KR20210094463A - Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound - Google Patents

Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound Download PDF

Info

Publication number
KR20210094463A
KR20210094463A KR1020210001485A KR20210001485A KR20210094463A KR 20210094463 A KR20210094463 A KR 20210094463A KR 1020210001485 A KR1020210001485 A KR 1020210001485A KR 20210001485 A KR20210001485 A KR 20210001485A KR 20210094463 A KR20210094463 A KR 20210094463A
Authority
KR
South Korea
Prior art keywords
ultra
performance concrete
viscosity
concrete composition
mpa
Prior art date
Application number
KR1020210001485A
Other languages
Korean (ko)
Other versions
KR102310892B1 (en
Inventor
정용
윤섭
최훈국
이현승
나옥빈
정연수
김준형
최지선
Original Assignee
주식회사 삼표산업
현대건설주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR20200007823 priority Critical
Priority to KR1020200007823 priority
Application filed by 주식회사 삼표산업, 현대건설주식회사 filed Critical 주식회사 삼표산업
Publication of KR20210094463A publication Critical patent/KR20210094463A/en
Application granted granted Critical
Publication of KR102310892B1 publication Critical patent/KR102310892B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/10Mortars, concrete or artificial stone characterised by specific physical values for the viscosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Abstract

본 발명은 압축강도 150MPa 이상의 초고강도, 인장강도 5MPa 이상의 고인성을 함께 갖춘 초고성능 콘크리트의 점도를 저감시킬 수 있는 글리콜 에테르계 화합물로 이루어진 물성안정제 및 이를 이용한 저점도 초고성능 콘크리트 조성물에 관한 것이다.
본 발명에서는 글리콜 에테르계 화합물을 물성안정제로 적용하여 초고성능 콘크리트의 높은 점성 문제를 해결하였다. 글리콜 에테르계 화합물은 사용된 결합재 표면에 흡착되어 재료의 표면장력을 저감시켜 궁극적으로 표면을 부드럽게 전환시켜 주는 효과를 발생시켜, 초고성능 콘크리트의 점도를 저감시켜준다.
본 발명은 「일반 콘크리트에 비해 단위 결합재량이 크고, 물-결합재비가 낮아 재령 28일 압축강도가 150MPa 이상으로 발현되는 초고강도 콘크리트 조성물을 개질한 초고성능 콘크리트 조성물로서, 감수제가 결합재 대비 1.5~3.5wt% 첨가되고, 중합도(degree of polymerization) 100~200의 글리콜 에테르계 화합물로 이루어진 물성안정제가 상기 감수제 대비 0.1~1.0wt% 첨가되어, 굳지 않은 상태의 점도 60,000cps 이하 및 재령 28일 압축강도 150MPa 이상의 물성이 함께 충족되는 것을 특징으로 하는 저점성 초고성능 콘크리트 조성물」을 제공한다.
The present invention relates to a physical property stabilizer made of a glycol ether-based compound capable of reducing the viscosity of ultra-high-performance concrete having both high strength with a compressive strength of 150 MPa or more and high toughness with a tensile strength of 5 MPa or more, and a low-viscosity ultra-high-performance concrete composition using the same.
In the present invention, the problem of high viscosity of ultra-high-performance concrete was solved by applying a glycol ether-based compound as a physical property stabilizer. The glycol ether-based compound is adsorbed on the surface of the used binder to reduce the surface tension of the material and ultimately produce the effect of smoothing the surface, thereby reducing the viscosity of ultra-high-performance concrete.
The present invention is an ultra-high-performance concrete composition modified from an ultra-high-strength concrete composition in which the amount of unit binder is larger than that of general concrete and the water-binder ratio is low, and the 28-day compressive strength is expressed as 150 MPa or more. The water reducing agent is 1.5 to 3.5 compared to the binder Added by wt%, a physical property stabilizer composed of a glycol ether-based compound having a degree of polymerization of 100 to 200 is added in an amount of 0.1 to 1.0 wt% compared to the water reducing agent. It provides a low-viscosity ultra-high-performance concrete composition" characterized in that the above physical properties are satisfied together.

