KR20190048232A - Segment for tunnel constructing - Google Patents

Segment for tunnel constructing Download PDF

Info

Publication number
KR20190048232A
KR20190048232A KR1020170143001A KR20170143001A KR20190048232A KR 20190048232 A KR20190048232 A KR 20190048232A KR 1020170143001 A KR1020170143001 A KR 1020170143001A KR 20170143001 A KR20170143001 A KR 20170143001A KR 20190048232 A KR20190048232 A KR 20190048232A
Authority
KR
South Korea
Prior art keywords
segment
weight
concrete
cement
strength
Prior art date
Application number
KR1020170143001A
Other languages
Korean (ko)
Inventor
신운선
Original Assignee
주식회사 태명실업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태명실업 filed Critical 주식회사 태명실업
Priority to KR1020170143001A priority Critical patent/KR20190048232A/en
Publication of KR20190048232A publication Critical patent/KR20190048232A/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries

Abstract

The present invention relates to a segment for tunnel construction, which is molded by a mixture of: 5.57 wt% of water; 15.96-16.29 wt% of cement; 40.72 wt% of coarse aggregate; 37.00 wt% of fine aggregate; 0.33-0.66 wt% of modified sulfur; and 0.08-0.09 wt% of an admixture.

Description

터널 구축용 세그먼트{Segment for tunnel constructing}{Segment for tunnel constructing}

본 발명은 터널 구축용 세그먼트에 관한 것으로서, 보다 상세하게는 세그먼트를 이루는 시멘트에 수경성 개질유황을 첨가하여 형성한 터널 구축용 세그먼트에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunnel construction segment, and more particularly, to a tunnel construction segment formed by adding hydraulically modified sulfur to cement constituting a segment.

일반적으로, 도시 터널에서는 쉴드공법으로 많은 터털이 구축되어 있다. 이러한 쉴드공법은 거대한 초대형 굴착기라고 할 수 있는 쉴드 굴착기('굴진 장치'라고도 함)를 이용한 최첨단 공법으로, 기존의 NATM 공법보다 진보된 공법이다.Generally, in urban tunnels, many terrns are constructed by shielding method. This shielding method is a state-of-the-art method using a shielded excavator (also called "excavating device") which can be called a huge super excavator, and is an advanced method than the existing NATM method.

이러한 쉴드공법은 선단에 커터휠을 가진 쉴드 굴착기를 지중에서 굴착하면서 전진하고, 굴착된 터널에는 다수의 세그먼트(Segment)가 링 형태로 결합된 터널 구조물을 설치하여 터널의 외벽을 구성하게 된다.This shielding method advances while excavating a shield excavator having a cutter wheel at the tip thereof in a ground, and a tunnel structure in which a plurality of segments are combined in a ring shape is installed in the excavated tunnel to constitute the outer wall of the tunnel.

그리고, 다시 쉴드 굴착기에 의해 일정길이 굴착한 후, 기설치된 세그먼트 링의 선단에 새로운 세그먼트 링을 설치하는 과정을 반복하여 터널 및 지하 구조체를 시공하는 공법이다.Then, the tunnel and the underground structure are constructed by repeating the process of excavating a certain length again by the shield excavator and then installing a new segment ring at the tip of the previously installed segment ring.

한편, 터널에 설치된 세그먼트는 그 외측 둘레로부터 높은 토압과 수압을 받으므로, 높은 강도가 요구되는데, 종래의 세그먼트는 콘크리트를 주원료로 하여 성형되었다.On the other hand, since the segment installed in the tunnel receives high earth pressure and water pressure from the outer periphery thereof, high strength is required. Conventional segments are molded using concrete as the main raw material.

그런데, 이러한 콘크리트 재질의 세그먼트 즉, 콘크리트 세그먼트는 콘크리트의 특성상 터널의 시공과정에서 발생되는 충격과 진동을 전혀 흡수하지 못하므로 강도 및 내구성이 취약해지고, 이로 인해 콘크리트 세그먼트에 균열이 발생되어 토사로 인한 안전사고의 우려가 잇으며, 유지보수가 어렵다는 문제가 있다.However, due to the nature of the concrete, the segment of the concrete material, that is, the concrete segment, can not absorb the shock and vibration generated during the tunnel construction, and thus the strength and durability of the concrete segment are weakened. As a result, cracks are generated in the concrete segment, There is a concern about safety accidents, and maintenance is difficult.

