KR20200096413A - 사이드링크 그룹캐스트 통신을 위한 방법 및 장치 - Google Patents

사이드링크 그룹캐스트 통신을 위한 방법 및 장치 Download PDF

Info

Publication number
KR20200096413A
KR20200096413A KR1020200000260A KR20200000260A KR20200096413A KR 20200096413 A KR20200096413 A KR 20200096413A KR 1020200000260 A KR1020200000260 A KR 1020200000260A KR 20200000260 A KR20200000260 A KR 20200000260A KR 20200096413 A KR20200096413 A KR 20200096413A
Authority
KR
South Korea
Prior art keywords
sidelink
communication
transmitting terminal
receiving
information
Prior art date
Application number
KR1020200000260A
Other languages
English (en)
Inventor
한진백
최수한
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to US17/298,797 priority Critical patent/US11997654B2/en
Priority to CN202080011824.2A priority patent/CN113366902A/zh
Priority to PCT/KR2020/001353 priority patent/WO2020159225A1/ko
Publication of KR20200096413A publication Critical patent/KR20200096413A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • H04W72/1278
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

사이드링크 그룹캐스트 통신을 위한 방법 및 장치가 개시된다. 송신 단말의 동작 방법은, 사이드링크 통신을 위한 SS/PBCH 블록을 빔 스위핑 방식을 사용하여 전 방향으로 전송하는 단계, 복수의 수신 단말들로부터 상기 SS/PBCH 블록에 대한 제1 피드백 정보를 수신하는 단계, 및 상기 제1 피드백 정보에 기초하여 결정된 상기 송신 단말의 빔들을 사용하여 특정 방향으로 사이드링크 채널을 전송하는 단계를 포함한다. 따라서 통신 시스템의 성능은 향상될 수 있다.

Description

사이드링크 그룹캐스트 통신을 위한 방법 및 장치{METHOD AND APPARATUS FOR SIDELINK GROUPCAST COMMUNICATION}
본 발명은 사이드링크(sidelink) 통신 기술에 관한 것으로, 더욱 상세하게는 그룹캐스트(groupcast) 서비스를 지원하기 위한 빔포밍(beamforming) 기반의 사이트링크 통신 기술에 관한 것이다.
4G(4th Generation) 통신 시스템(예를 들어, LTE(Long Term Evolution) 통신 시스템, LTE-A(Advanced) 통신 시스템)의 상용화 이후에 급증하는 무선 데이터의 처리를 위해, 4G 통신 시스템의 주파수 대역(예를 들어, 6GHz 이하의 주파수 대역)뿐만 아니라 4G 통신 시스템의 주파수 대역보다 높은 주파수 대역(예를 들어, 6GHz 이상의 주파수 대역)을 사용하는 5G(5th Generation) 통신 시스템(예를 들어, NR(New Radio) 통신 시스템)이 고려되고 있다. 5G 통신 시스템은 eMBB(enhanced Mobile BroadBand), URLLC(Ultra-Reliable and Low Latency Communication) 및 mMTC(massive Machine Type Communiction)을 지원할 수 있다.
4G 통신 시스템 및 5G 통신 시스템은 V2X(Vehicle to everything) 통신을 지원할 수 있다. 4G 통신 시스템, 5G 통신 시스템 등과 같은 셀룰러(cellular) 통신 시스템에서 지원되는 V2X 통신은 "C-V2X(Cellular-Vehicle to everything) 통신"으로 지칭될 수 있다. V2X 통신(예를 들어, C-V2X 통신)은 V2V(Vehicle to Vehicle) 통신, V2I(Vehicle to Infrastructure) 통신, V2P(Vehicle to Pedestrian) 통신, V2N(Vehicle to Network) 통신 등을 포함할 수 있다.
셀룰러 통신 시스템에서 V2X 통신(예를 들어, C-V2X 통신)은 사이드링크(sidelink) 통신 기술(예를 들어, ProSe(Proximity based Services) 통신 기술, D2D(Device to Device) 통신 기술)에 기초하여 수행될 수 있다. 예를 들어, V2V 통신에 참여하는 차량들을 위한 사이드링크 채널(sidelink channel)이 설정될 수 있고, 차량들 간의 통신은 사이드링크 채널을 사용하여 수행될 수 있다.
한편, 사이드링크 통신은 높은 주파수 대역(예를 들어, 밀리미터파(milimeter wave) 대역)을 사용하여 수행될 수 있다. 이 경우, 사이드링크 통신은 빔 스위핑(beam sweeping) 방식으로 수행될 수 있다. 따라서 송신 단말은 빔을 회전시킴으로써 전(omni) 방향으로 사이드링크 신호 및/또는 채널을 전송할 수 있다. 사이드링크 통신은 브로드캐스트(broadcast) 서비스, 멀티캐스트(multicast) 서비스, 그룹캐스트(groupcast) 서비스, 및 유니캐스트(unicast) 서비스를 지원할 수 있다.
사이드링크 통신이 그룹캐스트 서비스를 지원하는 경우, 그룹캐스트 서비스에 참여하는 수신 단말들의 위치는 특정 영역에 국한될 수 있다. 이 경우에도, 송신 단말이 빔 스위핑 방식에 따라 전 방향으로 사이드링크 신호 및/또는 채널을 전송하면, 불필요한 전송 절차(예를 들어, 수신 단말이 존재하지 않는 영역으로 빔 전송)로 인하여 전송 지연이 발생할 수 있고, 전력 손실도 증가할 수 있다. 또한, 불필요한 전송 절차는 다른 통신 노드에 간섭을 끼칠 수 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 그룹캐스트(groupcast) 서비스를 지원하기 위한 빔포밍(beamforming) 기반의 사이트링크(sidelink) 통신 방법 및 장치를 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명의 제1 실시예에 따른 송신 단말의 동작 방법은, 사이드링크 통신을 위한 SS/PBCH 블록을 빔 스위핑 방식을 사용하여 전 방향으로 전송하는 단계, 복수의 수신 단말들로부터 상기 SS/PBCH 블록에 대한 제1 피드백 정보를 수신하는 단계, 및 상기 제1 피드백 정보에 기초하여 결정된 상기 송신 단말의 빔들을 사용하여 특정 방향으로 사이드링크 채널을 전송하는 단계를 포함하며, 상기 특정 방향에 대응하는 전송 영역은 상기 전 방향에 대응하는 전송 영역보다 좁다.
여기서, 상기 SS/PBCH 블록은 상기 송신 단말이 접속된 기지국에 의해 설정된 빔 스위핑 구간 내에서 전송될 수 있고, 상기 빔 스위핑 구간은 상기 사이드링크 통신을 위한 BWP 내에서 설정될 수 있다.
여기서, 상기 제1 피드백 정보는 상기 SS/PBCH 블록을 기반으로 측정된 빔 품질을 기초로 선택된 상기 송신 단말의 빔 인덱스를 포함할 수 있다.
여기서, 상기 제1 피드백 정보에 기초하여 전송 구간이 설정될 수 있으며, 상기 사이드링크 채널은 상기 전송 구간 내에서 상기 빔 스위핑 방식으로 상기 복수의 수신 단말들에 전송될 수 있다.
여기서, 상기 송신 단말의 동작 방법은 상기 제1 피드백 정보에 기초하여 확인된 상기 복수의 수신 단말들의 위치들에 기초하여 상기 복수의 수신 단말들을 하나 이상의 그룹들로 분류하는 단계를 더 포함할 수 있으며, 상기 사이드링크 채널은 상기 하나 이상의 그룹들 각각을 위한 전송 구간 내에서 상기 빔 스위핑 방식으로 전송될 수 있다.
여기서, 상기 송신 단말의 동작 방법은 상기 사이드링크 채널의 전송 전에, 상기 전송 구간의 설정 정보를 상기 복수의 수신 단말들에 전송하는 단계를 더 포함할 수 있으며, 상기 전송 구간의 설정 정보는 상기 전송 구간의 시작 포인트를 지시하는 정보, 상기 전송 구간의 길이를 지시하는 정보, 상기 전송 구간의 대역폭을 지시하는 정보, 상기 전송 구간의 주기를 지시하는 정보, 및 상기 복수의 수신 단말들 중에서 상기 전송 구간 내에서 상기 사이드링크 통신을 수행하는 하나 이상의 수신 단말들의 식별자를 포함할 수 있다.
여기서, 상기 송신 단말의 동작 방법은 상기 사이드링크 채널에 대한 제2 피드백 정보를 상기 복수의 수신 단말들로부터 수신하는 단계, 및 상기 제2 피드백 정보에 기초하여 빔 갱신 동작의 수행 여부를 결정하는 단계를 포함할 수 있으며, 상기 제2 피드백 정보는 상기 사이드링크 채널에 대한 HARQ 응답 및 품질 정보 중에서 하나 이상을 포함할 수 있다.
여기서, 상기 사이드링크 채널은 PSCCH 및 PSSCH를 포함할 수 있으며, 상기 PSCCH는 상기 PSSCH의 스케줄링 정보 및 빔 갱신 동작을 위한 트리거링 정보를 포함할 수 있다.
상기 목적을 달성하기 위한 본 발명의 제2 실시예에 따른 수신 단말의 동작 방법은, 빔 스위핑 구간에서 사이드링크 통신을 위한 SS/PBCH 블록을 송신 단말로부터 수신하는 단계, 상기 SS/PBCH 블록을 기초로 측정된 품질 정보에 기초하여 상기 송신 단말의 빔 인덱스를 선택하는 단계, 상기 빔 인덱스를 포함하는 제1 피드백 정보를 상기 송신 단말에 전송하는 단계, 및 상기 제1 피드백 정보를 기초로 설정된 전송 구간에서 사이드링크 채널을 상기 송신 단말로부터 수신하는 단계를 포함하며, 상기 SS/PBCH 블록은 상기 빔 스위핑 구간 내에서 상기 송신 단말의 전방향으로 전송되고, 상기 사이드링크 채널은 상기 전송 구간 내에서 상기 송신 단말의 특정 방향으로 전송되고, 상기 특정 방향에 대응하는 전송 영역은 상기 전 방향에 대응하는 전송 영역보다 좁다.
여기서, 상기 SS/PBCH 블록은 상기 수신 단말이 접속된 기지국에 의해 설정된 상기 빔 스위핑 구간 내에서 수신될 수 있고, 상기 빔 스위핑 구간은 상기 사이드링크 통신을 위한 BWP 내에서 설정될 수 있다.
여기서, 상기 전송 구간은 상기 수신 단말을 포함하는 복수의 수신 단말들을 위해 설정될 수 있으며, 상기 전송 구간 내에서 상기 복수의 수신 단말들 각각을 위한 사이드링크 채널은 상기 빔 스위핑 방식으로 전송될 수 있다.
여기서, 상기 수신 단말의 동작 방법은 상기 사이드링크 채널의 수신 전에, 상기 송신 단말로부터 상기 전송 구간의 설정 정보를 수신하는 단계를 더 포함할 수 있으며, 상기 전송 구간의 설정 정보는 상기 전송 구간의 시작 포인트를 지시하는 정보, 상기 전송 구간의 길이를 지시하는 정보, 상기 전송 구간의 대역폭을 지시하는 정보, 및 상기 전송 구간의 주기를 지시하는 정보를 포함할 수 있다.