Description

글리콜 에테르계 화합물로 이루어진 물성안정제를 이용한 저점성 초고성능 콘크리트 조성물{Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound}Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound
본 발명은 압축강도 150MPa 이상의 초고강도, 인장강도 5MPa 이상의 고인성을 함께 갖춘 초고성능 콘크리트에 글리콜 에테르계 화합물로 이루어진 물성안정제를 적용한 저점성 초고성능 콘크리트 조성물에 관한 것이다.The present invention relates to a low-viscosity ultra-high-performance concrete composition in which a physical property stabilizer made of a glycol ether-based compound is applied to ultra-high-performance concrete having both a compressive strength of 150 MPa or higher and a tensile strength of 5 MPa or higher.
초고성능 콘크리트(Ultra High Performance Concrete, UHPC)는 압축강도 150MPa 이상의 초고강도와 인장강도 5MPa 이상의 고인성을 특징으로 하는 차세대 콘크리트로서, 이 용어는 1994년 프랑스 de Larrard에 의해 최초로 사용된 이후 현재는 전 세계적으로 사용되고 있다. 초고성능 콘크리트는 프랑스뿐만 아니라 미국, 일본, 독일 등에서도 차세대 건설 신재료로 인식하여 많은 연구개발이 추진되고 있으며 현재는 소규모 보도교, 건축자재 등에서부터 도로교, 철도교 등 규모가 큰 토목 구조물에 적용되는 단계에까지 와 있다. 초고성능 콘크리트를 구조물에 적용하면 철근 등 보강재 사용을 최소화 할 수 있고 단면을 슬림화하여 중량 감소를 도모할 수 있으므로 설계자의 구조물 디자인 자유도를 높일 수 있다. 따라서 향후 콘크리트 구조물은 초고성능 콘크리트를 활용하여 혁신적인 디자인을 갖는 경제적인 구조물로 진화할 것으로 예상된다.Ultra High Performance Concrete (UHPC) is a next-generation concrete characterized by ultra-high strength with a compressive strength of 150 MPa or more and high toughness with a tensile strength of 5 MPa or more. is used worldwide. Not only France, but also the United States, Japan, Germany, etc. recognize ultra-high-performance concrete as a new material for next-generation construction, and a lot of research and development is being carried out. is coming to When ultra-high-performance concrete is applied to a structure, the use of reinforcing materials such as reinforcing bars can be minimized and the cross section can be slimmed to reduce weight, thereby increasing the designer's freedom in designing the structure. Therefore, in the future, concrete structures are expected to evolve into economical structures with innovative designs using ultra-high-performance concrete.
초고성능 콘크리트의 배합설계의 원리는 다음과 같다.The principle of mixing design of ultra-high performance concrete is as follows.
① 굵은골재의 제거로 균질성 향상① Improved homogeneity by removing coarse aggregates
② 입도분포의 최적화 및 양생 중의 증기압력으로 치밀한 밀도의 향상② Optimization of particle size distribution and improvement of dense density by steam pressure during curing
③ 열처리에 의한 미세구조(Micro Structures)의 개선③ Improvement of Micro Structures by Heat Treatment
④ 작은 크기의 강섬유 사용으로 인성 향상④ Toughness is improved by using small size steel fiber
이러한 배합설계 원리에 따라 초고성능 콘크리트는 잔골재만을 사용한 균질성 향상, 최밀충전이론에 근거한 재료 입도의 최적화, 고온 증기양생을 통한 수화생성물의 밀집도 향상, 다량의 강섬유 사용에 따른 휨인장성능 극대화 등을 이루게 된다. According to this mixing design principle, ultra-high-performance concrete achieves homogeneity improvement using only fine aggregates, optimization of material particle size based on the closest packing theory, improvement of density of hydration products through high-temperature steam curing, and maximization of flexural tensile performance due to the use of a large amount of steel fiber. do.
이러한 초고성능 콘크리트는 일반 콘크리트와 비교하여 1㎥ 당 사용되는 결합재량이 증가한다. 결합재는 콘크리트에서 사용되는 재료 중 비표면적이 가장 높은 재료로서 그 사용량이 증가하면 콘크리트의 비표면적이 커지게 되어 표면장력이 증가하게 되어 콘크리트의 점도가 증가하게 된다. 하지만 초고성능 콘크리트는 150㎫ 이상의 초고강도를 발현시키기 위해 물-바인더비를 낮게 해야 하며, 이를 위해 단위수량을 낮게 설정하므로 점성을 낮추는 것에는 한계가 있는 실정이다. 콘크리트 조성물의 점성이 높으면 워커빌리티(충전성, 압송성 등)가 저하되어 시공상 하자 발생 및 내구성 저하의 원인이 된다. Compared with general concrete, the amount of binder used per 1m3 of this ultra-high-performance concrete is increased. The binder is a material with the highest specific surface area among materials used in concrete, and if the amount used increases, the specific surface area of the concrete increases, which increases the surface tension and thus increases the viscosity of the concrete. However, for ultra-high-performance concrete, the water-binder ratio must be low in order to express the ultra-high strength of 150 MPa or more. When the viscosity of the concrete composition is high, the workability (filling property, conveying property, etc.) is lowered, which causes defects in construction and reduced durability.
