KR20210090572A - Device and method for monitoring a berthing - Google Patents

Device and method for monitoring a berthing Download PDF

Info

Publication number
KR20210090572A
KR20210090572A KR1020210040733A KR20210040733A KR20210090572A KR 20210090572 A KR20210090572 A KR 20210090572A KR 1020210040733 A KR1020210040733 A KR 1020210040733A KR 20210040733 A KR20210040733 A KR 20210040733A KR 20210090572 A KR20210090572 A KR 20210090572A
Authority
KR
South Korea
Prior art keywords
image
vessel
information
distance
ship
Prior art date
Application number
KR1020210040733A
Other languages
Korean (ko)
Inventor
박별터
김한근
김동훈
Original Assignee
씨드로닉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨드로닉스(주) filed Critical 씨드로닉스(주)
Priority to KR1020210040733A priority Critical patent/KR20210090572A/en
Publication of KR20210090572A publication Critical patent/KR20210090572A/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion

Abstract

The present invention relates to a device for monitoring berthing to monitor ships and a port and a method thereof. According to one embodiment of the present invention, a berthing monitoring method performed by a computing means comprises the following steps of: acquiring an image of a port including the sea and a plurality of ships by using a camera installed in the port to capture the image; using an artificial neural network learned by using a learning set, in which class values indicating the sea, a ship, and a feature, respectively, are labeled to the input image and pixels corresponding to objects including the sea, the ship, and the feature included in the input image, to generate segmentation images for the objects from the port image; tracking a plurality of ships on the basis of first pixels to which a class value indicating a ship of the segmented image is assigned to acquire tracking information including location information of representative points representing each of the plurality of ships; determining a berthing target ship to be guided among the ships tracked on the basis of the tracking information; and acquiring berthing guide information including a bow distance, which is a distance between the bow of the target ship and a quay wall, and a stern distance, which is a distance between the stern of the target ship and the quay wall, on the basis of the segmentation image.

Description

접안 모니터링 장치 및 방법{DEVICE AND METHOD FOR MONITORING A BERTHING}DEVICE AND METHOD FOR MONITORING A BERTHING

본 발명은 접안 모니터링 장치 및 방법에 관한 것으로, 구체적으로 이미지에 기초한 접안 모니터링을 수행하는 장치 및 방법에 관한 것이다.The present invention relates to an eyepiece monitoring apparatus and method, and more particularly, to an apparatus and method for performing image-based eyepiece monitoring.

최근 선박의 운항 및 항만 내에서의 접안, 이안에 있어 많은 사고가 발생하고 있다. 주로 접안 시, 선박 주변이나 항만 내의 상황을 영상을 통해서 정확하게 확인하지 못하는 점에 의해 발생하는 사고가 많다. In recent years, many accidents have occurred in the operation of ships and berthing and berthing in ports. Most of the accidents are caused by the inability to accurately check the situation around the ship or in the port through video when berthing.

이에 종래에는 ECDIS, radar 등의 다양한 종류의 센서를 이용해 접안을 지원하고 있으나, ECDIS의 경우 GPS의 부정확성, AIS의 업데이트 주기 및 AIS 미등록 이동체 등으로 인한 한계가 존재하고, radar의 경우 비탐색영역의 존재 및 노이즈로 인한 한계가 존재한다. In the past, various types of sensors such as ECDIS and radar are used to support berthing, but in the case of ECDIS, there are limitations due to GPS inaccuracy, AIS update cycle, and AIS unregistered moving objects. There are limitations due to presence and noise.

따라서, 실질적으로 접안 시 선박 주변이나 항만 내의 상황을 영상을 통해 모니터링 하는 기술에 대한 기술 개발이 필요한 실정이다.Therefore, there is a need to develop a technology for actually monitoring the situation around a ship or in a port through an image when berthing.

본 명세서의 해결하고자 하는 일 과제는, 선박 주변 및 항만을 모니터링하기 위한 접안 모니터링 장치 및 방법을 제공하는 것에 있다.One problem to be solved by the present specification is to provide a berthing monitoring apparatus and method for monitoring the perimeter of a ship and a port.

본 명세서의 해결하고자 하는 다른 일 과제는 모니터링의 대상인 선박을 결정하고, 모니터링 대상에 관한 정보를 산출 및 출력하는 접안 모니터링 장치 및 방법을 제공하는 것이다.Another object to be solved in the present specification is to provide a berthing monitoring apparatus and method for determining a vessel to be monitored, and calculating and outputting information about the monitoring target.

본 명세서의 해결하고자 하는 다른 일 과제는 이미지 세그멘테이션을 이용하는 접안 모니터링 장치 및 방법을 제공하는 것이다.Another object to be solved by the present specification is to provide an eyepiece monitoring apparatus and method using image segmentation.

본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problems, and the problems not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the present specification and the accompanying drawings. .

본 명세서의 일 양상에 따르면, 컴퓨팅 수단에 의해 수행되는 접안 모니터링 방법에 있어서, 항만에 설치되어 이미지를 촬상하는 카메라를 이용하여 바다 및 복수의 선박을 포함하는 항만 이미지를 획득하는 단계, 입력 이미지 및 상기 입력 이미지에 포함된 바다, 선박 및 지형지물을 포함하는 오브젝트들에 해당하는 픽셀에 각각 바다, 선박 및 지형지물을 지시하는 클래스 값들을 라벨링한 러닝셋을 이용하여 학습된 인공 신경망을 이용하여 상기 항만 이미지로부터 상기 오브젝트들에 대한 세그멘테이션 이미지를 생성하는 단계, 상기 세그멘테이션 이미지의 선박을 지시하는 클래스 값이 할당된 제1 픽셀들에 기초하여 상기 복수의 선박을 트래킹하여 상기 복수의 선박 각각을 나타내는 대표 포인트들의 위치 정보가 포함된 트래킹 정보를 획득하는 단계, 상기 트래킹 정보에 기초하여 상기 트래킹되는 선박 중 접안 가이드되는 타겟 선박을 결정하는 단계 및 상기 세그멘테이션 이미지에 기초하여 상기 타겟 선박의 선수와 안벽사이의 거리인 선수 거리 및 상기 타겟 선박의 선미와 안벽 사이의 거리인 선미 거리를 포함하는 접안 가이드 정보를 획득하는 단계를 포함하는 접안 모니터링 방법이 제공될 수 있다.According to one aspect of the present specification, in the berthing monitoring method performed by the computing means, the steps of acquiring an image of the harbor including the sea and a plurality of ships using a camera installed in the harbor to take an image, an input image and Using an artificial neural network learned using a running set in which class values indicating the sea, ship, and feature, respectively, are labeled in pixels corresponding to objects including the sea, ship, and feature included in the input image. generating a segmentation image for the objects from a harbor image; a representative representing each of the plurality of vessels by tracking the plurality of vessels based on first pixels assigned with a class value indicating the vessel of the segmentation image Acquiring tracking information including location information of points, determining a target vessel to be guided berthing among the tracked vessels based on the tracking information, and between the bow and the quay wall of the target vessel based on the segmentation image An berthing monitoring method comprising the step of obtaining berthing guide information including a bow distance that is a distance and a stern distance that is a distance between the stern and the quay wall of the target vessel may be provided.

또한, 본 명세서의 다른 일 양상에 따르면, 항만에 설치되어 이미지를 촬상하는 카메라, 상기 카메라가 촬상한 바다 및 선박을 포함하는 항만 이미지를 획득하고, 입력 이미지 및 상기 입력 이미지에 포함된 바다, 선박 및 지형지물을 포함하는 오브젝트들에 해당하는 픽셀에 각각 바다, 선박 및 지형지물을 지시하는 클래스 값들을 라벨링한 러닝셋을 이용하여 학습된 인공 신경망을 이용하여 상기 항만 이미지로부터 상기 오브젝트들에 대한 세그멘테이션 이미지를 생성하고, 상기 세그멘테이션 이미지의 선박을 지시하는 클래스 값이 할당된 제1 픽셀들에 기초하여 상기 복수의 선박을 트래킹하여 상기 복수의 선박 각각을 나타내는 대표 포인트들의 위치 정보가 포함된 트래킹 정보를 획득하고, 상기 트래킹 정보에 기초하여 상기 트래킹되는 선박 중 접안 가이드되는 타겟 선박을 결정하고, 상기 세그멘테이션 이미지에 기초하여 상기 타겟 선박의 선수와 안벽 사이의 거리인 선수 거리 및 상기 타겟 선박의 선미와 안벽 사이의 거리인 선미 거리를 포함하는 접안 가이드 정보를 획득하는 제어 모듈, 및 상기 타겟 선박의 접안 가이드 정보를 원격 위치한 단말기에 전송하는 통신 모듈을 포함하는 접안 모니터링 장치가 제공될 수 있다.In addition, according to another aspect of the present specification, a camera installed in a harbor to capture an image, obtains an image of a harbor including the sea and a vessel captured by the camera, and an input image and a sea, a vessel included in the input image And Segmentation of the objects from the harbor image using an artificial neural network learned using a running set in which pixel corresponding to objects including a feature is labeled with class values indicating the sea, a ship, and a feature, respectively Generates an image, tracks the plurality of ships based on first pixels assigned a class value indicating a ship of the segmentation image, tracking information including location information of representative points representing each of the plurality of ships Obtain, based on the tracking information, determine a target vessel to be guided berthing among the vessels being tracked, and based on the segmentation image, the bow distance, which is the distance between the bow of the target vessel and the quay wall, and the stern and quay wall of the target vessel An eyepiece monitoring device including a control module for obtaining eyepiece guide information including a distance between the stern distances, and a communication module for transmitting the eyepiece guide information of the target vessel to a remotely located terminal may be provided.

본 명세서의 과제의 해결 수단이 상술한 해결 수단들로 제한되는 것은 아니며, 언급되지 아니한 해결 수단들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The solutions of the problems of the present specification are not limited to the above-described solutions, and solutions not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the present specification and the accompanying drawings. will be able

본 명세서의 일 실시예에 의하면, 선박 주변 및 항만을 모니터링하기 위한 접안 가이드 정보를 산출함으로써, 선박 및 항만에 대한 모니터링을 수행할 수 있다. According to an embodiment of the present specification, by calculating berthing guide information for monitoring the periphery of the vessel and the port, monitoring of the vessel and the port may be performed.

본 명세서의 일 실시예에 의하면, 모니터링의 대상인 선박을 결정하고, 결정된 모니터링 대상에 관한 정보를 산출 및 출력하여 접안 모니터링을 효율적으로 수행할 수 있다. According to an embodiment of the present specification, it is possible to efficiently perform berthing monitoring by determining a vessel to be monitored, and calculating and outputting information on the determined monitoring target.

본 명세서의 일 실시예에 의하면, 이미지 세그멘테이션을 이용하여 선박을 인식하고, 이에 기초하여 모니터링 대상을 결정할 수 있다. According to an embodiment of the present specification, a vessel may be recognized using image segmentation, and a monitoring target may be determined based thereon.

본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and the effects not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the present specification and the accompanying drawings.

도 1은 일 실시예에 따른 이미지 기반 모니터링에 관한 도면이다.
도 2는 일 실시예에 따른 접안 모니터링 장치에 관한 도면이다.
도 3 및 도 4는 일 실시예에 따른 접안 모니터링 장치의 실시예에 관한 도면이다.
도 5는 일 실시예에 따른 시야각 및 피사계 심도에 관한 도면이다.
도 6 및 도 7은 일 실시예에 따른 센서 모듈의 설치 위치에 관한 도면이다.
도 8은 일 실시예에 따른 이미지 분석에 관한 도면이다.
도 9 내지 도 11은 일 실시예에 따른 오브젝트 인식 단계에 관한 도면이다.
도 12 및 도 13은 일 실시예에 따른 인공 신경망의 학습 단계 및 추론 단계에 관한 도면이다.
도 14 및 도 15는 일 실시예에 따른 오브젝트의 위치/이동 정보 추정에 관한 도면이다.
도 16은 일 실시예에 따른 타겟 선박 결정에 관한 순서도이다.
도 17은 일 실시예에 따른 선박의 트래킹의 일 예에 관한 도면이다.
도 18은 일 실시예에 따른 위치 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다.
도 19는 일 실시예에 따른 이동 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다.
도 20은 일 실시예에 따른 항해 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다.
도 21은 일 실시예에 따른 사용자 입력 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다.
도 22는 일 실시예에 따른 타겟 선박의 접안 가이드 정보 획득에 관한 도면이다.
도 23은 일 실시예에 따른 모니터링 정보 출력에 관한 순서도이다.
도 24는 일 실시예에 따른 모니터링 정보 출력의 일 예에 관한 도면이다.
도 25 내지 도 27은 일 실시예에 따른 모니터링 정보 출력의 다른 예에 관한 도면이다.
도 28은 일 실시예에 따른 복수의 이미지에 기초한 이미지 기반 모니터링에 관한 도면이다.
도 29 및 도 30은 일 실시예에 따른 모니터링 정보 출력의 다른 예에 관한 도면이다.
도 31 및 도 32는 일 실시예에 따른 모니터링 정보 출력의 다른 예에 관한 도면이다.
도 33 및 도 34는 일 실시예에 따른 시점 변환에 관한 도면이다.
도 35는 일 실시예에 따른 접안 모니터링의 순서도이다.
1 is a diagram of image-based monitoring according to an embodiment.
2 is a view of an eyepiece monitoring device according to an embodiment.
3 and 4 are diagrams related to an embodiment of an eyepiece monitoring device according to an embodiment.
5 is a diagram illustrating a viewing angle and a depth of field according to an exemplary embodiment.
6 and 7 are views of an installation position of a sensor module according to an embodiment.
8 is a diagram related to image analysis according to an exemplary embodiment.
9 to 11 are diagrams of an object recognition step according to an exemplary embodiment.
12 and 13 are diagrams of a learning step and an inference step of an artificial neural network according to an embodiment.
14 and 15 are diagrams for estimating position/movement information of an object according to an embodiment.
16 is a flowchart for determining a target vessel according to an embodiment.
17 is a view related to an example of tracking a ship according to an embodiment.
18 is a diagram illustrating an example of determining a target vessel based on location information according to an embodiment.
19 is a diagram illustrating an example of determining a target vessel based on movement information according to an embodiment.
20 is a diagram illustrating an example of determining a target vessel based on navigation information according to an embodiment.
21 is a diagram illustrating an example of determining a target vessel based on user input information according to an embodiment.
22 is a view related to obtaining information on the berthing guide of the target vessel according to an embodiment.
23 is a flowchart of monitoring information output according to an embodiment.
24 is a diagram illustrating an example of outputting monitoring information according to an embodiment.
25 to 27 are diagrams illustrating another example of outputting monitoring information according to an embodiment.
28 is a diagram related to image-based monitoring based on a plurality of images according to an embodiment.
29 and 30 are diagrams of another example of outputting monitoring information according to an embodiment.
31 and 32 are diagrams of another example of outputting monitoring information according to an embodiment.
33 and 34 are diagrams for view transformation according to an embodiment.
35 is a flowchart of eyepiece monitoring according to an embodiment.

본 명세서에 기재된 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 명확히 설명하기 위한 것이므로, 본 발명이 본 명세서에 기재된 실시예에 의해 한정되는 것은 아니며, 본 발명의 범위는 본 발명의 사상을 벗어나지 아니하는 수정예 또는 변형예를 포함하는 것으로 해석되어야 한다.The embodiments described in this specification are for clearly explaining the spirit of the present invention to those of ordinary skill in the art to which the present invention belongs, so the present invention is not limited by the embodiments described in this specification, and the present invention It should be construed as including modifications or variations that do not depart from the spirit of the present invention.

본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하여 가능한 현재 널리 사용되고 있는 일반적인 용어를 선택하였으나 이는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 다만, 이와 달리 특정한 용어를 임의의 의미로 정의하여 사용하는 경우에는 그 용어의 의미에 관하여 별도로 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 한다.The terms used in the present specification are selected as widely used general terms as possible in consideration of the functions in the present invention, but they may vary depending on the intention, custom, or emergence of new technology of those of ordinary skill in the art to which the present invention belongs. can However, if a specific term is defined and used with an arbitrary meaning, the meaning of the term will be separately described. Therefore, the terms used in this specification should be interpreted based on the actual meaning of the terms and the contents of the entire specification, rather than the names of simple terms.

본 명세서에 첨부된 도면은 본 발명을 용이하게 설명하기 위한 것으로 도면에 도시된 형상은 본 발명의 이해를 돕기 위하여 필요에 따라 과장되어 표시된 것일 수 있으므로 본 발명이 도면에 의해 한정되는 것은 아니다.The drawings attached to this specification are for easy explanation of the present invention, and the shapes shown in the drawings may be exaggerated as necessary to help understand the present invention, so the present invention is not limited by the drawings.

본 명세서에서 본 발명에 관련된 공지의 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에 이에 관한 자세한 설명은 필요에 따라 생략하기로 한다.In the present specification, when it is determined that a detailed description of a known configuration or function related to the present invention may obscure the gist of the present invention, a detailed description thereof will be omitted if necessary.

본 명세서에서 사용되는 '항만 이미지' 라는 용어는 항만과 관련된 이미지로 이해될 수 있으며, 예를 들어, 항만 이미지는 항만에 설치된 카메라를 통해 촬상된 이미지, 항만의 적어도 일부가 포함된 이미지 등을 포함할 수 있다. As used herein, the term 'port image' may be understood as an image related to a port, for example, a port image includes an image captured by a camera installed in a port, an image including at least a part of the port, and the like. can do.

본 명세서의 일 양상에 따르면 컴퓨팅 수단에 의해 수행되는 접안 모니터링 방법에 있어서, 항만에 설치되어 이미지를 촬상하는 카메라를 이용하여 바다 및 복수의 선박을 포함하는 항만 이미지를 획득하는 단계; 입력 이미지 및 상기 입력 이미지에 포함된 바다, 선박 및 지형지물을 포함하는 오브젝트들에 해당하는 픽셀에 각각 바다, 선박 및 지형지물을 지시하는 클래스 값들을 라벨링한 러닝셋을 이용하여 학습된 인공 신경망을 이용하여 상기 항만 이미지로부터 상기 오브젝트들에 대한 세그멘테이션 이미지를 생성하는 단계; 상기 세그멘테이션 이미지의 선박을 지시하는 클래스 값이 할당된 제1 픽셀들에 기초하여 상기 복수의 선박을 트래킹하여 상기 복수의 선박 각각을 나타내는 대표 포인트들의 위치 정보가 포함된 트래킹 정보를 획득하는 단계; 상기 트래킹 정보에 기초하여 상기 트래킹되는 선박 중 접안 가이드되는 타겟 선박을 결정하는 단계; 및 상기 세그멘테이션 이미지에 기초하여 상기 타겟 선박의 선수와 안벽 사이의 거리인 선수 거리 및 상기 타겟 선박의 선미와 안벽 사이의 거리인 선미 거리를 포함하는 접안 가이드 정보를 획득하는 단계; 를 포함하는 접안 모니터링 방법이 제공될 수 있다.According to an aspect of the present specification, there is provided a berthing monitoring method performed by a computing means, the method comprising: acquiring an image of a harbor including the sea and a plurality of ships using a camera installed in a harbor to take an image; An artificial neural network learned using a learning set in which the input image and the pixels corresponding to the objects including the sea, the ship, and the feature included in the input image are labeled with class values indicating the sea, the ship, and the feature, respectively. generating segmentation images for the objects from the harbor image using; acquiring tracking information including location information of representative points representing each of the plurality of ships by tracking the plurality of ships based on first pixels to which a class value indicating a ship of the segmented image is assigned; determining a target vessel to be guided berthing among the vessels being tracked on the basis of the tracking information; and obtaining berthing guide information including a bow distance that is a distance between a bow of the target ship and a quay wall and a stern distance that is a distance between the stern and a quay wall of the target ship based on the segmentation image; An eyepiece monitoring method comprising a may be provided.

여기서, 상기 대표 포인트는 상기 세그멘테이션 이미지의 상기 복수의 선박 각각의 세그멘테이션 영역 상의 하나의 포인트일 수 있다.Here, the representative point may be one point on the segmentation area of each of the plurality of ships of the segmentation image.

여기서, 상기 대표 포인트는 상기 복수의 선박 각각의 세그멘테이션 영역의 중심에 위치하는 포인트일 수 있다.Here, the representative point may be a point located at the center of the segmentation area of each of the plurality of ships.

여기서, 상기 트래킹 정보를 획득하는 단계는 상기 대표점과 상기 안벽 사이의 거리를 획득하는 단계를 포함하고 상기 타겟 선박은 상기 대표 포인트와 상기 안벽 사이의 거리에 기초하여 결정될 수 있다.Here, the acquiring of the tracking information may include acquiring a distance between the representative point and the quay wall, and the target vessel may be determined based on the distance between the representative point and the quay wall.

여기서, 상기 타겟 선박은 상기 복수의 선박 중 상기 대표 포인트와 상기 안벽 사이의 거리가 기설정된 값 미만인 선박으로 결정될 수 있다.Here, the target vessel may be determined as a vessel in which a distance between the representative point and the quay wall among the plurality of vessels is less than a preset value.

여기서, 상기 타겟 선박은 상기 복수의 선박 중 상기 대표 포인트가 기설정된 영역 상에 위치하는 선박으로 결정될 수 있다.Here, the target vessel may be determined as a vessel in which the representative point is located on a preset area among the plurality of vessels.

여기서, 상기 트래킹 정보를 획득하는 단계는 상기 대표 포인트의 위치 정보에 기초하여 상기 대표 포인트의 이동 정보를 획득하는 단계를 포함하고, 상기 타겟 선박은 상기 대표 포인트의 이동 정보에 기초하여 결정될 수 있다.Here, the acquiring of the tracking information may include acquiring movement information of the representative point based on the location information of the representative point, and the target vessel may be determined based on the movement information of the representative point.

여기서, 상기 타겟 선박은 상기 복수의 선박 중 상기 대표 포인트의 상기 안벽으로의 접근 속도의 크기에 기초하여 결정될 수 있다.Here, the target vessel may be determined based on a magnitude of an approach speed of the representative point among the plurality of vessels to the quay wall.

여기서, 상기 트래킹 정보를 획득하는 단계는 상기 복수의 선박의 VTS 정보 및 AIS 정보 중 적어도 하나를 획득하는 단계를 포함하고, 상기 타겟 선박은 상기 VTS 정보 및 AIS 정보 중 적어도 하나에 기초하여 결정될 수 있다.Here, the acquiring of the tracking information may include acquiring at least one of VTS information and AIS information of the plurality of vessels, and the target vessel may be determined based on at least one of the VTS information and AIS information. .

여기서, 상기 타겟 선박은 상기 복수의 선박 중 상기 VTS 정보 및 AIS 정보 중 적어도 하나에 따른 도착지에 기초하여 결정될 수 있다.Here, the target vessel may be determined based on a destination according to at least one of the VTS information and the AIS information among the plurality of vessels.

여기서, 상기 트래킹 정보를 획득하는 단계는 사용자 단말로부터 상기 복수의 선박에 대한 사용자 입력 정보를 획득하는 단계를 포함하고, 상기 타겟 선박은 상기 복수의 선박에 대한 사용자 입력 정보에 기초하여 결정될 수 있다.Here, the acquiring of the tracking information may include acquiring user input information on the plurality of ships from a user terminal, and the target ship may be determined based on user input information on the plurality of ships.

여기서, 상기 타겟 선박은 상기 복수의 선박 중 상기 사용자 입력 정보에 따라 선택된 선박으로 결정될 수 있다.Here, the target vessel may be determined as a vessel selected according to the user input information among the plurality of vessels.

여기서, 상기 타겟 선박은 상기 타겟 선박 결정에 이용되는 조건에 부합하는 선박이 복수인 경우 상기 조건에 더 늦게 부합한 하나의 선박으로 결정될 수 있다.Here, the target vessel may be determined as one vessel that satisfies the condition later when there are a plurality of vessels that satisfy the condition used for determining the target vessel.

여기서, 상기 인공 신경망은 입력 이미지 및 상기 입력 이미지에 포함된 바다, 예인선, 예인선을 제외한 선박 및 지형지물을 포함하는 오브젝트들에 해당하는 픽셀에 각각 바다, 예인선, 예인선이 제외된 선박 및 지형지물을 지시하는 클래스 값들을 라벨링한 러닝셋을 이용하여 학습될 수 있다.Here, the artificial neural network is an input image and pixels corresponding to objects including ships and features excluding the sea, tugboat, and tugboat included in the input image, respectively. It can be learned using a learning set that labels the indicated class values.