여기서, 상기 수신 단말의 동작 방법은 상기 사이드링크 채널에 대한 제2 피드백 정보를 상기 송신 단말에 전송하는 단계를 더 포함할 수 있으며, 상기 제2 피드백 정보는 상기 사이드링크 채널에 대한 HARQ 응답 및 품질 정보 중에서 하나 이상을 포함할 수 있고, 상기 송신 단말에서 상기 제2 피드백 정보에 기초하여 빔 갱신 동작의 수행 여부가 결정될 수 있다.
여기서, 상기 사이드링크 채널은 PSCCH 및 PSSCH를 포함할 수 있으며, 상기 PSCCH는 상기 PSSCH의 스케줄링 정보 및 빔 갱신 동작을 위한 트리거링 정보를 포함할 수 있다.
상기 목적을 달성하기 위한 본 발명의 제3 실시예에 따른 송신 단말은 프로세서 및 상기 프로세서에 의해 실행되는 하나 이상의 명령들이 저장된 메모리를 포함하며, 상기 하나 이상의 명령들은 빔 측정을 위해 사용되는 사이드링크 신호를 빔 스위핑 방식을 사용하여 전 방향으로 전송하고, 복수의 수신 단말들로부터 상기 사이드링크 신호에 대한 제1 피드백 정보를 수신하고, 그리고 상기 제1 피드백 정보에 기초하여 결정된 상기 송신 단말의 빔들을 사용하여 특정 방향으로 사이드링크 채널을 전송하도록 실행되며, 상기 특정 방향에 대응하는 전송 영역은 상기 전 방향에 대응하는 전송 영역보다 좁다.
여기서, 상기 사이드링크 신호는 상기 송신 단말이 접속된 기지국에 의해 설정된 빔 스위핑 구간 내에서 전송될 수 있고, 상기 빔 스위핑 구간은 상기 사이드링크 통신을 위한 BWP 내에서 설정될 수 있다.
여기서, 상기 제1 피드백 정보에 기초하여 전송 구간이 설정되며, 상기 사이드링크 채널은 상기 전송 구간 내에서 상기 빔 스위핑 방식으로 상기 복수의 수신 단말들에 전송될 수 있다.
여기서, 상기 하나 이상의 명령들은 상기 제1 피드백 정보에 기초하여 확인된 상기 복수의 수신 단말들의 위치들에 기초하여 상기 복수의 수신 단말들을 하나 이상의 그룹들로 분류하도록 더 실행될 수 있으며, 상기 사이드링크 채널은 상기 하나 이상의 그룹들 각각을 위한 전송 구간 내에서 상기 빔 스위핑 방식으로 전송될 수 있다.
여기서, 상기 하나 이상의 명령들은 상기 사이드링크 채널의 전송 전에 상기 전송 구간의 설정 정보를 상기 복수의 수신 단말들에 전송하도록 더 실행될 수 있으며, 상기 전송 구간의 설정 정보는 상기 전송 구간의 시작 포인트를 지시하는 정보, 상기 전송 구간의 길이를 지시하는 정보, 상기 전송 구간의 대역폭을 지시하는 정보, 상기 전송 구간의 주기를 지시하는 정보, 및 상기 복수의 수신 단말들 중에서 상기 전송 구간 내에서 상기 사이드링크 통신을 수행하는 하나 이상의 수신 단말들의 식별자를 포함할 수 있다.
여기서, 상기 하나 이상의 명령들은 상기 사이드링크 채널에 대한 제2 피드백 정보를 상기 복수의 수신 단말들로부터 수신하고, 상기 제2 피드백 정보에 기초하여 빔 갱신 동작의 수행 여부를 결정하도록 더 실행될 수 있으며, 상기 제2 피드백 정보는 상기 사이드링크 채널에 대한 HARQ 응답 및 품질 정보 중에서 하나 이상을 포함할 수 있다.
본 발명에 의하면, 송신 단말은 그룹캐스트 서비스에 참여하는 수신 단말들이 위치하는 영역(들)에 연관되는 빔(들)을 사용하여 사이드링크 신호 및/또는 채널을 전송할 수 있다. 즉, 송신 단말은 전 방향이 아니라 특정 방향(들)으로 빔(들)을 전송할 수 있다. 따라서 사이드링크 통신에서 전송 지연은 감소할 수 있고, 송신 단말의 전력 소모는 감소할 수 있고, 사이드링크 통신에 의해 야기되는 간섭은 감소할 수 있다. 따라서 통신 시스템의 성능은 향상될 수 있다.
도 1은 V2X 통신의 시나리오들을 도시한 개념도이다.
도 2는 셀룰러 통신 시스템의 제1 실시예를 도시한 개념도이다.
도 3은 셀룰러 통신 시스템을 구성하는 통신 노드의 제1 실시예를 도시한 블록도이다.
도 4는 사이드링크 통신을 수행하는 UE의 사용자 평면 프로토콜 스택의 제1 실시예를 도시한 블록도이다.
도 5는 사이드링크 통신을 수행하는 UE의 제어 평면 프로토콜 스택의 제1 실시예를 도시한 블록도이다.
도 6은 사이드링크 통신을 수행하는 UE의 제어 평면 프로토콜 스택의 제2 실시예를 도시한 블록도이다.
도 7은 빔 스위핑 방식으로 수행되는 사이드링크 통신 방법의 제 1실시예를 도시한 개념도이다.
도 8은 시간 도메인에서 빔 스위핑 동작의 제1 실시예를 도시한 타이밍도이다.
도 9는 사이드링크 그룹캐스트 통신 방법의 제1 실시에를 도시한 순서도이다.
도 10은 그룹 전송 구간의 제1 실시예를 도시한 타이밍도이다.
도 11은 그룹 전송 구간의 제2 실시예를 도시한 타이밍도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 V2X(Vehicle to everything) 통신의 시나리오들을 도시한 개념도이다.
도 1을 참조하면, V2X 통신은 V2V(Vehicle to Vehicle) 통신, V2I(Vehicle to Infrastructure) 통신, V2P(Vehicle to Pedestrian) 통신, V2N(Vehicle to Network) 통신 등을 포함할 수 있다. V2X 통신은 셀룰러 통신 시스템(예를 들어, 셀룰러 통신 네트워크)(140)에 의해 지원될 수 있으며, 셀룰러 통신 시스템(140)에 의해 지원되는 V2X 통신은 "C-V2X(Cellular-Vehicle to everything) 통신"으로 지칭될 수 있다. 셀룰러 통신 시스템(140)은 4G(4th Generation) 통신 시스템(예를 들어, LTE(Long Term Evolution) 통신 시스템, LTE-A(Advanced) 통신 시스템), 5G(5th Generation) 통신 시스템(예를 들어, NR(New Radio) 통신 시스템) 등을 포함할 수 있다.
V2V 통신은 차량 #1(100)(예를 들어, 차량 #1(100)에 위치한 통신 노드)과 차량 #2(110)(예를 들어, 차량 #1(100)에 위치한 통신 노드) 간의 통신을 의미할 수 있다. V2V 통신을 통해 차량들(100, 110) 간에 주행 정보(예를 들어, 속도(velocity), 방향(heading), 시간(time), 위치(position) 등)가 교환될 수 있다. V2V 통신을 통해 교환되는 주행 정보에 기초하여 자율 주행(예를 들어, 군집 주행(platooning))이 지원될 수 있다. 셀룰러 통신 시스템(140)에 의해 지원되는 V2V 통신은 사이드링크(sidlelink) 통신 기술(예를 들어, ProSe(Proximity based Services) 통신 기술, D2D(Device to Device) 통신 기술)에 기초하여 수행될 수 있다. 이 경우, 차량들(100, 110) 간의 통신은 사이드링크 채널을 사용하여 수행될 수 있다.
V2I 통신은 차량 #1(100)과 노변에 위치한 인프라스트럭쳐(예를 들어, RSU(road side unit))(120) 간의 통신을 의미할 수 있다. 인프라스트럭쳐(120)는 노변에 위치한 신호등, 가로등 등일 수 있다. 예를 들어, V2I 통신이 수행되는 경우, 차량 #1(100)에 위치한 통신 노드와 신호등에 위치한 통신 노드 간에 통신이 수행될 수 있다. V2I 통신을 통해 차량 #1(100)과 인프라스트럭쳐(120) 간에 주행 정보, 교통 정보 등이 교환될 수 있다. 셀룰러 통신 시스템(140)에 의해 지원되는 V2I 통신은 사이드링크 통신 기술(예를 들어, ProSe 통신 기술, D2D 통신 기술)에 기초하여 수행될 수 있다. 이 경우, 차량 #1(100)과 인프라스트럭쳐(120) 간의 통신은 사이드링크 채널을 사용하여 수행될 수 있다.
V2P 통신은 차량 #1(100)(예를 들어, 차량 #1(100)에 위치한 통신 노드)과 사람(130)(예를 들어, 사람(130)이 소지한 통신 노드) 간의 통신을 의미할 수 있다. V2P 통신을 통해 차량 #1(100)과 사람(130) 간에 차량 #1(100)의 주행 정보, 사람(130)의 이동 정보(예를 들어, 속도, 방향, 시간, 위치 등) 등이 교환될 수 있으며, 차량 #1(100)에 위치한 통신 노드 또는 사람(130)이 소지한 통신 노드는 획득된 주행 정보 및 이동 정보에 기초하여 위험 상황을 판단함으로써 위험을 지시하는 알람을 발생시킬 수 있다. 셀룰러 통신 시스템(140)에 의해 지원되는 V2P 통신은 사이드링크 통신 기술(예를 들어, ProSe 통신 기술, D2D 통신 기술)에 기초하여 수행될 수 있다. 이 경우, 차량 #1(100)에 위치한 통신 노드 또는 사람(130)이 소지한 통신 노드 간의 통신은 사이드링크 채널을 사용하여 수행될 수 있다.
V2N 통신은 차량 #1(100)(예를 들어, 차량 #1(100)에 위치한 통신 노드)과 셀룰러 통신 시스템(예를 들어, 셀룰러 통신 네트워크)(140) 간의 통신을 의미할 수 있다. V2N 통신은 4G 통신 기술(예를 들어, 3GPP 표준에서 규정된 LTE 통신 기술 및 LTE-A 통신 기술), 5G 통신 기술(예를 들어, 3GPP 표준에서 규정된 NR 통신 기술) 등에 기초하여 수행될 수 있다. 또한, V2N 통신은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준에서 규정된 통신 기술(예를 들어, WAVE(Wireless Access in Vehicular Environments) 통신 기술, WLAN(Wireless Local Area Network) 통신 기술 등), IEEE 802.15 표준에서 규정된 통신 기술(예를 들어, WPAN(Wireless Personal Area Network) 등) 등에 기초하여 수행될 수 있다.
한편, V2X 통신을 지원하는 셀룰러 통신 시스템(140)은 다음과 같이 구성될 수 있다.
도 2는 셀룰러 통신 시스템의 제1 실시예를 도시한 개념도이다.