1. 10-0873514 "초고강도 콘크리트용 결합재 및 이를 이용한 콘크리트의 제조방법"1. 10-0873514 "Binder material for ultra-high strength concrete and manufacturing method of concrete using the same" 2. 10-1073393 "초고성능 섬유보강 콘크리트용 강섬유"2. 10-1073393 "Steel fiber for ultra-high-performance fiber-reinforced concrete" 3. 10-1207038 "유리미분말이 혼입된 초고성능 섬유보강 시멘트 복합체 및 그 제조방법"3. 10-1207038 "Ultra-high-performance fiber-reinforced cement composite containing fine glass powder and manufacturing method therefor" 4. 10-1209282 "초고성능 섬유보강 콘크리트 및 이의 제조방법"4. 10-1209282 "Ultra-high-performance fiber-reinforced concrete and its manufacturing method" 5. 10-1230256 "초고성능 섬유보강 시멘트 복합체 및 이의 제조방법"5. 10-1230256 "Ultra-high-performance fiber-reinforced cement composite and manufacturing method thereof" 6. 10-1292173 "하이브리드강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법"6. 10-1292173 "Ultra-high-performance fiber-reinforced concrete composition using hybrid steel fibers and manufacturing method thereof" 7. 10-1486269 "부착강도를 향상시킨 강섬유 이의 제작방법 및 이를 포함하는 섬유보강 콘크리트"7. 10-1486269 "Method for manufacturing steel fiber teeth with improved adhesion strength and fiber-reinforced concrete including the same" 8. 10-1705242 "시공성을 향상시킨 초고성능 섬유보강 콘크리트의 제조방법"8. 10-1705242 "Manufacturing method of ultra-high-performance fiber-reinforced concrete with improved workability" 9. 10-1751479 "초고성능 섬유보강 콘크리트 및 그 제조방법"9. 10-1751479 "Ultra-high-performance fiber-reinforced concrete and its manufacturing method" 10. 10-1856690 "UHPC 프리믹스 시멘트 혼합물을 이용한 초고성능 콘크리트의 제조방법"10. 10-1856690 "Manufacturing method of ultra-high performance concrete using UHPC premix cement mixture"
본 발명은 초고강도 발현을 위해 단위 결합재량은 많고 단위수량은 적게 배합되어 점도가 증가하는 초고성능 콘크리트 조성물의 점도를 저감시키기 위한 물성안정제 및 이러한 물성안정제를 이용한 초고성능 콘크리트 조성물을 제공함에 그 목적이 있다.The present invention provides a physical property stabilizer for reducing the viscosity of an ultra-high-performance concrete composition, which increases the viscosity by mixing a large amount of unit binder and a small amount of unit amount for ultra-high strength expression, and an ultra-high-performance concrete composition using this property stabilizer The purpose There is this.
이에 본 발명에서는 글리콜 에테르계 화합물을 물성안정제로 적용하여 초고성능 콘크리트의 높은 점성 문제를 해결하였다. 글리콜 에테르계 화합물은 사용된 결합재 표면에 흡착되어 재료의 표면장력을 저감시켜 궁극적으로 표면을 부드럽게 전환시켜 주는 효과를 발생시켜, 초고성능 콘크리트의 점도를 저감시킨다. 이에 콘크리트의 전반적인 물성이 안정적으로 확보된다. Therefore, in the present invention, the problem of high viscosity of ultra-high-performance concrete was solved by applying a glycol ether-based compound as a physical property stabilizer. Glycol ether-based compounds are adsorbed on the surface of the used binder to reduce the surface tension of the material and ultimately produce the effect of smoothing the surface, thereby reducing the viscosity of ultra-high performance concrete. Thus, the overall physical properties of concrete are stably secured.
본 발명은 「일반 콘크리트에 비해 단위 결합재량이 크고, 물-결합재비가 낮아 재령 28일 압축강도가 150MPa 이상으로 발현되는 초고강도 콘크리트 조성물을 개질한 초고성능 콘크리트 조성물로서, 감수제가 결합재 대비 1.5~3.5wt% 첨가되고, 중합도(degree of polymerization) 100~200의 글리콜 에테르계 화합물로 이루어진 물성안정제가 상기 감수제 대비 0.1~1.0wt% 첨가되어, 굳지 않은 상태의 점도 60,000cps 이하 및 재령 28일 압축강도 150MPa 이상의 물성이 함께 충족되는 것을 특징으로 하는 저점성 초고성능 콘크리트 조성물」을 제공한다.The present invention is an ultra-high-performance concrete composition modified from an ultra-high-strength concrete composition that has a larger amount of unit binder compared to general concrete and a low water-binding material ratio, resulting in a 28-day compressive strength of 150 MPa or more. Added by wt%, a physical property stabilizer composed of a glycol ether-based compound having a degree of polymerization of 100 to 200 is added in an amount of 0.1 to 1.0 wt% compared to the water reducing agent. It provides a low-viscosity ultra-high-performance concrete composition" characterized in that the above physical properties are satisfied together.
또한 본 발명은 「상기 물성안정제가 상기 감수제 대비 0.1~0.3wt% 첨가되어, 굳지 않은 상태의 점도 60,000cps 이하, 슬럼프 플로우 240~245㎜, 재령 28일 압축강도 190MPa 이상 및 재령 28일 휨강도 50MPa 이상의 물성이 함께 충족되는 것을 특징으로 하는 저점성 초고성능 콘크리트 조성물」을 함께 제공한다.In addition, the present invention is "the physical property stabilizer is added 0.1 to 0.3wt% compared to the water reducing agent, the viscosity in an unconsolidated state is 60,000 cps or less, slump flow 240 to 245 mm, the compressive strength at 28 days of age 190 MPa or more, and the flexural strength at 28 days of age 50 MPa or more It provides a low-viscosity ultra-high-performance concrete composition that satisfies the physical properties together.
상기 글리콜 에테르계 화합물은 프로필렌 글리콜 모노메틸 에테르 아세테이트(pripylene glycol monomethyl ether acetate), 폴리에틸렌 비스페놀-A 에테르(polyoxyethylene bisphenol-A ether) 및 폴리에틸렌 글리콜 트리메실노닐 에테르(polyethylene glycol trimethylnonyl ether) 중 어느 하나 이상으로 조성된 것을 적용할 수 있다.The glycol ether-based compound is at least one of propylene glycol monomethyl ether acetate, polyethylene bisphenol-A ether, and polyethylene glycol trimethylnonyl ether. composition can be applied.