한편, 국내 등록특허 제10-0964205호(등록일 : 2010.06.09. 이하 '선행기술문헌'이라 한다)에서는 라이닝 세그먼트를 강철 재질로 구성하는 기술이 개시되어 있다.On the other hand, Korean Patent Registration No. 10-0964205 (registered on June, 2010, hereinafter referred to as "prior art document") discloses a technique of constructing a lining segment with a steel material.

하지만, 선행기술문헌에서와 같이 세그먼트를 강철 재질로 성형하면 콘크리트 세그먼트에 비해 강도 및 내구성은 향상시킬 수 있으나, 강철 재질의 세그먼트는 콘크리트 세그먼트에 비해 누수에 의한 부식에 취약하고, 강철 재질의 특성상 제조에 많은 어려움이 따르며 강철 재질이 고가이므로 인해 현장 적용이 어렵다는 문제가 있다.However, as in the prior art document, the segment is made of steel material, which can improve the strength and durability compared to the concrete segment. However, the steel segment is more susceptible to leakage due to leakage than the concrete segment, There is a problem that it is difficult to apply it to the field because steel material is expensive.

국내 등록특허 제10-0964205호Korean Patent No. 10-0964205

따라서, 본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 콘크리트 세그먼트를 이루는 조성물에 수경성 개질유황을 첨가하여 성형함으로써 콘크리트 세그먼트의 강도 및 내구성을 향상시킬 수 있도록 한 터널 구축용 세그먼트를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art, and it is an object of the present invention to provide a tunnel construction method capable of improving the strength and durability of a concrete segment by adding a hydraulic reforming sulfur to a composition constituting a concrete segment. The purpose of the segment is to provide.

상술한 목적을 달성하기 위한 본 발명에 따른 터널 구축용 세그먼트는, 물, 시멘트, 굵은골재, 잔골재, 개질유황, 혼화제가 일정 비율로 배합되되, 개질유황은 시멘트 대비, 2∼4%의 비율로 배합되어 성형된다.In order to accomplish the above object, the present invention provides a tunnel construction segment comprising water, cement, coarse aggregate, fine aggregate, modified sulfur, and admixture in a predetermined ratio, wherein the modified sulfur is contained at a ratio of 2 to 4% .

그리고, 보다 구체적으로는, 물 5.57중량%, 시멘트 15.96∼16.29중량%, 굵은골재 40.72중량%, 잔골재 37.00중량%, 개질유황 0.33∼0.66중량%, 혼화제 0.08∼0.09중량%의 중량비로 배합되어 성형될 수 있다.More specifically, it is compounded in a weight ratio of 5.57% by weight of water, 15.96% to 16.29% by weight of cement, 40.72% by weight of coarse aggregate, 37.00% by weight of fine aggregate, 0.33 to 0.66% by weight of modified sulfur, and 0.08-0.09% .

본 발명의 터널 구축용 세그먼트에 따르면, 콘크리트 세그먼트의 조성물에 수경성 개질유황을 첨가하여 콘크리트 세그먼트를 성형함으로써 콘크리트 세그먼트의 강도 및 내구성을 향상시켜 세그먼트의 균열 및 침식을 최소화하고, 수명을 연장시킬 수 있는 효과가 있다.According to the segment for building a tunnel according to the present invention, the strength and durability of a concrete segment can be improved by adding a hydraulically modified sulfur to a composition of a concrete segment, thereby minimizing cracking and erosion of the segment, It is effective.

도 1은 본 발명에 따른 터널 구축용 세그먼트의 염화물량 시험결과를 나타낸 그래프이다.
도 2는 본 발명에 따른 터널 구축용 세그먼트의 재령별 압축강도를 나타낸 그래프이다.
도 3은 본 발명에 따른 터널 구축용 세그먼트의 타입별 압축강도를 나타낸 그래프이다.
도 4는 본 발명에 따른 터널 구축용 세그먼트의 타입별 휨강도를 나타낸 그래프이다.
FIG. 1 is a graph showing a chloride content test result of a segment for constructing a tunnel according to the present invention. FIG.
FIG. 2 is a graph showing compressive strengths according to the ages of segments for tunnel construction according to the present invention.
3 is a graph showing compressive strengths according to types of segments for tunnel construction according to the present invention.
FIG. 4 is a graph showing bending strengths according to types of segments for tunnel construction according to the present invention.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에서 사용되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있으므로, 이러한 용어들에 대한 정의는 본 발명의 기술적 사항에 부합되는 의미와 개념으로 해석되어야 할 것이다.The terms used in the present invention are defined in consideration of the functions of the present invention and may vary depending on the intention or custom of the user or the operator. Therefore, the definitions of these terms are meant to be in accordance with the technical aspects of the present invention As well as the other.

