 기초하여 상기 인근 차량의 상기 자율성의 레벨 또는 상기 성능 능력을 집합적으로 식별 또는 예측하는 상기 값들을 결정하기 위한 프로세서 실행가능 명령들로 추가로 구성되는, 차량을 위한 프로세서.
  27. 프로세서 실행가능 명령들이 저장된 비일시적 프로세서 판독가능 저장 매체로서,
    상기 프로세서 실행가능 명령들은 자율 차량의 프로세서로 하여금,
    상기 자율 차량의 임계 거리 내에 있는 차량들을 식별하는 것;
    상기 식별된 차량들 각각의 자율 능력 메트릭을 결정하는 것; 및
    상기 식별된 차량들 각각의 상기 결정된 자율 능력 메트릭에 기초하여 상기 자율 차량의 주행 파라미터를 조정하는 것
    을 포함하는 동작들을 수행하게 하도록 구성되는, 비일시적 프로세서 판독가능 저장 매체.
  28. 차량으로서,
    임계 거리 내에 있는 차량들을 식별하기 위한 수단;
    상기 식별된 차량들 각각의 자율 능력 메트릭을 결정하기 위한 수단; 및
    상기 식별된 차량들 각각의 상기 결정된 자율 능력 메트릭에 기초하여 상기 차량의 주행 파라미터를 조정하기 위한 수단을 포함하는, 차량.
  29. 제28 항에 있어서,
    상기 식별된 차량들 각각의 자율 능력 메트릭을 결정하기 위한 수단은,
    인근 차량의 주행 거동을 관찰하는 것;
    상기 인근 차량의 컴퓨팅 또는 센서 능력을 결정하는 것; 또는
    C-V2X 통신들을 통해 상기 인근 차량의 등급 또는 인증들에 관한 정보를 수신하는 것
    중 하나 이상에 기초하여 상기 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들을 결정하기 위한 수단을 포함하는, 차량.
  30. 제28 항에 있어서,
    상기 식별된 차량들 각각의 자율 능력 메트릭을 결정하기 위한 수단은, C-V2X 통신들을 통해 수신된 정보에 기초하여 인근 차량의 자율성의 레벨 또는 성능 능력을 집합적으로 식별 또는 예측하는 값들 중 하나 이상을 결정하기 위한 수단을 포함하고, 상기 하나 이상의 값들은,
    KPI(key performance indicator);
    표면 성능 등급;
    날씨 성능 등급;
    차량 능력;
    차량 특징;
    지원되는 알고리즘; 또는
    예측 및 제어 전략
    중 하나 이상을 표현하는, 차량.
KR1020217019364A 2019-01-02 2019-12-27 다양한 레벨들의 자율성을 갖는 차량들 사이의 상호작용들을 관리하기 위한 방법들 및 시스템들 KR20210108381A (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US201962787569P true 2019-01-02 2019-01-02
US201962787560P true 2019-01-02 2019-01-02
US62/787,569 2019-01-02
US62/787,560 2019-01-02
US16/727,179 2019-12-26
US16/727,179 US20200207360A1 (en) 2019-01-02 2019-12-26 Methods And Systems For Managing Interactions Between Vehicles With Varying Levels Of Autonomy
PCT/US2019/068671 WO2020142356A1 (en) 2019-01-02 2019-12-27 Methods and systems for managing interactions between vehicles with varying levels of autonomy

Publications (1)

Publication Number Publication Date
KR20210108381A true KR20210108381A (ko) 2021-09-02

Family

ID=71121664

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217019369A KR20210108382A (ko) 2019-01-02 2019-12-27 다양한 레벨들의 자율성을 갖는 차량들과의 협력 주행 관여들을 확립하기 위한 방법들 및 시스템들
KR1020217019364A KR20210108381A (ko) 2019-01-02 2019-12-27 다양한 레벨들의 자율성을 갖는 차량들 사이의 상호작용들을 관리하기 위한 방법들 및 시스템들