종래에 콘크리트 첨가제로 사용된 바 없었던 글리콜 에테르계 화합물로 이루어진 물성안정제를 사용함으로써, 재령 28일 압축강도 150MPa 이상이 발현되는 초고강도 콘크리트의 점도를 저감시켜 워커빌리티를 향상시키고, 인성 향상을 위해 첨가되는 강섬유의 분산이 효율적으로 되지 않고 서로 뭉치는 'Fiber Ball' 현상이 발생하지 않도록 할 수 있다.By using a physical property stabilizer made of a glycol ether-based compound that has not been used as a concrete additive before, it reduces the viscosity of ultra-high-strength concrete that exhibits a compressive strength of 150 MPa or more at 28 days to improve workability and is added to improve toughness. It is possible to prevent the 'Fiber Ball' phenomenon in which the steel fibers are not dispersed efficiently and agglomerated with each other.
본 발명은 「일반 콘크리트에 비해 단위 결합재량이 크고, 물-결합재비가 낮아 재령 28일 압축강도가 150MPa 이상으로 발현되는 초고강도 콘크리트 조성물을 개질한 초고성능 콘크리트 조성물로서, 감수제가 결합재 대비 1.5~3.5wt% 첨가되고, 중합도(degree of polymerization) 100~200의 글리콜 에테르계 화합물로 이루어진 물성안정제가 상기 감수제 대비 0.1~1.0wt% 첨가되어, 굳지 않은 상태의 점도 60,000cps 이하 및 재령 28일 압축강도 150MPa 이상의 물성이 함께 충족되는 것을 특징으로 하는 저점성 초고성능 콘크리트 조성물」을 제공한다.The present invention is an ultra-high-performance concrete composition modified from an ultra-high-strength concrete composition that has a larger amount of unit binder compared to general concrete and a low water-binding material ratio, resulting in a 28-day compressive strength of 150 MPa or more. Added by wt%, a physical property stabilizer composed of a glycol ether-based compound having a degree of polymerization of 100 to 200 is added in an amount of 0.1 to 1.0 wt% compared to the water reducing agent. It provides a low-viscosity ultra-high-performance concrete composition" characterized in that the above physical properties are satisfied together.
상기 글리콜 에테르계 화합물은 끈적끈적하고 단맛이 있는 무색 액체로, 습기를 잘 흡수하고, 산화하면 글리콜산·글리옥살·옥살산 등이 된다. 에틸렌에 묽은 염소수(鹽素水)를 작용시켜 에틸렌클로로하이드린을 합성하고, 이것을 탄산나트륨 수용액과 오토클레이브 속에서 가열하여 가수분해시킴으로써 생성된다. 주로 테트론의 합성원료로 사용되나, 알키드 수지(樹脂)의 제조원료나 내한성(耐寒性) 냉각액, 의약품·화장품 등으로도 사용된다. The glycol ether-based compound is a sticky and sweet colorless liquid, absorbs moisture well, and when oxidized, becomes glycolic acid, glyoxal, oxalic acid, and the like. It is produced by synthesizing ethylene chlorohydrin by reacting dilute chlorine water with ethylene, and hydrolyzing it by heating it in an autoclave with an aqueous sodium carbonate solution. It is mainly used as a synthetic raw material for tetron, but is also used as a raw material for manufacturing alkyd resins, cold-resistant cooling liquids, pharmaceuticals and cosmetics.
본 발명에서 물성안정제로 적용되는 글리콜 에테르계 화합물은 프로필렌 글리콜 모노메틸 에테르 아세테이트(pripylene glycol monomethyl ether acetate), 폴리에틸렌 비스페놀-A 에테르(polyoxyethylene bisphenol-A ether) 및 폴리에틸렌 글리콜 트리메실노닐 에테르(polyethylene glycol trimethylnonyl ether)로 이루어진 군으로부터 선택되는 1종 이상의 물질이 될 수 있다. 위에 나열한 세가지 화합물질들은 재료들의 표면장력을 감소시켜 점도 저감 및 분산효과가 뛰어난 특징을 가지고 있어 주로 섬유 및 금속 성형 조작용 윤활제, 페인트 및 화장품 등의 유화 분산제, 화학물질의 혼합 시 중간체 등으로 사용되고 있다.The glycol ether-based compound applied as a physical property stabilizer in the present invention is propylene glycol monomethyl ether acetate, polyethylene bisphenol-A ether, and polyethylene glycol trimethylnonyl ether. ether) may be one or more materials selected from the group consisting of. The three compounds listed above have excellent viscosity reduction and dispersion effects by reducing the surface tension of the materials. there is.
상기 물성안정제가 시멘트에 흡착되어 시멘트 표면을 개질하고, 계면장력을 저감시킴으로써 콘크리트 조성물의 점성을 저감시키는 원리는 아래 [참고도 1]에 모식적으로 나타나 있다.The principle of reducing the viscosity of the concrete composition by adsorbing the physical property stabilizer to the cement to modify the cement surface and reducing the interfacial tension is schematically shown in [Reference Fig. 1] below.
[참고도 1][Reference 1]
Figure pat00001
Figure pat00001
본 발명에서는 상기 글리콜 에테르계 화합물은 중합도가 100~200 범위의 것을 사용한다. 상기 글리콜 에테르계 화합물의 중합도가 100 미만일 때에는 물성안정제로 부순모래 사용 콘크리트의 작업성을 개선하는 효과가 없으며, 중합도가 200을 초과하면 콘크리트 표면에 큰 기포가 다량 발생하여 콘크리트 표면에 악영향을 발생시킨다. In the present invention, as the glycol ether-based compound, a polymerization degree of 100 to 200 is used. When the degree of polymerization of the glycol ether-based compound is less than 100, there is no effect of improving the workability of concrete using crushed sand as a physical property stabilizer. .