그리고, 본 발명에서 사용되는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로서, 본 발명의 구성요소가 상기의 용어에 의해 제한되는 것은 아니다.The terms used in the present invention are used to distinguish one element from another, and the elements of the present invention are not limited by the above terms.

첨부도면 도 1 내지 도 4는 본 발명에 따른 터널 구축용 세그먼트를 실험한 결과의 특성을 나타낸 그래프들이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing characteristics of experimental results of a tunnel construction segment according to the present invention; Fig.

본 발명에 따른 터널 구축용 세그먼트은 콘크리트 세그먼트로서, 물, 시멘트, 굵은골재, 잔골재, 개질유황, 혼화제가 일정 비율로 배합되어 성형된다.The segment for constructing a tunnel according to the present invention is formed by mixing water, cement, coarse aggregate, fine aggregate, modified sulfur, and an admixture at a predetermined ratio as a concrete segment.

여기서, 굵은골재를 자갈을 포함하고, 잔골재는 모래를 포함하며, 혼화제는 폴리카르본산계와 나프탈렌계를 포함한다.Here, the coarse aggregate includes gravel, the fine aggregate includes sand, and the admixture includes polycarboxylic acid and naphthalene.

게다가, 개질유황은 시멘트 대비, 2∼4%의 비율로 배합되어 성형되는 것이 콘크리트 세그먼트의 성형시 압축강도 및 휨강도, 염화물량 측면에서 유리하다.In addition, it is advantageous in terms of the compression strength, flexural strength, and chloride content in the molding of the concrete segment that the modified sulfur is blended at a ratio of 2 to 4% relative to the cement.

한편, 상기와 같은 콘크리트 세그먼트의 바람직한 배합비는, 물 5.57중량%, 시멘트 15.96∼16.29중량%, 굵은골재(자갈) 40.72중량%, 잔골재(모래) 37.00중량%, 개질유황 0.33∼0.66중량%, 혼화제 0.08∼0.09중량%의 중량비로 배합되어 성형된다.On the other hand, a preferable mixing ratio of the above concrete segments is 5.57% by weight of water, 15.96 to 16.29% by weight of cement, 40.72% by weight of coarse aggregate (gravel), 37.00% by weight of fine aggregate (sand), 0.33 to 0.66% 0.08 to 0.09% by weight.

이하, 상기와 같은 본 발명의 콘크리트 세그먼트를 하기의 실시예를 참고하여 보다 상세히 설명한다.Hereinafter, the concrete segment of the present invention will be described in more detail with reference to the following embodiments.

수경성 개질유황이 첨가된 콘크리트 세그먼트의 최적 배합을 도출하기 위해 하기의 표 1에서와 같이, 실시예1,2에서는 개질유황을 시멘트 대비, 2%와 4%의 비율로 각각 배합하여 성형된 콘크리트 세그먼트 시험편을 실험한 것이고, 비교예1,2에서는 개질유황을 첨가하지 않거나 또는 시멘트 대비 6%의 비율로 배합하여 성형된 콘크리트 세그먼트 시험편을 실험한 것이다.In order to derive the optimum combination of the concrete segments to which the hydraulically modified sulfur was added, as shown in Table 1 below, in Examples 1 and 2, the modified sulfur was blended at a ratio of 2% and 4% Test specimens were tested. In Comparative Examples 1 and 2, the concrete segment specimens molded by adding no modified sulfur or blending at a ratio of 6% with respect to cement were tested.