여기서, 상기 접안 가이드 정보를 획득하는 단계는 상기 타겟 선박이 해수면과 접하는 밑면의 양 단부에 대응하는 한 쌍의 포인트를 추출하는 단계 및 상기 한 쌍의 포인트에 기초하여 상기 선수 거리 및 상기 선미 거리를 획득하는 단계를 포함할 수 있다.Here, the step of obtaining the berthing guide information is the step of extracting a pair of points corresponding to both ends of the bottom surface of the target ship in contact with the sea level, and the bow distance and the stern distance based on the pair of points It may include the step of obtaining.

여기서, 상기 접안 가이드 정보를 획득하는 단계는 상기 선수 거리 및 상기 선미 거리에 기초하여 상기 타겟 선박의 선수가 상기 안벽으로 접근하는 속도인 선수 속도 및 상기 타겟 선박의 선미가 상기 안벽으로 접근하는 속도인 선미 속도를 획득하는 단계를 포함할 수 있다.Here, the step of obtaining the berthing guide information is a bow speed, which is a speed at which the bow of the target ship approaches the quay wall, based on the bow distance and the stern distance, and a speed at which the stern of the target ship approaches the quay wall. and obtaining a stern speed.

여기서, 상기 접안 가이드 정보를 획득하는 단계는 상기 세그멘테이션 이미지에 기초하여 상기 타겟 선박과 상기 다른 선박 사이의 거리를 획득하는 단계를 포함할 수 있다.Here, the step of obtaining the eyepiece guide information may include obtaining a distance between the target ship and the other ship based on the segmentation image.

여기서, 상기 접안 가이드 정보를 획득하는 단계는 상기 타겟 선박과 다른 선박 사이의 거리에 기초하여 상기 타겟 선박과 상기 다른 선박 사이의 상대 속도를 획득하는 단계를 포함할 수 있다.Here, the step of obtaining the berthing guide information may include obtaining a relative speed between the target ship and the other ship based on a distance between the target ship and the other ship.

여기서, 상기 접안 가이드 정보를 획득하는 단계는 상기 선박의 다른 선박 또는 상기 안벽과의 충돌 위험과 관련된 정보를 획득하는 단계를 포함할 수 있다.Here, the step of obtaining the berthing guide information may include obtaining information related to the risk of collision with another vessel or the quay wall of the vessel.

여기서, 상기 접안 모니터링 방법은 상기 접안 가이드 정보를 상기 항만 이미지와 함께 출력하는 단계; 를 더 포함할 수 있다.Here, the eyepiece monitoring method comprises: outputting the eyepiece guide information together with the port image; may further include.

여기서, 상기 항만 이미지는 복수의 항만 이미지가 정합된 파노라마 이미지를 포함할 수 있다.Here, the harbor image may include a panoramic image in which a plurality of harbor images are registered.

또한 상술한 방법을 실행시키기 위한 프로그램을 기록한 기록매체가 제공될 수 있다.In addition, a recording medium in which a program for executing the above-described method is recorded may be provided.

또한 본 명세서의 일 양상에 따르면 항만에 설치되어 이미지를 촬상하는 카메라; 상기 카메라가 촬상한 바다 및 선박을 포함하는 항만 이미지를 획득하고, 입력 이미지 및 상기 입력 이미지에 포함된 바다, 선박 및 지형지물을 포함하는 오브젝트들에 해당하는 픽셀에 각각 바다, 선박 및 지형지물을 지시하는 클래스 값들을 라벨링한 러닝셋을 이용하여 학습된 인공 신경망을 이용하여 상기 항만 이미지로부터 상기 오브젝트들에 대한 세그멘테이션 이미지를 생성하고, 상기 세그멘테이션 이미지의 선박을 지시하는 클래스 값이 할당된 제1 픽셀들에 기초하여 상기 복수의 선박을 트래킹하여 상기 복수의 선박 각각을 나타내는 대표 포인트들의 위치 정보가 포함된 트래킹 정보를 획득하고, 상기 트래킹 정보에 기초하여 상기 트래킹되는 선박 중 접안 가이드되는 타겟 선박을 결정하고, 상기 세그멘테이션 이미지에 기초하여 상기 타겟 선박의 선수와 안벽(pier) 사이의 거리인 선수 거리 및 상기 타겟 선박의 선미와 안벽 사이의 거리인 선미 거리를 포함하는 접안 가이드 정보를 획득하는 제어 모듈; 및 상기 타겟 선박의 접안 가이드 정보를 원격 위치한 단말기에 전송하는 통신 모듈; 을 포함하는 접안 모니터링 장치가 제공될 수 있다.In addition, according to an aspect of the present specification, a camera is installed in the harbor to take an image; Acquires a port image including the sea and ships captured by the camera, and applies the sea, ship, and features to pixels corresponding to the input image and objects including the sea, ships, and features included in the input image, respectively. A first pixel to which segmentation images for the objects are generated from the harbor image using an artificial neural network trained using a running set that label class values indicating, and a class value indicating a vessel of the segmentation image is assigned By tracking the plurality of ships based on the acquisition tracking information including the location information of representative points representing each of the plurality of ships, based on the tracking information, determining a target ship to be guided among the ships being tracked based on the tracking information And, based on the segmentation image, a control module for obtaining berthing guide information including a bow distance that is a distance between a bow of the target ship and a pier and a stern distance that is a distance between the stern and a quay wall of the target ship; and a communication module for transmitting the berthing guide information of the target vessel to a terminal located remotely. An eyepiece monitoring device comprising a may be provided.

이하에서는 일 실시예에 따른 접안 모니터링 장치 및 방법에 대하여 설명한다.Hereinafter, an eyepiece monitoring apparatus and method according to an embodiment will be described.

본 명세서에서 모니터링이란 주변 상황을 파악하거나 인식하는 것으로, 일정 영역이나 특정 오브젝트 등 감지 대상을 각종 센서를 이용하여 감지하고 그 감지 결과를 사용자에게 제공하는 것뿐만 아니라 감지 결과를 바탕으로 연산 등을 통해 추가적인 정보를 제공하는 것 등을 포함하도록 넓게 해석되어야 한다.In this specification, monitoring refers to grasping or recognizing the surrounding situation, detecting a detection target such as a certain area or a specific object using various sensors and providing the detection result to the user, as well as through calculation based on the detection result. It should be construed broadly to include, for example, providing additional information.

이미지 기반 모니터링이란 이미지에 기초하여 주변 상황을 파악하거나 인식하는 것을 의미할 수 있다. 예를 들어, 모니터링은 선박의 운항 시 선박 주변 이미지를 획득하여 이로부터 다른 선박이나 장애물 등을 인식하거나, 선박의 접안 또는 이안 시 접안 가이드 정보를 산출하기 위한 정보를 획득하는 것을 의미할 수 있다. Image-based monitoring may mean identifying or recognizing a surrounding situation based on an image. For example, monitoring may mean acquiring information for calculating berthing guide information during berthing or berthing of a ship or recognizing other ships or obstacles therefrom by acquiring images around the ship when the ship is operating.

접안 가이드 정보란 다른 선박이나 장애물 등의 인식, 항만 상황 파악, 선석에 접근 가능한지 여부, 안벽과의 거리 및 속도, 다른 선박과의 거리 및 속도, 운항 경로 상 장애물 존재 여부 파악 등 접안에 필요한 주변 환경에 대한 정보를 의미할 수 있다. 본 명세서에서는 주로 선박 및 항만에서 접안이 수행되는 경우의 모니터링에 대해 설명하나, 이에 한정되는 것은 아니고 차량의 주행, 비행체의 운항 등의 경우에도 적용될 수 있을 것이다.Berthing guide information refers to the surrounding environment necessary for berthing, such as recognizing other ships or obstacles, understanding the port situation, whether the berth is accessible, the distance and speed from the quay wall, the distance and speed from other ships, and the presence of obstacles in the navigation route can mean information about In this specification, although mainly described for monitoring when berthing is performed in ships and ports, it is not limited thereto and may be applied to the case of driving of a vehicle, operation of an aircraft, and the like.

도 1은 일 실시예에 따른 이미지 기반 모니터링에 관한 도면이다. 도 1을 참고하면, 이미지 기반 모니터링은 이미지 획득 단계(S10) 및 이미지 분석 단계(S20)를 포함할 수 있다.1 is a diagram of image-based monitoring according to an embodiment. Referring to FIG. 1 , image-based monitoring may include an image acquisition step S10 and an image analysis step S20 .

이미지 획득 단계(S10)는 장치(10)가 이미지를 획득하는 단계를 의미할 수 있다. 여기서, 이미지의 종류는 RGB 이미지, IR 이미지, depth 이미지, 라이다(lidar) 이미지, 레이더(radar) 이미지 등 다양할 수 있고 제한이 있는 것은 아니다. 또한, 2차원 이미지뿐만 아니라 3차원 이미지 등도 가능하다.The image acquisition step S10 may mean a step in which the device 10 acquires an image. Here, the type of image may be various, such as an RGB image, an IR image, a depth image, a lidar image, and a radar image, and there is no limitation. In addition, not only a two-dimensional image but also a three-dimensional image is possible.

이미지 분석 단계(S20)는 이미지에 기초하여 분석 결과를 획득하는 단계를 의미할 수 있다. 일 예로, 이미지 분석 단계(S20)는 이미지를 통해 접안 가이드 정보를 산출하는 단계를 포함할 수 있다. 또는, 이미지 분석 단계(S20)는 이미지에 포함된 오브젝트의 특성을 분석하는 단계를 의미할 수 있다. 또는, 이미지 분석 단계(S20)는 이미지가 나타내는 상황을 판단하는 단계를 포함할 수 있다. 또는, The image analysis step S20 may refer to a step of obtaining an analysis result based on the image. For example, the image analysis step (S20) may include calculating the eyepiece guide information through the image. Alternatively, the image analysis step ( S20 ) may refer to a step of analyzing characteristics of an object included in the image. Alternatively, the image analysis step S20 may include determining a situation indicated by the image. or,

이미지 획득 단계(S10) 및 이미지 분석 단계(S20)의 구체적인 내용은 후술하기로 한다. 이하에서는 이미지 획득 단계(S10) 또는 이미지 분석 단계(S20)를 통해 획득한 정보를 모니터링 정보라 한다.Details of the image acquisition step ( S10 ) and the image analysis step ( S20 ) will be described later. Hereinafter, information acquired through the image acquisition step ( S10 ) or the image analysis step ( S20 ) is referred to as monitoring information.

도 2는 일 실시예에 따른 접안 모니터링 장치에 관한 도면이다. 도 2를 참고하면, 모니터링 장치(10)는 센서 모듈(100), 제어 모듈(200) 및 통신 모듈(300)을 포함할 수 있다.2 is a view of an eyepiece monitoring device according to an embodiment. Referring to FIG. 2 , the monitoring device 10 may include a sensor module 100 , a control module 200 , and a communication module 300 .

센서 모듈(100)은 선박이나 선박 주변 및 항만에 대한 정보를 센싱할 수 있다. 센서 모듈(100)은 선박자동식별장치(automatic identification system, AIS), 이미지 생성 유닛, 위치 측정 유닛, 자세 측정 유닛, 케이싱 등을 포함할 수 있다.The sensor module 100 may sense information about a ship or a ship's vicinity and a port. The sensor module 100 may include an automatic identification system (AIS), an image generating unit, a position measuring unit, an attitude measuring unit, a casing, and the like.

이미지 생성 유닛은 이미지를 생성할 수 있다. 이미지 생성 유닛은 카메라, 라이다, 레이더, 초음파 탐지기 등을 포함할 수 있다. 카메라의 예로는 단안 카메라, 쌍안 카메라, 가시광선 카메라, IR 카메라, depth 카메라가 있지만 이에 한정되는 것은 아니다.The image generating unit may generate an image. The image generating unit may include a camera, lidar, radar, ultrasonic detector, and the like. Examples of cameras include, but are not limited to, monocular cameras, binocular cameras, visible light cameras, IR cameras, and depth cameras.

위치 측정 유닛은 센서 모듈이나 이미지 생성 유닛 등 센서 모듈에 포함된 구성의 위치를 측정할 수 있다. 일 예로, 위치 측정 유닛은 GPS(Global Positioning System)일 수 있다. 특히, 위치 측정의 정확도 향상을 위해 RTK-GPS(Real-Time Kinematic GPS)가 이용될 수도 있다.The position measuring unit may measure the position of a component included in the sensor module, such as a sensor module or an image generating unit. As an example, the location measurement unit may be a Global Positioning System (GPS). In particular, Real-Time Kinematic GPS (RTK-GPS) may be used to improve the accuracy of location measurement.

위치 측정 유닛은 미리 정해진 시간 간격마다 위치 정보를 획득할 수 있다. 여기서, 상기 시간 간격은 센서 모듈의 설치 위치에 따라 달라질 수 있다. 예를 들어, 센서 모듈이 선박 등 이동체에 설치된 경우 위치 측정 유닛은 짧은 시간 간격마다 위치 정보를 획득할 수 있다. 반면, 센서 모듈이 항만 등 고정체에 설치된 경우 위치 측정 유닛은 긴 시간 간격마다 위치 정보를 획득할 수 있다. 위치 측정 유닛의 위치 정보 획득을 위한 시간 간격은 변경될 수 있다.The position measuring unit may acquire position information at predetermined time intervals. Here, the time interval may vary depending on the installation position of the sensor module. For example, when the sensor module is installed in a moving object such as a ship, the position measurement unit may acquire position information at short time intervals. On the other hand, when the sensor module is installed in a fixed body such as a port, the position measurement unit may acquire position information at long time intervals. The time interval for obtaining the location information of the location measuring unit may be changed.

자세 측정 유닛은 센서 모듈이나 이미지 생성 유닛 등 센서 모듈에 포함된 구성의 자세를 측정할 수 있다. 일 예로, 자세 측정 유닛은 관성측정장비(Inertial Measurement Unit, IMU)일 수 있다.The posture measuring unit may measure the posture of components included in the sensor module, such as a sensor module or an image generating unit. For example, the posture measurement unit may be an inertial measurement unit (IMU).

자세 측정 유닛은 미리 정해진 시간 간격마다 자세 정보를 획득할 수 있다. 여기서, 상기 시간 간격은 센서 모듈의 설치 위치에 따라 달라질 수 있다. 예를 들어, 센서 모듈이 선박 등 이동체에 설치된 경우 자세 측정 유닛은 짧은 시간 간격마다 자세 정보를 획득할 수 있다. 반면, 센서 모듈이 항만 등 고정체에 설치된 경우 자세 측정 유닛은 긴 시간 간격마다 자세 정보를 획득할 수 있다. 자세 측정 유닛의 자세 정보 획득을 위한 시간 간격은 변경될 수 있다.The posture measuring unit may acquire posture information at predetermined time intervals. Here, the time interval may vary depending on the installation position of the sensor module. For example, when the sensor module is installed in a moving object such as a ship, the posture measuring unit may acquire posture information at short time intervals. On the other hand, when the sensor module is installed in a fixed body such as a port, the posture measuring unit may acquire posture information at long time intervals. The time interval for acquiring the posture information of the posture measuring unit may be changed.

케이싱은 이미지 생성 유닛, 위치 측정 유닛, 자세 측정 유닛 등 센서 모듈을 보호할 수 있다.The casing may protect a sensor module such as an image generating unit, a position measuring unit, and a posture measuring unit.

케이싱의 내부에는 이미지 생성 유닛, 위치 측정 유닛, 자세 측정 유닛 중 적어도 하나가 존재할 수 있다. 케이싱은 내부에 존재하는 이미지 생성 유닛 등의 장비가 염수에 의해 부식되는 것을 방지할 수 있다. 또는, 케이싱은 내부에 존재하는 장비에 가해지는 충격을 방지하거나 완화시켜 이를 보호할 수 있다.At least one of an image generating unit, a position measuring unit, and a posture measuring unit may be present inside the casing. The casing may prevent equipment such as an image generating unit existing therein from being corroded by salt water. Alternatively, the casing may protect it by preventing or mitigating the impact applied to the equipment existing therein.

내부에 이미지 생성 유닛 등을 포함하기 위하여 케이싱의 내부에 공동이 형성될 수 있다. 예를 들어, 케이싱은 내부가 비어있는 직육면체 형상일 수 있지만, 이에 한정되는 것은 아니고 내부에 이미지 생성 유닛 등이 배치될 수 있는 다양한 형상으로 제공될 수 있다.A cavity may be formed in the interior of the casing to contain an image generating unit or the like therein. For example, the casing may have a rectangular parallelepiped shape with an empty interior, but is not limited thereto and may be provided in various shapes in which an image generating unit or the like can be disposed.

케이싱의 내부에 이미지 생성 유닛이 배치되는 경우, 이미지 생성 유닛의 시야 확보를 위해 케이싱의 일 영역에 개폐구가 형성되거나 케이싱의 일 영역을 유리 등 투명한 물질로 형성할 수 있다. 이미지 생성 유닛은 상기 개폐구 또는 투명한 영역을 통해 선박 주변 및 항만을 촬상할 수 있다.When the image generating unit is disposed inside the casing, an opening may be formed in one area of the casing or a transparent material such as glass may be formed in one area of the casing to secure a view of the image generating unit. The image generating unit may image the periphery of the vessel and the harbor through the opening or the transparent area.

케이싱은 이미지 생성 유닛 등을 외부 충격으로부터 보호하기 위해 강인한 소재로 제공될 수 있다. 또는, 케이싱은 염분으로 인한 부식을 방지하기 위하여 해수용 합금 등의 소재로 제공될 수 있다.The casing may be provided with a strong material to protect the image generating unit and the like from external impact. Alternatively, the casing may be provided with a material such as an alloy for seawater in order to prevent corrosion due to salt.

케이싱은 이미지 생성 유닛의 이물질을 제거하기 위한 장비를 포함할 수 있다. 일 예로, 케이싱에 포함된 와이퍼를 통해 이미지 생성 유닛의 표면에 달라붙은 이물질을 물리적으로 제거할 수 있다. 여기서, 상기 와이퍼는 이물질을 제거하려는 표면에 밀착할 수 있도록 상기 표면과 동일하거나 유사한 곡률을 갖는 선형 또는 판형으로 제공될 수 있다. 다른 예로, 케이싱에 포함된 액체 스프레이를 통해 물이나 워셔액을 도포하여 이물질을 제거하거나 도포 후 와이퍼를 이용하여 이물질을 물리적으로 제거할 수 있다.The casing may include equipment for removing foreign substances from the image generating unit. For example, foreign substances adhering to the surface of the image generating unit may be physically removed through a wiper included in the casing. Here, the wiper may be provided in a linear or plate shape having the same or similar curvature as the surface so as to be in close contact with the surface to remove the foreign material. As another example, foreign substances may be removed by applying water or washer liquid through a liquid spray included in the casing, or the foreign substances may be physically removed using a wiper after application.

이물질 제거 장비는 수동으로 가동될 수 있지만, 자동으로도 가동될 수 있다. 예를 들어, 미리 정해진 시간 간격으로 이물질 제거 장비가 동작할 수 있다. 또는, 이미지 생성 유닛에 이물질이 달라 붙었는지 여부를 감지하는 센서를 이용하여 이물질 제거 장비를 동작시킬 수 있다. 또는, 이미지 생성 유닛이 촬상한 이미지를 이용하여, 상기 이미지에 이물질이 촬상되었는지 여부를 판단한 후, 이물질이 존재한다고 판단되는 경우에 이물질 제거 장비를 동작시킬 수 있다. 여기서, 이미지에 이물질이 촬상되었는지 여부는 인공 신경망(artificial neural network)을 통하여 판단될 수도 있을 것이다.The debris removal equipment can be operated manually, but can also be operated automatically. For example, the foreign material removal equipment may operate at a predetermined time interval. Alternatively, the foreign material removal equipment may be operated using a sensor that detects whether a foreign material is attached to the image generating unit. Alternatively, after determining whether a foreign material is captured in the image by using the image captured by the image generating unit, the foreign material removal equipment may be operated when it is determined that the foreign material is present. Here, whether a foreign material is captured in the image may be determined through an artificial neural network.

하나의 센서 모듈(100)은 2개 이상의 동일한 카메라를 포함하는 등 복수의 동일한 장비를 포함할 수도 있다.One sensor module 100 may include a plurality of identical equipment, such as including two or more identical cameras.

제어 모듈(200)은 이미지 분석을 수행할 수 있다. 또한, 센서 모듈(100)을 통해 각종 데이터를 수신하는 동작, 출력 장치를 통해 각종 출력을 출력하는 동작, 메모리에 각종 데이터를 저장하거나 메모리로부터 각종 데이터를 획득하는 동작 등이 제어 모듈(200)의 제어에 의해 수행될 수 있다. 이하에서는 본 명세서의 실시예로 개시되는 각종 동작이나 단계들은 별도의 언급이 없는 이상 제어 모듈(200)에 의해 수행되거나 제어 모듈(200)의 제어에 의해 수행되는 것으로 해석될 수 있다.The control module 200 may perform image analysis. In addition, the operation of receiving various data through the sensor module 100, the operation of outputting various outputs through the output device, the operation of storing various data in the memory or acquiring various data from the memory, etc. It can be done by control. Hereinafter, various operations or steps disclosed in the embodiments of the present specification may be interpreted as being performed by the control module 200 or being performed by the control of the control module 200 unless otherwise specified.

제어 모듈(200)의 예로는 중앙 처리 장치(Central Processing Unit, CPU), 그래픽 처리 장치(Graphics Processing Unit, GPU), 디지털 신호 처리 장치(Digital Signal Processor, DSP), 상태 기계(state machine), 주문형 반도체(Application Specific Integrated Circuit, ASIC), 무선 주파수 집적 회로(Radio-Frequency Integrated Circuit, RFIC) 및 이들의 조합 등이 있을 수 있다.Examples of the control module 200 include a central processing unit (CPU), a graphics processing unit (GPU), a digital signal processing unit (DSP), a state machine, and an on-demand system. There may be a semiconductor (Application Specific Integrated Circuit, ASIC), a Radio-Frequency Integrated Circuit (RFIC), and a combination thereof.

통신 모듈(300)은 장치(10)로부터 외부로 정보를 송신하거나 외부로부터 정보를 수신할 수 있다. 통신 모듈(300)은 유선 또는 무선 통신을 수행할 수 있다. 통신 모듈(300)은 양방향(bi-directional) 또는 단방향 통신을 수행할 수 있다. 예를 들어, 장치(10)는 통신 모듈(300)을 통해 외부 출력 장치로 정보를 전달하여 제어 모듈(200)이 수행한 제어 결과를 외부 출력 장치를 통해 출력할 수 있다. 또한, 통신 모듈(300)은 선박을 관제하는 해상교통관제시스템(VTS, Vessel Traffic Service)으로부터 선박과 관련된 VTS 정보 또는 CITS(Costal Intelligent Transport System) 정보를 수신할 수 있다.The communication module 300 may transmit information from the device 10 to the outside or receive information from the outside. The communication module 300 may perform wired or wireless communication. The communication module 300 may perform bi-directional or unidirectional communication. For example, the device 10 may transmit information to an external output device through the communication module 300 to output a control result performed by the control module 200 through the external output device. In addition, the communication module 300 may receive vessel-related VTS information or CITS (Costal Intelligent Transport System) information from a Vessel Traffic Service (VTS) that controls the vessel.