위와 같은 물성안정제는 감수제 대비 0.1~1.0wt% 첨가할 때, 굳지 않은 상태의 점도 60,000cps 이하 및 재령 28일 압축강도 150MPa 이상의 물성을 함께 충족시키는 저점성 초고성능 콘크리트 조성물이 도출된다. 상기 감수제는 물-결합재비가 낮은 조건에서 유동성 향상을 위해 적용되는 혼화제로서, 결합재 대비 1.5~3.5wt% 첨가된다. 상기 감수제는 '고성능 감수제'로 분류되는 일반적인 제품 군 중 하나를 선택 적용할 수 있다. 이하의 시험 데이터는 폴리칼본산계 감수제를 적용하여 도출한 것이나, 본 발명에서 리그닌계 감수제를 배제하지 않는다.When adding 0.1~1.0wt% of the above physical property stabilizer compared to the water reducing agent, a low-viscosity ultra-high-performance concrete composition that satisfies the physical properties of a viscosity of 60,000 cps or less in an unconsolidated state and a compressive strength of 150 MPa or more at 28 days of age is derived. The water-reducing agent is an admixture applied to improve fluidity under a low water-binder ratio, and is added in an amount of 1.5 to 3.5 wt% compared to the binder. The water reducing agent may be selected and applied from one of the general product groups classified as 'high performance water reducing agents'. The following test data are derived by applying a polycarbonic acid-based water reducing agent, but do not exclude a lignin-based water reducing agent in the present invention.
즉, 통상적인 초고성능 콘크리트 조성물 배합 조건에서 상기 물성안정제를 상기 감수제 대비 0.1~1.0wt% 첨가할 때 점성 저감 효과가 나타난다. 다만, 상기 물성안정제 첨가량이 위와 같은 경우, 초고성능 콘크리트 조성물의 압축강도 및 휨강도 면에서 손실 구간이 발생한다. That is, when 0.1 to 1.0 wt % of the physical property stabilizer is added compared to the water reducing agent under the general mixing conditions of the ultra-high performance concrete composition, the effect of reducing the viscosity appears. However, when the addition amount of the physical property stabilizer is as above, a loss section occurs in terms of compressive strength and flexural strength of the ultra-high performance concrete composition.
이에, 상기 물성안정제를 상기 감수제 대비 0.1~0.3wt% 범위에서 첨가하는 것으로 제한함에 따라 굳지 않은 상태의 점도 60,000cps 이하, 슬럼프 플로우 240~245㎜ 범위의 레올로지 특성과 함께 재령 28일 압축강도 190MPa 이상, 재령 28일 휨강도 50MPa 이상의 물성이 나타나도록 할 수 있다.Accordingly, as the physical property stabilizer is limited to being added in the range of 0.1 to 0.3 wt% compared to the water reducing agent, the viscosity in an unconsolidated state is 60,000 cps or less, the slump flow is 240 to 245 mm in the range of rheological properties, and 28 days of age compressive strength 190 MPa Above, it is possible to show physical properties of over 50 MPa in flexural strength at 28 days of age.
한편, 초고성능 콘크리트 조성물은 낮은 물-결합재비에 의해 점도가 높아지면서 갇힌 공기(entrapped air)가 발생할 수 있으며, 초고성능 콘크리트 조성물 내부의 갇힌 공기 제거를 위해 소포제를 상기 감수제 대비 0.5~1.0wt%, 바람직하게는 0.5~0.7wt% 첨가할 수 있다. 상기 소포제는 알콜계, 광물계, 폴리에테르계, 실리콘계, 에멀전계 중에서 선택된 1종 이상을 적용할 수 있다.On the other hand, the ultra-high performance concrete composition may generate entrapped air as the viscosity increases due to the low water-binding material ratio, and an antifoaming agent is added in 0.5 to 1.0 wt% compared to the water reducing agent to remove the trapped air inside the ultra high performance concrete composition. , preferably 0.5 to 0.7 wt% may be added. The antifoaming agent may be one or more selected from alcohol-based, mineral-based, polyether-based, silicone-based, and emulsion-based.
이하에서는 구체적인 시험예와 함께 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with specific test examples.
아래 [표 1]은 초고성능 콘크리트 조성물 실시예의 배합사항을 나타낸 것이다. 결합재량(시멘트, 실리카흄 및 실리카 미분말 합량)은 1,200kg/㎥로 특정하였다.[Table 1] below shows the formulation of the ultra-high-performance concrete composition example. The amount of binder (total amount of cement, silica fume and silica fine powder) was specified as 1,200 kg/m3.
[표 1][Table 1]
Figure pat00002
Figure pat00002
C : 3종 조강시멘트 또는 1종 시멘트 S/F : 실리카흄C : Class 3 crude steel cement or Class 1 cement S/F : Silica fume
SP : 실리카 미분말 CSA : 팽창재SP: fine silica powder CSA: Inflatable
S : 잔골재S: fine aggregate
위의 [표 1]에 나타난 배합은 일반적인 초고성능 콘크리트에 사용되는 배합의 일 실시예라 할 수 있다. 물-결합재비는 20wt%로 설정하였으며, 강섬유는 전체 체적의 2%를 첨가하였다. 감수제(폴리칼본산계)는 결합재 대비 3.0wt% 첨가하였으며, 상기 물성안정제는 상기 감수제 대비 각각 0, 0.1, 0.3, 0.5, 0.7, 1.0wt% 첨가하여 각각의 물성을 시험하였다. 상기 물성안정제로는 폴리에틸렌 글리콜 트리메실노닐 에테르(polyethylene glycol trimethylnonyl ether)를 적용하였다.The formulation shown in [Table 1] above can be said to be an example of the formulation used for general ultra-high performance concrete. The water-binding material ratio was set to 20 wt%, and 2% of the total volume of the steel fiber was added. The water reducing agent (polycarboxylic acid-based) was added at 3.0wt% compared to the binder, and the physical property stabilizer was added at 0, 0.1, 0.3, 0.5, 0.7, and 1.0wt%, respectively, compared to the water reducing agent, and each physical property was tested. Polyethylene glycol trimethylnonyl ether was applied as the physical property stabilizer.