<콘크리트 세그먼트 시험편의 배합비><Mixing ratio of concrete segment test specimen> 시험편Specimen water 시멘트cement 굵은골재Coarse aggregate 잔골재Fine aggregate 개질유황Modified sulfur 혼화제Admixture 비교예1
(개질유황 무첨가)
Comparative Example 1
(No addition of reforming sulfur)
5.57%5.57% 16.62%16.62% 40.72%40.72% 37.00%37.00% 0%0% 0.08%0.08%
실시예 1
(시멘트 대비 2%)
Example 1
(2% against cement)
5.57%5.57% 16.29%16.29% 40.72%40.72% 37.00%37.00% 0.33%0.33% 0.08%0.08%
실시예 2
(시멘트 대비 4%)
Example 2
(4% against cement)
5.57%5.57% 15.96%15.96% 40.72%40.72% 37.00%37.00% 0.66%0.66% 0.08%0.08%
비교예 2
(시멘트 대비 6%)
Comparative Example 2
(6% against cement)
5.57%5.57% 15.63%15.63% 40.72%40.72% 37.00%37.00% 1.00%1.00% 0.08%0.08%

[실시예 1 및 2][Examples 1 and 2]

먼저, 실시예 1에서는 상기의 표 1에서와 같이, 물 5.57중량%, 시멘트 16.29중량%, 굵은골재(자갈) 40.72중량%, 잔골재(모래) 37.00중량%, 개질유황 0.33중량%, 혼화제 0.08중량%의 중량비로 배합되어 성형된 콘크리트 세그먼트를 원기둥 형태로 제작하였다.First, in Example 1, as shown in Table 1, a mixture of 5.57 wt% of water, 16.29 wt% of cement, 40.72 wt% of coarse aggregate (gravel), 37.00 wt% of fine aggregate (sand), 0.33 wt% of modified sulfur, 0.08 wt % By weight, and the molded concrete segment was formed into a cylindrical shape.

그리고, 실시예 2에서는 물 5.57중량%, 시멘트 15.96중량%, 굵은골재(자갈) 40.72중량%, 잔골재(모래) 37.00중량%, 개질유황 0.66중량%, 혼화제 0.08중량%의 중량비로 배합되어 성형된 콘크리트 세그먼트를 원기둥 형태로 제작하였다.In Example 2, water was compounded in a weight ratio of 5.57% by weight of water, 15.96% by weight of cement, 40.72% by weight of coarse aggregate (gravel), 37.00% by weight of fine aggregate (sand), 0.66% by weight of modified sulfur and 0.08% The concrete segment was made into a cylindrical shape.

상기와 같이 실시예 1,2에 따라 제작된 콘크리트 세그먼트를 굳지 않은 상태에서 슬럼프, 공기량, 염화물에 대한 3가지의 실험을 진행하였고, 굳은 후에는 압축강도(탈형 직후, 탈형 7일후, 탈형 28일후), 휨강도에 대한 시험을 진행하였으며, 이의 결과를 하기의 표 2 내지 표 5에 나타내었다.As described above, three tests were carried out on the slump, the air amount and the chloride in the concrete segments prepared according to Examples 1 and 2, and after hardening, the compressive strengths (immediately after demoulding, 7 days after demoulding, 28 days after demoulding ), And bending strength were tested, and the results are shown in Tables 2 to 5 below.

[비교예 1 및 2][Comparative Examples 1 and 2]

비교예 1에서는 물 5.57중량%, 시멘트 16.62중량%, 굵은골재(자갈) 40.72중량%, 잔골재(모래) 37.00중량%, 혼화제 0.08중량%의 중량비로 배합된 것으로, 실시예 1,2와는 달리 개질유황이 첨가되지 않았다.In Comparative Example 1, the weight ratio of water was 5.57% by weight, cement was 16.62% by weight, coarse aggregate (gravel) was 40.72% by weight, fine aggregate (sand) was 37.00% by weight and admixture was 0.08% by weight. No sulfur was added.

비교예 2에서는 물 5.57중량%, 시멘트 15.63중량%, 굵은골재(자갈) 40.72중량%, 잔골재(모래) 37.00중량%, 개질유황 1.00중량%, 혼화제 0.08중량%의 중량비로 배합되어 성형된 콘크리트 세그먼트를 원기둥 형태로 제작하였다.In Comparative Example 2, the concrete segment formed by mixing 5.57% by weight of water, 15.63% by weight of cement, 40.72% by weight of coarse aggregate (gravel), 37.00% by weight of fine aggregate (sand), 1.00% by weight of modified sulfur and 0.08% Were formed in a cylindrical shape.