센서 모듈(100), 제어 모듈(200) 및 통신 모듈(300)은 제어부를 포함할 수 있다. 제어부는 모듈 내에서 각종 정보의 처리와 연산을 수행하고, 모듈을 구성하는 다른 구성 요소를 제어할 수 있다. 제어부는 물리적으로는 전기 신호를 처리하는 전자 회로 형태로 제공될 수 있다. 모듈은 물리적으로 단일한 제어부만을 포함할 수도 있으나, 이와 달리 복수의 제어부를 포함할 수도 있다. 일 예로, 제어부는 하나의 컴퓨팅 수단에 탑재되는 하나 또는 복수의 프로세서(processor)일 수 있다. 다른 예로, 제어부는 물리적으로 이격된 서버(server)와 터미널(terminal)에 탑재되어 통신을 통해 협업하는 프로세서들로 제공될 수도 있다. 제어부의 예로는 중앙 처리 장치(Central Processing Unit, CPU), 그래픽 처리 장치(Graphics Processing Unit, GPU), 디지털 신호 처리 장치(Digital Signal Processor, DSP), 상태 기계(state machine), 주문형 반도체(Application Specific Integrated Circuit, ASIC), 무선 주파수 집적 회로(Radio-Frequency Integrated Circuit, RFIC) 및 이들의 조합 등이 있을 수 있다.The sensor module 100 , the control module 200 , and the communication module 300 may include a control unit. The control unit may process and operate various types of information within the module, and may control other components constituting the module. The control unit may be provided in the form of an electronic circuit that physically processes an electrical signal. A module may physically include only a single control unit, or alternatively may include a plurality of control units. For example, the control unit may be one or a plurality of processors mounted on one computing means. As another example, the control unit may be mounted on a physically separated server and a terminal and provided as processors that cooperate through communication. Examples of the control unit include a central processing unit (CPU), a graphics processing unit (GPU), a digital signal processing unit (DSP), a state machine, and an application specific Integrated Circuit (ASIC), Radio-Frequency Integrated Circuit (RFIC), and combinations thereof.

센서 모듈(100), 제어 모듈(200) 및 통신 모듈(300)은 통신부를 포함할 수 있다. 상기 모듈들은 통신부를 통해 정보를 송수신할 수 있다. 예를 들어, 센서 모듈(100)은 외부로부터 획득한 정보를 그 통신부를 통해 송신하고, 제어 모듈(200)은 그 통신부를 통해 센서 모듈(100)이 송신한 정보를 수신할 수 있다. 통신부는 유선 또는 무선 통신을 수행할 수 있다. 통신부는 양방향(bi-directional) 또는 단방향 통신을 수행할 수 있다.The sensor module 100 , the control module 200 , and the communication module 300 may include a communication unit. The modules may transmit and receive information through a communication unit. For example, the sensor module 100 may transmit information obtained from the outside through the communication unit, and the control module 200 may receive information transmitted by the sensor module 100 through the communication unit. The communication unit may perform wired or wireless communication. The communication unit may perform bi-directional or unidirectional communication.

센서 모듈(100), 제어 모듈(200) 및 통신 모듈(300)은 메모리를 포함할 수 있다. 메모리는 각종 프로세싱 프로그램, 프로그램의 프로세싱을 수행하기 위한 파라미터 또는 이러한 프로세싱 결과 데이터 등을 저장할 수 있다. 예를 들어, 메모리는 학습 및/또는 추론에 필요한 데이터, 학습이 진행중이거나 학습된 인공 신경망 등을 저장할 수 있다. 메모리는 비휘발성 반도체 메모리, 하드 디스크, 플래시 메모리, RAM(Random Access Memory), ROM(Read Only Memory), EEPROM(Electrically Erasable Programmable Read-Only Memory) 또는 그 외에 유형의(tangible) 비휘발성의 기록 매체 등으로 구현될 수 있다.The sensor module 100 , the control module 200 , and the communication module 300 may include a memory. The memory may store various processing programs, parameters for performing the processing of the programs, or processing result data, and the like. For example, the memory may store data required for learning and/or inference, an artificial neural network in progress or learned, and the like. Memory includes non-volatile semiconductor memory, hard disk, flash memory, random access memory (RAM), read only memory (ROM), electrically erasable programmable read-only memory (EEPROM), or any other tangible non-volatile recording medium. etc. can be implemented.

모니터링 장치(10)는 2개 이상의 센서 모듈(100)을 포함하는 등 복수의 동일한 모듈을 포함할 수도 있다. 예를 들어, 하나의 장치(10)가 2개의 센서 모듈(100)을 포함하고, 각 센서 모듈(100)이 다시 2개의 카메라를 포함할 수도 있다.The monitoring device 10 may include a plurality of identical modules, such as including two or more sensor modules 100 . For example, one device 10 may include two sensor modules 100 , and each sensor module 100 may include two cameras again.

도 3 및 도 4는 일 실시예에 따른 접안 모니터링 장치의 실시예에 관한 도면이다.3 and 4 are diagrams related to an embodiment of an eyepiece monitoring device according to an embodiment.

도 3을 참고하면, 모니터링 장치(10)는 센서 모듈(100) 및 제어 모듈(200)을 포함할 수 있다. 센서 모듈(100)은 카메라(130)를 통해 이미지를 생성하고, 통신부(110)를 통해 이미지를 제어 모듈(200)로 송신할 수 있다. 또한, 센서 모듈(100)의 제어부(120)는 후술할 시점 변환을 수행하여 이미지의 시점을 변환시킬 수 있다. 제어 모듈(200)은 통신부(210)를 통해 센서 모듈(100)로부터 이미지를 수신하고, 제어부(220)를 통해 후술할 위치/이동 정보 추정 및 이미지 정합 등 이미지 분석을 수행할 수 있다. 또한, 제어 모듈(200)은 통신부(210)를 통해 클라우드 서버로 위치/이동 정보 및 정합된 이미지 등 분석 결과를 송신할 수 있다. 클라우드 서버는 제어 모듈(200)로부터 수신한 분석 결과를 스마트폰, 태블릿, PC 등 사용자 단말로 전송하거나 사용자 단말로부터 인스트럭션을 수신할 수 있다.Referring to FIG. 3 , the monitoring device 10 may include a sensor module 100 and a control module 200 . The sensor module 100 may generate an image through the camera 130 and transmit the image to the control module 200 through the communication unit 110 . In addition, the controller 120 of the sensor module 100 may convert the viewpoint of the image by performing viewpoint transformation, which will be described later. The control module 200 may receive an image from the sensor module 100 through the communication unit 210 , and perform image analysis such as position/movement information estimation and image registration, which will be described later, through the control unit 220 . Also, the control module 200 may transmit an analysis result such as location/movement information and a matched image to the cloud server through the communication unit 210 . The cloud server may transmit the analysis result received from the control module 200 to a user terminal such as a smart phone, a tablet, a PC, or receive an instruction from the user terminal.

도 4를 참고하면, 모니터링 장치(10)는 센서 모듈(100)을 포함할 수 있다. 센서 모듈(100)은 카메라(130)를 통해 이미지를 생성하고, 통신부(110)를 통해 클라우드 서버로 이미지를 전송할 수 있다. 또한, 센서 모듈(100)의 제어부(120)는 후술할 시점 변환을 수행하여 이미지의 시점을 변환시킬 수 있다. 클라우드 서버는 센서 모듈(100)로부터 이미지를 수신하고, 후술할 위치/이동 정보 추정 및 이미지 정합 등 이미지 분석을 수행할 수 있다. 또한, 클라우드 서버는 이미지 분석의 결과를 스마트폰, 태블릿, PC 등 사용자 단말로 전송하거나 사용자 단말로부터 인스트럭션을 수신할 수 있다.Referring to FIG. 4 , the monitoring device 10 may include a sensor module 100 . The sensor module 100 may generate an image through the camera 130 and transmit the image to the cloud server through the communication unit 110 . In addition, the controller 120 of the sensor module 100 may convert the viewpoint of the image by performing viewpoint transformation, which will be described later. The cloud server may receive an image from the sensor module 100 and perform image analysis such as position/movement information estimation and image matching, which will be described later. In addition, the cloud server may transmit the image analysis result to a user terminal such as a smartphone, tablet, or PC or receive an instruction from the user terminal.

도 2 내지 도 4에서 도시하는 장치(10)는 예시에 불과하며 장치(10)의 구성이 이에 한정되지는 않는다.The apparatus 10 shown in FIGS. 2 to 4 is merely an example, and the configuration of the apparatus 10 is not limited thereto.

일 예로, 장치(10)는 출력 모듈(400)을 포함할 수 있다. 출력 모듈(400)은 제어 모듈(200)에 의해 수행된 연산의 결과 등을 출력할 수 있다. 예를 들어, 출력 모듈(400)은 분석 결과를 출력할 수 있다. 출력 모듈(400)은 예시적으로 디스플레이, 스피커, 신호 출력 회로 등일 수 있으나 이에 한정되는 것은 아니다. 이 경우 정보를 사용자 단말 등 외부 출력 장치로 전달하여 외부 출력 장치가 정보를 출력하는 것 외에 출력 모듈(400)을 통해 정보를 출력할 수도 있을 것이다.As an example, the device 10 may include an output module 400 . The output module 400 may output a result of an operation performed by the control module 200 . For example, the output module 400 may output an analysis result. The output module 400 may be, for example, a display, a speaker, a signal output circuit, and the like, but is not limited thereto. In this case, information may be output through the output module 400 in addition to transmitting information to an external output device such as a user terminal and the external output device outputting information.

다른 예로, 장치(10)는 센서 모듈을 포함하지 않을 수도 있다. 이 경우 제어 모듈(200)은 외부 센서 장치로부터 정보를 전달받아 이미지 분석을 수행하는 등 이미지 기반 모니터링 동작을 수행할 수 있을 것이다. 예를 들어, 제어 모듈(200)은 선박이나 항만에 이미 설치된 AIS, 카메라, 라이다, 레이다 등으로부터 정보를 전달받아 이미지 분석을 수행할 수 있다.As another example, the device 10 may not include a sensor module. In this case, the control module 200 may receive information from an external sensor device and perform an image-based monitoring operation, such as performing image analysis. For example, the control module 200 may perform image analysis by receiving information from an AIS, a camera, a lidar, a radar, etc. already installed in a ship or a port.

또한, 도 2 내지 도 4의 각 구성이 수행하는 단계는 반드시 해당 구성이 수행해야 하는 것은 아니고 다른 구성에 의해 수행될 수 있다. 예를 들어, 위의 도 3에서는 센서 모듈(100)의 제어부(120)가 시점 변환을 수행하는 것으로 기재하였으나, 제어 모듈(200)의 제어부(220) 또는 클라우드 서버가 시점 변환을 수행할 수도 있다.In addition, the steps performed by each of the components of FIGS. 2 to 4 are not necessarily performed by the corresponding components and may be performed by other components. For example, although it has been described that the control unit 120 of the sensor module 100 performs viewpoint transformation in FIG. 3 above, the control unit 220 of the control module 200 or the cloud server may perform viewpoint transformation. .

이하에서는 모니터링 장치(10) 및 방법에 대해 보다 구체적으로 살펴본다.Hereinafter, the monitoring apparatus 10 and the method will be described in more detail.

이미지 기반 모니터링을 위한 이미지 획득은 센서 모듈(100)을 통해 수행될 수 있다. 예를 들어, 센서 모듈(100)에 포함된 이미지 생성 유닛을 통해 이미지를 획득할 수 있다. 또는, 전술한 바와 같이 외부 센서 장치로부터 이미지를 획득할 수도 있다. 선박 및 항만 모니터링을 위한 이미지는 바다, 선박, 부표, 장애물, 지형, 항만, 하늘, 건물 등을 포함하는 것이 일반적일 것이다. 이하에서는 주로 가시광선 카메라를 통해 획득한 이미지를 분석하여 모니터링하는 것에 대해 설명하나 이에 한정되는 것은 아니다.Image acquisition for image-based monitoring may be performed through the sensor module 100 . For example, an image may be acquired through an image generating unit included in the sensor module 100 . Alternatively, as described above, an image may be acquired from an external sensor device. Images for vessel and port monitoring will generally include sea, vessel, buoy, obstacle, terrain, port, sky, building, and the like. Hereinafter, the analysis and monitoring of an image acquired through a visible light camera will be mainly described, but the present invention is not limited thereto.

이미지 생성 유닛에 따라 시야각(field of view) 및 피사계 심도(depth of field)가 달라질 수 있다. 도 5는 일 실시예에 따른 시야각 및 피사계 심도에 관한 도면이다. 도 5를 참고하면, 시야각(FOV)은 좌우 또는 상하로 어느 정도의 범위까지 이미지에 포함되는지를 의미할 수 있고, 일반적으로는 각도(angle, degree)로 표현된다. 시야각이 더 크다는 의미는 좌우로 더 큰 폭의 영역을 포함하는 이미지를 생성하거나, 상하로 더 큰 폭의 영역을 포함하는 이미지를 생성하는 것을 의미할 수 있다. 피사계 심도는 이미지의 초점이 맞은 것으로 인식되는 거리 범위를 의미할 수 있고, 피사계 심도가 깊다는 의미는 이미지의 초점이 맞은 것으로 인식되는 거리 범위가 넓다는 것을 의미할 수 있다. 도 5를 참고하면, 피사계 심도(DOF)에 따라 이미지는 초점이 맞은 것으로 인식되는 영역(A1) 및 그 외의 영역(A2)을 포함할 수 있다. 이하에서는 이미지가 포함하고 있는 영역을 촬상 영역(A1 + A2), 초점이 맞은 것으로 인식되는 영역을 유효 영역(A1)이라 하고, 이미지 분석 및 모니터링은 유효 영역에 기초하여 수행될 수 있지만 촬상 영역 전체에 기초하여 수행되거나 촬상 영역의 일부에 기초하여 수행될 수도 있으므로, 이미지 분석 및 모니터링을 수행하기 위해 이용되는 영역을 모니터링 영역이라고 한다.A field of view and a depth of field may vary according to an image generating unit. 5 is a diagram illustrating a viewing angle and a depth of field according to an exemplary embodiment. Referring to FIG. 5 , a field of view (FOV) may mean to what extent an image is included in an image horizontally or vertically, and is generally expressed as an angle (degree, degree). A larger viewing angle may mean generating an image including areas having a larger width left and right or generating an image including areas having a larger width up and down. The depth of field may mean a distance range recognized as being in focus of the image, and a deep depth of field may mean that the distance range recognized as being in focus of the image is wide. Referring to FIG. 5 , according to the depth of field (DOF), an image may include an area A1 recognized as being in focus and an area A2 other than that. Hereinafter, an area included in the image is referred to as an imaging area (A1 + A2) and an area recognized as being in focus is referred to as an effective area (A1). Image analysis and monitoring may be performed based on the effective area, but the entire imaging area Since it may be performed based on , or based on a part of the imaging area, an area used to perform image analysis and monitoring is referred to as a monitoring area.

시야각이 크고 피사계 심도가 얕은 카메라의 예로 광각 카메라가 있다. 시야각이 작고 피사계 심도가 깊은 카메라의 예로는 고배율 카메라, 줌 카메라가 있다.An example of a camera with a large field of view and a shallow depth of field is a wide-angle camera. Examples of cameras with a small field of view and a deep depth of field include high magnification cameras and zoom cameras.

센서 모듈(100)은 항만 내의 조명탑, 크레인, 선박 등 그 위치나 자세에 제한이 없이 설치될 수 있고, 그 개수에도 제한이 없다. 다만, 센서 모듈(100)의 종류 및 성능 등 특성에 따라 그 설치 위치나 개수가 달라질 수 있다. 예를 들어, 센서 모듈(100)이 카메라인 경우, 센서 모듈(100)은 효율적인 모니터링을 위해 수면에서 15m 이상의 고도에 설치되거나, 서로 다른 촬상 영역을 갖도록 복수가 설치될 수 있다. 또한, 센서 모듈(100)의 위치 및 자세는 설치 시 또는 설치 후에 수동 또는 자동으로 조절될 수도 있다.The sensor module 100 may be installed without limitation in its position or posture, such as a lighting tower, a crane, a ship, etc. in a port, and there is also no limitation in the number. However, the installation location or number of the sensor module 100 may vary according to characteristics such as the type and performance of the sensor module 100 . For example, when the sensor module 100 is a camera, the sensor module 100 may be installed at an altitude of 15 m or more from the water surface for efficient monitoring, or a plurality of sensor modules 100 may be installed to have different imaging areas. In addition, the position and posture of the sensor module 100 may be manually or automatically adjusted during or after installation.

도 6 및 도 7은 일 실시예에 따른 센서 모듈(100)의 설치 위치에 관한 도면이다. 도 6 및 도 7을 참고하면, 센서 모듈(100)은 항만 또는 육지와 같이 고정된 위치에 설치되거나, 선박 등과 같이 이동하는 물체에 설치될 수 있다. 여기서, 센서 모듈(100)이 선박에 설치되는 경우, 도 7과 같이 모니터링의 대상이 되는 선박(이하 “타겟 선박”이라 함)에 설치될 수 있고, 도 6과 같이 타겟 선박의 접안 또는 이안을 보조하는 예인선 등 모니터링의 대상이 아닌 제3의 선박에 설치될 수도 있다. 이 외에도, 센서 모듈(100)은 드론 등에 설치되어 타겟 선박을 모니터링할 수 있다.6 and 7 are views of an installation position of the sensor module 100 according to an embodiment. Referring to FIGS. 6 and 7 , the sensor module 100 may be installed at a fixed location, such as a port or on land, or may be installed on a moving object, such as a ship. Here, when the sensor module 100 is installed in a vessel, it may be installed in a vessel to be monitored as shown in FIG. 7 (hereinafter referred to as a “target vessel”), and as shown in FIG. It may be installed on a third vessel that is not subject to monitoring, such as an auxiliary tugboat. In addition, the sensor module 100 may be installed on a drone or the like to monitor a target vessel.

모니터링 장치(10)의 다른 구성 요소는 센서 모듈(100)과 함께 또는 이와 별도의 장소에 설치될 수 있다. Other components of the monitoring device 10 may be installed together with the sensor module 100 or at a separate location.

전술한 바와 같이 이미지 기반 모니터링을 위한 이미지 분석은 오브젝트 특성을 획득하는 것을 포함할 수 있다. 오브젝트의 예로는 선박, 항만, 부표, 바다, 지형, 하늘, 건물, 사람, 동물, 불, 연기 등이 있을 수 있다. 오브젝트 특성의 예로는 오브젝트의 종류, 오브젝트의 위치, 오브젝트까지의 거리, 오브젝트의 절대적 및 상대적인 속력 및 속도 등이 있을 수 있다. 다른 예를 들어, As described above, image analysis for image-based monitoring may include acquiring object characteristics. Examples of the object may include a ship, port, buoy, sea, terrain, sky, building, person, animal, fire, smoke, and the like. Examples of object characteristics may include a type of object, a location of an object, a distance to the object, absolute and relative speed and speed of the object, and the like. another example,

이미지 기반 모니터링을 위한 이미지 분석은 주변 상황을 인식/판단하는 것을 포함할 수 있다. 예를 들어, 이미지 분석은 항만에 불이 난 이미지로부터 화재 상황이 발생한 것을 판단하거나, 예정되지 않은 시간에 항만에 들어온 사람이 촬상된 이미지로부터 침입자가 들어온 것을 판단하는 것일 수 있다. 다른 예를 들어, 이미지 분석은 연기가 존재하는 이미지로부터 화재를 감지하는 것을 포함할 수 있다.Image analysis for image-based monitoring may include recognizing/judging a surrounding situation. For example, the image analysis may be to determine that a fire situation has occurred from an image of a fire in the port, or determine that an intruder has entered the port from an image captured by a person who entered the port at an unscheduled time. For another example, image analysis may include detecting a fire from an image in which smoke is present.

이미지 기반 모니터링을 위한 이미지 분석은 제어 모듈(200)이나 각 모듈(100, 200)에 포함된 제어부(120, 220)를 통해 수행될 수 있다.Image analysis for image-based monitoring may be performed through the control module 200 or the controllers 120 and 220 included in each of the modules 100 and 200 .

도 8은 일 실시예에 따른 이미지 분석에 관한 도면이다. 도 8을 참고하면, 이미지 분석은 오브젝트 인식 단계(S210) 및 위치/이동 정보 추정 단계(S220)를 포함할 수 있다.8 is a diagram related to image analysis according to an exemplary embodiment. Referring to FIG. 8 , image analysis may include object recognition ( S210 ) and location/movement information estimation ( S220 ).

이미지 분석은 오브젝트 인식 단계(S210)를 포함할 수 있다. 오브젝트 인식 단계(S210)는 이미지에 포함된 오브젝트를 인식하는 것을 포함할 수 있다. 예를 들어, 오브젝트 인식은 이미지에 선박, 예인선, 바다, 항만 등의 오브젝트가 포함되어 있는지 여부를 판단하는 것일 수 있다. 더 나아가, 오브젝트 인식은 이미지의 어떤 위치에 오브젝트가 존재하는지를 판단하는 것일 수 있다.The image analysis may include an object recognition step ( S210 ). The object recognition step S210 may include recognizing an object included in an image. For example, object recognition may be determining whether an object such as a ship, tugboat, sea, or harbor is included in the image. Furthermore, object recognition may be determining at which position in an image the object exists.

도 9 내지 도 11은 일 실시예에 따른 오브젝트 인식 단계에 관한 도면이다.9 to 11 are diagrams of an object recognition step according to an exemplary embodiment.

도 9는 카메라가 촬상한 이미지이고, 오브젝트 인식 단계를 통해 도 10 또는 도 11과 같이 오브젝트를 인식할 수 있다. 9 is an image captured by a camera, and an object may be recognized as shown in FIG. 10 or 11 through the object recognition step.

구체적으로, 도 10은 이미지의 각 픽셀 별로 해당 픽셀이 어떠한 오브젝트에 대응되는지를 나타낸 것으로, 세그멘테이션(segmentation)이라고도 한다. 이 경우 오브젝트 인식 단계는 세그멘테이션 단계를 의미할 수 있을 것이다. 세그멘테이션을 통해 이미지로부터 이미지상의 픽셀에 대응되는 특성을 할당하거나 산출할 수 있다. 이는 픽셀에 특성이 할당 또는 라벨링(labelling)되었다고 얘기할 수도 있을 것이다. 도 9 및 도 10을 참고하면, 도 9 의 카메라로 촬상된 이미지에 기초한 세그멘테이션을 수행하여 도 10과 같은 세그멘테이션 이미지를 획득할 수 있다. 도 10에서, 제1 픽셀 영역(P1)은 선박에 대응되는 픽셀의 이미지상의 영역이고, 제2 픽셀 영역(P2)은 바다, 제3 픽셀 영역(P3)은 항만의 안벽, 제4 픽셀 영역(P4)은 지형, 제5 픽셀 영역(P5)은 하늘에 대응되는 픽셀의 이미지상의 영역이다.Specifically, FIG. 10 shows which object the corresponding pixel corresponds to for each pixel of the image, which is also referred to as segmentation. In this case, the object recognition step may mean a segmentation step. Through segmentation, a characteristic corresponding to a pixel on an image may be assigned or calculated from an image. It could be said that the pixel has been assigned a property or labeled. 9 and 10 , a segmentation image as shown in FIG. 10 may be obtained by performing segmentation based on an image captured by the camera of FIG. 9 . In FIG. 10 , the first pixel area P1 is the area on the image of the pixel corresponding to the ship, the second pixel area P2 is the sea, the third pixel area P3 is the quay wall of the harbor, and the fourth pixel area ( P4) is the terrain, and the fifth pixel area P5 is the area on the image of the pixel corresponding to the sky.

도 10 에서는 세그멘테이션을 수행하여 이미지상의 각 픽셀에 대응되는 오브젝트의 종류에 대한 정보를 산출하는 것을 도시하였으나, 세그멘테이션을 통해 획득할 수 있는 정보가 이에 한정되는 것은 아니다. 예를 들어, 오브젝트의 위치, 좌표, 거리, 방향 등의 특성 또한 세그멘테이션을 통해 획득할 수 있을 것이다. 이 경우 서로 다른 특성은 독립적으로 표현될 수도 있고, 동시에 반영하여 표현될 수도 있다.Although FIG. 10 shows that information on the type of object corresponding to each pixel on the image is calculated by performing segmentation, information obtainable through segmentation is not limited thereto. For example, characteristics such as position, coordinates, distance, and direction of an object may also be acquired through segmentation. In this case, the different characteristics may be expressed independently or may be expressed by reflecting them at the same time.