도 2를 참조하면, 셀룰러 통신 시스템은 액세스 네트워크(access network), 코어 네트워크(core network) 등을 포함할 수 있다. 액세스 네트워크는 기지국(base station)(210), 릴레이(relay)(220), UE(User Equipment)(231 내지 236) 등을 포함할 수 있다. UE(231 내지 236)는 도 1의 차량(100 및 110)에 위치한 통신 노드, 도 1의 인프라스트럭쳐(120)에 위치한 통신 노드, 도 1의 사람(130)이 소지한 통신 노드 등일 수 있다. 셀룰러 통신 시스템이 4G 통신 기술을 지원하는 경우, 코어 네트워크는 S-GW(serving-gateway)(250), P-GW(PDN(packet data network)-gateway)(260), MME(mobility management entity)(270) 등을 포함할 수 있다.
셀룰러 통신 시스템이 5G 통신 기술을 지원하는 경우, 코어 네트워크는 UPF(user plane function)(250), SMF(session management function)(260), AMF(access and mobility management function)(270) 등을 포함할 수 있다. 또는, 셀룰러 통신 시스템에서 NSA(Non-StandAlone)가 지원되는 경우, S-GW(250), P-GW(260), MME(270) 등으로 구성되는 코어 네트워크는 4G 통신 기술뿐만 아니라 5G 통신 기술도 지원할 수 있고, UPF(250), SMF(260), AMF(270) 등으로 구성되는 코어 네트워크는 5G 통신 기술뿐만 아니라 4G 통신 기술도 지원할 수 있다.
또한, 셀룰러 통신 시스템이 네트워크 슬라이싱(slicing) 기술을 지원하는 경우, 코어 네트워크는 복수의 논리적 네트워크 슬라이스들로 나누어질 수 있다. 예를 들어, V2X 통신을 지원하는 네트워크 슬라이스(예를 들어, V2V 네트워크 슬라이스, V2I 네트워크 슬라이스, V2P 네트워크 슬라이스, V2N 네트워크 슬라이스 등)가 설정될 수 있으며, V2X 통신은 코어 네트워크에서 설정된 V2X 네트워크 슬라이스에 의해 지원될 수 있다.
셀룰러 통신 시스템을 구성하는 통신 노드들(예를 들어, 기지국, 릴레이, UE, S-GW, P-GW, MME, UPF, SMF, AMF 등)은 CDMA(code division multiple access) 기술, WCDMA(wideband CDMA) 기술, TDMA(time division multiple access) 기술, FDMA(frequency division multiple access) 기술, OFDM(orthogonal frequency division multiplexing) 기술, Filtered OFDM 기술, OFDMA(orthogonal frequency division multiple access) 기술, SC(single carrier)-FDMA 기술, NOMA(Non-orthogonal Multiple Access) 기술, GFDM(generalized frequency division multiplexing) 기술, FBMC(filter bank multi-carrier) 기술, UFMC(universal filtered multi-carrier) 기술, 및 SDMA(Space Division Multiple Access) 기술 중에서 적어도 하나의 통신 기술을 사용하여 통신을 수행할 수 있다.
셀룰러 통신 시스템을 구성하는 통신 노드들(예를 들어, 기지국, 릴레이, UE, S-GW, P-GW, MME, UPF, SMF, AMF 등)은 다음과 같이 구성될 수 있다.
도 3은 셀룰러 통신 시스템을 구성하는 통신 노드의 제1 실시예를 도시한 블록도이다.
도 3을 참조하면, 통신 노드(300)는 적어도 하나의 프로세서(310), 메모리(320) 및 네트워크와 연결되어 통신을 수행하는 송수신 장치(330)를 포함할 수 있다. 또한, 통신 노드(300)는 입력 인터페이스 장치(340), 출력 인터페이스 장치(350), 저장 장치(360) 등을 더 포함할 수 있다. 통신 노드(300)에 포함된 각각의 구성 요소들은 버스(bus)(370)에 의해 연결되어 서로 통신을 수행할 수 있다.
다만, 통신 노드(300)에 포함된 각각의 구성요소들은 공통 버스(370)가 아니라, 프로세서(310)를 중심으로 개별 인터페이스 또는 개별 버스를 통하여 연결될 수도 있다. 예를 들어, 프로세서(310)는 메모리(320), 송수신 장치(330), 입력 인터페이스 장치(340), 출력 인터페이스 장치(350) 및 저장 장치(360) 중에서 적어도 하나와 전용 인터페이스를 통하여 연결될 수도 있다.
프로세서(310)는 메모리(320) 및 저장 장치(360) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(310)는 중앙 처리 장치(central processing unit, CPU), 그래픽 처리 장치(graphics processing unit, GPU), 또는 본 발명의 실시예들에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다. 메모리(320) 및 저장 장치(360) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(320)는 읽기 전용 메모리(read only memory, ROM) 및 랜덤 액세스 메모리(random access memory, RAM) 중에서 적어도 하나로 구성될 수 있다.
다시 도 2를 참조하면, 통신 시스템에서 기지국(210)은 매크로 셀(macro cell) 또는 스몰 셀(small cell)을 형성할 수 있고, 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 코어 네트워크와 연결될 수 있다. 기지국(210)은 코어 네트워크로부터 수신한 신호를 UE(231 내지 236) 및 릴레이(220)에 전송할 수 있고, UE(231 내지 236) 및 릴레이(220)로부터 수신된 신호를 코어 네트워크에 전송할 수 있다. UE #1, #2, #4, #5 및 #6(231, 232, 234, 235, 236)은 기지국(210)의 셀 커버리지(cell coverage) 내에 속할 수 있다. UE #1, #2, #4, #5 및 #6(231, 232, 234, 235, 236)은 기지국(210)과 연결 확립(connection establishment) 절차를 수행함으로써 기지국(210)에 연결될 수 있다. UE #1, #2, #4, #5 및 #6(231, 232, 234, 235, 236)은 기지국(210)에 연결된 후에 기지국(210)과 통신을 수행할 수 있다.
릴레이(220)는 기지국(210)에 연결될 수 있고, 기지국(210)과 UE #3 및 #4(233, 234) 간의 통신을 중계할 수 있다. 릴레이(220)는 기지국(210)으로부터 수신한 신호를 UE #3 및 #4(233, 234)에 전송할 수 있고, UE #3 및 #4(233, 234)로부터 수신된 신호를 기지국(210)에 전송할 수 있다. UE #4(234)는 기지국(210)의 셀 커버리지와 릴레이(220)의 셀 커버리지에 속할 수 있고, UE #3(233)은 릴레이(220)의 셀 커버리지에 속할 수 있다. 즉, UE #3(233)은 기지국(210)의 셀 커버리지 밖에 위치할 수 있다. UE #3 및 #4(233, 234)는 릴레이(220)와 연결 확립 절차를 수행함으로써 릴레이(220)에 연결될 수 있다. UE #3 및 #4(233, 234)는 릴레이(220)에 연결된 후에 릴레이(220)와 통신을 수행할 수 있다.
기지국(210) 및 릴레이(220)는 MIMO(예를 들어, SU(single user)-MIMO, MU(multi user)-MIMO, 대규모(massive) MIMO 등) 통신 기술, CoMP(coordinated multipoint) 통신 기술, CA(Carrier Aggregation) 통신 기술, 비면허 대역(unlicensed band) 통신 기술(예를 들어, LAA(Licensed Assisted Access), eLAA(enhanced LAA)), 사이드링크 통신 기술(예를 들어, ProSe 통신 기술, D2D 통신 기술) 등을 지원할 수 있다. UE #1, #2, #5 및 #6(231, 232, 235, 236)은 기지국(210)과 대응하는 동작, 기지국(210)에 의해 지원되는 동작 등을 수행할 수 있다. UE #3 및 #4(233, 234)는 릴레이(220)와 대응하는 동작, 릴레이(220)에 의해 지원되는 동작 등을 수행할 수 있다.
여기서, 기지국(210)은 노드B(NodeB), 고도화 노드B(evolved NodeB), BTS(base transceiver station), RRH(radio remote head), TRP(transmission reception point), RU(radio unit), RSU(road side unit), 무선 트랜시버(radio transceiver), 액세스 포인트(access point), 액세스 노드(node) 등으로 지칭될 수 있다. 릴레이(220)는 스몰 기지국, 릴레이 노드 등으로 지칭될 수 있다. UE(231 내지 236)는 터미널(terminal), 액세스 터미널(access terminal), 모바일 터미널(mobile terminal), 스테이션(station), 가입자 스테이션(subscriber station), 모바일 스테이션(mobile station), 휴대 가입자 스테이션(portable subscriber station), 노드(node), 다바이스(device), OBU(on-broad unit) 등으로 지칭될 수 있다.
한편, UE #5(235)와 UE #6(236) 간의 통신은 사이크링크 통신 기술(예를 들어, ProSe 통신 기술, D2D 통신 기술)에 기초하여 수행될 수 있다. 사이드링크 통신은 원-투-원(one-to-one) 방식 또는 원-투-매니(one-to-many) 방식에 기초하여 수행될 수 있다. 사이크링크 통신 기술을 사용하여 V2V 통신이 수행되는 경우, UE #5(235)는 도 1의 차량 #1(100)에 위치한 통신 노드를 지시할 수 있고, UE #6(236)은 도 1의 차량 #2(110)에 위치한 통신 노드를 지시할 수 있다. 사이크링크 통신 기술을 사용하여 V2I 통신이 수행되는 경우, UE #5(235)는 도 1의 차량 #1(100)에 위치한 통신 노드를 지시할 수 있고, UE #6(236)은 도 1의 인프라스트럭쳐(120)에 위치한 통신 노드를 지시할 수 있다. 사이크링크 통신 기술을 사용하여 V2P 통신이 수행되는 경우, UE #5(235)는 도 1의 차량 #1(100)에 위치한 통신 노드를 지시할 수 있고, UE #6(236)은 도 1의 사람(130)이 소지한 통신 노드를 지시할 수 있다.
사이드링크 통신이 적용되는 시나리오들은 사이드링크 통신에 참여하는 UE들(예를 들어, UE #5(235), UE #6(236))의 위치에 따라 아래 표 1과 같이 분류될 수 있다. 예를 들어, 도 2에 도시된 UE #5(235)와 UE #6(236) 간의 사이드링크 통신을 위한 시나리오는 사이드링크 통신 시나리오 #C일 수 있다.
Figure pat00001
한편, 사이드링크 통신을 수행하는 UE들(예를 들어, UE #5(235), UE #6(236))의 사용자 평면 프로토콜 스택(user plane protocol stack)은 다음과 같이 구성될 수 있다.
도 4는 사이드링크 통신을 수행하는 UE의 사용자 평면 프로토콜 스택의 제1 실시예를 도시한 블록도이다.
도 4를 참조하면, UE #5(235)는 도 2에 도시된 UE #5(235)일 수 있고, UE #6(236)은 도 2에 도시된 UE #6(236)일 수 있다. UE #5(235)와 UE #6(236) 간의 사이드링크 통신을 위한 시나리오는 표 1의 사이드링크 통신 시나리오 #A 내지 #D 중에서 하나일 수 있다. UE #5(235) 및 UE #6(236) 각각의 사용자 평면 프로토콜 스택은 PHY(Physical) 계층, MAC(Medium Access Control) 계층, RLC(Radio Link Control) 계층, PDCP(Packet Data Convergence Protocol) 계층 등을 포함할 수 있다.