이와 같은 비교예 1,2에서도 실시예 1,2에서와 마찬가지로, 성형된 콘크리트 세그먼트가 굳지 않은 상태에서 슬럼프, 공기량, 염화물에 대한 3가지의 실험을 진행하였고, 굳은 후에는 압축강도(탈형 직후, 탈형 7일후, 탈형 28일후), 휨강도에 대한 시험을 진행하였으며, 이의 결과를 하기의 표 2 내지 표 5에 나타내었다.In Comparative Examples 1 and 2, as in Examples 1 and 2, three experiments were conducted on slump, air content, and chloride in a state where the molded concrete segment was not solidified. After hardening, 7 days after demoulding, 28 days after demoulding), the bending strength was tested, and the results are shown in Tables 2 to 5 below.

<굳지 않은 콘크리트 세그먼트 시험편의 슬럼프><Slump of uncured concrete segment specimen> 구분division 비교예1(무첨가)Comparative Example 1 (no addition) 실시예1(2%)Example 1 (2%) 실시예2(4%)Example 2 (4%) 비교예2(6%)Comparative Example 2 (6%) 슬럼프slump 8080 8585 7575 8080

콘크리트 세그먼트에 적용하는 콘크리트 배합을 위하여 슬럼프 80±25㎜를 목표로 실험을 진행하였고, 그 결과는 위 표 2와 같다.Experiments were carried out with a slump of 80 ± 25 mm for the concrete composition applied to the concrete segment. The results are shown in Table 2 above.

<굳지 않은 콘크리트 세그먼트 시험편의 공기량><Amount of air in uncured concrete segment test specimen> 구분division 비교예1(무첨가)Comparative Example 1 (no addition) 실시예1(2%)Example 1 (2%) 실시예2(4%)Example 2 (4%) 비교예2(6%)Comparative Example 2 (6%) 공기량Air volume 2.82.8 2.52.5 2.72.7 2.42.4

콘크리트 세그먼트에 적용하는 콘크리트 배합을 위하여 공기량 3.5±1.5%를 목표로 실험을 진행하였고, 그 결과는 위 표 3과 같다.For the concrete composition applied to the concrete segment, the experiment was carried out with the aim of 3.5 ± 1.5% air volume. The results are shown in Table 3 above.

<굳지 않은 콘크리트 세그먼트 시험편의 염화물량><Amount of Chloride in Uncured Concrete Segment Specimen> 구분division 비교예1(무첨가)Comparative Example 1 (no addition) 실시예1(2%)Example 1 (2%) 실시예2(4%)Example 2 (4%) 비교예2(6%)Comparative Example 2 (6%) 염화물량Amount of chloride 0.0370.037 0.1020.102 0.1900.190 0.3760.376

콘크리트 세그먼트에 적용하는 콘크리트 배합을 위하여 염화물 0.3kg/㎥를 목표로 실험을 진행하였고, 수경성 개질유황이 시멘트와 반응하여 염화물량이 증가하는 것으로 나타났으며. 비교예2(6% 치환 배합)부터 기준을 초과하는 결과가 나타났음을 위 표 4를 통해 알 수 있었고, 이를 도 1에 도시하였다.Experiments were carried out with 0.3 kg / m3 of chloride for the concrete composition applied to the concrete segments. The hydraulic grade modified sulfur reacted with the cement and the amount of chloride was increased. Table 4 shows that the results exceeded the standard from Comparative Example 2 (6% substitution), which is shown in FIG.

<콘크리트 세그먼트 시험편의 압축강도><Compressive strength of concrete segment test specimen> 구분division 탈형직후Immediately after demise 탈형 7일후Seven days after demise 탈형 28일후28 days after demise 비고Remarks 비교예1(무첨가)Comparative Example 1 (no addition) 40.440.4 53.253.2 52.652.6
단위 : Mpa

Unit: Mpa
실시예1(2%)Example 1 (2%) 43.443.4 55.855.8 67.967.9 실시예2(4%)Example 2 (4%) 47.847.8 61.061.0 72.672.6 비교예2(6%)Comparative Example 2 (6%) 43.443.4 56.156.1 66.666.6