표 1은 일 실시예에 따른 오브젝트의 종류 및 거리에 대한 정보를 동시에 반영한 라벨링에 관한 표이다. 표 1을 참고하면, 오브젝트의 종류 및 거리에 대한 정보를 함께 고려하여 클래스를 설정하고, 각 클래스 별로 식별값을 할당할 수 있다. 예를 들어, 오브젝트의 종류에 대한 정보인 지형과 거리에 대한 정보인 근거리를 함께 고려하여 2번 식별값을 할당할 수 있다. 표 1은 종류에 대한 정보와 거리에 대한 정보를 함께 고려한 경우의 일 예이고, 이 외에 방향 정보, 장애물 이동 방향, 속도, 항로 표지 등 다른 정보 또한 함께 고려될 수 있다. 또한, 모든 식별값이 복수의 정보를 포함해야 하는 것은 아니고, 같은 종류의 정보를 포함해야 하는 것도 아니다. 예를 들어, 특정 식별값은 종류에 대한 정보만 포함하고(예를 들어, 식별값 1은 거리에 대한 정보를 포함하지 않음) 다른 식별값은 종류 및 거리에 대한 정보를 포함하는 등 경우에 따라 다양한 방식으로 표현될 수 있다.Table 1 is a table related to labeling in which information on the type and distance of an object is simultaneously reflected, according to an embodiment. Referring to Table 1, a class may be set in consideration of information on the type and distance of an object, and an identification value may be assigned to each class. For example, the second identification value may be assigned in consideration of both topography, which is information about the type of object, and short distance, which is information about distance. Table 1 is an example of a case in which type information and distance information are considered together. In addition, other information such as direction information, obstacle movement direction, speed, and route mark may also be considered. In addition, not all identification values need to include a plurality of pieces of information, nor do they need to include the same type of information. For example, a specific identification value includes only information about the type (for example, identification value 1 does not include information about distance) and another identification value includes information about type and distance, etc. It can be expressed in various ways.

식별값identification value 클래스class 00 하늘 및 기타sky and others 1One 바다Sea 22 지형 + 근거리terrain + close range 33 지형 + 중거리Terrain + Medium 44 지형 + 원거리Terrain + Ranged 55 고정 장애물 + 근거리Fixed obstacle + close range 66 고정 장애물 + 중거리Fixed obstacle + medium range 77 고정 장애물 + 원거리Fixed Obstacle + Ranged 88 동적 장애물 + 근거리Dynamic obstacles + close range 99 동적 장애물 + 중거리Dynamic Obstacles + Medium Range 1010 동적 장애물 + 원거리Dynamic Obstacle + Ranged

도 11은 이미지의 어떤 위치에 오브젝트가 존재하는지를 바운딩 박스(bounding box)로 표시한 것으로, 디텍션(detection)이라고도 한다. 이 경우 오브젝트 인식 단계는 디텍션 단계를 의미할 수 있을 것이다. 세그멘테이션과 비교하면, 디텍션은 이미지의 각 픽셀 별로 특성을 산출하는 것이 아닌 오브젝트가 어느 위치에 포함되어 있는지를 박스 형태로 검출하는 것으로 볼 수 있다. 도 9 및 도 11을 참고하면, 도 9 의 카메라로 촬상된 이미지에 기초한 디텍션을 수행하여 도 11과 같은 디텍션 이미지를 획득할 수 있다. 도 11에서, 이미지상에서 선박을 검출하고 선박의 위치를 사각형의 바운딩 박스(BB)로 표현한 것을 볼 수 있다. 도 11에는 하나의 오브젝트만을 디텍션하는 것으로 도시하였으나, 하나의 이미지로부터 2 이상의 오브젝트를 디텍션할 수도 있다.11 is a diagram showing a position of an object in an image with a bounding box, which is also referred to as detection. In this case, the object recognition step may mean a detection step. Compared with segmentation, detection can be viewed as detecting the position of an object in the form of a box, rather than calculating a characteristic for each pixel of an image. Referring to FIGS. 9 and 11 , a detection image as shown in FIG. 11 may be obtained by performing detection based on an image captured by the camera of FIG. 9 . 11 , it can be seen that a vessel is detected on the image and the position of the vessel is expressed as a rectangular bounding box BB. Although only one object is detected in FIG. 11 , two or more objects may be detected from one image.

세그멘테이션 및 디텍션은 인공 신경망을 이용하여 수행될 수 있다. 하나의 인공 신경망을 통해 세그멘테이션/디텍션을 수행할 수도 있고, 복수의 인공 신경망을 이용하여 각각의 인공 신경망이 세그멘테이션/디텍션을 수행하고 이 결과를 조합하여 최종 결과를 산출할 수도 있다.Segmentation and detection may be performed using an artificial neural network. Segmentation/detection may be performed through one artificial neural network, or each artificial neural network may perform segmentation/detection using a plurality of artificial neural networks, and the final result may be calculated by combining the results.

인공 신경망이란 인간의 신경망 구조를 본떠 만든 알고리즘의 일종으로, 하나 이상의 노드 또는 뉴런(neuron)을 포함하는 하나 이상의 레이어를 포함할 수 있고 각각의 노드는 시냅스(synapse)를 통해 연결될 수 있다. 인공 신경망에 입력된 데이터(입력 데이터)는 시냅스를 통해 노드를 거쳐 출력(출력 데이터)될 수 있고, 이를 통해 정보를 획득할 수 있다.An artificial neural network is a kind of algorithm modeled after the structure of a human neural network, and may include one or more nodes or one or more layers including neurons, and each node may be connected through a synapse. Data input to the artificial neural network (input data) may be output (output data) through a node through a synapse, and information may be obtained through this.

인공 신경망의 종류로는 필터를 이용해 특징을 추출하는 합성곱신경망(convolution neural network, CNN) 및 노드의 출력이 다시 입력으로 피드백 되는 구조를 갖는 순환인공신경망(recurrent neural network, RNN)이 있고, 제한된 볼츠만 머신(restricted Boltzmann machine, RBM), 심층신뢰신경망(deep belief network, DBN), 생성대립신경망(generative adversarial network, GAN), 관계형 네트워크(relation networks, RN) 등 다양한 구조가 적용될 수 있고 제한이 있는 것은 아니다.Types of artificial neural networks include a convolutional neural network (CNN) that extracts features using a filter, and a recurrent neural network (RNN) that has a structure in which the output of a node is fed back as an input. Various structures such as restricted Boltzmann machine (RBM), deep belief network (DBN), generative adversarial network (GAN), relational network (RN), etc. can be applied and have limitations. it is not

인공 신경망을 이용하기 전에 학습시키는 단계가 필요하다. 또는, 인공 신경망을 이용하며 학습시킬 수 있다. 이하에서는 인공신경망을 학습시키는 단계를 학습 단계, 이용하는 단계를 추론 단계로 표현하기로 한다. Before using the artificial neural network, it is necessary to train it. Alternatively, training may be performed using an artificial neural network. Hereinafter, the step of learning the artificial neural network is expressed as a learning step and the step of using the artificial neural network as an inference step.

인공 신경망은 지도 학습(supervised learning), 비지도 학습(unsupervised learning), 강화 학습(reinforcement learning), 모방 학습(imitation learning) 등 다양한 방법을 통해 학습될 수 있다.The artificial neural network may be learned through various methods such as supervised learning, unsupervised learning, reinforcement learning, and imitation learning.

도 12 및 도 13은 일 실시예에 따른 인공 신경망의 학습 단계 및 추론 단계에 관한 도면이다.12 and 13 are diagrams of a learning step and an inference step of an artificial neural network according to an embodiment.

도 12는 인공 신경망의 학습 단계의 일 실시예로, 학습되지 않은 인공 신경망이 학습 데이터 또는 훈련 데이터(training data)를 입력 받아 출력 데이터를 출력하고, 출력 데이터와 라벨링 데이터(labelling data)를 비교하여 그 오차의 역전파를 통해 인공 신경망을 학습시킬 수 있다. 학습 데이터, 출력 데이터, 라벨링 데이터는 이미지일 수 있다. 라벨링 데이터는 실측 자료(ground truth)를 포함할 수 있다. 또는, 라벨링 데이터는 사용자 또는 프로그램을 통하여 생성된 자료일 수 있다.12 is an embodiment of the learning step of the artificial neural network, in which an untrained artificial neural network receives learning data or training data and outputs output data, and compares the output data with the labeling data. The artificial neural network can be trained through the backpropagation of the error. The training data, output data, and labeling data may be images. The labeling data may include ground truth. Alternatively, the labeling data may be data generated by a user or a program.

도 13은 인공 신경망의 추론 단계의 일 실시예로, 학습된 인공 신경망이 입력 데이터를 입력 받아 출력 데이터를 출력할 수 있다. 학습 단계에서의 학습 데이터의 정보에 따라 추론 단계에서 추론 가능한 정보가 달라질 수 있다. 또한, 인공 신경망의 학습 정도에 따라 출력 데이터의 정확성이 달라질 수 있다.13 is an example of an inference step of an artificial neural network, and a learned artificial neural network may receive input data and output output data. Information that can be inferred in the inference step may vary according to information of the learning data in the learning step. Also, the accuracy of the output data may vary according to the learning degree of the artificial neural network.

이미지 분석은 위치/이동 정보 추정 단계(S220)를 포함할 수 있다. 위치/이동 정보 추정 단계(S220)는 오브젝트 인식 단계(S210)에서 인식된 오브젝트 중 적어도 일부에 대하여 그 위치 및/또는 이동에 관한 정보를 추정하는 것을 포함할 수 있다. 여기서, 위치 정보는 오브젝트의 좌표와 같은 절대적 위치, 특정 기준으로부터의 상대적 위치, 거리(임의의 지점으로부터의 거리, 거리 범위 등), 방향 등을 포함할 있고, 이동 정보는 절대적 속도, 상대적 속도, 속력 등 오브젝트의 이동에 관한 정보를 포함할 수 있다.The image analysis may include a position/movement information estimation step ( S220 ). The location/movement information estimation step ( S220 ) may include estimating information about the location and/or movement of at least some of the objects recognized in the object recognition step ( S210 ). Here, the position information may include an absolute position such as coordinates of an object, a relative position from a specific reference, a distance (distance from an arbitrary point, a distance range, etc.), a direction, etc., and the movement information includes an absolute velocity, a relative velocity, Information about the movement of the object, such as speed, may be included.

오브젝트의 위치/이동 정보는 선박의 접안 또는 이안 시 이용될 수 있다. 예를 들어, 선박 접안 또는 이안 시 선석 또는 안벽과의 거리, 이들을 기준으로 한 접근 속도, 다른 선박과의 간격 및 상대 속도 등을 이용하여 선박의 안전한 접안 또는 이안을 보조하거나 가이드 할 수 있다.The position/movement information of the object may be used when the vessel is berthing or berthing. For example, it is possible to assist or guide the safe berthing or berthing of a vessel by using the distance to the berth or quay wall, the approach speed based on them, the distance from other vessels, and the relative speed when berthing or disembarking a vessel.

오브젝트의 위치/이동 정보는 선박의 운항 시 이용될 수 있다. 예를 들어, 다른 선박이나 선박 주변의 장애물을 감지하거나, 이들까지의 거리, 이들의 이동 속도 등을 이용하여 충돌을 경고하거나 경로 생성/추천을 하는 등 선박의 안전한 운항을 보조하거나 가이드 할 수 있다. 또는 이러한 정보를 바탕으로 자율 운항을 수행할 수도 있을 것이다.The position/movement information of the object may be used when the vessel is operating. For example, it can assist or guide the safe operation of a ship, such as detecting other ships or obstacles around the ship, warning of collisions using the distance to them, and their moving speed, or creating/recommending routes. . Alternatively, autonomous navigation may be performed based on this information.

오브젝트의 위치/이동 정보는 이미지에 기초하여 산출될 수 있다. 예를 들어, 오브젝트로써 선박, 바다 및 육지를 포함하는 이미지에 기초하여 선박의 위치/이동 정보를 산출할 수 있다. 이하에서는 위치/이동 정보를 추정하는 오브젝트를 타겟 오브젝트라 한다. 예를 들어, 위의 예에서는 선박이 타겟 오브젝트일 수 있다. 또한, 타겟 오브젝트는 복수일 수 있다. 예를 들어, 이미지에 포함된 복수의 선박 각각에 대해 그 위치나 속력 등을 추정하는 경우 복수의 선박이 타겟 오브젝트일 수 있다.The position/movement information of the object may be calculated based on the image. For example, location/movement information of a ship may be calculated based on an image including a ship, sea, and land as objects. Hereinafter, an object for estimating location/movement information is referred to as a target object. For example, in the above example, a ship may be a target object. Also, there may be a plurality of target objects. For example, when estimating a position or speed of each of a plurality of ships included in an image, the plurality of ships may be a target object.

오브젝트의 위치/이동 정보는 일정 범위를 갖는 복수의 카테고리로 표현될 수 있다. 예를 들어, 거리 정보는 근거리, 중거리 및 원거리 등으로 표현될 수 있고, 방향 정보는 좌측 방향, 정면 방향 및 우측 방향 등으로 표현될 수 있다. 이를 조합하여 좌측 근거리, 우측 원거리 등으로 표현하는 것도 가능할 것이다. 이동 정보는 고속, 저속 등으로 표현될 수 있다.The location/movement information of the object may be expressed in a plurality of categories having a certain range. For example, the distance information may be expressed in a short distance, a medium distance, and a long distance, and the direction information may be expressed in a left direction, a front direction, and a right direction. It may be possible to combine these to express the left near field, the right far field, and the like. The movement information may be expressed as a high speed, a low speed, or the like.

오브젝트의 위치/이동 정보는 실제 거리값, 방향값 및 속도값 등으로 표현될 수 있다. 예를 들어, 거리 정보는 미터(m) 단위로 표현될 수 있고, 방향 정보는 도(degree) 단위로 표현될 수 있고, 이동 정보는 cm/s 단위로 표현될 수 있다. The position/movement information of the object may be expressed as an actual distance value, a direction value, a velocity value, and the like. For example, distance information may be expressed in units of meters (m), direction information may be expressed in units of degrees, and movement information may be expressed in units of cm/s.

오브젝트의 위치/이동 정보는 영역이나 포인트를 기준으로 추정될 수 있다. 일 예로, 선박과 안벽 사이의 거리는 선박의 일 포인트와 안벽의 일 포인트 사이의 거리를 산출함으로써 추정되거나, 선박의 일 포인트와 안벽과의 최단 거리를 산출함으로써 추정될 수 있다. 다른 예로, 선박 사이의 간격은 제1 선박의 일 포인트와 제2 선박의 일 포인트 사이의 거리를 산출함으로써 추정될 수 있다. 선박의 일 포인트는 바다와 접하는 선박의 일 지점에 대응되거나 선박의 선수 또는 선미에 대응될 수 있지만, 이에 한정되는 것은 아니다. The location/movement information of the object may be estimated based on an area or a point. For example, the distance between the ship and the quay wall may be estimated by calculating the distance between one point of the ship and one point of the quay wall, or may be estimated by calculating the shortest distance between one point of the ship and the quay wall. As another example, the distance between the vessels may be estimated by calculating a distance between a point of the first vessel and a point of the second vessel. One point of the ship may correspond to a point of the ship in contact with the sea or may correspond to the bow or stern of the ship, but is not limited thereto.

오브젝트의 위치/이동 정보는 이미지 픽셀을 기반으로 추정될 수 있다. 전술한 바와 같이 포인트를 기준으로 위치/이동 정보를 추정하는 경우, 이미지 상에서 포인트는 픽셀에 대응될 수 있다. 따라서, 오브젝트의 위치/이동 정보는 이미지 픽셀 사이의 간격에 기초하여 산출될 수 있다. The position/movement information of the object may be estimated based on image pixels. As described above, when estimating location/movement information based on a point, a point on an image may correspond to a pixel. Accordingly, the position/movement information of the object may be calculated based on the distance between image pixels.

포인트 사이의 거리 정보는 픽셀 사이의 간격에 기초하여 산출될 수 있다. 일 예로, 하나의 픽셀 간격마다 일정 거리를 할당하고 픽셀 사이의 간격에 비례하여 포인트 사이의 거리를 산출할 수 있다. 다른 예로, 픽셀의 이미지상에서의 좌표값을 바탕으로 픽셀 사이의 거리를 산출하고 이에 기초하여 포인트 사이의 거리를 산출할 수 있다.Distance information between points may be calculated based on an interval between pixels. For example, a predetermined distance may be allocated to each pixel interval, and the distance between points may be calculated in proportion to the interval between pixels. As another example, the distance between pixels may be calculated based on the coordinate values of the pixels on the image, and the distance between points may be calculated based on this.

포인트 사이의 이동 정보는 포인트 사이의 거리 정보의 변화에 기초하여 산출될 수 있다. 이 경우 복수의 이미지 또는 영상 프레임에 기초하여 이동 정보를 산출할 수 있다. 예를 들어, 이전 프레임에서의 포인트 사이의 거리와 현재 프레임에서의 포인트 사이의 거리 및 프레임 사이의 시간 간격에 기초하여 포인트 사이의 이동 정보를 산출할 수 있다. Movement information between points may be calculated based on a change in distance information between points. In this case, movement information may be calculated based on a plurality of images or image frames. For example, movement information between points may be calculated based on a distance between points in a previous frame, a distance between points in a current frame, and a time interval between frames.

도 14 및 도 15는 일 실시예에 따른 오브젝트의 위치/이동 정보 추정에 관한 도면이다.14 and 15 are diagrams for estimating position/movement information of an object according to an embodiment.

도 14를 참고하면, 위치/이동 정보 추정 단계는 선박(OBJ1)의 접안 또는 이안 시 안벽(OBJ2)과의 위치/이동 정보(f1, f2) 또는 다른 선박(OBJ3, OBJ4)과의 위치/이동 정보(f3, f4)를 추정하는 것을 포함할 수 있다. 도 14에 도시된 바와 같이, 선박(OBJ1)과 안벽(OBJ2) 사이의 위치/이동 정보(f1, f2)는 선박(OBJ1)의 2개의 포인트에 대해 산출될 수 있다. 이 경우 상기 2개의 포인트는 선박(OBJ1)이 바다와 접하는 지점에 대응될 수 있다. 또한, 선박(OBJ1)과 안벽(OBJ2) 사이의 거리는 상기 2개의 포인트와 안벽(OBJ2) 사이의 최단 거리일 수 있다. 선박(OBJ1)과 다른 선박(OBJ3, OBJ4) 사이의 위치/이동 정보(f3, f4)는 선박들(OBJ1, OBJ3, OBJ4)의 선수 또는 선미에 대응되는 포인트 사이의 위치/이동 정보일 수 있다. 이와 같이 위치/이동 정보가 선박의 접안 또는 이안에 이용되어 이를 보조하거나 가이드 하는 경우 접안 가이드 정보 또는 이안 가이드 정보라 지칭될 수 있다.Referring to FIG. 14 , the position/movement information estimation step includes position/movement information f1, f2 with the berthing wall OBJ2 or other vessels OBJ3, OBJ4 when the vessel OBJ1 is berthing or berthing. It may include estimating information f3, f4. As shown in FIG. 14 , the position/movement information f1 and f2 between the vessel OBJ1 and the quay wall OBJ2 may be calculated for two points of the vessel OBJ1 . In this case, the two points may correspond to a point where the ship OBJ1 is in contact with the sea. Further, the distance between the vessel OBJ1 and the quay wall OBJ2 may be the shortest distance between the two points and the quay wall OBJ2. The position/movement information f3 and f4 between the vessel OBJ1 and the other vessels OBJ3 and OBJ4 may be position/movement information between points corresponding to the bow or stern of the vessels OBJ1, OBJ3, OBJ4. . In this way, when the location/movement information is used to assist or guide the berthing or berthing of the vessel, it may be referred to as berthing guide information or berthing guide information.

도 15를 참고하면, 위치/이동 정보 추정 단계는 선박(OBJ5)의 운항 시 다른 선박(OBJ6)이나 부표 등 장애물(OBJ7)과의 위치/이동 정보(f5, f6)를 추정하는 것을 포함할 수 있다.Referring to FIG. 15 , the step of estimating position/movement information may include estimating position/movement information (f5, f6) with another vessel (OBJ6) or an obstacle (OBJ7) such as a buoy during operation of the vessel (OBJ5). have.

위치/이동 정보 추정 단계에서 산출한 데이터에 기반하여 항만 운용이나 관리를 수행할 수 있다. 예를 들어, 선박이 방충제(fender)와 충돌하는 경우 선박의 속도 등 이동 정보로부터 충격량 등을 계산하여 방충제의 교체 시기를 예측할 수 있을 것이다.Port operation or management may be performed based on the data calculated in the location/movement information estimation step. For example, when a ship collides with a fender, the time to replace the insect repellent may be predicted by calculating the amount of impact from movement information such as the speed of the ship.

이상에서는 오브젝트 인식 단계를 수행한 후 위치/이동 정보를 추정하는 방식의 이미지 분석의 실시예에 대해 살펴보았다. 이와 달리, 오브젝트 인식과 위치/이동 정보 추정이 하나의 단계로 수행될 수도 있다. 예를 들어, 세그멘테이션 또는 디텍션을 수행하여 오브젝트를 인식함과 동시에 오브젝트의 위치/이동 정보를 추정할 수 있다.In the above, an embodiment of image analysis in which position/movement information is estimated after performing the object recognition step has been described. Alternatively, object recognition and location/movement information estimation may be performed in one step. For example, it is possible to recognize an object by performing segmentation or detection and at the same time estimate position/movement information of the object.

이미지 상의 모든 선박을 모니터링하는 경우 선박의 접안 가이드 정보를 획득하기 위한 데이터 연산량이 많아져 장치(10)의 처리 속도가 저하될 수 있다. 또한, 모니터링의 대상이 되는 타겟 선박을 결정하여 타겟 선박만의 접안 가이드 정보를 획득하고(일 예로, 선수 거리, 선미 거리 등), 획득한 접안 가이드 정보를 출력함으로써 사용자는 다른 불필요한 정보가 제외된 접안에 필요한 정보를 제공받을 수 있다. 이를 위해, 제어 모듈(200)은 이미지 생성 유닛을 이용하여 획득한 적어도 하나의 이미지에 복수의 선박이 포함된 경우 타겟 선박을 결정하는 이미지 분석을 수행할 수 있다. In the case of monitoring all the ships on the image, the amount of data calculation for acquiring the berthing guide information of the ship increases, so that the processing speed of the apparatus 10 may be reduced. In addition, by determining the target vessel to be monitored, obtaining the berthing guide information of the target vessel only (for example, bow distance, stern distance, etc.), and outputting the obtained berthing guide information, the user is You can be provided with the necessary information for berthing. To this end, the control module 200 may perform image analysis to determine a target vessel when a plurality of vessels are included in at least one image acquired using the image generating unit.

도 16은 일 실시예에 따른 타겟 선박 결정에 관한 순서도이다. 16 is a flowchart for determining a target vessel according to an embodiment.

도 16을 참고하면, 이미지 기반 모니터링은 선박 트래킹 단계(S213), 트래킹 정보 획득 단계(S216) 및 타겟 선박 결정 단계(S219)를 포함할 수 있다. Referring to FIG. 16 , the image-based monitoring may include a ship tracking step ( S213 ), a tracking information acquisition step ( S216 ), and a target ship determination step ( S219 ).

일 실시예에 따르면, 제어 모듈(200)은 이미지 상의 선박을 트래킹할 수 있다(S213). According to one embodiment, the control module 200 may track the vessel on the image (S213).

트래킹(tracking)은 이미지 상에서 시공간적으로 변화하는 특징점(오브젝트, 트래킹 대상)을 추적하는 행위를 의미한다. 예를 들어, 트래킹은 이미지 상에서 시공간적으로 변화하는 특징점의 위치, 형태, 움직임, 궤도, 정보 등을 추적하는 것을 포함할 수 있다. 또한, 트래킹은 이미지 상에 특징점의 화상을 계속 보존하도록 하는 것을 포함할 수도 있다. Tracking refers to the act of tracking temporally and spatially changing feature points (object, tracking target) on an image. For example, the tracking may include tracking the position, shape, movement, trajectory, information, and the like of a temporally and spatially changing feature point on an image. Also, the tracking may include continuing to preserve the image of the feature points on the image.

일 실시예에 따르면, 제어 모듈(200)은 세그멘테이션된 이미지에 기초하여 선박의 트래킹을 수행할 수 있다. 구체적으로, 제어 모듈(200)은 세그멘테이션된 이미지 중 픽셀의 클래스 값이 선박에 해당하는 영역에 기초하여 선박을 트래킹할 수 있다. 예를 들어, 제어 모듈(200)은 연속 촬영된 이미지의 세그멘테이션된 이미지들(연속)의 클래스 값이 선박에 해당하는 픽셀에 기초하여 트래킹할 수 있다. 여기서, 제어 모듈(200)은 클래스 값이 선박에 해당하는 픽셀에 의해 형성되는 선박 에어리어 내부의 선박의 대표 포인트(픽셀)를 연속되는 프레임들 간에 트래킹할 수 있다. According to an embodiment, the control module 200 may perform tracking of the vessel based on the segmented image. Specifically, the control module 200 may track the vessel based on a region in which the class value of the pixel in the segmented image corresponds to the vessel. For example, the control module 200 may track a class value of segmented images (continuous) of a continuously captured image based on a pixel corresponding to a ship. Here, the control module 200 may track a representative point (pixel) of a vessel within a vessel area formed by a pixel having a class value corresponding to the vessel between successive frames.