UE #5(235)와 UE #6(236) 간의 사이드링크 통신은 PC5 인터페이스(예를 들어, PC5-U 인터페이스)를 사용하여 수행될 수 있다. 사이드링크 통신을 위해 계층 2-ID(identifier)(예를 들어, 출발지(source) 계층 2-ID, 목적지(destination) 계층 2-ID)가 사용될 수 있으며, 계층 2-ID는 V2X 통신을 위해 설정된 ID일 수 있다. 또한, 사이드링크 통신에서 HARQ(hybrid ARQ(automatic repeat request)) 피드백 동작은 지원될 수 있고, RLC AM(Acknowledged Mode) 또는 RLC UM(Unacknowledged Mode)은 지원될 수 있다.
한편, 사이드링크 통신을 수행하는 UE들(예를 들어, UE #5(235), UE #6(236))의 제어 평면 프로토콜 스택(control plane protocol stack)은 다음과 같이 구성될 수 있다.
도 5는 사이드링크 통신을 수행하는 UE의 제어 평면 프로토콜 스택의 제1 실시예를 도시한 블록도이고, 도 6은 사이드링크 통신을 수행하는 UE의 제어 평면 프로토콜 스택의 제2 실시예를 도시한 블록도이다.
도 5 및 도 6을 참조하면, UE #5(235)는 도 2에 도시된 UE #5(235)일 수 있고, UE #6(236)은 도 2에 도시된 UE #6(236)일 수 있다. UE #5(235)와 UE #6(236) 간의 사이드링크 통신을 위한 시나리오는 표 1의 사이드링크 통신 시나리오 #A 내지 #D 중에서 하나일 수 있다. 도 5에 도시된 제어 평면 프로토콜 스택은 브로드캐스트(broadcast) 정보(예를 들어, PSBCH(Physical Sidelink Broadcast Channel)의 송수신을 위한 제어 평면 프로토콜 스택일 수 있다.
도 5에 도시된 제어 평면 프로토콜 스택은 PHY 계층, MAC 계층, RLC 계층, RRC(radio resource control) 계층 등을 포함할 수 있다. UE #5(235)와 UE #6(236) 간의 사이드링크 통신은 PC5 인터페이스(예를 들어, PC5-C 인터페이스)를 사용하여 수행될 수 있다. 도 6에 도시된 제어 평면 프로토콜 스택은 원-투-원 방식의 사이드링크 통신을 위한 제어 평면 프로토콜 스택일 수 있다. 도 6에 도시된 제어 평면 프로토콜 스택은 PHY 계층, MAC 계층, RLC 계층, PDCP 계층, PC5 시그널링(signaling) 프로토콜 계층 등을 포함할 수 있다.
한편, UE #5(235)와 UE #6(236) 간의 사이드링크 통신에서 사용되는 채널은 PSSCH(Physical Sidelink Shared Channel), PSCCH(Physical Sidelink Control Channel), PSDCH(Physical Sidelink Discovery Channel), PSBCH(Physical Sidelink Broadcast Channel) 등을 포함할 수 있다. PSSCH는 사이드링크 데이터의 송수신을 위해 사용될 수 있고, 상위 계층 시그널링에 의해 UE(예를 들어, UE #5(235), UE #6(236))에 설정될 수 있다. PSCCH는 사이드링크 제어 정보(sidelink control information; SCI)의 송수신을 위해 사용될 수 있고, 상위 계층 시그널링에 의해 UE(예를 들어, UE #5(235), UE #6(236))에 설정될 수 있다.
PSDCH는 디스커버리 절차를 위해 사용될 수 있다. 예를 들어, 디스커버리 신호는 PSDCH을 통해 전송될 수 있다. PSBCH는 브로드캐스트 정보(예를 들어, 시스템 정보)의 송수신을 위해 사용될 수 있다. 또한, UE #5(235)와 UE #6(236) 간의 사이드링크 통신에서 DM-RS(demodulation-reference signal), 동기 신호(synchronization signal) 등이 사용될 수 있다. 동기 신호는 PSSS(primary sidelink synchronization signal) 및 SSSS(secondary sidelink synchronization signal)를 포함할 수 있다.
한편, 사이드링크 전송 모드(transmission mode; TM)는 아래 표 2와 같이 사이드링크 TM #1 내지 #4로 분류될 수 있다.
Figure pat00002
사이드링크 TM #3 또는 #4가 지원되는 경우, UE #5(235) 및 UE #6(236) 각각은 기지국(210)에 의해 설정된 자원 풀(resource pool)을 사용하여 사이드링크 통신을 수행할 수 있다. 자원 풀은 사이드링크 제어 정보 또는 사이드링크 데이터 각각을 위해 설정될 수 있다.
사이드링크 제어 정보를 위한 자원 풀은 RRC 시그널링 절차(예를 들어, 전용(dedicated) RRC 시그널링 절차, 브로드캐스트 RRC 시그널링 절차)에 기초하여 설정될 수 있다. 사이드링크 제어 정보의 수신을 위해 사용되는 자원 풀은 브로드캐스트 RRC 시그널링 절차에 의해 설정될 수 있다. 사이드링크 TM #3이 지원되는 경우, 사이드링크 제어 정보의 전송을 위해 사용되는 자원 풀은 전용 RRC 시그널링 절차에 의해 설정될 수 있다. 이 경우, 사이드링크 제어 정보는 전용 RRC 시그널링 절차에 의해 설정된 자원 풀 내에서 기지국(210)에 의해 스케줄링된 자원을 통해 전송될 수 있다. 사이드링크 TM #4가 지원되는 경우, 사이드링크 제어 정보의 전송을 위해 사용되는 자원 풀은 전용 RRC 시그널링 절차 또는 브로드캐스트 RRC 시그널링 절차에 의해 설정될 수 있다. 이 경우, 사이드링크 제어 정보는 전용 RRC 시그널링 절차 또는 브로드캐스트 RRC 시그널링 절차에 의해 설정된 자원 풀 내에서 UE(예를 들어, UE #5(235), UE #6(236))에 의해 자율적으로 선택된 자원을 통해 전송될 수 있다.
사이드링크 TM #3이 지원되는 경우, 사이드링크 데이터의 송수신을 위한 자원 풀은 설정되지 않을 수 있다. 이 경우, 사이드링크 데이터는 기지국(210)에 의해 스케줄링된 자원을 통해 송수신될 수 있다. 사이드링크 TM #4가 지원되는 경우, 사이드링크 데이터의 송수신을 위한 자원 풀은 전용 RRC 시그널링 절차 또는 브로드캐스트 RRC 시그널링 절차에 의해 설정될 수 있다. 이 경우, 사이드링크 데이터는 RRC 시그널링 절차 또는 브로드캐스트 RRC 시그널링 절차에 의해 설정된 자원 풀 내에서 UE(예를 들어, UE #5(235), UE #6(236))에 의해 자율적으로 선택된 자원을 통해 송수신될 수 있다.
다음으로, 사이드링크 그룹캐스트(groupcast) 통신 방법들이 설명될 것이다. 통신 노드들 중에서 제1 통신 노드에서 수행되는 방법(예를 들어, 신호의 전송 또는 수신)이 설명되는 경우에도 이에 대응하는 제2 통신 노드는 제1 통신 노드에서 수행되는 방법과 상응하는 방법(예를 들어, 신호의 수신 또는 전송)을 수행할 수 있다. 즉, UE #1(예를 들어, 차량 #1)의 동작이 설명된 경우에 이에 대응하는 UE #2(예를 들어, 차량 #2)는 UE #1의 동작과 상응하는 동작을 수행할 수 있다. 반대로, UE #2의 동작이 설명된 경우에 이에 대응하는 UE #1은 UE #2의 동작과 상응하는 동작을 수행할 수 있다. 아래 설명되는 실시예들에서 차량의 동작은 차량에 위치한 통신 노드의 동작일 수 있다.
사이드링크 통신은 높은 주파수 대역(예를 들어, 밀리미터파(milimeter wave) 대역)을 사용하여 수행될 수 있다. 이 경우, 사이드링크 통신은 빔 스위핑(beam sweeping) 방식으로 수행될 수 있다. 따라서 송신 단말(예를 들어, 송신 UE)은 빔을 회전시킴으로써 전(omni) 방향으로 사이드링크 신호 및/또는 채널을 전송할 수 있다. 사이드링크 신호는 사이드링크 통신을 위해 사용되는 동기 신호(예를 들어, SS/PBCH(synchronization signal/physical broadcast channel) 블록) 및 참조 신호일 수 있다. 예를 들어, 참조 신호는 CSI-RS(channel state information-reference signal), DM-RS, PT-RS(phase tracking-reference signal), CRS(cell specific reference signal), SRS(sounding reference signal), DRS(discovery reference signal) 등일 수 있다. 사이드링크 채널은 PSSCH, PSCCH, PSDCH, PSBCH, PSFCH(physical sidelink feedback channel) 등일 수 있다. 또한, 사이드링크 채널은 해당 사이드링크 채널 내의 특정 자원들에 매핑되는 사이드링크 신호를 포함하는 사이드링크 채널을 의미할 수 있다. 사이드링크 통신은 브로드캐스트 서비스, 멀티캐스트(multicast) 서비스, 그룹캐스트 서비스, 및 유니캐스트(unicast) 서비스를 지원할 수 있다.
아래 실시예들에서, 사이드링크 브로드캐스트 통신은 "브로드캐스트 방식으로 수행되는 사이드링크 통신"을 의미할 수 있고, 사이드링크 멀티캐스트 통신은 "멀티캐스트 방식으로 수행되는 사이드링크 통신"을 의미할 수 있다. 사이드링크 그룹캐스트 통신은 "그룹캐스트 방식으로 수행되는 사이드링크 통신"을 의미할 수 있고, 사이드링크 유니캐스트 통신은 "유니캐스트 방식으로 수행되는 사이드링크 통신"을 의미할 수 있다.
도 7은 빔 스위핑 방식으로 수행되는 사이드링크 통신 방법의 제 1실시예를 도시한 개념도이고, 도 8은 시간 도메인에서 빔 스위핑 동작의 제1 실시예를 도시한 타이밍도이다.
도 7 및 도 8을 참조하면, 송신 단말(710)은 빔 스위핑 방식으로 사이드링크 신호 및/또는 채널을 전송할 수 있다. 예를 들어, 송신 단말(710)은 빔 구간 #1에서 빔 #1을 사용하여 사이드링크 신호 및/또는 채널을 전송할 수 있고, 빔 구간 #1에서 빔 #1을 통해 수신 단말(예를 들어, 수신 단말 #1(721))로부터 사이드링크 신호 및/또는 채널을 수신할 수 있다. 또한, 송신 단말(710)은 빔 구간 #2에서 빔 #2를 사용하여 사이드링크 신호 및/또는 채널을 전송할 수 있고, 빔 구간 #2에서 빔 #2를 통해 수신 단말로부터 사이드링크 신호 및/또는 채널을 수신할 수 있다.