수경성 개질유황 콘크리트 적용시험의 탈형 직후의 강도, 탈형 7일후의 강도, 탈형 28일후의 강도를 측정한 결과, 비교예1(무첨가 배합)은 탈형 직후의 강도가 40.4Mpa, 7일후의 강도가 53.2Mpa, 28일후의 강도가 52.6 Mpa로 나타났고, 실시예1(시멘트와 유황을 2% 치환한 배합)은 각각 43.4, 55.8, 67.9Mpa로 나타났으며, 실시예2(4% 배합)는 각각 47.8, 61.0, 72.6 Mpa로 나타났으며, 비교예2(6% 배합)는 각각 43.4, 56.1, 66.6 Mpa로서, 모든 재령에서 6% 치환부터 압축강도가 감소하는 것을 위 표 5를 통해 알 수 있고, 이를 도 2 및 도 3에 도시하였다.The strength after the demolding, the strength after 7 days of demoulding, and the strength after 28 days of demoulding were measured, and as a result, the strength after the demoulding was 40.4 Mpa, the strength after 7 days from the demolding was 53.2 Mpa, and the strength after 28 days was 52.6 MPa, and Example 1 (combination of 2% substitution of cement and sulfur) was 43.4, 55.8 and 67.9 Mpa, respectively, and Example 2 (4% combination) Table 5 shows that the compressive strength decreases from 6% in all ages at 43.4, 56.1, and 66.6 Mpa, respectively, for Comparative Example 2 (6% combination) , Which are shown in Fig. 2 and Fig.

이는, 개질유황이 콘크리트 내에서 화학적 결합재 역할을 하여 강도 증진보다 시멘트 페이스트와 골재 사이의 채움재 역할을 함으로써 개질유황이 최대 4% 배합 때까지만 강도 증진의 효과가 있음을 알 수 있다.This is because the modified sulfur acts as a chemical binder in the concrete, and acts as a filler material between the cement paste and the aggregate rather than the strength enhancement. Thus, it is understood that the strength enhancement is effective only until the modified sulfur is mixed up to 4%.

상기와 같은 압축강도와 더불어 수경성 개질유황 콘크리트 적용시험의 재령 28일 휨강도를 측정한 결과 도 4에서와 같이, 비교예1(무첨가 배합)은 6.8 Mpa, 실시예1(2% 치환한 배합)은 7.6 Mpa, 실시예2(4% 치환 배합)는 7.9Mpa, 비교예2(6% 치환 배합)는 7.2 Mpa로 나타났다.As shown in FIG. 4, the bending strength of the 28 day old concrete of the hydraulic strength modified sulfur concrete test with the above compressive strength was 6.8 MPa in Comparative Example 1 (no added compound), and 6.8 MPa in Example 1 (2% substituted compound) 7.6 Mpa, 7.9 Mpa for Example 2 (4% substitution) and 7.2 Mpa for Comparative Example 2 (6% substitution).

따라서, 휨강도에서도 동일하게 실시예2(4% 치환 배합)가 가장 우수한 성능을 나타내고 있음을 알 수 있고, 이는 압축강도가 증가할수록 휨강도가 비례하여 증가됨을 알 수 있다.Therefore, it can be seen that Example 2 (4% substitution combination) exhibits the best performance in the bending strength as well, and it can be seen that the bending strength is increased proportionally as the compression strength is increased.

이상과 같은 실험결과에서 알 수 있듯이, 시멘트와 개질유황 치환시 4%까지는 압축강도와 휨강도가 증가하였으나, 6%부터는 오히려 감소되었고, 개질유황의 치환율이 높아질수록 염화물량이 증가하였다.Compressive strength and flexural strength were increased up to 4% in the case of cement and modified sulfur substitution. However, as the substitution ratio of modified sulfur increased, the amount of chloride increased.

따라서, 전술한 실험을 통해서도 나타났듯이, 기준 값을 만족하면서 가장 우수한 강도값을 얻을 수 있는 배합이 수경성 개질유황을 2∼4%로 치환한 배합인 것을 알 수 있고, 더 바람직하게는 수경성 개질유황을 4%로 치환한 배합이 최적의 배합비임을 알 수 있다.Therefore, as shown by the above-mentioned experiment, it can be seen that the blend capable of obtaining the most excellent strength value while satisfying the reference value is a blend containing 2 to 4% of hydrorefined reformed sulfur, and more preferably, It can be seen that the blending ratio in which sulfur is replaced by 4% is the optimum blending ratio.

이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the present invention. It is obvious that the modification or improvement is possible.