시험 방법은 L ISO 679 "시멘트 강도 시험 방법"을 적용하였다. 모르타르 믹서를 이용하여 재료를 믹싱하였는데, 믹싱 방법은 분말재료 투입 후 건비빔 2분, 물과 감수제를 첨가한 후, 저속 2분, 고속 2분 총 4분한 믹싱을 실시하였으며, 모르타르의 안정화를 위해 추가로 1분간 저속으로 혼합한 후 점도를 측정하였다. 점도 측정은 Brookfield 社의 ’DV-Ⅲ ULTRA' 장비를 이용하여 실시하였다. L ISO 679 "Cement strength test method" was applied as the test method. The materials were mixed using a mortar mixer. The mixing method was 2 minutes of dry bibim after the powder material was added, water and water reducing agent were added, and then mixing was performed for a total of 4 minutes at low speed for 2 minutes and at high speed for 2 minutes. After mixing at a low speed for an additional 1 minute, the viscosity was measured. Viscosity was measured using Brookfield's 'DV-Ⅲ ULTRA' equipment.
압축강도 및 휨강도 측정을 위한 시험체는 40×40×160㎜로 제작하여, 20±2℃ 조건에서 48시간 양생 후, 다시 90℃ 조건에서 48시간 동안 증기양생을 실시하였다. 압축강도 및 휨강도는 양생 후 재령 28일 기준으로 측정하였다.A test specimen for measuring compressive strength and flexural strength was fabricated in a size of 40 × 40 × 160 mm, cured at 20 ± 2 °C for 48 hours, and then steam cured at 90 °C for 48 hours. Compressive strength and flexural strength were measured based on the age of 28 days after curing.
[표 2][Table 2]
Figure pat00003
Figure pat00003
위의 [표 2]는 통상적인 초고성능 콘크리트에 해당하는 비교예와 본 발명의 실시예를 나타낸 것이다. 먼저 실시예 1과 비교예 1을 살펴보면 실시예 1의 경우 전반적인 물성의 개선이 이루어진 것을 알 수 있다. 점도는 약 15.8%의 개선이 이루어 졌으며, 이와 함께 플로우 및 T20이 모두 향상된 것으로 나타났다. 실시예 2의 경우도 비교예 1과 비교하여 점도는 각각 19.7% 개선된 것으로 나타났으며, 플로우 및 T20도 향상되는 것으로 나타났다. 실시예 1, 2의 압축강도는 비교예 1과 비교하여 동등 이상 수준 발현되는 것으로 나타났다. [Table 2] above shows comparative examples corresponding to conventional ultra-high performance concrete and examples of the present invention. First, looking at Example 1 and Comparative Example 1, it can be seen that in the case of Example 1, overall physical properties were improved. Viscosity was improved by about 15.8%, and both flow and T 20 were improved. In the case of Example 2, compared to Comparative Example 1, the viscosity was improved by 19.7%, respectively, and the flow and T 20 were also improved. The compressive strength of Examples 1 and 2 was found to be expressed at an equivalent or higher level compared to Comparative Example 1.
비교예 1의 경우, 점도가 70,000cps 이상으로 높게 측정되어 강섬유의 분산이 효율적으로 되지 않고 서로 뭉치는 'Fiber Ball' 현상이 발생하는 것으로 나타났다(아래 [참고사진 1] 참고).In the case of Comparative Example 1, the viscosity was measured as high as 70,000 cps or more, indicating that the dispersion of the steel fibers was not efficient and a 'Fiber Ball' phenomenon occurred (see [Reference Photo 1] below).
[참고사진 1][Reference photo 1]
Figure pat00004
Figure pat00004
하지만 상기 물성안정제를 첨가한 실시예 1~5는 모두 점성이 60,000cps 이하로 나타났으며, 'Fiber Ball' 현상이 나타나지 않고 모두 고르게 분산이 되는 것으로 나타났다(아래 [참고사진 2] 참고). 따라서 강섬유 분산에 대한 고려를 위해 초고성능 콘크리트의 점성은 60,000cps 이하로 관리하는 것이 필요할 것으로 판단된다. However, in Examples 1 to 5 in which the physical property stabilizer was added, the viscosity was 60,000 cps or less, and the 'Fiber Ball' phenomenon did not appear and all were evenly dispersed (see [Reference Photo 2] below). Therefore, it is judged that it is necessary to manage the viscosity of ultra-high-performance concrete below 60,000cps to consider the dispersion of steel fibers.
[참고사진 2][Reference photo 2]
Figure pat00005
Figure pat00005
실시예 3, 4, 5는 비교예 1과 비교하여 점도 및 굳지않은 특성들은 개선되는 것으로 나타났으나, 압축강도 및 휨강도가 저하되는 것으로 나타났다. 따라서 초고성능 콘크리트의 물성을 전반적으로 개선하기 위한 상기 물성안정제의 최적 사용량은 감수제 대비 0.1~0.3wt%임을 알 수 있다. In Examples 3, 4, and 5, compared with Comparative Example 1, the viscosity and non-hardening properties were improved, but the compressive strength and flexural strength were lowered. Therefore, it can be seen that the optimum amount of the physical property stabilizer for overall improvement of the physical properties of ultra-high performance concrete is 0.1 to 0.3 wt% compared to the water reducing agent.
본 발명은 상기에서 언급한 바와 같이 바람직한 실시예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다. 따라서 본 발명의 청구범위는 이전 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.Although the present invention has been described in relation to the preferred embodiment as mentioned above, various modifications and variations are possible without departing from the gist of the present invention, and can be used in various fields. Accordingly, the claims of the present invention include modifications and variations that fall within the true scope of the preceding invention.