예를 들어, 송신 단말(710)은 빔 구간 #1 내지 #12에서 아래 표 3에 정의된 빔을 사용하여 수신 단말과 사이드링크 통신을 수행할 수 있다. 빔 구간 #1 내지 #12를 포함하는 빔 스위핑 구간은 주기적으로 설정될 수 있고, 송신 단말(710)은 빔 스위핑 구간 내에서 빔 #1 내지 #12 각각을 사용하여 사이드링크 통신을 수행할 수 있다.
Figure pat00003
한편, 수신 단말들(721-724)은 특정 영역에 위치할 수 있다. 예를 들어, 수신 단말 #1(721)은 송신 단말(710)의 빔 #1에 연관된 영역에 위치할 수 있고, 수신 단말 #2(722)는 송신 단말(710)의 빔 #3에 연관된 영역에 위치할 수 있다. 수신 단말 #3(723)은 송신 단말(710)의 빔 #8에 연관된 영역에 위치할 수 있고, 수신 단말 #4(724)는 송신 단말(710)의 빔 #9에 연관된 영역에 위치할 수 있다. 수신 단말들(721-724)의 위치가 특정 영역에 국한된 경우에도, 송신 단말(710)은 빔 #1 내지 #12를 사용하여 전 방향으로 사이드링크 신호 및/또는 채널을 전송할 수 있다. 따라서 빔 #2, 빔 #4 내지 #7, 및 빔 #10 내지 #12를 통해 불필요한 사이드링크 신호 및/또는 채널이 전송될 수 있다. 불필요한 사이드링크 신호 및/또는 채널의 전송으로 인하여, 전송 지연, 전력 소모, 및 간섭이 증가할 수 있다. 이러한 문제점을 해결하기 위해, 수신 단말(들)이 위치한 특정 영역(들)에 연관되는 빔(들)을 사용하여 사이드링크 통신을 수행하기 위한 방법들이 필요하다.
도 9는 사이드링크 그룹캐스트 통신 방법의 제1 실시에를 도시한 순서도이다.
도 9를 참조하면, 통신 시스템은 기지국(미도시), 송신 단말, 및 수신 단말 #1 내지 #4를 포함할 수 있다. 기지국은 도 2에 도시된 기지국(210)일 수 있고, 송신 단말은 도 2에 도시된 UE #5(235)일 수 있고, 수신 단말 #1 내지 #4 각각은 도 2에 도시된 UE #6(236)일 수 있다. 수신 단말 #1 내지 #4는 기지국의 커버리지 내 또는 밖에 위치할 수 있다. 또한, 송신 노드는 도 7에 도시된 송신 노드(710)일 수 있고, 수신 노드 #1 내지 #4 각각은 도 7에 도시된 수신 노드 #1 내지 #4(721 내지 724)일 수 있다. 송신 단말 및 수신 단말 #1 내지 #4는 도 3에 도시된 통신 노드(300)와 동일 또는 유사하게 구성될 수 있다. 송신 단말 및 수신 단말 #1 내지 #4는 도 4 내지 6에 도시된 프로토콜 스택들을 지원할 수 있다.
송신 단말 및 수신 단말 #1 내지 #4는 사이드링크 통신(예를 들어, 사이드링크 그룹캐스트 통신)에 참여할 수 있다. 송신 단말 및 수신 단말 #1 내지 #4는 기지국에 접속될 수 있으며, 기지국과의 접속 절차(예를 들어, 어태치(attach) 절차)에서 사이드링크 통신을 위한 설정 정보(예를 들어, 사이드링크 그룹캐스트 통신을 위한 설정 정보)를 획득할 수 있다. 사이드링크 통신을 위한 설정 정보는 아래 표 4에 정의된 정보 요소들 중에서 하나 이상을 포함할 수 있다. 사이드링크 통신을 위한 설정 정보는 RRC 메시지, MAC CE(control element), 및 DCI(downlink control information) 중에서 하나 이상의 조합을 통해 획득될 수 있다.
Figure pat00004
송신 단말 및 수신 단말 #1 내지 #4는 기지국으로부터 수신된 사이드링크 통신을 위한 설정 정보(예를 들어, 표 4에 도시된 설정 정보)를 사용하여 사이링크 통신을 수행할 수 있다.
사이드링크 그룹캐스트 통신은 단말들 중에서 하나의 단말(예를 들어, 송신 단말)에 의해 개시될 수 있다. 송신 단말은 SS/PBCH 블록(또는, PSDCH, 참조 신호)을 빔 스위핑 방식으로 전송할 수 있다(S901). SS/PBCH 블록은 사이드링크 그룹캐스트 통신을 위해 설정된 SS/PBCH 블록일 수 있다. 단계 S901에서 SS/PBCH 블록 대신에 빔 또는 채널 측정을 위한 사이드링크 신호가 전송될 수 있다. 예를 들어, 단계 S901에서 동기 신호(예를 들어, PSSS, SSSS) 또는 참조 신호(예를 들어, CSI-RS, DRS(예를 들어, PSSS 및 SSSS로 구성된 DRS))가 전송될 수 있다.
단계 S901에서 SS/PBCH 블록은 기지국에 의해 설정된 SL-그룹 BWP(bandwidth part) 내에서 전송될 수 있다. 또한, SS/PBCH 블록은 도 7 및 도 8을 참조하여 설명한 빔 스위핑 방식에 기초하여 전송될 수 있다. 예를 들어, 송신 단말은 빔 스위핑 구간 내의 빔 구간 #1 내지 #12 각각에서 해당 빔(예를 들어, 빔 #1 내지 #12 중에서 하나의 빔)을 사용하여 SS/PBCH 블록을 전송할 수 있다. 하나의 빔 구간 내에서 SS/PBCH 블록의 반복 전송 횟수는 기지국에 의해 설정될 수 있다. SS/PBCH 블록은 아래 표 5에 정의된 정보 요소들 중에서 하나 이상의 정보 요소들을 포함할 수 있다. 기지국에 의해 설정된 하나 이상의 정보 요소들(예를 들어, 표 4에 정의된 정보 요소들)은 송신 단말로부터 전송되는 SS/PBCH 블록에 포함될 수 있다.
Figure pat00005
수신 단말 #1 내지 #4는 빔 스위핑 구간(예를 들어, SL-그룹 BWP 내의 빔 스위핑 구간) 내에서 모니터링 동작을 수행함으로써 SS/PBCH 블록(또는, PSDCH, 참조 신호)을 송신 단말로부터 수신할 수 있다. 빔 스위핑 구간은 RRC 메시지, MAC CE, 및/또는 DCI를 통해 기지국에 의해 미리 설정될 수 있다. 수신 단말 #1 내지 #4는 사이드링크 그룹캐스트 통신에 참여하고자 하는 수신 단말일 수 있다. 사이드링크 그룹캐스트 통신에 참여하지 않는 수신 단말은 SL-그룹 BWP 내의 빔 스위핑 구간에서 모니터링 동작을 수행하지 않을 수 있다.
수신 단말 #1 내지 #4는 SS/PBCH에 포함된 정보 요소들(예를 들어, 표 5에 정의된 정보 요소들)을 확인할 수 있다. 수신 단말 #1 내지 #4는 송신 단말로부터 수신된 신호 및/또는 채널(예를 들어, SS/PBCH 블록, PDSCH, 참조 신호)에 기초하여 빔 측정 동작을 수행함으로써 빔 또는 신호의 품질을 확인할 수 있다. 예를 들어, 수신 단말 #1 내지 #4는 빔 측정 동작을 수행함으로써 CSI(channel state information), CQI(channel quality indicator), RSRP(reference signal received power), RSRQ(reference signal received quality), SNR(signal to noise ratio), 및/또는 SINR(signal to interference plus noise ratio)을 확인할 수 있다.
수신 단말 #1 내지 #4는 측정된 품질 정보에 기초하여 송신 단말의 빔 #1 내지 #12 중에서 가장 좋은 품질을 가지는 빔을 선택할 수 있다. 다시 도 7을 참조하면, 수신 단말 #1은 송신 단말의 빔 #1에 대응하는 영역에 위치하기 때문에, 수신 단말 #1에서 측정된 빔 #1 내지 빔 #12 중에서 빔 #1의 품질이 가장 좋을 수 있다. 따라서 수신 단말 #1은 송신 단말의 빔 #1 내지 #12 중에서 빔 #1을 선택할 수 있다. 수신 단말 #2는 송신 단말의 빔 #3에 대응하는 영역에 위치하기 때문에, 수신 단말 #2에서 측정된 빔 #1 내지 빔 #12 중에서 빔 #3의 품질이 가장 좋을 수 있다. 따라서 수신 단말 #2는 송신 단말의 빔 #1 내지 #12 중에서 빔 #3을 선택할 수 있다.
수신 단말 #3은 송신 단말의 빔 #8에 대응하는 영역에 위치하기 때문에, 수신 단말 #3에서 측정된 빔 #1 내지 빔 #12 중에서 빔 #8의 품질이 가장 좋을 수 있다. 따라서 수신 단말 #3은 송신 단말의 빔 #1 내지 #12 중에서 빔 #8을 선택할 수 있다. 수신 단말 #4는 송신 단말의 빔 #9에 대응하는 영역에 위치하기 때문에, 수신 단말 #4에서 측정된 빔 #1 내지 빔 #12 중에서 빔 #9의 품질이 가장 좋을 수 있다. 따라서 수신 단말 #4는 송신 단말의 빔 #1 내지 #12 중에서 빔 #9를 선택할 수 있다.
수신 단말 #1 내지 #4 각각은 선택된 빔의 인덱스를 포함하는 피드백 정보를 송신 단말에 전송할 수 있다(S902). 피드백 정보는 빔 품질 정보(예를 들어, CSI, CQI, RSRP, RSRQ, SNR, SINR 등), 피드백 정보를 전송하는 수신 단말의 식별자 등을 더 포함할 수 있다. 단계 S902에서 피드백 정보는 기지국으로부터 수신된 피드백 설정 정보에 의해 지시되는 자원들(예를 들어, PSSCH, PSFCH)을 통해 송신 단말에 전송될 수 있다. 또는, 단계 S902에서 피드백 정보는 송신 단말로부터 수신된 SS/PBCH 블록에 포함된 피드백 설정 정보에 의해 지시되는 자원들(예를 들어, PSSCH, PSFCH)을 통해 송신 단말에 전송될 수 있다.
수신 단말 #1 내지 #4 각각은 선택된 빔의 인덱스에 연관된 빔 구간 내의 피드백 자원(예를 들어, 피드백 설정 정보에 의해 지시되는 자원)을 사용하여 해당 빔 인덱스를 송신 단말에 알려줄 수 있다. 수신 단말 #1은 빔 #1을 지시하는 정보를 포함하는 피드백 정보를 도 8에 도시된 빔 구간 #1 내의 피드백 자원(예를 들어, 빔 구간 #1에서 수신된 SS/PBCH 블록에 의해 지시되는 피드백 자원)을 사용하여 송신 단말에 전송할 수 있고, 수신 단말 #2는 빔 #3을 지시하는 정보를 포함하는 피드백 정보를 도 8에 도시된 빔 구간 #3 내의 피드백 자원(예를 들어, 빔 구간 #3에서 수신된 SS/PBCH 블록에 의해 지시되는 피드백 자원)을 사용하여 송신 단말에 전송할 수 있다.