도 17은 일 실시예에 따른 선박의 트래킹의 일 예에 관한 도면이다.17 is a view related to an example of tracking a ship according to an embodiment.

도 17을 참조하면, 제어 모듈(200)은 연속 촬영된 이미지에서 선박을 나타내는 대표 포인트들(141, 142, 143)을 추적함으로써 이미지의 선박들을 트래킹할 수 있다. 예를 들어, 제어 모듈(200)은 세그멘테이션 이미지의 각각의 선박들에 대응하는 영역 상의 하나의 포인트를 트래킹할 수 있다.Referring to FIG. 17 , the control module 200 may track the vessels of the image by tracking representative points 141 , 142 , and 143 representing the vessel in the continuously photographed image. For example, the control module 200 may track one point on an area corresponding to each vessel of the segmentation image.

선박의 대표 포인트(141, 142, 143)는 어떠한 특징점이어도 무방하나, 세그멘테이션된 이미지는 단일한 클래스 값을 가지므로, 예시적으로 제어 모듈(200)은 선박에 대응하는 영역의 중앙에 위치하는 포인트(141)를 대표 포인트로 결정할 수 있다. The representative points 141 , 142 , and 143 of the vessel may be any characteristic point, but since the segmented image has a single class value, the control module 200 exemplarily controls the point located in the center of the region corresponding to the vessel. (141) may be determined as a representative point.

물론, 제어 모듈(200)은 선박의 대표 포인트(141, 142, 143)를 선박 영역의 최상단 포인트, 최하단 포인트(142), 최좌단 포인트, 최우단 포인트(143) 등 다른 위치의 포인트로 결정해도 무방하며, 뿐만 아니라 제어 모듈(200)은 하나의 픽셀을 선박의 대표 포인트로 결정하여 이를 트래킹하는 대신 선박에 대응하는 영역의 외곽선, 또는 영역 자체를 트래킹하는 것도 가능하다.Of course, the control module 200 determines the representative points 141, 142, and 143 of the vessel as points of other positions such as the highest point, the lowest point 142, the leftmost point, and the rightmost point 143 of the vessel area. In addition, the control module 200 may also track the outline of an area corresponding to the ship or the area itself instead of determining one pixel as a representative point of the ship and tracking it.

트래킹에는 다양한 기법이 활용될 수 있으며, 그 예시로 칼만 필터(Kalman filter), 확장 칼만 필터(Extended Kalman filter), 무향 칼만 필터(Unscented Kalman filter), 파티클 필터(Particle filter), 인포메이션 필터(Information filter), 히스토그람 필터(Histogram Filter) 등을 포함하고, 트래킹은 이들 중 적어도 하나가 적용될 수 있다.Various techniques can be used for tracking, for example, Kalman filter, Extended Kalman filter, Unscented Kalman filter, Particle filter, Information filter ), a histogram filter, and the like, and tracking at least one of them may be applied.

물론, 반드시 그러한 것은 아니며, 제어 모듈(200)은 배경영상과 차영상을 이용하여 선박을 트래킹하는 등 촬상 영상 등의 이미지에 기초하여 선박을 트래킹할 수 있는 등 제어 모듈(200)은 다양한 방식으로 선박을 트래킹할 수 있다. Of course, this is not necessarily the case, and the control module 200 can track the vessel based on images such as captured images, such as tracking the vessel using the background image and the difference image. Ships can be tracked.

또한, 트래킹하는 단계(S213)는 제어 모듈(200)이 이미지 상에 포함된 선박 중 예인선이 아닌 선박을 트래킹하는 것을 포함할 수 있다. 예를 들어, 제어 모듈(200)은 세그멘테이션 이미지에 기초하여 선박 중 예인선이 아닌 선박을 트래킹할 수 있다. 구체적으로, 제어 모듈(200)은 입력 이미지 및 상기 입력 이미지에 포함된 바다, 예인선, 예인선을 제외한 선박 및 지형지물을 포함하는 오브젝트들에 해당하는 픽셀에 각각 바다, 예인선, 예인선을 제외한 선박 및 지형지물을 지시하는 클래스 값들을 라벨링한 러닝셋을 이용하여 학습된 인공 신경망을 이용하여 이미지 세그멘테이션을 수행하고, 예인선을 제외한 선박을 트래킹할 수 있다. 여기서, 생성된 세그멘테이션 이미지는 예인선을 제외한 선박에 대응되도록 라벨링된 픽셀을 포함할 수 있고, 제어 모듈(200)은 예인선을 제외한 선박에 대응하는 픽셀을 트래킹할 수 있다.In addition, the tracking step ( S213 ) may include tracking a vessel other than the tugboat among the vessels included in the image by the control module 200 . For example, the control module 200 may track a vessel other than a tugboat among vessels based on the segmentation image. Specifically, the control module 200 applies the input image and pixels corresponding to the objects including the sea, tugboat, and ship and features excluding the sea, tugboat, and tugboat included in the input image, respectively, to the sea, tugboat, ship and feature except for the tugboat. Image segmentation may be performed using an artificial neural network trained using a running set that labels class values indicating water, and ships except for tugs may be tracked. Here, the generated segmentation image may include pixels labeled to correspond to ships other than the tugboat, and the control module 200 may track pixels corresponding to the ships except the tugboat.

일 실시예에 따르면, 제어 모듈(200)은 이미지 상의 트래킹되는 선박의 트래킹 정보를 획득할 수 있다(S216). According to an embodiment, the control module 200 may obtain tracking information of a vessel to be tracked on the image (S216).

트래킹 정보는 트래킹되는 선박에 대한 정보를 의미할 수 있고, 트래킹 정보는 타겟 선박을 결정하기 위해 이용될 수 있다. 한정되지 않는 예를 들어, 트래킹 정보는 선박의 위치 정보, 선박의 이동 정보, 선박의 VTS 정보, 선박의 AIS 정보, 사용자 입력 정보 등을 포함할 수 있다.The tracking information may mean information about a vessel being tracked, and the tracking information may be used to determine a target vessel. For example, but not limited to, the tracking information may include location information of a ship, movement information of a ship, VTS information of a ship, AIS information of a ship, user input information, and the like.

일 실시예에 따르면, 트래킹 정보를 획득하는 단계(S216)는 제어 모듈(200)이 이미지로부터 선박의 위치 정보를 획득하는 것을 포함할 수 있다. 예를 들어, 제어 모듈(200)은 연속 촬영된 이미지에서 트래킹되는 선박의 대표 포인트의 위치 정보를 획득할 수 있다. 여기서, 선박의 대표 포인트의 위치 정보는 대표 포인트와 안벽 사이의 거리, 대표 포인트와 다른 오브젝트 사이의 거리, 대표 포인트의 이미지 상의 좌표 등에 관한 정보 등일 수 있다.According to an embodiment, obtaining the tracking information ( S216 ) may include obtaining, by the control module 200 , the location information of the vessel from the image. For example, the control module 200 may acquire location information of a representative point of a vessel tracked in the continuously photographed images. Here, the position information of the representative point of the ship may be information about a distance between the representative point and a quay wall, a distance between the representative point and another object, coordinates of the representative point on an image, and the like.

일 실시예에 따르면, 트래킹 정보를 획득하는 단계(S216)는 제어 모듈(200)이 이미지로부터 선박의 이동 정보를 획득하는 것을 포함할 수 있다. 예를 들어, 제어 모듈(200)은 연속 촬영된 이미지에서 트래킹되는 선박의 대표 포인트의 이동 정보를 획득할 수 있다. 여기서, 제어 모듈(200)은 대표 포인트의 이동 정보를 대표 포인트의 위치 정보에 기초하여 획득할 수 있다. 여기서, 선박의 대표 포인트의 이동 정보는 대표 포인트의 안벽으로의 접근 속도, 대표 포인트의 다른 오브젝트로의 접근 속도, 대표 포인트의 속도 변화 등에 관한 정보 등일 수 있다.According to an embodiment, obtaining the tracking information ( S216 ) may include obtaining, by the control module 200 , movement information of the vessel from the image. For example, the control module 200 may acquire movement information of a representative point of a vessel tracked in the continuously photographed images. Here, the control module 200 may obtain movement information of the representative point based on the position information of the representative point. Here, the movement information of the representative point of the vessel may be information on the approach speed of the representative point to the quay wall, the approach speed of the representative point to another object, the speed change of the representative point, and the like.

일 실시예에 따르면, 트래킹 정보를 획득하는 단계(S216)는 제어 모듈(200)이 트래킹되는 선박의 VTS 정보 및 AIS 정보 등의 항해 정보를 획득하는 것을 포함할 수 있다. 예를 들어, 제어 모듈(200)은 VTS 정보 및 AIS 정보 중 적어도 하나를 획득할 수 있다. 여기서 제어 모듈(200)은 항해 정보에 따른 선박의 도착지에 관한 정보, 선박의 접안 예정 시간 등을 획득할 수 있다.According to an embodiment, obtaining the tracking information ( S216 ) may include obtaining, by the control module 200 , navigation information such as VTS information and AIS information of the tracked vessel. For example, the control module 200 may obtain at least one of VTS information and AIS information. Here, the control module 200 may acquire information about the destination of the ship according to the navigation information, the scheduled berthing time of the ship, and the like.

일 실시예에 따르면, 트래킹 정보를 획득하는 단계(S216)는 제어 모듈(200)이 트래킹되는 선박에 대한 사용자 입력 정보를 획득하는 것을 포함할 수 있다. 예를 들어, 제어 모듈(200)은 사용자 단말기로부터 타겟 선박의 결정에 이용되는 사용자 입력 정보를 획득할 수 있다.According to an embodiment, obtaining the tracking information ( S216 ) may include obtaining the user input information about the vessel being tracked by the control module 200 . For example, the control module 200 may obtain user input information used to determine the target vessel from the user terminal.

다만, 트래킹 정보의 획득은 상술한 방식에 의해 수행되는 것으로 한정될 필요는 없고 다양한 방식으로 수행될 수 있다. However, the acquisition of the tracking information need not be limited to being performed by the above-described method, and may be performed in various ways.

일 실시예에 따르면, 제어 모듈(200)은 획득된 트래킹 정보에 기초하여 타겟 선박을 결정할 수 있다(S219). According to an embodiment, the control module 200 may determine a target vessel based on the obtained tracking information (S219).

일 실시예에 따르면, 제어 모듈(200)은 획득한 선박의 위치 정보에 기초하여 타겟 선박을 결정할 수 있다. 예를 들어, 제어 모듈(200)은 선박과 안벽 사이의 거리에 기초하여 타겟 선박을 결정할 수 있다.According to an embodiment, the control module 200 may determine the target vessel based on the acquired position information of the vessel. For example, the control module 200 may determine the target vessel based on the distance between the vessel and the quay wall.

도 18은 일 실시예에 따른 위치 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다.18 is a diagram illustrating an example of determining a target vessel based on location information according to an embodiment.

도 18을 참고하면, 제어 모듈(200)은 이미지 상에 복수의 선박이 있는 경우 위치 정보에 기초하여 모니터링의 대상이 되는 타겟 선박을 결정할 수 있다.Referring to FIG. 18 , when there are a plurality of ships on an image, the control module 200 may determine a target ship to be monitored based on location information.

일 실시예에 따르면, 제어 모듈(200)은 트래킹되는 선박의 안벽으로부터의 거리에 기초하여 타겟 선박을 결정할 수 있다. 여기서, 트래킹되는 선박의 안벽으로부터의 거리는 트래킹되는 선박의 대표 포인트와 안벽 사이의 거리일 수 있다. According to an embodiment, the control module 200 may determine the target vessel based on the distance from the quay wall of the vessel being tracked. Here, the distance from the quay wall of the tracked vessel may be a distance between a representative point of the tracked vessel and the quay wall.

예를 들어, 제어 모듈(200)은 트래킹되는 선박 중 안벽으로부터의 거리가 임계거리 미만인 선박을 타겟 선박으로 결정할 수 있다. 도 18을 참고하면 제어 모듈(200)은 트래킹되는 선박 중 안벽과의 거리가 기설정된 임계거리(d0)보다 작은 선박을 타겟 선박으로 결정할 수 있다. 제어 모듈(200)은 타겟 선박으로 결정된 선박(151)이 움직여 안벽과의 거리가 d0 보다 먼 장소에 위치하는 경우 선박(151)은 타겟 선박이 아닌 것으로 결정할 수 있다. 또한, 제어 모듈(200)은 선박(152)이 움직여 안벽과의 거리가 d0 보다 가까운 장소에 위치하는 경우 선박(152)을 타겟 선박으로 결정할 수 있다.For example, the control module 200 may determine, as the target vessel, a vessel having a distance from a quay wall less than a threshold distance among the vessels being tracked. Referring to FIG. 18 , the control module 200 may determine a vessel having a distance from a quay wall smaller than a preset critical distance d 0 among tracked vessels as a target vessel. The control module 200 may determine that the vessel 151 is not the target vessel when the vessel 151 determined as the target vessel moves and the distance from the quay wall is greater than d 0 . Also, the control module 200 may determine the vessel 152 as the target vessel when the vessel 152 moves and the distance to the quay wall is located closer than d 0 .

제어 모듈(200)은 타겟 선박 결정에 이용되는 임계거리를 다양하게 설정할 수 있다. 예를 들어, 제어 모듈(200)은 임계거리를 인식된 선박의 크기에 기초하여 설정할 수 있다. 구체적으로, 제어 모듈(200)은 선박의 크기가 클수록 임계거리를 크게 설정할 수 있다. 뿐만 아니라, 제어 모듈(200)은 이미지 상의 선박 중 안벽이 아닌 특정 물체(구조물 등)와의 거리가 임계거리 보다 작은 선박을 타겟 선박으로 결정하는 것도 가능하다.The control module 200 may variously set a threshold distance used for determining a target vessel. For example, the control module 200 may set the threshold distance based on the recognized size of the vessel. Specifically, the control module 200 may set the critical distance to be larger as the size of the vessel increases. In addition, the control module 200 may determine, as the target vessel, a vessel having a distance from a specific object (structure, etc.) other than a quay wall among vessels on the image smaller than a critical distance.

일 실시예에 따르면, 제어 모듈(200)은 트래킹되는 선박의 이미지 상의 위치에 기초하여 타겟 선박을 결정할 수 있다. 여기서, 트래킹되는 선박의 이미지 상의 위치는 트래킹되는 선박의 대표 포인트의 이미지 상의 위치일 수 있다. 예를 들어, 제어 모듈(200)은 이미지 상의 선박 중 이미지의 기설정된 특정 영역 상에 위치하는 선박을 타겟 선박으로 결정할 수 있다. 도 18을 참고하면 제어 모듈(200)은 트래킹되는 선박 중 이미지 상의 기설정된 정사각형 형태의 영역(153) 내에 위치하는 선박(151)을 타겟 선박으로 결정할 수 있다. 제어 모듈(200)은 선박(152)이 움직여 영역(153) 내에 위치하는 경우 선박(152)을 타겟 선박으로 결정할 수 있다. 또한, 제어 모듈(200)은 타겟 선박으로 결정된 선박(151)이 움직여 영역(153) 밖에 위치하는 경우 선박(151)을 타겟 선박에서 제외할 수 있다. According to an embodiment, the control module 200 may determine the target vessel based on a location on the image of the tracked vessel. Here, the location on the image of the tracked ship may be the location on the image of the representative point of the tracked ship. For example, the control module 200 may determine, as the target vessel, a vessel located on a predetermined specific area of the image among vessels on the image. Referring to FIG. 18 , the control module 200 may determine, as a target vessel, a vessel 151 located in a predetermined square-shaped area 153 on the image among the vessels being tracked. The control module 200 may determine the vessel 152 as the target vessel when the vessel 152 moves and is located within the region 153 . Also, when the vessel 151 determined as the target vessel moves and is located outside the area 153 , the control module 200 may exclude the vessel 151 from the target vessel.

제어 모듈(200)은 영역(153)을 다양한 방식으로 설정할 수 있다. 예를 들어, 제어 모듈(200)은 영역(153)의 크기, 모양, 개수 등을 다양하게 결정할 수 있다. 구체적으로, 제어 모듈(200)은 영역(153)을 이미지가 촬상된 선석에서 선박이 주로 들어오는 경로 주위의 영역, 선박이 주로 접안하는 구역 등으로 결정할 수 있다. 또한 반대로, 제어 모듈(200)은 이미지 상의 선박 중 기설정된 특정 영역(153)을 제외한 영역에 위치한 선박을 타겟 선박으로 결정하는 것도 가능하다.The control module 200 may set the area 153 in various ways. For example, the control module 200 may variously determine the size, shape, number, etc. of the regions 153 . Specifically, the control module 200 may determine the area 153 as an area around the path where the ship mainly enters from the berth where the image is captured, the area where the ship mainly docks, and the like. Also, conversely, the control module 200 may determine, as the target vessel, a vessel located in an area other than a predetermined specific region 153 among vessels on the image.

일 실시예에 따르면, 제어 모듈(200)은 획득한 선박의 이동 정보에 기초하여 타겟 선박을 결정할 수 있다. 예를 들어, 제어 모듈(200)은 선박이 안벽으로 접근하는 속도에 기초하여 타겟 선박을 결정할 수 있다.According to an embodiment, the control module 200 may determine the target vessel based on the acquired movement information of the vessel. For example, the control module 200 may determine the target vessel based on the speed at which the vessel approaches the quay wall.

도 19는 일 실시예에 따른 이동 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다. 19 is a diagram illustrating an example of determining a target vessel based on movement information according to an embodiment.

도 19를 참고하면, 제어 모듈(200)은 이미지 상에 복수의 선박이 있는 경우 이동 정보에 기초하여 타겟 선박을 결정할 수 있다.Referring to FIG. 19 , when there are a plurality of ships on an image, the control module 200 may determine a target ship based on movement information.

일 실시예에 따르면, 제어 모듈(200)은 트래킹되는 선박의 속도에 기초하여 타겟 선박을 결정할 수 있다. 예를 들어, 제어 모듈(200)은 이미지 상의 선박 중 속도의 크기(속도의 절대값)가 임계속도보다 큰 선박을 타겟 선박으로 결정할 수 있다. 도 16을 참고하면 제어 모듈(200)은 트래킹되는 선박 중 임계속도 값보다 큰 값인 vo의 속도로 접근하는 선박(161)을 타겟 선박으로 결정할 수 있다. 제어 모듈(200)은 타겟 선박으로 결정된 선박(161)이 접안이 완료되어 선석에 가만히 멈춰있는 경우 선박(161)을 타겟 선박이 아닌 것으로 결정할 수 있다. 또한, 제어 모듈(200)은 정박해있던 선박(162)이 움직여 임계속도보다 큰 값의 속도(방향 무관)로 움직이는 경우 선박(162)을 타겟 선박으로 결정할 수 있다.According to an embodiment, the control module 200 may determine the target vessel based on the speed of the tracked vessel. For example, the control module 200 may determine, as the target vessel, a vessel in which the magnitude of the velocity (absolute value of the velocity) among vessels on the image is greater than a threshold velocity. Referring to FIG. 16 , the control module 200 may determine, as a target vessel, a vessel 161 approaching at a speed v o , which is a value greater than a threshold speed value, among the tracked vessels. The control module 200 may determine that the vessel 161 is not the target vessel when the vessel 161 determined as the target vessel is standing still in the berth after berthing is completed. Also, the control module 200 may determine the vessel 162 as the target vessel when the anchored vessel 162 moves and moves at a speed greater than the threshold speed (regardless of direction).

제어 모듈(200)은 타겟 선박 결정에 이용되는 임계속도 크기를 다양하게 설정할 수 있다. 예를 들어, 제어 모듈(200)은 타겟 선박 결정에 이용되는 임계속도를 선박의 크기에 기초하여 결정할 수 있다. 구체적으로, 제어 모듈(200)은 선박의 크기가 클수록 임계속도가 크도록 결정할 수 있다.The control module 200 may variously set the size of the critical speed used for determining the target vessel. For example, the control module 200 may determine the threshold speed used for determining the target vessel based on the size of the vessel. Specifically, the control module 200 may determine that the critical speed increases as the size of the vessel increases.

뿐만 아니라, 제어 모듈(200)은 트래킹되는 선박 중 속도의 방향, 크기, 속도 변화(가속도) 등 이동 정보와 관련된 조건에 기초하여 타겟 선박을 결정하는 것도 가능하다. 예를 들어, 제어 모듈(200)은 이미지 상의 선박 중 가속도의 크기(가속도의 절대값)가 기설정된 값보다 큰 선박을 타겟 선박으로 결정할 수 있다.In addition, the control module 200 may determine the target vessel based on conditions related to movement information, such as the direction, magnitude, and speed change (acceleration) of the speed among the tracked vessels. For example, the control module 200 may determine a vessel having a magnitude of acceleration (absolute value of acceleration) greater than a preset value among vessels on the image as the target vessel.

일 실시예에 따르면, 제어 모듈(200)은 획득한 선박의 항해 정보에 기초하여 타겟 선박을 결정할 수 있다. 여기서, 항해 정보란 선박이 항해하는 것과 관련된 정보를 포함할 수 있고, 예를 들어, 항해 정보는 AIS 정보, VTS 정보, CITS 정보 등일 수 있다. 항해 정보는 선박의 항해와 관련하여 선박의 출발지, 도착지, 계류지, 항해 경로 등의 정보를 포함할 수 있다.According to an embodiment, the control module 200 may determine a target vessel based on the acquired navigation information of the vessel. Here, the navigation information may include information related to the navigation of the vessel, and for example, the navigation information may be AIS information, VTS information, CITS information, or the like. The navigation information may include information such as a departure point, an arrival point, a mooring location, and a navigation route of the ship in relation to the navigation of the ship.

예를 들어, 제어 모듈(200)은 트래킹되는 선박의 항해 정보에 따른 도착지에 기초하여 타겟 선박을 결정할 수 있다.For example, the control module 200 may determine the target ship based on the destination according to the navigation information of the tracked ship.

도 20은 일 실시예에 따른 항해 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다.20 is a diagram illustrating an example of determining a target vessel based on navigation information according to an embodiment.

도 20을 참고하면, 제어 모듈(200)은 이미지 상에 복수의 선박이 있는 경우 항해 정보에 기초하여 타겟 선박을 결정할 수 있다. Referring to FIG. 20 , when there are a plurality of ships on an image, the control module 200 may determine a target ship based on navigation information.

일 실시예에 따르면, 제어 모듈(200)은 트래킹되는 선박의 항해 정보에 따른 도착지에 기초하여 타겟 선박을 결정할 수 있다. 예를 들어, 제어 모듈(200)은 이미지 상의 선박 중 항해 정보에 따른 도착지가 이미지를 촬상한 카메라가 설치된 선석인 선박을 타겟 선박으로 결정할 수 있다. 도 17을 참고하면 트래킹되는 선박 중 항해 정보에 따른 도착지가 해당 이미지를 촬상한 카메라가 설치된 선석인 선박(171)을 타겟 선박으로 결정할 수 있다. 제어 모듈(200)은 타겟 선박으로 결정된 선박(171)이 항해 정보에 따라 이안 또는 출항하는 경우 선박(171)을 타겟 선박이 아닌 것으로 결정할 수 있다. 또한, 제어 모듈(200)은 선박(172)이 다른 곳에서 계류하고 난 후, 새로운 항해 정보에 따라 해당 이미지를 촬상한 카메라가 설치된 선석으로 접안하는 경우 선박(172)을 타겟 선박으로 결정할 수 있다.According to an embodiment, the control module 200 may determine the target vessel based on the destination according to the voyage information of the tracked vessel. For example, the control module 200 may determine, as a target ship, a ship whose destination according to the navigation information among ships on the image is a berth in which a camera that captures an image is installed. Referring to FIG. 17 , a target vessel may be determined to be a vessel 171 , which is a berth in which a camera that captures a corresponding image of a destination according to navigation information among the tracked vessels is installed. The control module 200 may determine that the vessel 171 is not the target vessel when the vessel 171 determined as the target vessel moves away or departs according to the navigation information. In addition, the control module 200 determines the vessel 172 as the target vessel when the vessel 172 is moored elsewhere and then docks with a berth in which a camera that captures a corresponding image is installed according to new navigation information. .