Claims (3)

  1. 일반 콘크리트에 비해 단위 결합재량이 크고, 물-결합재비가 낮아 재령 28일 압축강도가 150MPa 이상으로 발현되는 초고강도 콘크리트 조성물을 개질한 초고성능 콘크리트 조성물로서,
    감수제가 결합재 대비 1.5~3.5wt% 첨가되고,
    중합도(degree of polymerization) 100~200의 글리콜 에테르계 화합물로 이루어진 물성안정제가 상기 감수제 대비 0.1~1.0wt% 첨가되어,
    굳지 않은 상태의 점도 60,000cps 이하 및 재령 28일 압축강도 150MPa 이상의 물성이 함께 충족되는 것을 특징으로 하는 저점성 초고성능 콘크리트 조성물.
    As an ultra-high-performance concrete composition modified from an ultra-high-strength concrete composition that has a larger amount of unit binder compared to general concrete and a lower water-binding material ratio, which exhibits a compressive strength of over 150 MPa at 28 days of age,
    1.5 to 3.5 wt% of the water reducing agent is added compared to the binder,
    A physical property stabilizer consisting of a glycol ether-based compound having a degree of polymerization of 100 to 200 is added in an amount of 0.1 to 1.0 wt% compared to the water reducing agent,
    Low-viscosity ultra-high-performance concrete composition, characterized in that the physical properties of a viscosity of 60,000 cps or less in a non-solidified state and a compressive strength of 150 MPa or more at 28 days of age are satisfied together.
  2. 제1항에서,
    상기 물성안정제가 상기 감수제 대비 0.1~0.3wt% 첨가되어,
    굳지 않은 상태의 점도 60,000cps 이하, 슬럼프 플로우 240~245㎜, 재령 28일 압축강도 190MPa 이상 및 재령 28일 휨강도 50MPa 이상의 물성이 함께 충족되는 것을 특징으로 하는 저점성 초고성능 콘크리트 조성물.
    In claim 1,
    0.1 to 0.3 wt% of the physical property stabilizer is added compared to the water reducing agent,
    Low-viscosity ultra-high-performance concrete composition, characterized in that the physical properties of the non-solidified state are less than 60,000 cps, slump flow 240-245 mm, compressive strength of 190 MPa or more at 28 days of age, and flexural strength of 50 MPa or more at 28 days of age.
  3. 제1항 또는 제2항에서,
    상기 글리콜 에테르계 화합물은 프로필렌 글리콜 모노메틸 에테르 아세테이트(pripylene glycol monomethyl ether acetate), 폴리에틸렌 비스페놀-A 에테르(polyoxyethylene bisphenol-A ether) 및 폴리에틸렌 글리콜 트리메실노닐 에테르(polyethylene glycol trimethylnonyl ether) 중 어느 하나 이상으로 조성된 것을 특징으로 하는 저점성 초고성능 콘크리트 조성물.
    In claim 1 or 2,
    The glycol ether-based compound is at least one of propylene glycol monomethyl ether acetate, polyethylene bisphenol-A ether, and polyethylene glycol trimethylnonyl ether. Low-viscosity ultra-high-performance concrete composition, characterized in that the composition.
KR1020210001485A 2020-01-21 2021-01-06 Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound KR102310892B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20200007823 2020-01-21
KR1020200007823 2020-01-21