수신 단말 #3은 빔 #8을 지시하는 정보를 포함하는 피드백 정보를 도 8에 도시된 빔 구간 #8 내의 피드백 자원(예를 들어, 빔 구간 #8에서 수신된 SS/PBCH 블록에 의해 지시되는 피드백 자원)을 사용하여 송신 단말에 전송할 수 있고, 수신 단말 #4는 빔 #9를 지시하는 정보를 포함하는 피드백 정보를 도 8에 도시된 빔 구간 #9 내의 피드백 자원(예를 들어, 빔 구간 #9에서 수신된 SS/PBCH 블록에 의해 지시되는 피드백 자원)을 사용하여 송신 단말에 전송할 수 있다.
송신 단말은 수신 단말들(예를 들어, 수신 단말 #1 내지 #4)로부터 피드백 정보(예를 들어, 빔 인덱스, 품질 정보)를 수신할 수 있다. 송신 단말은 피드백 정보에 기초하여 사이드링크 통신을 위한 그룹을 설정할 수 있다(S903). 예를 들어, 송신 단말은 피드백 정보를 전송한 모든 수신 단말이 사이드링크 그룹캐스트 통신에 참여하는 것으로 판단할 수 있다. 수신 단말 #1 내지 #4로부터 피드백 정보가 수신된 경우, 송신 단말은 수신 단말 #1 내지 #4가 사이드링크 그룹캐스트 통신에 참여하는 것으로 판단할 수 있고, 사이드링크 그룹캐스트 통신에 참여하는 수신 단말 #1 내지 #4를 하나 이상의 그룹들로 설정할 수 있다. 단계 S903에서 설정되는 그룹의 개수는 표 4 또는 표 5의 "그룹 개수"에 의해 지시되는 개수 이하일 수 있고, 단계 S903에서 설정되는 하나의 그룹에 포함되는 단말의 개수는 표 4 또는 표 5의 "단말 개수"에 의해 지시되는 개수 이하일 수 있다.
예를 들어, 송신 단말은 수신 단말 #1 내지 #4를 하나의 그룹으로 설정할 수 있다(이하, "시나리오 #1"이라 함). 또는, 송신 단말은 수신 단말들의 위치를 고려하여 수신 단말 #1 내지 #4를 복수의 그룹들로 설정할 수 있다(이하, "시나리오 #2"라 함). 시나리오 #2에서, 송신 단말은 동일한 영역에 속한 수신 단말들을 동일한 그룹으로 설정할 수 있다. 송신 단말의 빔들에 대응하는 섹터 영역이 아래 표 6과 같이 정의되는 경우, 송신 단말은 섹터 영역 #1에 속하는 수신 단말 #1 및 #2를 그룹 #1로 설정할 수 있고, 섹터 영역 #3에 속하는 수신 단말 #3 및 #4를 그룹 #2로 설정할 수 있다.
Figure pat00006
단계 S903이 완료된 경우, 송신 단말은 사이드링크 그룹캐스트 통신을 위한 제어 정보를 생성할 수 있다(S904). 시나리오 #1에서, 제어 정보는 아래 표 7에 정의된 정보 요소들 중에서 하나 이상의 정보 요소들을 포함할 수 있다.
Figure pat00007
시나리오 #2에서, 그룹 #1을 위한 제어 정보는 아래 표 8에 정의된 정보 요소들 중에서 하나 이상의 정보 요소들을 포함할 수 있고, 그룹 #2를 위한 제어 정보는 아래 표 9에 정의된 정보 요소들 중에서 하나 이상의 정보 요소들을 포함할 수 있다.
Figure pat00008
Figure pat00009
시나리오 #1에서 그룹 전송 구간은 다음과 같이 설정될 수 있다.
도 10은 그룹 전송 구간의 제1 실시예를 도시한 타이밍도이다.
도 10을 참조하면, 그룹 전송 구간 내에서 송신 단말과 수신 단말 #1 내지 #4 간에 사이드링크 그룹캐스트 통신이 수행될 수 있다. 그룹 전송 구간은 CORESET(control resource set) 및 데이터 채널(예를 들어, PSSCH)을 포함할 수 있다. 그룹 전송 구간은 수신 단말 #1을 위한 서브 전송 구간 #1, 수신 단말 #2를 위한 서브 전송 구간 #2, 수신 단말 #3을 위한 서브 전송 구간 #3, 및 수신 단말 #4를 위한 서브 전송 구간 #4를 포함할 수 있다. 수신 단말들 각각의 서브 전송 구간은 시간 및/또는 주파수 도메인에서 구별될 수 있다. 서브 전송 구간들 각각에 CORESET(예를 들어, 제어 채널) 및 데이터 채널이 설정될 수 있다. 또는, 그룹 전송 구간 내에서 수신 단말들 각각의 서브 전송 구간은 설정되지 않을 수 있다.
그룹 전송 구간은 SL-그룹 BWP 내에 설정될 수 있고, 미리 설정된 주기에 따라 반복될 수 있다. 그룹 전송 구간의 시작 포인트는 미리 설정된 참조 포인트로부터의 오프셋으로 지시될 수 있다. 주파수 도메인에서 참조 포인트는 SL-그룹 BWP 또는 초기(initial) BWP의 RB(resource block) #0(예를 들어, CRB(common resource block) #0)의 서브캐리어 #0일 수 있다. 시간 도메인에서 참조 포인트는 슬롯 #0 또는 서브프레임 #0의 시작 시점일 수 있다.
그룹 전송 구간의 주기는 하나 이상의 슬롯, 서브프레임, 또는 라디오(radio) 프레임일 수 있다. 그룹 전송 구간의 길이는 슬롯 또는 서브프레임 단위로 설정될 수 있다. 그룹 전송 구간의 대역폭은 RB 또는 CRB 단위로 설정될 수 있고, SL-그룹 BWP의 대역폭 이하일 수 있다.
시나리오 #2에서 그룹 전송 구간 #1 및 #2는 다음과 같이 설정될 수 있다.
도 11은 그룹 전송 구간의 제2 실시예를 도시한 타이밍도이다.
도 11을 참조하면, 그룹 전송 구간 #1 내에서 송신 단말과 그룹 #1에 속한 수신 단말 #1-2 간에 사이드링크 그룹캐스트 통신이 수행될 수 있고, 그룹 전송 구간 #2 내에서 송신 단말과 그룹 #2에 속한 수신 단말 #3-4 간에 사이드링크 그룹캐스트 통신이 수행될 수 있다. 그룹 전송 구간 #1 및 #2는 CORESET(예를 들어, PSCCH) 및 데이터 채널(예를 들어, PSSCH)을 포함할 수 있다. 그룹 전송 구간 #1은 수신 단말 #1을 위한 서브 전송 구간 #1 및 수신 단말 #2를 위한 서브 전송 구간 #2를 포함할 수 있다. 그룹 전송 구간 #2는 수신 단말 #3을 위한 서브 전송 구간 #1 및 수신 단말 #4를 위한 서브 전송 구간 #2를 포함할 수 있다. 수신 단말들 각각의 서브 전송 구간은 시간 및/또는 주파수 도메인에서 구별될 수 있다. 서브 전송 구간들 각각에 CORESET 및 데이터 채널이 설정될 수 있다. 또는, 그룹 전송 구간 #1 및 #2 내에서 수신 단말들 각각의 서브 전송 구간은 설정되지 않을 수 있다.
그룹 전송 구간 #1 및 #2는 SL-그룹 BWP 내에 설정될 수 있고, 미리 설정된 주기에 따라 반복될 수 있다. 그룹 전송 구간 #1 및 #2는 연속적 또는 불연속적으로 설정될 수 있다. 그룹 전송 구간 #1 및 #2의 시작 포인트는 미리 설정된 참조 포인트로부터의 오프셋으로 지시될 수 있다. 주파수 도메인에서 참조 포인트는 SL-그룹 BWP 또는 초기 BWP의 RB #0(예를 들어, CRB #0)의 서브캐리어 #0일 수 있다. 시간 도메인에서 참조 포인트는 슬롯 #0 또는 서브프레임 #0의 시작 시점일 수 있다.
그룹 전송 구간 #1 및 #2의 주기는 하나 이상의 슬롯, 서브프레임, 또는 라디오 프레임일 수 있다. 그룹 전송 구간 #1 및 #2의 길이는 슬롯 또는 서브프레임 단위로 설정될 수 있다. 그룹 전송 구간 #1 및 #2의 대역폭은 RB 또는 CRB 단위로 설정될 수 있고, SL-그룹 BWP의 대역폭 이하일 수 있다.
다시 도 9를 참조하면, 송신 단말은 단계 S904에서 설정된 제어 정보를 수신 단말 #1 내지 #4에 전송할 수 있다(S905). 제어 정보는 RRC 메시지, MAC CE, 및 SCI 중에서 하나 이상의 조합을 통해 수신 단말 #1 내지 #4에 전송될 수 있다. 제어 정보는 표 3 및 도 8에 정의된 빔 구간을 통해 전송될 수 있다. 예를 들어, 송신 단말은 빔 구간 #1에서 제어 정보를 수신 단말 #1에 전송할 수 있고, 빔 구간 #3에서 제어 정보를 수신 단말 #2에 전송할 수 있고, 빔 구간 #8에서 제어 정보를 수신 단말 #3에 전송할 수 있고, 빔 구간 #9에서 제어 정보를 수신 단말 #4에 전송할 수 있다. 또는, 제어 정보는 도 10 및 도 11에 도시된 그룹 전송 구간을 통해 전송될 수 있다.
수신 단말 #1 내지 #4는 송신 단말로부터 제어 정보를 수신할 수 있고, 제어 정보에 포함된 정보 요소들을 확인할 수 있다. 예를 들어, 수신 단말 #1 내지 #4는 그룹 전송 구간을 확인할 수 있다. 단계 S905가 완료된 경우, 그룹 전송 구간 내에서 사이드링크 그룹캐스트 통신이 수행될 수 있다(S906).
시나리오 #1에서, 송신 단말은 도 10에 도시된 그룹 전송 구간에서 스케줄링 정보를 포함하는 SCI를 수신 단말 #1 내지 #4 중에서 하나 이상의 수신 단말들에 전송할 수 있다. SCI는 그룹 전송 구간 내에서 PSSCH 자원을 지시할 수 있다. 또한, SCI는 빔 갱신 동작의 트리거링 정보를 더 포함할 수 있다. 여기서, SCI의 CRC(cyclic redundancy check)는 SL-그룹-RNTI에 의해 스크램블링될 수 있다. 수신 단말 #1 내지 #4 각각은 그룹 전송 구간(예를 들어, 그룹 전송 구간의 CORESET)에서 SCI를 검출하기 위해 SL-그룹 RNTI를 사용하여 모니터링 동작을 수행할 수 있다. 그룹 전송 구간에서 SCI가 검출된 경우, 수신 단말 #1 내지 #4 각각은 SCI에 의해 지시되는 PSSCH를 사용하여 사이드링크 데이터를 송신 단말에 전송할 수 있다.