뿐만 아니라, 제어 모듈(200)은 항해 정보와 관련되는 다른 조건에 기초하여 타겟 선박을 결정할 수도 있다. 예를 들어, 제어 모듈(200)은 항해 정보에 따라 선석에서 접안이 이루어지기로 예정된 시간에 이미지 상에 인식되는 선박을 타겟 선박으로 결정할 수 있다.In addition, the control module 200 may determine the target vessel based on other conditions related to navigation information. For example, the control module 200 may determine, as the target vessel, a vessel recognized on the image at a time scheduled for berthing at the berth according to the navigation information.

일 실시예에 따르면, 제어 모듈(200)은 획득한 사용자 입력 정보에 기초하여 타겟 선박을 결정할 수 있다. 사용자 입력 정보란 사용자의 기기로부터 입력되어 수신되는 정보를 포함할 수 있고, 예를 들어, 사용자 입력 정보는 모니터링을 수행할 선박 선택, 선석 선택 등과 관련되어 사용자로부터 입력 받은 정보를 포함할 수 있다.According to an embodiment, the control module 200 may determine the target vessel based on the acquired user input information. The user input information may include information input and received from the user's device. For example, the user input information may include information input by the user related to selection of a vessel to be monitored, selection of a berth, and the like.

도 21은 일 실시예에 따른 사용자 입력 정보에 기초한 타겟 선박 결정의 일 예에 관한 도면이다. 21 is a diagram illustrating an example of determining a target vessel based on user input information according to an embodiment.

도 21을 참고하면, 제어 모듈(200)은 이미지 상에 복수의 선박이 있는 경우 사용자 입력 정보에 기초하여 타겟 선박을 결정할 수 있다. 예를 들어, 제어 모듈(200)은 트래킹되는 선박 중 사용자 입력 정보에 따라 모니터링 대상으로 선택되는 선박을 타겟 선박으로 결정할 수 있다. 도 18을 참고하면 제어 모듈(200)은 트래킹되는 선박 중 사용자 입력 정보에 따라 화면에 표시되는 지시자(193)로부터 선택되는 선박(181)을 타겟 선박으로 결정할 수 있다. 제어 모듈(200)은 타겟 선박으로 결정된 선박(181)이 접안이 완료되고 난 후에 사용자 입력 정보에 따라 선택되지 않는 선박(181)을 타겟 선박이 아닌 것으로 결정할 수 있다. 또한, 제어 모듈(200)은 선택되지 않은 선박(182)이 사용자 입력 정보에 따라 사용자로부터 선택되는 경우 선박(182)을 타겟 선박으로 결정할 수 있다.Referring to FIG. 21 , when there are a plurality of ships on an image, the control module 200 may determine a target ship based on user input information. For example, the control module 200 may determine a vessel selected as a monitoring target according to user input information among the tracked vessels as the target vessel. Referring to FIG. 18 , the control module 200 may determine a vessel 181 selected from the indicators 193 displayed on the screen according to user input information among the tracked vessels as the target vessel. After the vessel 181 determined as the target vessel is berthed, the control module 200 may determine that the vessel 181 that is not selected according to the user input information is not the target vessel. Also, when the unselected vessel 182 is selected by the user according to user input information, the control module 200 may determine the vessel 182 as the target vessel.

여기서, 타겟 선박 결정에 이용되는 사용자 입력 정보는 다양한 방식으로 제공될 수 있다. 예를 들어, 사용자 입력 정보는 항만에 출입하는 선박의 목록 중 선박을 선택하여 타겟 선박을 결정하는 정보일 수 있다. 또한, 사용자 입력 정보는 출력되는 항만 이미지(일 예로, 사용자 단말의 출력된 이미지) 상에서 선택된 위치에 있는 선박을 타겟 선박을 결정하는 정보일 수 있다.Here, the user input information used to determine the target vessel may be provided in various ways. For example, the user input information may be information for determining a target vessel by selecting a vessel from a list of vessels entering and exiting a port. Also, the user input information may be information for determining a target vessel for a vessel at a position selected on an output port image (eg, an image output from a user terminal).

뿐만 아니라, 제어 모듈(200)은 복수의 선석에서 촬상된 이미지 중 모니터링 정보가 출력이 되는 선석의 이미지를 결정할 수 있다. 예를 들어, 제어 모듈(200)은 복수의 선석에서 촬상된 이미지 중 사용자 입력 정보에 따라 선택된 선석의 이미지를 출력하고 상기 이미지에 포함된 선박을 타겟 선박으로 결정할 수 있다.In addition, the control module 200 may determine an image of a berth to which monitoring information is output among images captured from a plurality of berths. For example, the control module 200 may output an image of a berth selected according to user input information among images captured from a plurality of berths and determine a vessel included in the image as a target vessel.

또한, 획득된 트래킹 정보에 기초하여 타겟 선박을 결정하는 단계(S216)는 제어 모듈(200)이 이미지 상에서 하나의 타겟 선박을 결정하는 것을 포함할 수 있다. In addition, the step of determining the target vessel based on the obtained tracking information ( S216 ) may include determining, by the control module 200 , one target vessel on the image.

일 실시예에 따르면, 제어 모듈(200)은 이미지 상에 타겟 선박으로 결정되는 조건에 부합하는 복수의 선박 중 하나의 선박을 타겟 선박으로 결정할 수 있다. 예를 들어, 제어 모듈(200)은 이미지 상에 타겟 선박으로 결정되는 조건에 부합하는 선박이 복수인 경우 보다 늦게 타겟 선박으로 결정되는 하나의 선박을 타겟 선박으로 결정할 수 있다. 예를 들어, 도 18을 참조하면, 제어 모듈(200)은 선박(151)과 선박(152)이 차례로 영역(153) 내에 위치하는 경우, 초기에는 선박(151)이 타겟 선박이었다가 선박(152)이 영역(153) 내에 위치하는 이후에 타겟 선박을 선박(152)으로 결정할 수 있다. 반대로, 제어 모듈(200)은 이미지 상에 타겟 선박으로 결정되는 조건에 부합하는 선박이 복수인 경우 보다 먼저 타겟 선박으로 결정되는 하나의 선박을 타겟 선박으로 결정할 수도 있다. According to an embodiment, the control module 200 may determine, as the target vessel, one of a plurality of vessels meeting a condition determined as the target vessel on the image. For example, when there are a plurality of vessels that meet the condition determined as the target vessel on the image, the control module 200 may determine one vessel determined as the target vessel later as the target vessel. For example, referring to FIG. 18 , when the vessel 151 and the vessel 152 are sequentially located in the region 153 , the control module 200 initially determines that the vessel 151 is a target vessel and then determines that the vessel 152 is a target vessel. ) is located within the area 153 , then the target vessel may be determined as the vessel 152 . Conversely, the control module 200 may determine one vessel determined as the target vessel as the target vessel earlier than when there are a plurality of vessels meeting the condition determined as the target vessel on the image.

다만, 타겟 선박의 결정은 상술한 방식에 의해 수행되는 것으로 한정될 필요는 없고 다양한 방식으로 수행될 수 있다. However, the determination of the target ship is not limited to being performed by the above-described method, and may be performed in various ways.

도 22는 일 실시예에 따른 타겟 선박의 접안 가이드 정보 획득에 관한 도면이다.22 is a view related to obtaining information on the berthing guide of the target vessel according to an embodiment.

도 22를 참조하면, 제어 모듈(200)은 트래킹되는 선박(191, 192) 중 타겟 선박(191)의 접안 가이드 정보를 획득할 수 있다. 여기서, 접안 가이드 정보는 선수 거리, 선미 거리, 선수 속도, 선미 속도, 타겟 선박과 다른 선박 사이의 거리, 타겟 선박과 다른 선박 사이의 상대속도 등을 포함할 수 있다. 선수 거리는 선박의 선수가 안벽으로부터 떨어진 거리를 의미할 수 있고 선미 거리는 선박의 선미가 안벽으로부터 떨어진 거리를 의미할 수 있다. 선수 속도는 선박의 선수가 안벽으로 접근하는 속도를 의미할 수 있고, 선미 속도는 선박의 선미가 안벽으로 접근하는 속도를 의미할 수 있다.Referring to FIG. 22 , the control module 200 may acquire berthing guide information of the target vessel 191 among the vessels 191 and 192 being tracked. Here, the berthing guide information may include a bow distance, a stern distance, a bow speed, a stern speed, a distance between a target vessel and another vessel, a relative speed between the target vessel and another vessel, and the like. The bow distance may mean the distance the bow of the ship is away from the quay wall, and the stern distance may mean the distance the stern of the ship is separated from the quay wall. The bow speed may mean the speed at which the bow of the ship approaches the quay wall, and the stern speed may mean the speed at which the stern of the ship approaches the quay wall.

일 실시예에 따르면, 제어 모듈(200)은 타겟 선박(191)과 안벽 사이의 거리를 획득할 수 있다. According to an embodiment, the control module 200 may obtain a distance between the target vessel 191 and the quay wall.

예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선수와 안벽 사이의 거리인 선수 거리(193)를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박의 선수에 대응하는 하나의 포인트를 결정하고, 상기 선수에 대응하는 하나의 포인트와 안벽 사이의 거리를 획득할 수 있다. 다른 예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선미와 안벽 사이의 거리인 선미 거리(194)를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박의 선미에 대응하는 하나의 포인트를 결정하고, 상기 선미에 대응하는 하나의 포인트와 안벽 사이의 거리를 획득할 수 있다. For example, the control module 200 may acquire the bow distance 193 that is the distance between the bow of the target ship 191 and the quay wall. Specifically, the control module 200 may determine one point corresponding to the bow of the target ship, and obtain a distance between the one point corresponding to the bow and the quay wall. As another example, the control module 200 may acquire the stern distance 194 that is the distance between the stern and the quay wall of the target vessel 191 . Specifically, the control module 200 may determine one point corresponding to the stern of the target ship, and obtain a distance between one point corresponding to the stern and the quay wall.

일 실시예에 따르면, 제어 모듈(200)은 선박이 해수면과 접하는 밑면의 양 단부에 대응하는 한 쌍의 포인트를 추출할 수 있다. 여기서, 제어 모듈(200)은 상기 한 쌍의 포인트를 선수에 대응하는 하나의 포인트 및 선미에 대응하는 하나의 포인트로 결정할 수 있다. 예를 들어, 제어 모듈(200)은 선수 거리를 획득하기 위해 선박이 해수면과 접하는 밑면의 양 단부에 대응하는 한 쌍의 포인트 중 하나와 안벽 사이의 거리를 획득할 수 있다. 또한 제어 모듈(200)은 선미 거리를 획득하기 위해 선박이 해수면과 접하는 밑면의 양 단부에 대응하는 한 쌍의 포인트 중 다른 하나와 안벽 사이의 거리를 획득할 수 있다.According to an embodiment, the control module 200 may extract a pair of points corresponding to both ends of the bottom surface of the vessel in contact with the sea level. Here, the control module 200 may determine the pair of points as one point corresponding to the bow and one point corresponding to the stern. For example, the control module 200 may acquire the distance between the quay wall and one of a pair of points corresponding to both ends of the bottom surface of the vessel in contact with the sea level in order to acquire the bow distance. In addition, the control module 200 may acquire the distance between the quay wall and the other one of a pair of points corresponding to both ends of the bottom surface of the vessel in contact with the sea level in order to acquire the stern distance.

물론, 제어 모듈(200)은 타겟 선박(191)의 선수 및 선미에 대응하는 포인트들을 추출하여 선박의 선수 거리 및 선미 거리를 획득하는 대신 타겟 선박(191)의 임의의 1개의 포인트 또는 2개 이상의 포인트를 추출하여 선박과 안벽 사이의 거리를 획득하는 것도 가능하며, 영역의 외곽선, 또는 영역 자체에 기초하여 선박과 안벽 사이의 거리를 획득해도 무방하다. Of course, the control module 200 extracts points corresponding to the bow and stern of the target vessel 191 to obtain any one point or two or more points of the target vessel 191 instead of obtaining the bow and stern distances of the vessel. It is also possible to obtain the distance between the ship and the quay wall by extracting the points, or the distance between the ship and the quay wall may be obtained based on the outline of the area or the area itself.

일 실시예에 따르면, 제어 모듈(200)은 타겟 선박(191)이 안벽으로 접근하는 속도를 획득할 수 있다. According to an embodiment, the control module 200 may acquire the speed at which the target vessel 191 approaches the quay wall.

예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선수가 안벽으로 접근하는 속도인 선수 속도를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박(191)의 선수에 대응하는 하나의 포인트를 결정하고, 상기 선수에 대응하는 하나의 포인트가 안벽으로 접근하는 속도를 획득할 수 있다. 여기서, 제어 모듈(200)은 타겟 선박(191)의 선수 거리(193)에 기초하여 타겟 선박(191)의 선수가 안벽으로 접근하는 속도를 획득할 수 있다. 제어 모듈(200)은 현재 프레임에서의 타겟 선박(191)의 선수 거리(193)와 후속 프레임에서의 타겟 선박(191)의 선수 거리를 비교하여 타겟 선박(191)의 선수가 안벽으로 접근하는 속도를 획득할 수 있다.For example, the control module 200 may acquire the bow speed, which is the speed at which the bow of the target vessel 191 approaches the quay wall. Specifically, the control module 200 may determine one point corresponding to the bow of the target vessel 191 and acquire the speed at which one point corresponding to the bow approaches the quay wall. Here, the control module 200 may acquire the speed at which the bow of the target vessel 191 approaches the quay wall based on the bow distance 193 of the target vessel 191 . The control module 200 compares the bow distance 193 of the target vessel 191 in the current frame with the bow distance of the target vessel 191 in the subsequent frame, and the speed at which the bow of the target vessel 191 approaches the quay wall. can be obtained.

다른 예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선미가 안벽으로 접근하는 속도인 선미 속도를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박(191)의 선미에 대응하는 하나의 포인트를 결정하고, 상기 선미에 대응하는 하나의 포인트가 안벽으로 접근하는 속도를 획득할 수 있다. 여기서, 제어 모듈(200)은 타겟 선박(191)의 선미 거리(194)에 기초하여 타겟 선박(191)의 선미가 안벽으로 접근하는 속도를 획득할 수 있다. 제어 모듈(200)은 현재 프레임에서의 타겟 선박(191)의 선미 거리(194)와 후속 프레임에서의 타겟 선박(191)의 선미 거리를 비교하여 타겟 선박(191)의 선미가 안벽으로 접근하는 속도를 획득할 수 있다.For another example, the control module 200 may acquire the stern velocity, which is the velocity at which the stern of the target vessel 191 approaches the quay wall. Specifically, the control module 200 may determine one point corresponding to the stern of the target ship 191 and acquire a speed at which one point corresponding to the stern approaches the quay wall. Here, the control module 200 may acquire the speed at which the stern of the target ship 191 approaches the quay wall based on the stern distance 194 of the target ship 191 . The control module 200 compares the stern distance 194 of the target vessel 191 in the current frame with the stern distance of the target vessel 191 in the subsequent frame, and the speed at which the stern of the target vessel 191 approaches the quay wall. can be obtained.

물론, 제어 모듈(200)은 타겟 선박(191)의 선수 및 선미에 대응하는 포인트들을 추출하여 선박의 선수 속도 및 선미 속도를 획득하는 대신 타겟 선박(191)의 임의의 1개의 포인트 또는 2개 이상의 포인트를 추출하여 선박이 안벽으로 접근하는 속도를 획득하는 것도 가능하며, 영역의 외곽선, 또는 영역 자체에 기초하여 선박이 안벽으로 접근하는 속도를 획득해도 무방하다. Of course, the control module 200 extracts points corresponding to the bow and stern of the target vessel 191 to obtain the bow velocity and stern velocity of the vessel, instead of obtaining any one point or two or more points of the target vessel 191 . It is also possible to obtain the speed at which the vessel approaches the quay wall by extracting points, and it is ok to obtain the speed at which the vessel approaches the quay wall based on the outline of the area or the area itself.

일 실시예에 따르면, 제어 모듈(200)은 타겟 선박(191)과 다른 선박(192) 사이의 거리를 획득할 수 있다. According to an embodiment, the control module 200 may obtain a distance between the target vessel 191 and the other vessel 192 .

예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선수와 다른 선박(192) 사이의 거리를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박(191)의 선수에 대응하는 하나의 포인트를 결정하고, 상기 선수에 대응하는 하나의 포인트와 다른 선박(192) 사이의 거리를 획득할 수 있다.For example, the control module 200 may obtain the distance between the bow of the target vessel 191 and the other vessel 192 . Specifically, the control module 200 may determine one point corresponding to the bow of the target vessel 191 , and obtain a distance between one point corresponding to the bow and the other vessel 192 .

다른 예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선미와 다른 선박(192) 사이의 거리를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박(191)의 선미에 대응하는 하나의 포인트를 결정하고, 상기 선미에 대응하는 하나의 포인트와 안벽 사이의 거리를 획득할 수 있다.As another example, the control module 200 may obtain the distance between the stern of the target vessel 191 and the other vessel 192 . Specifically, the control module 200 may determine one point corresponding to the stern of the target ship 191 , and obtain a distance between one point corresponding to the stern and the quay wall.

일 실시예에 따르면, 제어 모듈(200)은 선박에 대응하는 영역에서 선수단부 및 선미단부에 대응하는 한 쌍의 포인트를 추출할 수 있다. 여기서, 제어 모듈(200)은 상기 한 쌍의 포인트를 선수에 대응하는 하나의 포인트 및 선미에 대응하는 하나의 포인트로 결정할 수 있다. 예를 들어, 제어 모듈(200)은 선박과 다른 선박 사이의 거리를 획득하기 위해 선박에 대응하는 영역에서 선수단부 및 선미단부에 대응하는 한 쌍의 포인트 중 하나와 다른 선박 사이의 거리를 획득할 수 있다. 여기서, 제어 모듈(200)은 선수단부 및 선미단부에 대응하는 한 쌍의 포인트 중 다른 선박과 더 가까운 포인트에 기초하여 다른 선박 사이의 거리를 획득할 수 있다. According to an embodiment, the control module 200 may extract a pair of points corresponding to the front end and the stern end in the region corresponding to the vessel. Here, the control module 200 may determine the pair of points as one point corresponding to the bow and one point corresponding to the stern. For example, the control module 200 may obtain the distance between one of the pair of points corresponding to the fore end and the stern end in the area corresponding to the vessel and the other vessel in order to obtain the distance between the vessel and the other vessel. can Here, the control module 200 may acquire the distance between the other ships based on a point closer to the other ship among a pair of points corresponding to the front end and the aft end.

물론, 제어 모듈(200)은 타겟 선박(191)의 선수 및 선미에 대응하는 포인트들을 추출하여 선박의 선수 및 선미와 다른 선박 사이의 거리를 획득하는 대신 타겟 선박(191)의 임의의 1개의 포인트 또는 2개 이상의 포인트를 추출하여 선박과 다른 선박 사이의 거리를 획득하는 것도 가능하며, 영역의 외곽선, 또는 영역 자체에 기초하여 선박과 다른 선박 사이의 거리를 획득해도 무방하다. Of course, the control module 200 extracts points corresponding to the bow and stern of the target vessel 191 to obtain a distance between the bow and stern of the vessel and another vessel, instead of obtaining any one point of the target vessel 191 . Alternatively, it is also possible to obtain the distance between the vessel and the other vessel by extracting two or more points, or the distance between the vessel and the other vessel may be obtained based on the outline of the region or the region itself.

일 실시예에 따르면, 제어 모듈(200)은 타겟 선박(191)과 다른 선박(192) 사이의 상대 속도를 획득할 수 있다. According to an embodiment, the control module 200 may acquire the relative speed between the target vessel 191 and the other vessel 192 .

예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선수가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박(191)의 선수에 대응하는 하나의 포인트를 결정하고, 상기 선수에 대응하는 하나의 포인트가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다. 여기서, 제어 모듈(200)은 타겟 선박(191)의 선수와 다른 선박(192) 사이의 거리에 기초하여 타겟 선박(191)의 선수가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다. 제어 모듈(200)은 현재 프레임에서의 타겟 선박(191)의 선수와 다른 선박(192) 사이의 거리와 후속 프레임에서의 타겟 선박(191)의 선수와 다른 선박(192) 사이의 거리를 비교하여 타겟 선박(191)의 선수가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다.For example, the control module 200 may acquire the speed at which the bow of the target vessel 191 approaches the other vessel 192 . Specifically, the control module 200 may determine one point corresponding to the bow of the target vessel 191 , and acquire a speed at which one point corresponding to the bow approaches the other vessel 192 . Here, the control module 200 may acquire the speed at which the bow of the target vessel 191 approaches the other vessel 192 based on the distance between the bow of the target vessel 191 and the other vessel 192 . The control module 200 compares the distance between the bow of the target vessel 191 and the other vessel 192 in the current frame with the distance between the bow of the target vessel 191 and the other vessel 192 in the subsequent frame. The speed at which the bow of the target vessel 191 approaches the other vessel 192 may be acquired.

다른 예를 들어, 제어 모듈(200)은 타겟 선박(191)의 선미가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다. 구체적으로, 제어 모듈(200)은 타겟 선박(191)의 선미에 대응하는 하나의 포인트를 결정하고, 상기 선미에 대응하는 하나의 포인트가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다. 여기서, 제어 모듈(200)은 타겟 선박(191)의 선미와 다른 선박(192) 사이의 거리에 기초하여 타겟 선박(191)의 선미가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다. 제어 모듈(200)은 현재 프레임에서의 타겟 선박(191)의 선미와 다른 선박(192) 사이의 거리와 후속 프레임에서의 타겟 선박(191)의 선미와 다른 선박(192) 사이의 거리를 비교하여 타겟 선박(191)의 선미가 다른 선박(192)으로 접근하는 속도를 획득할 수 있다.As another example, the control module 200 may acquire the speed at which the stern of the target vessel 191 approaches the other vessel 192 . Specifically, the control module 200 may determine one point corresponding to the stern of the target vessel 191 , and obtain a speed at which one point corresponding to the stern approaches the other vessel 192 . Here, the control module 200 may acquire a speed at which the stern of the target vessel 191 approaches the other vessel 192 based on the distance between the stern of the target vessel 191 and the other vessel 192 . The control module 200 compares the distance between the stern of the target vessel 191 and the other vessel 192 in the current frame with the distance between the stern of the target vessel 191 and the other vessel 192 in the subsequent frame. A speed at which the stern of the target vessel 191 approaches the other vessel 192 may be acquired.

물론, 제어 모듈(200)은 타겟 선박(191)의 선수 및 선미에 대응하는 포인트들을 추출하여 선박의 선수 및 선미가 다른 선박(192)으로 접근하는 속도를 획득하는 대신 타겟 선박(191)의 임의의 1개의 포인트 또는 2개 이상의 포인트를 추출하여 타겟 선박(191)과 다른 선박(192) 사이의 상대 속도를 획득하는 것도 가능하며, 영역의 외곽선, 또는 영역 자체에 기초하여 타겟 선박(191)과 다른 선박(192) 사이의 상대 속도를 획득해도 무방하다.Of course, the control module 200 extracts points corresponding to the bow and stern of the target vessel 191 to obtain the speed at which the bow and stern of the vessel approach the other vessel 192 , instead of obtaining an arbitrary position of the target vessel 191 . It is also possible to obtain the relative speed between the target vessel 191 and the other vessel 192 by extracting one point or two or more points of the target vessel 191 and the target vessel 191 based on the outline of the region or the region itself. It is okay to obtain the relative speed between the different ships (192).

도 23은 일 실시예에 따른 모니터링 정보 출력에 관한 순서도이다.23 is a flowchart of monitoring information output according to an embodiment.

도 23을 참조하면, 접안 모니터링은 모니터링 정보를 출력하는 단계(S30)를 더 포함할 수 있다. 모니터링 정보 출력 단계에서 출력되는 정보는 선박 주변이나 해양, 항만의 이미지, 이미지에 포함된 오브젝트의 종류 및 거리/속도 등 그 특성과 같이 이미지 기반 모니터링에 관련된 정보라면 제한이 없다. Referring to FIG. 23, eyepiece monitoring may further include outputting monitoring information (S30). The information output in the monitoring information output step is not limited as long as it is information related to image-based monitoring, such as images of the vicinity of a ship, the ocean, or a port, and the type and distance/speed of objects included in the image.

장치(10)는 시각적으로 모니터링 정보를 출력할 수 있다. 예를 들어, 장치(10)는 디스플레이 등의 출력 모듈을 통해 모니터링 정보를 출력할 수 있다. 다른 예를 들어, 장치(10)는 통신 모듈(300)을 통해 사용자의 단말기로 모니터링 정보를 송신하고, 사용자 단말기의 디스플레이를 통해 모니터링 정보를 출력하도록 제어 신호를 전송할 수 있다. The device 10 may visually output monitoring information. For example, the device 10 may output monitoring information through an output module such as a display. As another example, the device 10 may transmit monitoring information to the user's terminal through the communication module 300 and transmit a control signal to output the monitoring information through the display of the user terminal.

모니터링 정보 출력 단계(S30)는 이미지 획득 단계에서 이미지 생성 유닛을 이용하여 획득한 이미지를 디스플레이하는 것을 포함할 수 있다. 이 외에도 전처리 단계를 거친 이미지, 세그멘테이션 또는 디텍션 후의 이미지, 시점 변환 후의 이미지 등 이미지 기반 모니터링에 관련된 다양한 이미지를 디스플레이하는 것을 포함할 수 있다. The monitoring information output step S30 may include displaying the image obtained in the image obtaining step using an image generating unit. In addition to this, it may include displaying various images related to image-based monitoring, such as an image that has undergone a pre-processing step, an image after segmentation or detection, and an image after viewpoint conversion.

또한, 모니터링 정보 출력 단계(S30)는 제어 모듈(200)이 이미지 분석 단계에서 추정한 위치/이동 정보를 출력 모듈 또는 사용자 단말기를 통해 디스플레이하는 것을 포함할 수 있다. In addition, the monitoring information output step ( S30 ) may include displaying the position/movement information estimated in the image analysis step by the control module 200 through an output module or a user terminal.

도 24는 일 실시예에 따른 모니터링 정보 출력의 일 예에 관한 도면이다.24 is a diagram illustrating an example of outputting monitoring information according to an embodiment.

도 24를 참고하면, 이미지와 접안 가이드 정보는 함께 디스플레이 될 수 있다. 도 24에 도시된 바와 같이, 디스플레이되는 접안 가이드 정보는 타겟 선박의 선수 거리, 선수 속도, 선미 거리 및 선미 속도 등을 포함할 수 있다. Referring to FIG. 24 , the image and the eyepiece guide information may be displayed together. 24 , the displayed eyepiece guide information may include a bow distance, a bow speed, a stern distance, and a stern speed of the target vessel.

모니터링 정보 출력 단계(S30)는 장치(10)가 시각적인 디스플레이 외에 소리나 진동을 출력하는 등 다른 방식으로 사용자에게 정보를 제공하는 것을 포함할 수 있다. 예를 들어, 제어 모듈(200)은 타겟 선박이 안벽이나 다른 선박, 장애물 등과 충돌할 위험이 있거나 접안 시 안벽으로의 접근 속도가 기준 속도 이상인 경우, 선박이 경로를 이탈하여 운항하는 경우 등 경고음을 출력 모듈 또는 사용자 단말기를 통해 출력할 수 있다. The monitoring information output step ( S30 ) may include providing information to the user in another way, such as the device 10 outputs sound or vibration in addition to a visual display. For example, the control module 200 emits a warning sound, such as when there is a risk that the target vessel collides with a quay wall, another vessel, obstacle, etc. It can output through an output module or a user terminal.

이미지 기반 모니터링은 서베일런스(surveillance)를 포함할 수 있다. 여기서, 서베일런스란 침입자를 감시하거나 등록되지 않은 선박의 항만 접근을 감시하는 등의 보안 관련 정보 및 화재 발생 등 긴급 상황 발생에 대한 정보를 사용자에게 제공하는 것을 의미할 수 있다.Image-based monitoring may include surveillance. Here, the surveillance may mean to provide the user with information about the occurrence of an emergency situation, such as a fire, and security-related information such as monitoring an intruder or monitoring an access of an unregistered vessel to a port.

장치(10)는 이미지에 사람이 포함되었는지 여부 및 이미지가 촬상된 시점에 기초하여 침입자를 감시할 수 있다. 예를 들어, 제어 모듈(200)은 항만에서 작업이 진행되지 않는 시점에 촬상된 항만 이미지에 사람이 포함되는 경우 침입자가 존재하는 것으로 판단할 수 있다. Device 10 may monitor for intruders based on whether the image includes a person and when the image was taken. For example, the control module 200 may determine that an intruder is present when a person is included in the port image captured at the time when the operation is not in progress in the port.

장치(10)는 이미지에 선박이 포함되었는지 여부에 기초하여 선박 감시를 할 수 있다. 예를 들어, 제어 모듈(200)은 AIS에 등록되지 않은 선박이 감지되는 경우 이에 대한 정보를 사용자에게 제공하는 방식으로 선박 감시를 할 수 있다.The device 10 may monitor the vessel based on whether the image includes the vessel. For example, the control module 200 may monitor the vessel in a manner that provides information about the detection of a vessel not registered with the AIS to the user.

또한, 장치(10)는 세그멘테이션이나 디텍션을 통해 이미지에 기초하여 사람이나 선박을 감지함으로써 서베일런스를 수행할 수도 있다.Also, the apparatus 10 may perform the surveillance by detecting a person or a ship based on an image through segmentation or detection.

도 25 내지 도 27은 일 실시예에 따른 모니터링 정보 출력의 다른 예에 관한 도면이다. 25 to 27 are diagrams of another example of outputting monitoring information according to an embodiment.

도 25와 도 26을 참고하면, 이미지와 접안 가이드 정보는 함께 디스플레이 될 수 있고, 타겟 선박이 복수인 경우 복수의 접안 가이드 정보가 출력될 수 있다. 25 and 26 , the image and the eyepiece guide information may be displayed together, and when there are a plurality of target vessels, a plurality of eyepiece guide information may be output.

도 25에 도시된 바와 같이, 접안 가이드 정보가 출력되는 위치는 이미지 상의 타겟 선박의 위치와 대응될 수 있다. 예를 들어, 좌측 타겟 선박의 접안 가이드 정보는 좌측에, 우측 타겟 선박의 접안 가이드 정보는 우측에 디스플레이될 수 있다.25, the position at which the eyepiece guide information is output may correspond to the position of the target vessel on the image. For example, the berthing guide information of the left target vessel may be displayed on the left side, and the berthing guide information of the right target vessel may be displayed on the right side.

또한, 도 26에 도시된 바와 같이, 접안 가이드 정보는 타겟 선박의 식별자와 함께 출력될 수 있다. 예를 들어, 이미지 상의 좌측 타겟 선박에 '선박 1', 이미지 상의 우측 타겟 선박에 '선박 2'이라는 임의의 식별자를 각각 부여하고 부여된 식별자와 각 타겟 선박의 접안 가이드 정보가 함께 출력될 수 있다. 또한, 부여된 식별자와 접안 가이드 정보는 이미지 상의 타겟 선박 주변에 표시될 수도 있다.In addition, as shown in FIG. 26 , the eyepiece guide information may be output together with the identifier of the target vessel. For example, an arbitrary identifier of 'vessel 1' to the left target vessel on the image and 'ship 2' to the right target vessel on the image is assigned, respectively, and the assigned identifier and berthing guide information of each target vessel may be output together. . Also, the assigned identifier and eyepiece guide information may be displayed around the target vessel on the image.

또한 도 27을 참고하면, 이미지와 접안 가이드 정보는 함께 디스플레이 될 수 있고, 선박이 복수인 경우 타겟 선박이 하나로만 결정되면 타겟 선박의 접안 가이드 정보만 출력될 수 있다. 예를 들어, 타겟 선박이 접안이 진행되는 중인 좌측 선박으로 결정된 경우, 타겟 선박으로 결정된 좌측 선박의 접안 가이드 정보만 화면에 출력될 수 있다.Also, referring to FIG. 27 , the image and the berthing guide information may be displayed together, and when only one target vessel is determined when there are a plurality of vessels, only the berthing guide information of the target vessel may be output. For example, when the target vessel is determined as the left vessel in which berthing is in progress, only the berthing guide information of the left vessel determined as the target vessel may be output on the screen.

이상에서는 단일 이미지에 기초한 이미지 기반 모니터링에 대해 살펴보았다. 이 외에도 복수의 이미지에 기초하여 이미지 기반 모니터링을 수행할 수 있다. 복수에 이미지에 기초하여 이미지 분석을 수행하는 경우 이미지 기반 모니터링 장치(10)의 총 모니터링 영역이 증가하거나 모니터링의 정확도가 향상될 수 있다.In the above, we looked at image-based monitoring based on a single image. In addition, image-based monitoring may be performed based on a plurality of images. When image analysis is performed based on a plurality of images, the total monitoring area of the image-based monitoring apparatus 10 may increase or monitoring accuracy may be improved.

도 28은 일 실시예에 따른 복수의 이미지에 기초한 이미지 기반 모니터링에 관한 도면이다.28 is a diagram of image-based monitoring based on a plurality of images according to an exemplary embodiment.

도 28을 참고하면, 이미지 획득 단계는 제1 이미지 획득 단계(S11) 및 제2 이미지 획득 단계(S12)를 포함할 수 있고, 이미지 분석 단계(S20)는 제1 이미지 획득 단계(S11)에서 획득한 제1 이미지 및 제2 이미지 획득 단계(S12)에서 획득한 제2 이미지에 기초하여 이미지 분석을 수행할 수 있다.Referring to FIG. 28 , the image acquisition step may include a first image acquisition step S11 and a second image acquisition step S12 , and the image analysis step S20 is obtained in the first image acquisition step S11 . Image analysis may be performed based on the first image and the second image acquired in the second image acquiring step ( S12 ).

복수의 이미지에 기초하여 하나의 이미지를 생성한 후 이미지 분석을 수행할 수 있다. 예를 들어, 제어 모듈(200)은 복수의 이미지가 정합된 파노라마 이미지를 생성하고, 상기 파노라마 이미지의 이미지 분석을 수행할 수 있다. 구체적으로, 제어 모듈(200)은 제1 이미지 및 제2 이미지를 정합하거나 융합하여 정합 이미지 또는 융합 이미지를 생성하고, 생성된 정합 이미지 또는 융합 이미지에 기초하여 이미지 분석을 수행할 수 있다.After generating one image based on a plurality of images, image analysis may be performed. For example, the control module 200 may generate a panoramic image in which a plurality of images are matched, and perform image analysis of the panoramic image. Specifically, the control module 200 may generate a registered image or a fusion image by registering or fusing the first image and the second image, and may perform image analysis based on the generated registered image or the fusion image.

또는, 복수의 이미지 각각에 기초하여 이미지 분석을 수행한 결과를 바탕으로 최종 분석 결과를 산출할 수 있다. 예를 들어, 제1 이미지로부터 이미지 분석을 수행하여 제1 모니터링 정보를 획득하고 제2 이미지로부터 이미지 분석을 수행하여 제2 모니터링 정보를 획득한 후 제1 모니터링 정보와 제2 모니터링 정보에 기초하여 최종 모니터링 정보를 획득할 수 있다. Alternatively, a final analysis result may be calculated based on a result of performing image analysis based on each of the plurality of images. For example, after image analysis is performed from the first image to obtain first monitoring information, and image analysis is performed to obtain second monitoring information from the second image, the final monitoring information is based on the first monitoring information and the second monitoring information. Monitoring information can be obtained.

복수의 모니터링 정보로부터 최종 모니터링 정보를 획득하는 방법의 일 예로, 복수의 모니터링 정보를 가중치별로 고려하여 최종 모니터링 정보를 산출하는 방법이 있을 수 있다. As an example of a method of acquiring the final monitoring information from the plurality of monitoring information, there may be a method of calculating the final monitoring information by considering the plurality of monitoring information for each weight.

또는, 복수의 모니터링 정보가 서로 일치하지 않거나 그 차이가 특정 값과 같은 임계치(threshold) 이상인지 여부(이하 “에러 발생 여부”라 함)에 기초하여 최종 모니터링 정보를 산출할 수 있다. 예를 들어, 에러 발생 여부에 기초하여 복수의 모니터링 정보를 가중치별로 고려하여 최종 모니터링 정보를 산출하거나, 복수의 모니터링 정보 중 특정 모니터링 정보를 우선시하여 최종 모니터링 정보를 산출하거나, 특정 모니터링 정보를 다른 모니터링 정보로 보정하거나, 해당 모니터링 정보를 무시하는 방법 등이 있을 수 있지만, 이에 한정되는 것은 아니다.Alternatively, the final monitoring information may be calculated based on whether a plurality of pieces of monitoring information do not match each other or whether the difference is equal to or greater than a threshold equal to a specific value (hereinafter referred to as “error occurrence”). For example, based on the occurrence of an error, the final monitoring information is calculated by considering a plurality of monitoring information by weight, or the final monitoring information is calculated by giving priority to specific monitoring information among a plurality of monitoring information, or the specific monitoring information is used for other monitoring There may be a method of compensating with information or ignoring the corresponding monitoring information, but is not limited thereto.

복수의 이미지는 동일한 종류의 이미지일 수 있다. 예를 들어, 센서 모듈이 동일한 이미지 생성 유닛을 2개 포함하거나, 하나의 이미지 생성 유닛을 포함하는 동일한 센서 모듈이 2개 배치되어 이미지 기반 모니터링을 수행하는 경우 제1 이미지 및 제2 이미지는 동일한 종류일 수 있다.The plurality of images may be images of the same type. For example, when two sensor modules include the same image generating unit, or two identical sensor modules including one image generating unit are disposed to perform image-based monitoring, the first image and the second image are of the same type can be

복수의 이미지의 모니터링 영역은 서로 다를 수 있다. 예를 들어, 제1 이미지는 이미지 생성 유닛으로부터 근거리를 모니터링하고, 제2 이미지는 원거리를 모니터링할 수 있다. 또는, 제1 이미지는 이미지 생성 유닛으로부터 좌측을 모니터링하고, 제2 이미지는 우측을 모니터링할 수 있다.Monitoring areas of the plurality of images may be different from each other. For example, the first image may monitor a short distance from the image generating unit, and the second image may monitor a long distance. Alternatively, the first image may monitor the left side from the image generating unit, and the second image may monitor the right side.

또한, 장치(10)는 복수의 이미지 분석으로 획득한 모니터링 정보를 적합한 이미지와 함께 출력할 수 있다. Also, the device 10 may output monitoring information obtained by analyzing a plurality of images together with an appropriate image.

장치(10)는 복수의 이미지 분석으로 획득한 모니터링 정보를 복수의 이미지 중 타겟 선박이 포함된 이미지와 함께 출력할 수 있다. 예를 들어, 제어 모듈(200)은 적어도 일부가 다른 영역의 이미지를 촬상하는 복수의 카메라에 의해 획득한 복수의 이미지를 이미지 분석한 후, 출력 모듈 또는 사용자 단말기를 통해 복수의 이미지 중 타겟 선박이 찍힌 제1 이미지가 제1 이미지에서 산출된 제1 접안 가이드 정보와 함께 출력할 수 있다.The device 10 may output monitoring information obtained by analyzing a plurality of images together with an image including a target vessel among a plurality of images. For example, the control module 200 performs image analysis of a plurality of images acquired by a plurality of cameras that capture images of at least partly different regions, and then selects the target vessel among the plurality of images through an output module or a user terminal. The first image taken may be output together with the first eyepiece guide information calculated from the first image.

도 29 및 도 30은 일 실시예에 따른 모니터링 정보 출력의 다른 예에 관한 도면이다. 29 and 30 are diagrams of another example of outputting monitoring information according to an embodiment.

도 29와 도 30을 참고하면, 복수의 이미지 분석 후 타겟 선박이 결정되는 경우, 타겟 선박의 접안 가이드 정보는 복수의 이미지 중 타겟 선박이 포함된 이미지와 함께 디스플레이될 수 있다. 예를 들어, 타겟 선박이 '선박 1'로 결정된 경우 '선박 1'의 접안 가이드 정보는 '선박 1'이 포함된 선석의 이미지와 함께 디스플레이될 수 있다. 또한, 타겟 선박이 '선박 3'으로 결정된 경우 '선박 3'의 접안 가이드 정보는 '선박 3'이 포함된 선석의 이미지와 함께 디스플레이될 수 있다.29 and 30 , when a target vessel is determined after analyzing a plurality of images, the piercing guide information of the target vessel may be displayed together with an image including the target vessel among the plurality of images. For example, when the target vessel is determined as 'vessel 1', berthing guide information of 'vessel 1' may be displayed together with an image of a berth including 'vessel 1'. In addition, when the target vessel is determined to be 'Ship 3', the berthing guide information of 'Ship 3' may be displayed together with the image of the berth including 'Ship 3'.

장치(10)는 복수의 이미지 분석으로 획득한 모니터링 정보를 복수의 이미지 중 선박의 도착지 이미지와 함께 출력할 수 있다. 예를 들어, 제어 모듈(200)은 적어도 일부가 중첩되는 영역의 이미지를 촬상하는 복수의 카메라에 의해 획득한 복수의 이미지를 이미지 분석한 후, 타겟 선박이 복수의 이미지에 함께 찍힌 경우 복수의 이미지 중 타겟 선박의 항해 정보에 따른 도착지에 설치된 카메라를 이용하여 획득된 이미지와 상기 이미지에서 산출된 접안 가이드 정보가 함께 출력되도록 제어 신호를 생성할 수 있다.The device 10 may output the monitoring information obtained by analyzing the plurality of images together with the destination image of the vessel among the plurality of images. For example, the control module 200 performs image analysis of a plurality of images acquired by a plurality of cameras that capture an image of a region where at least a part overlaps, and then, when the target vessel is taken together in the plurality of images, the plurality of images A control signal may be generated so that an image obtained using a camera installed at a destination according to the navigation information of the target vessel and the berthing guide information calculated from the image are output together.

도 31 및 도 32는 일 실시예에 따른 모니터링 정보 출력의 다른 예에 관한 도면이다.31 and 32 are diagrams of another example of outputting monitoring information according to an embodiment.

도 31 및 도 32는 적어도 일부가 중첩되는 영역의 이미지를 촬상하는 복수의 카메라에 의해 획득된 서로 인접한 각각의 선석의 이미지인 제1 이미지 및 제2 이미지와 함께 접안 가이드 정보가 디스플레이된 것을 나타낸다. 31 and 32 show that the eyepiece guide information is displayed together with a first image and a second image that are images of respective berths adjacent to each other acquired by a plurality of cameras that capture images of an area at least partially overlapping.

도 31 및 도 32를 참고하면, 선박(252)은 동일한 시점에 두 개의 이미지 상에 함께 찍혀있다. 선박(252)의 도착지가 제1 이미지의 선석이 아니고 제2 이미지의 선석인 경우, 다른 곳을 향해 지나가는 선박(252)의 접안 가이드 정보를 제2 이미지가 아닌 제1 이미지와 함께 출력하는 것은 바람직하지 않을 수 있다. 도 31과 같이, 제1 이미지는 항해 정보에 따라 제1 이미지의 선석이 도착지인 선박(251)의 접안 가이드 정보와 함께 출력되는 것이 바람직하다. 또한, 도 32와 같이, 항해 정보에 따라 제2 이미지의 선석이 도착지인 선박(252)의 접안 가이드 정보는 제2 이미지와 함께 출력되는 것이 바람직하다. 31 and 32 , the vessel 252 is taken together on two images at the same time. When the destination of the vessel 252 is not the berth of the first image but the berth of the second image, it is preferable to output the berthing guide information of the vessel 252 passing toward another place with the first image rather than the second image may not 31, it is preferable that the first image is output along with the berthing guide information of the ship 251 where the berth of the first image is the destination according to the navigation information. In addition, as shown in FIG. 32, it is preferable that the berthing guide information of the ship 252 where the berth of the second image is the destination according to the voyage information is output together with the second image.

물론, 복수의 이미지 분석으로 획득한 모니터링 정보는 복수의 이미지 중 임의의 이미지와 함께 출력되어도 무방하며, 상술한 기재에 한정되지 않는다.Of course, the monitoring information obtained by analyzing a plurality of images may be output together with an arbitrary image among the plurality of images, and is not limited to the above description.

이미지 기반 모니터링은 시점 변환 단계를 더 포함할 수 있다.The image-based monitoring may further include a viewpoint conversion step.

일반적으로 카메라 등 이미지 생성 유닛이 생성하는 이미지는 원근 시점(perspective view)로 나타날 수 있다. 이를 탑 뷰(top view, 평면 시점), 측면 시점(side view), 다른 원근 시점 등으로 변환하는 것을 시점 변환이라 할 수 있다. 물론, 탑 뷰나 측면 시점 이미지를 다른 시점으로 변환할 수도 있으며, 이미지 생성 유닛이 탑 뷰 이미지나 측면 시점 이미지 등을 생성할 수도 있고 이 경우 시점 변환이 수행될 필요가 없을 수도 있다.In general, an image generated by an image generating unit such as a camera may be displayed as a perspective view. Converting this to a top view (planar view), a side view, another perspective view, etc. may be referred to as view transformation. Of course, a top view or a side view image may be converted into another view, and the image generating unit may generate a top view image or a side view image, etc. In this case, it may not be necessary to perform view point conversion.

도 33 및 도 34는 일 실시예에 따른 시점 변환에 관한 도면이다. 33 and 34 are diagrams for view transformation according to an embodiment.

도 33을 참고하면, 원근 시점 이미지의 시점 변환을 통해 다른 원근 시점 이미지를 획득할 수 있다. 여기서, 안벽(OBJ8)이 이미지 상에서 수평 방향(이미지 상에서 좌우 방향)을 따라 위치하도록 시점 변환을 수행할 수 있다. 도 34를 참고하면, 원근 시점 이미지의 시점 변환을 통해 탑 뷰 이미지를 획득할 수 있다. 여기서, 탑 뷰 이미지는 해수면과 수직한 방향에서 해수면을 내려다 본 뷰일 수 있다. 또한, 도 33과 마찬가지로 안벽(OBJ9)이 이미지 상에서 수평 방향을 따라 위치하도록 시점 변환을 수행할 수 있다.Referring to FIG. 33 , another perspective view image may be acquired through viewpoint transformation of the perspective view image. Here, viewpoint conversion may be performed so that the quay wall OBJ8 is positioned along a horizontal direction (left and right direction on the image) on the image. Referring to FIG. 34 , a top view image may be obtained through viewpoint transformation of a perspective viewpoint image. Here, the top view image may be a view looking down at the sea level in a direction perpendicular to the sea level. Also, as in FIG. 33 , viewpoint conversion may be performed so that the quay wall OBJ9 is positioned along the horizontal direction on the image.

이미지 획득 후 시점 변환을 수행한 뒤에 선박의 접안 가이드에 필요한 정보를 획득하기 위한 이미지 분석을 할 수 있다. 일 예에 따르면, 접안 가이드 정보의 획득은 시점이 변환된 세그멘테이션된 이미지에 기초하여 수행될 수 있다. 구체적으로, 원근 시점의 세그멘테이션 이미지를 탑 뷰 세그멘테이션 이미지로 시점을 변환하고, 탑 뷰 세그멘테이션된 이미지 중 픽셀의 클래스 값이 선박에 해당하는 영역에 기초하여 선박의 접안 가이드 정보를 획득할 수 있다. 물론, 시점 변환된 세그멘테이션이미지는 탑 뷰가 아니라 측면 시점 등 다양한 시점으로 시점이 변환된 세그멘테이션 이미지여도 무방하며, 뿐만 아니라 2개의 포인트를 추출하여 선박의 위치/이동 정보를 획득하는 대신 영역의 외곽선, 또는 영역 자체에 기초하여 선박의 위치/이동 정보를 획득하여도 무방하다. After obtaining the image, after converting the viewpoint, image analysis can be performed to obtain information necessary for the berthing guide of the vessel. According to an example, the acquisition of the eyepiece guide information may be performed based on the segmented image in which the viewpoint is converted. Specifically, the viewpoint may be converted from the segmentation image of the perspective viewpoint into the top-view segmentation image, and the berthing guide information of the vessel may be obtained based on the region in which the class value of the pixel in the top-view segmented image corresponds to the vessel. Of course, the viewpoint-converted segmentation image may be a segmentation image in which the viewpoint is converted to various viewpoints, such as a side viewpoint, not a top view. Alternatively, the location/movement information of the vessel may be acquired based on the area itself.

물론, 반드시 그러한 것은 아니며, 시점이 변환된 촬영 영상 등의 이미지에 기초하여 수행되는 것도 가능하다.Of course, this is not always the case, and it may be performed based on an image, such as a photographed image in which the viewpoint is converted.

또한 이미지 획득 후 시점 변환을 수행한 뒤에 사용자에게 이미지를 디스플레이하는 등 모니터링 정보를 출력할 수 있다. 이 경우 시점 변환을 통해 사용자에게 주변 상황에 대한 정보를 보다 용이하게 제공할 수 있다.In addition, monitoring information such as displaying an image to the user may be output after the viewpoint is changed after acquiring the image. In this case, information on the surrounding situation can be more easily provided to the user through viewpoint conversion.

이미지의 시점 변환은 다양한 방식으로 수행될 수 있다.The viewpoint transformation of the image may be performed in various ways.

시점 변환의 일 예로 역투영 변환(Inverse Projective Mapping, IPM)을 수행할 수 있다. 2차원 이미지는 3차원 공간 상의 피사체에서 반사된 빛이 카메라의 렌즈를 통해 이미지 센서에 입사되어 생성되고, 2차원과 3차원의 관계는 이미지 센서와 렌즈에 의존하며, 예를 들어 수학식 1과 같이 표현될 수 있다.As an example of the viewpoint transformation, inverse projection transformation (IPM) may be performed. A two-dimensional image is generated when light reflected from a subject in a three-dimensional space is incident on an image sensor through the lens of the camera, and the relationship between two dimensions and three dimensions depends on the image sensor and lens, for example, Equation 1 and can be expressed together.

Figure pat00001
Figure pat00001

여기서, 좌변의 행렬은 2차원 이미지 좌표, 우변의 첫 번째 행렬은 내부 파라미터(intrinsic parameter), 두 번째 행렬은 외부 파라미터(extrinsic parameter), 세 번째 행렬은 3차원 좌표를 의미한다. 구체적으로, fx 및 fy는 초점 거리(focal length), cx 및 cy는 주점(principal point), r 및 t는 각각 회전 및 평행이동 변환 파라미터를 의미한다.Here, the matrix on the left side indicates two-dimensional image coordinates, the first matrix on the right side indicates intrinsic parameters, the second matrix indicates external parameters, and the third matrix indicates 3-dimensional coordinates. Specifically, fx and fy denote focal lengths, cx and cy denote principal points, and r and t denote rotation and translation transformation parameters, respectively.

2차원 이미지를 역투영 변환을 통해 3차원 상의 임의의 평면에 투영시켜 그 시점을 변경시킬 수 있다. 예를 들어, 원근 시점 이미지를 역투영 변환을 통해 탑 뷰 이미지로 변환하거나, 다른 원근 시점 이미지로 변환할 수 있다.By projecting a two-dimensional image onto an arbitrary plane in three dimensions through inverse projection transformation, the viewpoint can be changed. For example, a perspective view image may be converted into a top view image through inverse projection transformation, or may be converted into another perspective view image.

시점 변환을 위해서 내부 파라미터가 필요할 수 있다. 내부 파라미터를 구하는 방법의 일 예로 Zhang 방법을 이용할 수 있다. Zhang 방법은 다항식 모델(polynomial model)의 일종으로 격자의 크기를 알고 있는 격자판을 다양한 각도와 거리에서 촬영하여 내부 파라미터를 획득하는 방법이다.Internal parameters may be required for viewpoint transformation. As an example of a method for obtaining an internal parameter, the Zhang method may be used. The Zhang method is a type of polynomial model, and is a method of acquiring internal parameters by photographing a grid with a known size at various angles and distances.

시점 변환을 위해서 이미지를 촬상한 이미지 생성 유닛/센서 모듈의 위치 및/또는 자세에 대한 정보가 필요할 수 있다. 이러한 정보는 위치 측정 유닛 및 자세 측정 유닛으로부터 획득될 수 있다.Information on the position and/or posture of the image generating unit/sensor module capturing the image may be required for viewpoint conversion. Such information may be obtained from the position measuring unit and the posture measuring unit.

또는, 이미지에 포함된 고정체의 위치에 기초하여 위치 및/또는 자세에 대한 정보를 획득할 수 있다. 예를 들어, 제1 시점에 이미지 생성 유닛은 제1 위치 및/또는 제1 자세로 배치되고, 지형이나 건물 등과 같이 고정된 객체인 타겟 고정체를 포함하는 제1 이미지를 생성할 수 있다. 이 후, 제2 시점에 이미지 생성 유닛은 상기 타겟 고정체를 포함하는 제2 이미지를 생성할 수 있다. 제1 이미지 상에서의 타겟 고정체의 위치 및 제2 이미지 상에서의 타겟 고정체의 위치를 비교하여 제2 시점에서의 이미지 생성 유닛의 위치 및/또는 자세인 제2 위치 및/또는 제2 자세를 산출할 수 있다.Alternatively, information on the position and/or posture may be acquired based on the position of the fixture included in the image. For example, at a first time point, the image generating unit may generate a first image including a target fixture that is disposed at a first position and/or a first posture and is a fixed object such as a terrain or a building. Thereafter, at a second time point, the image generating unit may generate a second image including the target fixture. Comparing the position of the target fixture on the first image and the position of the target fixture on the second image to calculate a second position and/or a second posture that is the position and/or posture of the image generating unit at the second time point can do.

또한, 시점 변환 시 기준 평면의 선택에 따라 이미지 분석의 정확도가 달라질 수 있다. 예를 들어, 원근 시점 이미지를 탑 뷰 이미지로 변환하는 경우, 기준 평면의 높이에 따라 탑 뷰 이미지에 기초한 이미지 분석의 정확도가 달라질 수 있다. 해수면 상에서의 오브젝트 사이의 거리를 정확히 산출하기 위해서는 시점 변환 시 기준 평면이 해수면인 것이 바람직할 수 있다. 해수면의 높이는 시간에 따라 변화할 수 있으므로 해수면의 높이를 고려하여 시점 변환을 수행하는 것이 이미지 분석의 정확도 향상에 바람직할 수 있다.In addition, the accuracy of image analysis may vary depending on the selection of the reference plane when changing the viewpoint. For example, when a perspective view image is converted into a top view image, the accuracy of image analysis based on the top view image may vary according to the height of the reference plane. In order to accurately calculate the distance between objects on the sea level, it may be preferable that the reference plane be the sea level when changing the viewpoint. Since the height of the sea level may change with time, it may be desirable to improve the accuracy of image analysis to perform viewpoint conversion in consideration of the height of the sea level.

전술한 시점 변환 방법은 예시에 불과하고 이와 다른 방법으로 시점 변환을 수행할 수도 있으며, 시점 변환 정보는 전술한 수학식 1의 행렬, 파라미터, 좌표, 위치 및/또는 자세에 대한 정보 등 시점 변환을 위해 필요한 정보를 포함한다.The above-described viewpoint transformation method is merely an example, and viewpoint transformation may be performed in a different way. The viewpoint transformation information includes viewpoint transformation such as information on the matrix, parameters, coordinates, position and/or posture of Equation 1 above. contains the necessary information for

이미지 기반 모니터링은 전처리(pre-processing) 단계를 포함할 수 있다. 전처리는 이미지에 행하여지는 모든 종류의 가공을 의미하고, 이미지 정규화(normalization), 이미지 밝기 평준화(image equalization, histogram equalization), 이미지 리사이즈(resize), 이미지의 해상도/크기를 변경하는 업스케일링(upscaling) 및 다운스케일링(downscaling), 잘라내기(crop), 노이즈 제거 등을 포함할 수 있다. 여기서, 노이즈는 안개, 비, 물방울, 해무(sea clutter), 미세먼지, 직사광선, 염분 및 이들의 조합 등을 포함할 수 있고, 노이즈를 제거한다는 것은 이미지에 포함된 노이즈 성분을 없애거나 감소시키는 것을 포함할 수 있다. Image-based monitoring may include a pre-processing step. Preprocessing refers to all kinds of processing performed on images, including image normalization, image equalization, histogram equalization, image resizing, and upscaling to change the resolution/size of the image. and downscaling, cropping, noise removal, and the like. Here, the noise may include fog, rain, water droplets, sea clutter, fine dust, direct sunlight, salt, and combinations thereof. may include

전처리의 일 예로 정규화에 대해 살펴보면, 정규화는 RGB 이미지의 전체 픽셀의 RGB 값의 평균을 구하고 이를 RGB 이미지로부터 차감하는 것을 의미할 수 있다. Referring to normalization as an example of preprocessing, normalization may mean obtaining an average of RGB values of all pixels of an RGB image and subtracting it from the RGB image.

전처리의 다른 예로 안개 제거(defogging)에 대해 살펴보면, 안개 제거는 안개 낀 지역을 촬영한 이미지를 전처리를 통해 맑은 지역을 촬영한 이미지처럼 보이도록 변환하는 것을 의미할 수 있다. 도 13은 일 실시예에 따른 안개 제거에 관한 도면이다. 도 13을 참고하면, 안개 제거를 통해 도 13의 (a)와 같이 안개 낀 지역을 촬영한 이미지를 도 13의 (b)와 같은 안개가 제거된 이미지로 변환할 수 있다.Referring to defogging as another example of preprocessing, defogging may mean converting an image of a foggy area to look like an image of a clear area through preprocessing. 13 is a view related to fog removal according to an embodiment. Referring to FIG. 13 , an image of a foggy area as shown in FIG. 13 (a) may be converted into an image in which fog is removed as shown in FIG. 13(b) through fog removal.

전처리의 또 다른 예로 물방울 제거에 대해 살펴보면, 물방울 제거는 카메라 전면에 맺힌 물방울이 촬영된 이미지에서 전처리를 통해 물방울이 제거된 것처럼 보이도록 변환하는 것을 의미할 수 있다.Looking at water drop removal as another example of pre-processing, water drop removal may mean converting water droplets on the front of the camera so that the water droplets appear to have been removed through pre-processing in the captured image.

일 실시예에 따르면, 이미지 획득 단계(S10) 후 전처리 단계를 거쳐 이미지 분석 단계(S20)를 수행할 수 있다. 예를 들어, 이미지 생성 유닛을 이용하여 획득한 이미지에 전처리를 수행한 후 이미지 분석을 수행할 수 있다. 이미지 전처리를 통해 이미지 분석이 용이해지거나 정확도가 향상될 수 있다.According to one embodiment, after the image acquisition step (S10), the image analysis step (S20) may be performed through a pre-processing step. For example, image analysis may be performed after performing pre-processing on an image obtained by using the image generating unit. Image preprocessing may facilitate image analysis or improve accuracy.

이미지 전처리는 인공 신경망을 통해 수행될 수 있다. 예를 들어, 안개 낀 지역을 촬영한 이미지를 인공 신경망에 입력하여 맑은 지역을 촬영한 이미지처럼 보이도록 변환할 수 있는 등 노이즈를 포함하는 이미지를 인공 신경망에 입력하여 노이즈가 제거된 이미지를 획득할 수 있다. 인공 신경망의 예로는 GAN 등이 있으나 이에 한정되는 것은 아니다.Image preprocessing may be performed through an artificial neural network. For example, you can input an image of a foggy area into an artificial neural network to convert a clear area to look like a photographed image, etc. You can input an image containing noise into an artificial neural network to obtain an image with noise removed. can Examples of the artificial neural network include, but are not limited to, a GAN.

또는, 이미지 전처리는 이미지 마스크를 이용하여 수행될 수 있다. 예를 들어, 안개 낀 지역을 촬영한 이미지에 이미지 마스크를 적용하여 맑은 지역을 촬영한 이미지처럼 보이도록 변환할 수 있다. 여기서, 이미지 마스크의 예로는 역 컨볼루션(deconvolution) 필터, 샤픈(sharpen) 필터 등이 있고, GAN 등의 인공 신경망을 통해 이미지 마스크를 생성할 수도 있지만 이에 한정되는 것은 아니다.Alternatively, image preprocessing may be performed using an image mask. For example, by applying an image mask to an image of a foggy area, you can transform a clear area to look like a photographed image. Here, examples of the image mask include a deconvolution filter, a sharpen filter, and the like, and an image mask may be generated through an artificial neural network such as a GAN, but is not limited thereto.

이상에서는 이미지를 전처리한 후에 이미지 분석을 수행하는 경우에 대해 살펴보았다. 이와 달리, 전처리 과정을 포함한 이미지 분석 수행이 가능할 수도 있다. 예를 들어, 이미지 분석 단계가 세그멘테이션 또는 디텍션을 포함하는 경우, 노이즈를 포함하는 이미지의 세그멘테이션 또는 디텍션 수행 결과가 노이즈를 포함하지 않는 이미지의 세그멘테이션 또는 디텍션 수행 결과와 동등하도록 구현할 수도 있을 것이다.In the above, the case of performing image analysis after image preprocessing has been discussed. Alternatively, image analysis including preprocessing may be performed. For example, when the image analysis step includes segmentation or detection, it may be implemented so that a result of performing segmentation or detection of an image including noise is equivalent to a result of performing segmentation or detection of an image that does not include noise.

도 35는 일 실시예에 따른 이미지 기반 모니터링의 순서도이다. 35 is a flowchart of image-based monitoring according to an embodiment.

도 35를 참고하면, 접안 모니터링은 이미지 획득 단계(S1010), 세그멘테이션 단계(S1210), 선박 트래킹 단계(S1213), 트래킹 정보 획득 단계(S1216), 타겟 선박 결정 단계(S1219), 접안 가이드 정보 획득 단계(S1220) 및 모니터링 정보 출력 단계(S1030)를 포함할 수 있다. 각 단계는 상술한 바와 같이 구현될 수 있다.Referring to Figure 35, the eyepiece monitoring is image acquisition step (S1010), segmentation step (S1210), vessel tracking step (S1213), tracking information acquisition step (S1216), target vessel determination step (S1219), berthing guide information acquisition step (S1220) and monitoring information output step (S1030) may be included. Each step may be implemented as described above.

장치(10)는 이미지 획득 단계(S1010)를 통해 오브젝트를 포함하는 이미지를 획득할 수 있다. 장치(10)는 이미지에 기초하여 세그멘테이션 단계(S1210)를 수행하여 세그멘테이션 이미지를 획득할 수 있다. 장치(10)는 선박 트래킹 단계(S1213)를 수행하여 세그멘테이션 이미지에 기초하여 인식한 적어도 하나의 선박을 트래킹할 수 있다. 장치(10)는 트래킹 정보 획득 단계(S1216)를 수행하여 트래킹 정보를 획득할 수 있다. 여기서, 트래킹 정보는 선박의 위치 정보, 선박의 이동 정보, 선박의 항해 정보 및 사용자 입력 정보 중 적어도 하나를 포함할 수 있다. 장치(10)는 타겟 선박 결정 단계(S1219)를 수행하여, 획득한 트래킹 정보에 기초하여 트래킹되는 선박 중 타겟 선박을 결정할 수 있다. 장치(10)는 접안 가이드 정보 획득 단계(S1220)를 수행하여, 결정된 타겟 선박의 접안 가이드 정보를 세그멘테이션 이미지에 기초하여 획득할 수 있다. 여기서, 접안 가이드 정보는 타겟 선박의 선수 거리와 선미 거리 중 적어도 하나를 포함할 수 있다. 장치(10)는 모니터링 정보 출력 단계(S1030)를 수행하여, 접안 가이드 정보를 상기 이미지와 함께 출력할 수 있다.The device 10 may acquire an image including an object through an image acquisition step ( S1010 ). The device 10 may obtain a segmentation image by performing a segmentation step S1210 based on the image. The device 10 may track at least one vessel recognized based on the segmentation image by performing the vessel tracking step ( S1213 ). The device 10 may obtain tracking information by performing a tracking information acquisition step (S1216). Here, the tracking information may include at least one of location information of the vessel, movement information of the vessel, navigation information of the vessel, and user input information. The device 10 may determine the target vessel among the vessels to be tracked based on the obtained tracking information by performing the target vessel determining step ( S1219 ). The device 10 may perform the step of obtaining the eyepiece guide information ( S1220 ) to obtain the determined eyepiece guide information of the target vessel based on the segmentation image. Here, the eyepiece guide information may include at least one of a bow distance and a stern distance of the target vessel. The device 10 may perform the monitoring information output step (S1030) to output the eyepiece guide information together with the image.

도 35의 실시예는 예시에 불과하고 이와 다른 방법으로 이미지 기반 모니터링이 수행될 수 있다. The embodiment of FIG. 35 is merely an example, and image-based monitoring may be performed in a different way.

일 예로, 도 35의 실시예에서 일부 단계가 수행되지 않을 수 있다. 도 35를 참고하면, 모니터링 정보를 출력하는 단계(S1030)가 수행되지 않을 수 있다. For example, some steps may not be performed in the embodiment of FIG. 35 . Referring to FIG. 35 , the step of outputting monitoring information ( S1030 ) may not be performed.

다른 예로, 이미지가 정합되는 단계가 추가되거나 이미지의 시점 변환 단계가 추가되는 등 도 35의 실시예에서 다른 단계가 추가될 수 있다. As another example, another step may be added in the embodiment of FIG. 35 , such as adding an image matching step or adding an image viewpoint conversion step.

또 다른 예로, 세그멘테이션 단계가 디텍션 단계로 치환되는 등 도 35의 실시예에서 일부 단계가 다른 단계로 치환될 수 있다.As another example, some steps may be replaced with other steps in the embodiment of FIG. 35 , such as a segmentation step being replaced with a detection step.

실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and available to those skilled in the art of computer software. Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floppy disks. - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like. The hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

상기에서는 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술 분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.In the above, the configuration and features of the present invention have been described with reference to the embodiments, but the present invention is not limited thereto, and it will be appreciated by those skilled in the art that various changes or modifications can be made within the spirit and scope of the present invention. It is evident that such changes or modifications are intended to fall within the scope of the appended claims.

10: 모니터링 장치
100: 센서 모듈
110: 통신부
120: 제어부
130: 카메라
200: 제어 모듈
210: 통신부
220: 제어부
300: 통신 모듈
10: monitoring device
100: sensor module
110: communication department
120: control unit
130: camera
200: control module
210: communication unit
220: control unit
300: communication module

Claims (1)

컴퓨팅 수단에 의해 수행되는 접안 모니터링 방법에 있어서,
항만에 설치되어 이미지를 촬상하는 카메라를 이용하여 바다 및 복수의 선박을 포함하는 항만 이미지를 획득하는 단계;
입력 이미지 및 상기 입력 이미지에 포함된 바다, 선박 및 지형지물을 포함하는 오브젝트들에 해당하는 픽셀에 각각 바다, 선박 및 지형지물을 지시하는 클래스 값들을 라벨링한 러닝셋을 이용하여 학습된 인공 신경망을 이용하여 상기 항만 이미지로부터 상기 오브젝트들에 대한 세그멘테이션 이미지를 생성하는 단계;
상기 세그멘테이션 이미지의 선박을 지시하는 클래스 값이 할당된 제1 픽셀들에 기초하여 상기 복수의 선박을 트래킹하여 상기 복수의 선박 각각을 나타내는 대표 포인트들의 위치 정보가 포함된 트래킹 정보를 획득하는 단계;
상기 트래킹 정보에 기초하여 상기 트래킹되는 선박 중 접안 가이드되는 타겟 선박을 결정하는 단계; 및
상기 세그멘테이션 이미지에 기초하여 상기 타겟 선박의 선수와 안벽(pier) 사이의 거리인 선수 거리 및 상기 타겟 선박의 선미와 안벽 사이의 거리인 선미 거리를 포함하는 접안 가이드 정보를 획득하는 단계; 를 포함하는
접안 모니터링 방법.
A method of eyepiece monitoring performed by computing means, comprising:
Acquiring an image of the harbor including the sea and a plurality of ships using a camera installed in the harbor to capture the image;
An artificial neural network learned using a learning set in which the input image and the pixels corresponding to the objects including the sea, the ship, and the feature included in the input image are labeled with class values indicating the sea, the ship, and the feature, respectively. generating segmentation images for the objects from the harbor image using;
acquiring tracking information including location information of representative points representing each of the plurality of ships by tracking the plurality of ships based on first pixels to which a class value indicating a ship of the segmented image is assigned;
determining a target vessel to be guided berthing among the vessels being tracked on the basis of the tracking information; and
obtaining berthing guide information including a bow distance that is a distance between a bow of the target ship and a pier and a stern distance that is a distance between the stern and a quay of the target ship based on the segmentation image; containing
How to monitor the berth.
KR1020210040733A 2020-01-09 2021-03-29 Device and method for monitoring a berthing KR20210090572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210040733A KR20210090572A (en) 2020-01-09 2021-03-29 Device and method for monitoring a berthing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200003191A KR102235787B1 (en) 2020-01-09 2020-01-09 Device and method for monitoring a berthing
KR1020210040733A KR20210090572A (en) 2020-01-09 2021-03-29 Device and method for monitoring a berthing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200003191A Division KR102235787B1 (en) 2020-01-09 2020-01-09 Device and method for monitoring a berthing

Publications (1)

Publication Number Publication Date
KR20210090572A true KR20210090572A (en) 2021-07-20

Family

ID=75461730

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200003191A KR102235787B1 (en) 2020-01-09 2020-01-09 Device and method for monitoring a berthing
KR1020210040733A KR20210090572A (en) 2020-01-09 2021-03-29 Device and method for monitoring a berthing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200003191A KR102235787B1 (en) 2020-01-09 2020-01-09 Device and method for monitoring a berthing

Country Status (1)

Country Link
KR (2) KR102235787B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110059206A (en) * 2009-11-27 2011-06-02 김영복 Vessel docking guide system
KR101683274B1 (en) * 2014-11-24 2016-12-06 (주)세이프텍리서치 System for supporting vessel berth using unmanned aerial vehicle and the method thereof
KR101941521B1 (en) * 2016-12-07 2019-01-23 한국해양과학기술원 System and method for automatic tracking of marine objects
KR102005559B1 (en) * 2018-09-04 2019-08-07 씨드로닉스(주) Situation awareness method using image segmentation

Also Published As

Publication number Publication date
KR102235787B1 (en) 2021-04-05

Similar Documents

Publication Publication Date Title
KR102113955B1 (en) Device and method for monitoring ship and port
KR102112935B1 (en) Path planning method using obstacle map
JP5297078B2 (en) Method for detecting moving object in blind spot of vehicle, and blind spot detection device
US10970871B2 (en) Estimating two-dimensional object bounding box information based on bird's-eye view point cloud
US20220024549A1 (en) System and method for measuring the distance to an object in water
JP7147420B2 (en) OBJECT DETECTION DEVICE, OBJECT DETECTION METHOD AND COMPUTER PROGRAM FOR OBJECT DETECTION
US11514668B2 (en) Method and device for situation awareness
Clunie et al. Development of a perception system for an autonomous surface vehicle using monocular camera, LIDAR, and marine RADAR
Kim et al. Artificial intelligence vision-based monitoring system for ship berthing
KR20200039588A (en) Device and method for real-time monitoring of ship and port
KR102278674B1 (en) Method and device for monitoring harbor and ship considering sea level
Sorial et al. Towards a real time obstacle detection system for unmanned surface vehicles
Nomura et al. Study of 3D measurement of ships using dense stereo vision: towards application in automatic berthing systems
KR102235787B1 (en) Device and method for monitoring a berthing
KR102265980B1 (en) Device and method for monitoring ship and port
EP4089660A1 (en) Method and device for monitoring port and ship in consideration of sea level
Fiorini et al. Optical target recognition for drone ships
KR20220055556A (en) Device and method for monitoring ship and port
KR102466804B1 (en) Autonomous navigation method using image segmentation
KR20220055555A (en) Method and device for monitoring harbor and ship
Petković et al. Target Detection for Visual Collision Avoidance System
Kennedy Development of an exteroceptive sensor suite on unmanned surface vessels for real-time classification of navigational markers
Jeong et al. Efficient LiDAR-based In-water Obstacle Detection and Segmentation by Autonomous Surface Vehicles in Aquatic Environments
CN114359714A (en) Unmanned body obstacle avoidance method and device based on event camera and intelligent unmanned body
Thai et al. Application of Edge Detection Algorithm for Self-Driving Vehicles