본 발명의 단순한 변형 내지 변경은 모두 본 발명의 범주에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의해 명확해질 것이다.It is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (2)

  1. 물, 시멘트, 굵은골재, 잔골재, 개질유황, 혼화제가 일정 비율로 배합되되, 개질유황은 시멘트 대비, 2∼4%의 비율로 배합되어 성형되는 터널 구축용 세그먼트.
    Water, cement, coarse aggregate, fine aggregate, modified sulfur, admixture are mixed at a certain ratio, and the modified sulfur is blended at a ratio of 2 to 4% relative to cement.
  2. 청구항 1에 있어서,
    물 5.57중량%, 시멘트 15.96∼16.29중량%, 굵은골재 40.72중량%, 잔골재 37.00중량%, 개질유황 0.33∼0.66중량%, 혼화제 0.08∼0.09중량%의 중량비로 배합되어 성형되는 터널 구축용 세그먼트.
    The method according to claim 1,
    A segment for constructing a tunnel is formed by compounding at a weight ratio of 5.57% by weight of water, 15.96% to 16.29% by weight of cement, 40.72% by weight of coarse aggregate, 37.00% by weight of fine aggregate, 0.33 to 0.66% by weight of modified sulfur and 0.08-0.09%
KR1020170143001A 2017-10-31 2017-10-31 Segment for tunnel constructing KR20190048232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170143001A KR20190048232A (en) 2017-10-31 2017-10-31 Segment for tunnel constructing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170143001A KR20190048232A (en) 2017-10-31 2017-10-31 Segment for tunnel constructing

Publications (1)

Publication Number Publication Date
KR20190048232A true KR20190048232A (en) 2019-05-09

Family

ID=66546318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170143001A KR20190048232A (en) 2017-10-31 2017-10-31 Segment for tunnel constructing

Country Status (1)

Country Link
KR (1) KR20190048232A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964205B1 (en) 2009-10-12 2010-06-17 보림기계공업 주식회사 Lining segment for tunnel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964205B1 (en) 2009-10-12 2010-06-17 보림기계공업 주식회사 Lining segment for tunnel

Similar Documents

Publication Publication Date Title
Huang et al. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash
Çakır et al. Influence of silica fume on mechanical and physical properties of recycled aggregate concrete
Elinwa et al. Ash from timber waste as cement replacement material
Yen et al. Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete
Kurda et al. Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties
KR101422206B1 (en) High-performance flowing cement mortar composition and surface protection method of concrete structures using the composite
AU2015253548B2 (en) Concrete materials with modified rheology, methods of making, and uses thereof
KR100670458B1 (en) The composition/Manufacturing/Process and Construction Method of the Dry Concrete for Repairing Concrete
KR101533093B1 (en) High-Early Strength cement concrete composition and concrete pavement repair it using the same method using silicon sludge
RU2307810C1 (en) Concrete mix and method of preparation of such mix
JP4425570B2 (en) Construction method of underground impermeable walls
DK157448B (en) Procedure for accelerating the binding and hardening of a hydraulic binding and alkalifier binding accelerator for using the procedure
KR101530172B1 (en) Non-Shrink Chemical Grout Material Composition and Grouting Methods Using Thereof
CN105236891B (en) A kind of filleting flexible concrete
KR101433650B1 (en) Highstrength concrete using carbon fiber
KR101352903B1 (en) Cement mortar composite with excellent flowability and workability, repair method of concrete structure, injection repair method for the concrete structure, surface treating method of the concrete structure and surface protection method of the concrete structure using the composite
Eren et al. Effects of limestone crusher dust and steel fibers on concrete
KR101073967B1 (en) Pre-mix composition for shotcrete of wet method and repair method using the same
KR101911316B1 (en) Eco-friendly color cement mortar composition for repairing concrete structure and method for repairing concrete structure therewith
KR101172635B1 (en) Ultra high strength concrete composition for PHC pile
KR20050081782A (en) Steel fiber reinforced cementitious composites and manufacturing method thereof
US5685902A (en) Carbon fiber-reinforced concrete and method for preparing the same
KR20120048133A (en) Additive for cement, mortar and concrete comprising ferronickel slag
RU2649996C1 (en) Fine-grained concrete mixture
Etxeberria et al. Use of recycled fine aggregates for Control Low Strength Materials (CLSMs) production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application