또는, 수신 단말 #1 내지 #4 각각은 SCI에 의해 지시되는 PSSCH를 통해 사이드링크 데이터를 송신 단말로부터 수신할 수 있다. 수신 단말 #1 내지 #4 각각은 사이드링크 데이터에 대한 HARQ 응답(예를 들어, ACK(acknowledgement) 또는 NACK(negative ACK))을 송신 단말에 전송할 수 있다. HARQ 응답은 그룹 전송 구간 내에서 전송될 수 있다.
또한, 송신 단말은 그룹 전송 구간 내에서 참조 신호를 수신 단말 #1 내지 #4 각각에 전송할 수 있다. 수신 단말 #1 내지 #4 각각은 그룹 전송 구간 내에서 수신된 참조 신호에 기초하여 채널 품질(예를 들어, 빔 품질)을 측정할 수 있고, 측정된 품질 정보(예를 들어, CSI, CQI, RSRP, RSRQ, SNR, SINR 등)를 송신 단말에 전송할 수 있다.
시나리오 #2에서, 송신 단말은 도 11에 도시된 그룹 전송 구간 #1에서 스케줄링 정보를 포함하는 SCI #1을 수신 단말 #1 및/또는 #2에 전송할 수 있다. SCI #1은 그룹 전송 구간 #1 내에서 PSSCH 자원을 지시할 수 있다. 또한, SCI #1은 빔 갱신 동작의 트리거링 정보를 더 포함할 수 있다. 여기서, SCI #1의 CRC는 SL-그룹-RNTI에 의해 스크램블링될 수 있다. 수신 단말 #1 및 #2 각각은 그룹 전송 구간 #1(예를 들어, 그룹 전송 구간 #1의 CORESET)에서 SCI #1을 검출하기 위해 SL-그룹 RNTI를 사용하여 모니터링 동작을 수행할 수 있다. 그룹 전송 구간 #1에서 SCI #1이 검출된 경우, 수신 단말 #1 및 #2 각각은 SCI #1에 의해 지시되는 PSSCH를 사용하여 사이드링크 데이터를 송신 단말에 전송할 수 있다.
또는, 수신 단말 #1 및 #2 각각은 SCI #1에 의해 지시되는 PSSCH를 통해 사이드링크 데이터를 송신 단말로부터 수신할 수 있다. 수신 단말 #1 및 #2 각각은 사이드링크 데이터에 대한 HARQ 응답(예를 들어, ACK 또는 NACK)을 송신 단말에 전송할 수 있다. HARQ 응답은 그룹 전송 구간 #1 내에서 전송될 수 있다.
또한, 송신 단말은 그룹 전송 구간 #1 내에서 참조 신호를 수신 단말 #1 및 #2 각각에 전송할 수 있다. 수신 단말 #1 및 #2 각각은 그룹 전송 구간 #1 내에서 수신된 참조 신호에 기초하여 채널 품질(예를 들어, 빔 품질)을 측정할 수 있고, 측정된 품질 정보(예를 들어, CSI, CQI, RSRP, RSRQ, SNR, SINR 등)를 송신 단말에 전송할 수 있다.
시나리오 #2에서, 송신 단말은 도 11에 도시된 그룹 전송 구간 #2에서 스케줄링 정보를 포함하는 SCI #2를 수신 단말 #3 및/또는 #4에 전송할 수 있다. SCI #2는 그룹 전송 구간 #2 내에서 PSSCH 자원을 지시할 수 있다. 또한, SCI #2는 빔 갱신 동작의 트리거링 정보를 더 포함할 수 있다. 여기서, SCI #2의 CRC는 SL-그룹-RNTI에 의해 스크램블링될 수 있다. 수신 단말 #3 및 #4 각각은 그룹 전송 구간 #2(예를 들어, 그룹 전송 구간 #2의 CORESET)에서 SCI #2를 검출하기 위해 SL-그룹 RNTI를 사용하여 모니터링 동작을 수행할 수 있다. 그룹 전송 구간 #2에서 SCI #2가 검출된 경우, 수신 단말 #3 및 #4 각각은 SCI #2에 의해 지시되는 PSSCH를 사용하여 사이드링크 데이터를 송신 단말에 전송할 수 있다.
또는, 수신 단말 #3 및 #4 각각은 SCI #2에 의해 지시되는 PSSCH를 통해 사이드링크 데이터를 송신 단말로부터 수신할 수 있다. 수신 단말 #3 및 #4 각각은 사이드링크 데이터에 대한 HARQ 응답(예를 들어, ACK 또는 NACK)을 송신 단말에 전송할 수 있다. HARQ 응답은 그룹 전송 구간 #2 내에서 전송될 수 있다.
또한, 송신 단말은 그룹 전송 구간 #2 내에서 참조 신호를 수신 단말 #3 및 #4 각각에 전송할 수 있다. 수신 단말 #3 및 #4 각각은 그룹 전송 구간 #2 내에서 수신된 참조 신호에 기초하여 채널 품질(예를 들어, 빔 품질)을 측정할 수 있고, 측정된 품질 정보(예를 들어, CSI, CQI, RSRP, RSRQ, SNR, SINR 등)를 송신 단말에 전송할 수 있다.
한편, 송신 단말은 수신 단말 #1 내지 #4로부터 수신된 피드백 정보(예를 들어, HARQ 응답, 품질 정보)에 기초하여 빔 갱신 동작의 수행 여부를 결정할 수 있다(S907). 예를 들어, 송신 단말은 아래의 조건들 중에서 하나 이상의 조건들이 만족하는 경우에 빔 갱신 동작이 필요한 것으로 판단할 수 있다.
- 조건 1: HARQ NACK의 개수 > 임계값 #1
- 조건 2: 채널 품질(예를 들어, CQI) < 임계값 #2
- 조건 3: 임계값 #2 미만의 채널 품질(예를 들어, CQI)을 가지는 수신 단말의 개수 > 임계값 #3
빔 갱신 동작이 필요한 것으로 판단된 경우, 송신 단말은 단계 S901부터 다시 시작할 수 있다. 이 경우, 단계 S903에서 설정된 그룹은 초기화될 수 있고, 단계 S904에서 설정된 그룹 전송 구간은 초기화될 수 있다. 따라서 송신 단말은 사이드링크 그룹캐스트 통신이 종료된 것을 지시하는 메시지를 전송한 후에 단계 S901을 다시 수행할 수 있다.
또는, 빔 갱신 동작의 트리거링(triggering)은 수신 단말 #1 내지 #4에 의해 수행될 수 있다. 예를 들어, 수신 단말 #1 내지 #4 각각은 조건 1 및/또는 2가 만족하는 경우에 빔 갱신 동작의 트리거링을 요청하는 메시지를 송신 단말에 전송할 수 있다. 사이드링크 그룹캐스트 통신에 참여하는 수신 단말 #1 내지 #4 중에서 하나 이상의 수신 단말들로부터 빔 갱신 동작의 트리거링을 요청하는 메시지가 수신된 경우, 송신 단말은 단계 S901부터 다시 시작할 수 있다.
본 발명에 따른 방법들은 다양한 컴퓨터 수단을 통해 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능 매체에 기록되는 프로그램 명령은 본 발명을 위해 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
컴퓨터 판독 가능 매체의 예에는 롬(rom), 램(ram), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함한다. 상술한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 적어도 하나의 소프트웨어 모듈로 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (20)

  1. 통신 시스템에서 송신 단말의 동작 방법으로서,
    사이드링크(sidelink) 통신을 위한 SS/PBCH(synchronization signal/physical broadcast channel) 블록을 빔 스위핑(beam sweeping) 방식을 사용하여 전(omni) 방향으로 전송하는 단계;
    복수의 수신 단말들로부터 상기 SS/PBCH 블록에 대한 제1 피드백 정보를 수신하는 단계; 및
    상기 제1 피드백 정보에 기초하여 결정된 상기 송신 단말의 빔들을 사용하여 특정 방향으로 사이드링크 채널을 전송하는 단계를 포함하며,
    상기 특정 방향에 대응하는 전송 영역은 상기 전 방향에 대응하는 전송 영역보다 좁은, 송신 단말의 동작 방법.
  2. 청구항 1에 있어서,
    상기 SS/PBCH 블록은 상기 송신 단말이 접속된 기지국에 의해 설정된 빔 스위핑 구간 내에서 전송되고, 상기 빔 스위핑 구간은 상기 사이드링크 통신을 위한 BWP(bandwidth part) 내에서 설정되는, 송신 단말의 동작 방법.
  3. 청구항 1에 있어서,
    상기 제1 피드백 정보는 상기 SS/PBCH 블록을 기반으로 측정된 빔 품질을 기초로 선택된 상기 송신 단말의 빔 인덱스를 포함하는, 송신 단말의 동작 방법.
  4. 청구항 1에 있어서,
    상기 제1 피드백 정보에 기초하여 전송 구간이 설정되며, 상기 사이드링크 채널은 상기 전송 구간 내에서 상기 빔 스위핑 방식으로 상기 복수의 수신 단말들에 전송되는, 송신 단말의 동작 방법.
  5. 청구항 1에 있어서,
    상기 송신 단말의 동작 방법은,
    상기 제1 피드백 정보에 기초하여 확인된 상기 복수의 수신 단말들의 위치들에 기초하여 상기 복수의 수신 단말들을 하나 이상의 그룹들로 분류하는 단계를 더 포함하며,
    상기 사이드링크 채널은 상기 하나 이상의 그룹들 각각을 위한 전송 구간 내에서 상기 빔 스위핑 방식으로 전송되는, 송신 단말의 동작 방법.
  6. 청구항 5에 있어서,
    상기 송신 단말의 동작 방법은,
    상기 사이드링크 채널의 전송 전에, 상기 전송 구간의 설정 정보를 상기 복수의 수신 단말들에 전송하는 단계를 더 포함하며,
    상기 전송 구간의 설정 정보는 상기 전송 구간의 시작 포인트를 지시하는 정보, 상기 전송 구간의 길이를 지시하는 정보, 상기 전송 구간의 대역폭을 지시하는 정보, 상기 전송 구간의 주기를 지시하는 정보, 및 상기 복수의 수신 단말들 중에서 상기 전송 구간 내에서 상기 사이드링크 통신을 수행하는 하나 이상의 수신 단말들의 식별자를 포함하는, 송신 단말의 동작 방법.
  7. 청구항 1에 있어서,
    상기 송신 단말의 동작 방법은,
    상기 사이드링크 채널에 대한 제2 피드백 정보를 상기 복수의 수신 단말들로부터 수신하는 단계; 및
    상기 제2 피드백 정보에 기초하여 빔 갱신 동작의 수행 여부를 결정하는 단계를 포함하며,
    상기 제2 피드백 정보는 상기 사이드링크 채널에 대한 HARQ(hybrid automatic repeat request) 응답 및 품질 정보 중에서 하나 이상을 포함하는, 송신 단말의 동작 방법.