Publications (2)

Publication Number Publication Date
KR20210094463A true KR20210094463A (en) 2021-07-29
KR102310892B1 KR102310892B1 (en) 2021-10-08

Family

ID=77127750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210001485A KR102310892B1 (en) 2020-01-21 2021-01-06 Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound

Country Status (1)

Country Link
KR (1) KR102310892B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873514B1 (en) 2007-09-03 2008-12-15 한국건설기술연구원 Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder
KR101073393B1 (en) 2008-12-17 2011-10-17 한국건설기술연구원 Wave type steel fiber for ultra―high performance fiber reinforced concrete
KR101207038B1 (en) 2010-11-16 2012-11-30 한국건설기술연구원 Ultra high performance cementitious composites containing glass powder and manufacturing method thereof
KR101209282B1 (en) 2010-11-23 2012-12-06 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR101230256B1 (en) 2010-12-02 2013-02-07 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR101292173B1 (en) 2011-11-30 2013-08-01 한국건설기술연구원 Hybrid ultra-high performance fiber reinforced cementitious composites using the twist and straight type steel fiber and method for it
KR101486269B1 (en) 2012-10-10 2015-01-28 한국건설기술연구원 A Steel Fiber Strengthened Bondage, Method For It, And Concrete Having It
KR101705242B1 (en) 2015-05-27 2017-02-22 한국건설기술연구원 Ultra-high performance fiber-reinforced concrete for improving construct ability, and manufacturing method for the same
KR101751479B1 (en) 2016-08-08 2017-06-27 한국건설기술연구원 Ultra high performance fiber reinforced concrete and manufacturing method of the same
KR101856690B1 (en) 2015-12-01 2018-05-10 서울대학교산학협력단 Manufacturing method of Ultra High Performance Concrete using UHPC premix composition with cement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361233B1 (en) * 2000-12-27 2008-12-03 Nippon Shokubai Co., Ltd. Polycarboxylic acid type copolymer, method for producing the same, cement additive and cement composition
KR101307352B1 (en) 2013-02-05 2013-09-11 한국건설생활환경시험연구원 Moisture curing primer and method for waterproof and anticorrosion of concrete structures using the same and polyurea
KR101971020B1 (en) * 2018-11-16 2019-04-22 문성태 High-performance water reducer composition for concrete

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873514B1 (en) 2007-09-03 2008-12-15 한국건설기술연구원 Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder
KR101073393B1 (en) 2008-12-17 2011-10-17 한국건설기술연구원 Wave type steel fiber for ultra―high performance fiber reinforced concrete
KR101207038B1 (en) 2010-11-16 2012-11-30 한국건설기술연구원 Ultra high performance cementitious composites containing glass powder and manufacturing method thereof
KR101209282B1 (en) 2010-11-23 2012-12-06 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR101230256B1 (en) 2010-12-02 2013-02-07 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR101292173B1 (en) 2011-11-30 2013-08-01 한국건설기술연구원 Hybrid ultra-high performance fiber reinforced cementitious composites using the twist and straight type steel fiber and method for it
KR101486269B1 (en) 2012-10-10 2015-01-28 한국건설기술연구원 A Steel Fiber Strengthened Bondage, Method For It, And Concrete Having It
KR101705242B1 (en) 2015-05-27 2017-02-22 한국건설기술연구원 Ultra-high performance fiber-reinforced concrete for improving construct ability, and manufacturing method for the same
KR101856690B1 (en) 2015-12-01 2018-05-10 서울대학교산학협력단 Manufacturing method of Ultra High Performance Concrete using UHPC premix composition with cement
KR101751479B1 (en) 2016-08-08 2017-06-27 한국건설기술연구원 Ultra high performance fiber reinforced concrete and manufacturing method of the same

Also Published As

Publication number Publication date
KR102310892B1 (en) 2021-10-08

Similar Documents

Publication Publication Date Title
CN107417204B (en) Tailing sand fiber concrete capable of being printed in 3D mode and preparation and application methods thereof
CN106242398B (en) A kind of high-strength and high ductility Waterproof mortar material and preparation method thereof can be used for 3D building printings
CN109456002B (en) High-strength recycled concrete and preparation method thereof
RU2012125994A (en) Extruded fiber reinforced cement products having stone properties and methods for producing them
CN105669099A (en) Aqueous epoxy coating for terraces, and preparation method thereof
CN108529968A (en) A kind of fiber concrete material and preparation method thereof for 3D printing
CN110590288A (en) High-strength concrete and preparation process thereof
KR101209282B1 (en) Ultra-high performance fiber reinforced cementitious composites and manufacturing method
CN105859220A (en) C30-C50-grade polyvinyl alcohol fiber reinforced cement-based composites
CN103482928A (en) High-strength cement-based non-shrinkage grouting material
CN110642572A (en) High-strength concrete and preparation process thereof
JP6302716B2 (en) Reinforcing fiber for hydraulic molded body and hydraulic material containing the same
CN109369076B (en) Concrete and preparation method thereof
CN108689658B (en) Formula and preparation method of pumping lightweight aggregate concrete
KR102310892B1 (en) Low viscosity ultra high performance concrete composition using property stabilizer composed of glycol ether compound
KR101793650B1 (en) Injection composition for grout
CN111606591A (en) CNF-reinforced metakaolin-based geopolymer cementing material
CN108264305B (en) Anti-freezing concrete and preparation method thereof
JP6715270B2 (en) Cement composition and cured product thereof
CN101412606B (en) Concrete containing low-quality coarse aggregate and preparation thereof
KR20010028551A (en) Matrix for the continuous fiber reinforced cement composites using ultra-super fine cement
JP2010083698A (en) Method for producing hardened cement body, and hardened cement body
RU2646290C1 (en) Composition for manufacturing disperse-reinforced construction-thermal insulating foam concrete
KR102160910B1 (en) Mortar compositions comprising carbon fiber reinforced mortar produced therefrom
CN111517714A (en) Easily-pumped coarse aggregate-containing ultra-high performance concrete and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right