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020217019369A KR20210108382A (ko) 2019-01-02 2019-12-27 다양한 레벨들의 자율성을 갖는 차량들과의 협력 주행 관여들을 확립하기 위한 방법들 및 시스템들

Country Status (6)

Country Link
US (2) US20200207360A1 (ko)
EP (2) EP3906541A1 (ko)
KR (2) KR20210108382A (ko)
CN (2) CN113366544A (ko)
TW (2) TW202108419A (ko)
WO (2) WO2020142359A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006326B2 (ja) * 2018-02-01 2022-01-24 トヨタ自動車株式会社 自動運転システム
US11011063B2 (en) * 2018-11-16 2021-05-18 Toyota Motor North America, Inc. Distributed data collection and processing among vehicle convoy members
US11214268B2 (en) * 2018-12-28 2022-01-04 Intel Corporation Methods and apparatus for unsupervised multimodal anomaly detection for autonomous vehicles
US20200207360A1 (en) 2019-01-02 2020-07-02 Qualcomm Incorporated Methods And Systems For Managing Interactions Between Vehicles With Varying Levels Of Autonomy
US11157784B2 (en) * 2019-05-08 2021-10-26 GM Global Technology Operations LLC Explainable learning system and methods for autonomous driving
KR20210052621A (ko) * 2019-10-29 2021-05-11 엘지전자 주식회사 자율주행 레벨 결정 장치 및 방법
US10999719B1 (en) * 2019-12-03 2021-05-04 Gm Cruise Holdings Llc Peer-to-peer autonomous vehicle communication
KR20210080116A (ko) * 2019-12-20 2021-06-30 현대자동차주식회사 차량 컨텐츠 공유 서비스를 제공하는 서버 및 컨텐츠 공유 방법
CN111814766B (zh) * 2020-09-01 2020-12-15 中国人民解放军国防科技大学 车辆行为预警方法、装置、计算机设备和存储介质
US20220113137A1 (en) * 2020-10-14 2022-04-14 Aptiv Technologies Limited System and method for determining movement of a vehicle based on information regarding movement of at least one other vehicle
CN113320448A (zh) * 2021-06-01 2021-08-31 智己汽车科技有限公司 一种座椅调节方法、装置及计算机可读存储介质

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352111B2 (en) 2009-04-06 2013-01-08 GM Global Technology Operations LLC Platoon vehicle management
EP2881926B1 (en) 2013-12-04 2021-08-04 Volvo Car Corporation Method and control system for controlling movement of a group of road vehicles
US9164507B2 (en) 2013-12-06 2015-10-20 Elwha Llc Systems and methods for modeling driving behavior of vehicles
US20150170287A1 (en) 2013-12-18 2015-06-18 The Travelers Indemnity Company Insurance applications for autonomous vehicles
US9384666B1 (en) * 2015-02-01 2016-07-05 Thomas Danaher Harvey Methods to operate autonomous vehicles to pilot vehicles in groups or convoys
US10216196B2 (en) * 2015-02-01 2019-02-26 Prosper Technology, Llc Methods to operate autonomous vehicles to pilot vehicles in groups or convoys
US9718471B2 (en) 2015-08-18 2017-08-01 International Business Machines Corporation Automated spatial separation of self-driving vehicles from manually operated vehicles
WO2017147007A1 (en) 2016-02-26 2017-08-31 Pcms Holdings, Inc. Systems and methods for sharing and visualizing vehicle profiles for finding a vehicle to follow
US10239529B2 (en) 2016-03-01 2019-03-26 Ford Global Technologies, Llc Autonomous vehicle operation based on interactive model predictive control
US10025318B2 (en) 2016-08-05 2018-07-17 Qualcomm Incorporated Shape detecting autonomous vehicle
US9940840B1 (en) * 2016-10-06 2018-04-10 X Development Llc Smart platooning of vehicles
US10515390B2 (en) 2016-11-21 2019-12-24 Nio Usa, Inc. Method and system for data optimization
US20180307245A1 (en) 2017-05-31 2018-10-25 Muhammad Zain Khawaja Autonomous Vehicle Corridor
WO2019014372A1 (en) * 2017-07-11 2019-01-17 Peloton Technology, Inc. METHODS, SYSTEMS AND DEVICES FOR FLEXIBLE COMMUNICATIONS, MONITORING AND CIRCULATION IN CONVEYANCE OF INTRA-FLEET VEHICLES, BETWEEN FLEETS AND AD HOC
US10636297B2 (en) * 2017-08-11 2020-04-28 Fujitsu Limited Cooperative autonomous driving for traffic congestion avoidance
CN109902899B (zh) * 2017-12-11 2020-03-10 百度在线网络技术(北京)有限公司 信息生成方法和装置
US10739787B2 (en) * 2018-01-12 2020-08-11 Toyota Motor Engineering & Manufacturing North America, Inc. Responsibilities and agreement acceptance for vehicle platooning
US20190332104A1 (en) * 2018-04-26 2019-10-31 Uber Technologies, Inc. Systems and Methods for Coordinating Movement of Assets within a Transfer Hub
US10755575B2 (en) * 2018-08-30 2020-08-25 Cisco Technology, Inc. Raw sensor data sharing for enhanced fleet-wide environmental awareness and safety
US11017664B2 (en) 2018-09-28 2021-05-25 At&T Mobility Ii Llc Integrated telecommunications roadside unit
US20200207360A1 (en) 2019-01-02 2020-07-02 Qualcomm Incorporated Methods And Systems For Managing Interactions Between Vehicles With Varying Levels Of Autonomy

Also Published As

Publication number Publication date
WO2020142359A1 (en) 2020-07-09
US20200207360A1 (en) 2020-07-02
KR20210108382A (ko) 2021-09-02
EP3906541A1 (en) 2021-11-10
WO2020142356A1 (en) 2020-07-09
CN113286733A (zh) 2021-08-20
CN113366544A (zh) 2021-09-07
US20200207371A1 (en) 2020-07-02
EP3906537A1 (en) 2021-11-10
TW202108419A (zh) 2021-03-01
US11325606B2 (en) 2022-05-10
TW202039286A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
US11325606B2 (en) Methods and systems for establishing cooperative driving engagements with vehicles having varying levels of autonomy
US11231286B2 (en) Dynamic routing for self-driving vehicles
CN110379193B (zh) 自动驾驶车辆的行为规划方法及行为规划装置
JP6726363B2 (ja) 生成されたインターフェースを使用する自律走行車の監視
US11027751B2 (en) Reinforcement and model learning for vehicle operation
US11120688B2 (en) Orientation-adjust actions for autonomous vehicle operational management
US20200189591A1 (en) Steering Command Limiting For Safe Autonomous Automobile Operation
US20210114617A1 (en) Method for Using Lateral Motion to Optimize Trajectories for Autonomous Vehicles
US20200202706A1 (en) Message Broadcasting for Vehicles
CN111833597A (zh) 具有规划控制的交通情形中的自主决策
JP6963158B2 (ja) 集中型共有自律走行車動作管理
WO2021196879A1 (zh) 车辆驾驶行为的识别方法以及识别装置
WO2021253374A1 (en) V2X Message For Platooning
WO2022062825A1 (zh) 车辆的控制方法、装置及车辆
US20210179141A1 (en) System To Achieve Algorithm Safety In Heterogeneous Compute Platform
US20220001892A1 (en) Method and system for dynamically curating autonomous vehicle policies
US20220108604A1 (en) Managing a driving condition anomaly
US20210188297A1 (en) Learning Safety and Human-Centered Constraints in Autonomous Vehicles
WO2021229671A1 (ja) 走行支援装置および走行支援方法
Chen A multi-agent based cooperative control model applied to the management of vehicles-trains
CN113160547A (zh) 一种自动驾驶方法及相关设备
JP2022041923A (ja) 接続されたデータ分析プラットフォームを用いた車両経路指定