  8. 청구항 1에 있어서,
    상기 사이드링크 채널은 PSCCH(physical sidelink control channel) 및 PSSCH(physical sidelink shared channel)를 포함하며, 상기 PSCCH는 상기 PSSCH의 스케줄링 정보 및 빔 갱신 동작을 위한 트리거링(triggering) 정보를 포함하는, 송신 단말의 동작 방법.
  9. 통신 시스템에서 수신 단말의 동작 방법으로서,
    빔 스위핑(beam sweeping) 구간에서 사이드링크(sidelink) 통신을 위한 SS/PBCH(synchronization signal/physical broadcast channel) 블록을 송신 단말로부터 수신하는 단계;
    상기 SS/PBCH 블록을 기초로 측정된 품질 정보에 기초하여 상기 송신 단말의 빔 인덱스를 선택하는 단계;
    상기 빔 인덱스를 포함하는 제1 피드백 정보를 상기 송신 단말에 전송하는 단계; 및
    상기 제1 피드백 정보를 기초로 설정된 전송 구간에서 사이드링크 채널을 상기 송신 단말로부터 수신하는 단계를 포함하며,
    상기 SS/PBCH 블록은 상기 빔 스위핑 구간 내에서 상기 송신 단말의 전(omni) 방향으로 전송되고, 상기 사이드링크 채널은 상기 전송 구간 내에서 상기 송신 단말의 특정 방향으로 전송되고, 상기 특정 방향에 대응하는 전송 영역은 상기 전 방향에 대응하는 전송 영역보다 좁은, 수신 단말의 동작 방법.
  10. 청구항 9에 있어서,
    상기 SS/PBCH 블록은 상기 수신 단말이 접속된 기지국에 의해 설정된 상기 빔 스위핑 구간 내에서 수신되고, 상기 빔 스위핑 구간은 상기 사이드링크 통신을 위한 BWP(bandwidth part) 내에서 설정되는, 수신 단말의 동작 방법.
  11. 청구항 9에 있어서,
    상기 전송 구간은 상기 수신 단말을 포함하는 복수의 수신 단말들을 위해 설정되며, 상기 전송 구간 내에서 상기 복수의 수신 단말들 각각을 위한 사이드링크 채널은 상기 빔 스위핑 방식으로 전송되는, 수신 단말의 동작 방법.
  12. 청구항 9에 있어서,
    상기 수신 단말의 동작 방법은,
    상기 사이드링크 채널의 수신 전에, 상기 송신 단말로부터 상기 전송 구간의 설정 정보를 수신하는 단계를 더 포함하며,
    상기 전송 구간의 설정 정보는 상기 전송 구간의 시작 포인트를 지시하는 정보, 상기 전송 구간의 길이를 지시하는 정보, 상기 전송 구간의 대역폭을 지시하는 정보, 및 상기 전송 구간의 주기를 지시하는 정보를 포함하는, 수신 단말의 동작 방법.
  13. 청구항 9에 있어서,
    상기 수신 단말의 동작 방법은,
    상기 사이드링크 채널에 대한 제2 피드백 정보를 상기 송신 단말에 전송하는 단계를 더 포함하며,
    상기 제2 피드백 정보는 상기 사이드링크 채널에 대한 HARQ(hybrid automatic repeat request) 응답 및 품질 정보 중에서 하나 이상을 포함하고, 상기 송신 단말에서 상기 제2 피드백 정보에 기초하여 빔 갱신 동작의 수행 여부가 결정되는, 수신 단말의 동작 방법.
  14. 청구항 9에 있어서,
    상기 사이드링크 채널은 PSCCH(physical sidelink control channel) 및 PSSCH(physical sidelink shared channel)를 포함하며, 상기 PSCCH는 상기 PSSCH의 스케줄링 정보 및 빔 갱신 동작을 위한 트리거링(triggering) 정보를 포함하는, 수신 단말의 동작 방법.
  15. 사이드링크(sidelink) 통신을 수행하는 송신 단말로서,
    프로세서(processor); 및
    상기 프로세서에 의해 실행되는 하나 이상의 명령들이 저장된 메모리(memory)를 포함하며,
    상기 하나 이상의 명령들은,
    빔 측정을 위해 사용되는 사이드링크 신호를 빔 스위핑(beam sweeping) 방식을 사용하여 전(omni) 방향으로 전송하고;
    복수의 수신 단말들로부터 상기 사이드링크 신호에 대한 제1 피드백 정보를 수신하고; 그리고
    상기 제1 피드백 정보에 기초하여 결정된 상기 송신 단말의 빔들을 사용하여 특정 방향으로 사이드링크 채널을 전송하도록 실행되며,
    상기 특정 방향에 대응하는 전송 영역은 상기 전 방향에 대응하는 전송 영역보다 좁은, 송신 단말.
  16. 청구항 15에 있어서,
    상기 사이드링크 신호는 상기 송신 단말이 접속된 기지국에 의해 설정된 빔 스위핑 구간 내에서 전송되고, 상기 빔 스위핑 구간은 상기 사이드링크 통신을 위한 BWP(bandwidth part) 내에서 설정되는, 송신 단말.
  17. 청구항 15에 있어서,
    상기 제1 피드백 정보에 기초하여 전송 구간이 설정되며, 상기 사이드링크 채널은 상기 전송 구간 내에서 상기 빔 스위핑 방식으로 상기 복수의 수신 단말들에 전송되는, 송신 단말.
  18. 청구항 15에 있어서,
    상기 하나 이상의 명령들은,
    상기 제1 피드백 정보에 기초하여 확인된 상기 복수의 수신 단말들의 위치들에 기초하여 상기 복수의 수신 단말들을 하나 이상의 그룹들로 분류하도록 더 실행되며,
    상기 사이드링크 채널은 상기 하나 이상의 그룹들 각각을 위한 전송 구간 내에서 상기 빔 스위핑 방식으로 전송되는, 송신 단말.
  19. 청구항 18에 있어서,
    상기 하나 이상의 명령들은,
    상기 사이드링크 채널의 전송 전에, 상기 전송 구간의 설정 정보를 상기 복수의 수신 단말들에 전송하도록 더 실행되며,
    상기 전송 구간의 설정 정보는 상기 전송 구간의 시작 포인트를 지시하는 정보, 상기 전송 구간의 길이를 지시하는 정보, 상기 전송 구간의 대역폭을 지시하는 정보, 상기 전송 구간의 주기를 지시하는 정보, 및 상기 복수의 수신 단말들 중에서 상기 전송 구간 내에서 상기 사이드링크 통신을 수행하는 하나 이상의 수신 단말들의 식별자를 포함하는, 송신 단말.
  20. 청구항 15에 있어서,
    상기 하나 이상의 명령들은,
    상기 사이드링크 채널에 대한 제2 피드백 정보를 상기 복수의 수신 단말들로부터 수신하고; 그리고
    상기 제2 피드백 정보에 기초하여 빔 갱신 동작의 수행 여부를 결정하도록 더 실행되며,
    상기 제2 피드백 정보는 상기 사이드링크 채널에 대한 HARQ(hybrid automatic repeat request) 응답 및 품질 정보 중에서 하나 이상을 포함하는, 송신 단말.
KR1020200000260A 2019-02-01 2020-01-02 사이드링크 그룹캐스트 통신을 위한 방법 및 장치 KR20200096413A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/298,797 US11997654B2 (en) 2019-02-01 2020-01-29 Method and device for sidelink groupcast communication
CN202080011824.2A CN113366902A (zh) 2019-02-01 2020-01-29 用于侧链路组播通信的方法和装置
PCT/KR2020/001353 WO2020159225A1 (ko) 2019-02-01 2020-01-29 사이드링크 그룹캐스트 통신을 위한 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962800052P 2019-02-01 2019-02-01
US62/800,052 2019-02-01

Publications (1)

Publication Number Publication Date
KR20200096413A true KR20200096413A (ko) 2020-08-12

Family

ID=72039146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200000260A KR20200096413A (ko) 2019-02-01 2020-01-02 사이드링크 그룹캐스트 통신을 위한 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20200096413A (ko)
CN (1) CN113366902A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080899A1 (ko) * 2020-10-14 2022-04-21 엘지전자 주식회사 무선통신 시스템에서 그룹 캐스트 전송을 수행하는 방법 및 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024159535A1 (zh) * 2023-02-03 2024-08-08 Oppo广东移动通信有限公司 侧行通信方法和终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080899A1 (ko) * 2020-10-14 2022-04-21 엘지전자 주식회사 무선통신 시스템에서 그룹 캐스트 전송을 수행하는 방법 및 장치

Also Published As

Publication number Publication date
CN113366902A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
US20220167180A1 (en) Method and device for managing beam in sidelink communication
US20220337348A1 (en) Method and apparatus for transmitting and receiving harq response in communication system supporting sidelink communication
KR20210020783A (ko) 통신 시스템에서 사이드링크 자원의 설정 방법
US11997654B2 (en) Method and device for sidelink groupcast communication
CN114128322A (zh) 侧链路通信中的资源分配方法
KR20210020773A (ko) 사이드링크 통신을 지원하는 통신 시스템에서 harq 응답의 송수신을 위한 방법 및 장치
CN115244971A (zh) 用于报告侧链路通信的信道状态信息的方法和装置
KR20210056226A (ko) 통신 시스템에서 harq 응답의 송수신을 위한 방법 및 장치
KR20220050782A (ko) 사이드링크에서 릴레이 통신을 위한 방법 및 장치
KR20200096413A (ko) 사이드링크 그룹캐스트 통신을 위한 방법 및 장치
KR20210003044A (ko) 통신 시스템에서 그룹 핸드오버를 위한 방법 및 장치
KR20210023711A (ko) 통신 시스템에서 사이드링크 자원들의 설정 방법
KR20210018023A (ko) 사이드링크 통신에서 비주기적 데이터 전송을 위한 방법 및 장치
KR20220059918A (ko) 사이드링크 통신에서 sci의 전송 방법 및 장치
KR20220069853A (ko) 사이드링크 통신에서 페이징을 위한 방법 및 장치
KR20220102586A (ko) 인터-ue 조정 기반의 사이드링크 자원의 할당을 위한 방법 및 장치
KR20200119721A (ko) 사이드링크 통신에서 그룹캐스트를 위한 bwp의 재설정을 위한 방법 및 장치
KR20200119720A (ko) 사이드링크 통신에서 bwp 재설정을 위한 방법 및 장치
KR20200050377A (ko) V2x를 지원하는 통신 시스템에서 빔 관리를 위한 방법 및 장치
KR20210089576A (ko) 사이드링크 통신을 위한 참조 신호의 송수신을 위한 방법 및 장치
KR20200107796A (ko) 사이드링크 통신에서 bwp 설정을 위한 방법 및 장치
KR102695280B1 (ko) V2x 통신을 지원하는 통신 시스템에서 송신/수신을 위한 설정 정보를 포함하는 제어 정보의 송수신 방법 및 장치
KR20210004823A (ko) 사이드링크 통신에서 자원 할당 방법
KR20210020782A (ko) 사이드링크 통신을 지원하는 통신 시스템에서 harq 응답의 송수신을 위한 방법 및 장치
KR20220071951A (ko) 사이드링크 통신에서 부분 센싱 동작의 결과를 공유하는 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination