KR20190029539A - System for detecting microorganism in fluid with chaotic sensor - Google Patents

System for detecting microorganism in fluid with chaotic sensor Download PDF

Info

Publication number
KR20190029539A
KR20190029539A KR1020190003955A KR20190003955A KR20190029539A KR 20190029539 A KR20190029539 A KR 20190029539A KR 1020190003955 A KR1020190003955 A KR 1020190003955A KR 20190003955 A KR20190003955 A KR 20190003955A KR 20190029539 A KR20190029539 A KR 20190029539A
Authority
KR
South Korea
Prior art keywords
fluid
unit
wave
time
present
Prior art date
Application number
KR1020190003955A
Other languages
Korean (ko)
Other versions
KR102275361B1 (en
Inventor
김영덕
김남균
Original Assignee
주식회사 더웨이브톡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170116666A external-priority patent/KR101939779B1/en
Application filed by 주식회사 더웨이브톡 filed Critical 주식회사 더웨이브톡
Priority to KR1020190003955A priority Critical patent/KR102275361B1/en
Publication of KR20190029539A publication Critical patent/KR20190029539A/en
Application granted granted Critical
Publication of KR102275361B1 publication Critical patent/KR102275361B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • G01N2021/4797Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium time resolved, e.g. analysis of ballistic photons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

According to an embodiment of the present invention, provided is a system for detecting microorganism in a fluid, which comprises: a pipe unit having multiple scattering amplification areas to discharge a fluid flowing through a first cross section through a second cross section, and amplify the number of multiple scattering of a first wave incident between the first cross section and the second cross section in the fluid; and a first sensor unit arranged in the pipe unit between the first cross section and the second cross section, and detecting whether microorganism exists in the fluid with the first wave.

Description

혼돈파 센서를 이용한 유체 내 미생물 감지 시스템{System for detecting microorganism in fluid with chaotic sensor}{System for detecting microorganisms in fluid using chaos wave sensor}

본 발명의 실시예들은 혼돈파 센서를 이용한 유체 내 미생물 감지 시스템에 관한 것이다.Embodiments of the present invention are directed to systems for sensing microbial fluid in a fluid using a chaos wave sensor.

일반적으로, 물 또는 음료와 같은 유체는 여과 등의 다양한 처리를 통해 사용자에게 공급된다. 음용을 목적으로 하는 유체의 경우, 필요에 의해 유체 내 첨가된 첨가물을 제외한 다른 물질, 예를 들면 미생물 등은 제거된 후 사용자에게 공급되어야 한다. 그러나, 유체를 처리하는 과정에서 외기의 접촉과 같은 상황에 의해 의도치 않게 유체 내 미생물이 증식할 수 있다. Generally, fluids such as water or beverages are supplied to the user through various treatments such as filtration. In the case of a fluid intended for drinking, other substances, such as microorganisms, etc., other than the additives added in the fluid, if necessary, should be removed and supplied to the user. However, microbes in the fluid may inadvertently multiply due to a situation such as the contact of the outside air in the course of processing the fluid.

유체 내 미생물을 감지하기 위해 종래 다양한 방법들이 제시되고 있지만, 일정 속도의 유속을 갖는 유체 내에서 극소량의 미생물을 감지하는 것은 매우 어려운 실정이다.Various conventional methods for detecting microorganisms in a fluid have been proposed, but it is very difficult to detect minute microorganisms in a fluid having a constant velocity.

상기한 문제 및/또는 한계를 해결하기 위하여, 혼돈파 센서를 이용하여 실시간으로 유체 내 미생물을 감지할 수 있는 시스템을 제공하는 데에 목적이 있다.In order to solve the above problems and / or limitations, it is an object of the present invention to provide a system capable of detecting microorganisms in a fluid in real time using a chaos wave sensor.

본 발명의 일 실시예는 제1 단면을 통해 유입된 유체가 제2 단면을 통해 배출되며, 상기 제1 단면과 상기 제2 단면 사이로 입사되는 제1 파동이 상기 유체 내에서 다중 산란(multiple scattering)되는 횟수를 증폭시키기 위한 다중산란증폭영역을 포함하는 파이프유닛 및 상기 제1 단면과 상기 제2 단면 사이의 상기 파이프유닛 상에 배치되며, 상기 제1 파동을 이용하여 상기 유체 내의 불순물의 존재여부를 감지하는 제1 센서유닛을 포함하며, 상기 불순물은 미생물을 포함하는, 유체 내 미생물 감지 시스템을 제공한다.An embodiment of the present invention is a method of forming a fluid having a first cross section through which a fluid introduced through a first cross section is discharged through a second cross section and a first wave which is incident between the first cross section and the second cross section is subjected to multiple scattering in the fluid, And a second scattering amplification region for amplifying the number of times of propagation of the impurity in the fluid, and a second scattering amplification region disposed on the pipe unit between the first and second sections, Wherein the impurity comprises a microorganism, wherein the impurity comprises a microorganism.

본 발명의 일 실시예에 있어서, 상기 파이프유닛은 상기 제1 단면의 전체 면적을 통해 상기 유체가 유입되고, 상기 제2 단면의 전체 면적을 통해 상기 유체가 배출될 수 있다.In one embodiment of the present invention, the fluid may be introduced into the pipe unit through the entire area of the first end face, and the fluid may be discharged through the entire area of the second end face.

본 발명의 일 실시예에 있어서, 상기 제1 센서유닛은, 상기 유체를 향하여 상기 제1 파동을 조사하는 제1 파동원, 상기 조사된 제1 파동이 상기 유체 내에서 다중 산란되어 발생되는 제1 레이저 스펙클(laser speckle)을, 사전에 설정된 시점마다 검출하는 하나 이상의 제1 검출부 및 상기 검출된 제1 레이저 스펙클을 이용하여 상기 검출된 제1 레이저 스펙클의 시간 상관관계(temporal correlation)를 획득하고, 상기 획득된 시간 상관관계에 기초하여 상기 유체 내의 미생물의 존재여부를 실시간(real-time)으로 추정하는 제1 제어부를 포함할 수 있다.In one embodiment of the present invention, the first sensor unit includes a first wave source for irradiating the first wave toward the fluid, a first wave source for generating the first wave, At least one first detection section for detecting a laser speckle at preset time points and a second temporal correlation detecting section for detecting a temporal correlation of the detected first laser speckle using the detected first laser speckle And a first controller for real-time estimation of the presence or absence of microorganisms in the fluid based on the obtained time correlation.

본 발명의 일 실시예에 있어서, 상기 파이프유닛으로부터 배출된 상기 유체가 이동하는 제1 경로 상에 배치되고, 상기 제1 제어부로부터 상기 유체 내 상기 미생물이 존재한다는 신호가 입력되면 상기 유체를 사전에 설정된 시간 또는 유량만큼 상기 제1 경로와 다른 제2 경로로 배출하는 밸브유닛을 더 포함할 수 있다.In one embodiment of the present invention, when a signal indicating that the microorganism is present in the fluid is input from the first control unit, And a valve unit for discharging the fuel to the second path different from the first path by a set time or flow rate.

본 발명의 일 실시예에 있어서, 복수의 수용부를 구비하고, 상기 복수의 수용부에 상기 제2 경로로 배출된 상기 유체를 일정량으로 분류하여 수용하는 저장유닛 및 상기 복수의 수용부 각각에 수용된 상기 유체 내의 불순물의 존재여부 또는 농도를 감지하며, 상기 불순물은 미생물을 포함하는 제2 센서유닛을 더 포함할 수 있다.In one embodiment of the present invention, there is provided a storage unit comprising a plurality of storage units, a storage unit for storing the fluid discharged into the plurality of storage units by a predetermined amount into the plurality of storage units, The impurities may further include a second sensor unit that detects the presence or concentration of impurities in the fluid, and the impurities include microorganisms.

본 발명의 일 실시예에 있어서, 상기 제2 센서유닛은, 상기 복수의 수용부 각각에 제2 파동을 조사하는 하나 이상의 제2 파동원, 상기 조사된 제2 파동이 상기 복수의 수용부에 수용된 상기 유체 내에서 다중 산란되어 발생되는 제2 레이저 스펙클(laser speckle)을, 사전에 설정된 시점마다 검출하는 하나 이상의 제2 검출부 및 상기 검출된 제2 레이저 스펙클을 이용하여 상기 검출된 제2 레이저 스펙클의 시간 상관관계(temporal correlation)를 획득하고, 상기 획득된 시간 상관관계에 기초하여 상기 복수의 수용부 중 어느 수용부에 수용된 상기 유체 내에 불순물이 존재하는지 검출하는 제2 제어부를 포함할 수 있다.In one embodiment of the present invention, the second sensor unit includes at least one second wave source for irradiating a second wave to each of the plurality of receiving portions, at least one second wave source for receiving the irradiated second waves, At least one second detection section for detecting a second laser speckle generated by multiple scattering in the fluid at predetermined time points and a second laser speckle detecting section for detecting the second laser speckle using the detected second laser speckle, And a second control section for obtaining a temporal correlation of the speckle and detecting whether there is an impurity in the fluid accommodated in any of the plurality of accommodating sections based on the obtained time correlation have.

본 발명의 일 실시예에 있어서, 상기 저장유닛은 상기 제2 경로로 배출된 상기 유체를 시간에 따라 순차적으로 분류하여 수용할 수 있다.In one embodiment of the present invention, the storage unit may sequentially sort and accommodate the fluid discharged to the second path according to time.

본 발명의 일 실시예에 있어서, 상기 파이프유닛의 상기 제1 단면에 배치되며 상기 제1 단면으로 유입되는 상기 유체 내에 포함된 일정 크기 이상의 산란물질을 여과하는 필터유닛을 더 포함할 수 있다.In one embodiment of the present invention, the filter unit may further include a filter unit disposed on the first end face of the pipe unit and filtering the scattered material having a predetermined size or larger included in the fluid flowing into the first end face.

본 발명의 일 실시예에 있어서, 상기 다중산란증폭영역은 상기 유체로부터 출사되는 상기 제1 파동의 적어도 일부를 상기 유체로 반사시켜 상기 유체 내에서의 다중 산란 횟수를 증폭시킬 수 있다.In one embodiment of the present invention, the multiple scattering amplification region may reflect at least a portion of the first wave exiting the fluid with the fluid to amplify multiple scattering times in the fluid.

본 발명의 일 실시예에 있어서, 상기 다중산란증폭영역 중 적어도 일부는 상기 유체로부터 출사되는 상기 제1 파동의 전부를 상기 유체로 반사시키는 반사영역으로 이루어질 수 있다.In one embodiment of the present invention, at least a portion of the multiple scattering amplification regions may be a reflection region that reflects all of the first wave emitted from the fluid to the fluid.

본 발명의 일 실시예에 있어서, 상기 파이프유닛의 상기 다중산란증폭영역은 상기 제1 단면과 상기 제2 단면 사이에 상기 파이프유닛의 길이방향을 따라 순차적으로 배치되며 서로 다른 산란율을 갖는 복수의 분할영역을 포함할 수 있다.In one embodiment of the present invention, the multiple scattering amplification region of the pipe unit is disposed between the first end face and the second end face in sequence along the longitudinal direction of the pipe unit, and has a plurality of divided Region. ≪ / RTI >

본 발명의 일 실시예에 있어서, 상기 유체 내 미생물 감지 시스템은 상기 제1 센서유닛을 복수 개 구비하고, 상기 복수의 분할영역 각각에 대응되도록 배치시킬 수 있다. In one embodiment of the present invention, the microbial detection system in the fluid may include a plurality of the first sensor units, and may be arranged to correspond to each of the plurality of divided regions.

본 발명의 일 실시예에 있어서, 상기 시간 상관관계는 제1 시점에서 검출된 상기 제1 레이저 스펙클의 제1 영상정보와, 상기 제1 시점과 다른 제2 시점에서 검출된 상기 제1 레이저 스펙클의 제2 영상정보의 차이를 포함할 수 있다.In one embodiment of the present invention, the temporal correlation may include at least one of first image information of the first laser speckle detected at a first time point and first image information of the first laser specimen detected at a second point of time other than the first point of time The difference between the first and second image information of the second set may be included.

본 발명의 일 실시예에 있어서, 상기 제1 영상정보와 상기 제2 영상정보는 상기 제1 레이저 스펙클의 패턴정보 및 상기 제1 파동의 세기 정보 중 적어도 어느 하나를 포함할 수 있다.In one embodiment of the present invention, the first image information and the second image information may include at least one of pattern information of the first laser speckle and intensity information of the first wave.

본 발명의 다른 실시예는 제1 단면을 통해 유입된 유체가 제2 단면을 통해 배출되는 파이프유닛 및 상기 제1 단면과 상기 제2 단면 사이의 상기 파이프유닛 상에 배치되며, 상기 유체 내의 불순물의 존재여부를 감지하는 제1 센서유닛을 포함하고, 상기 제1 센서유닛은, 상기 유체를 향하여 제1 파동을 조사하는 제1 파동원, 상기 조사된 제1 파동이 상기 유체 내에서 다중 산란되어 발생되는 제1 레이저 스펙클(laser speckle)을, 사전에 설정된 시점마다 검출하는 하나 이상의 제1 검출부 및 상기 검출된 제1 레이저 스펙클을 이용하여 상기 검출된 제1 레이저 스펙클의 시간 상관관계(temporal correlation)를 획득하고, 상기 획득된 시간 상관관계에 기초하여 상기 유체 내의 불순물의 존재여부를 실시간(real-time)으로 추정하는 제1 제어부를 포함하며, 상기 불순물은 미생물을 포함하는, 유체 내 미생물 감지 시스템을 제공한다.Another embodiment of the present invention is directed to a pipe unit in which fluid introduced through a first cross section is discharged through a second cross section and a pipe unit disposed on the pipe unit between the first cross section and the second cross section, Wherein the first sensor unit comprises: a first wave source for irradiating a first wave toward the fluid; a second wave source for generating the first wave, which is generated by multiple scattering in the fluid At least one first laser speckle for detecting a first laser speckle at a predetermined point in time and a second laser speckle for detecting a temporal correlation of the detected first laser speckle using the detected first laser speckle, and a first controller for real-time estimating whether or not an impurity is present in the fluid based on the obtained time correlation, It provides, including water, fluid microbial detection system.

본 발명의 일 실시예에 있어서, 상기 파이프유닛은 상기 제1 단면과 상기 제2 단면 사이로 입사되는 제1 파동이 상기 유체 내에서 다중 산란(multiple scattering)되는 횟수를 증폭시키기 위한 다중산란증폭영역을 포함할 수 있다.In one embodiment of the present invention, the pipe unit includes a multiple scattering amplification region for amplifying the number of times that a first wave incident on the fluid between the first end face and the second end face is multiple scattered in the fluid .

본 발명의 일 실시예에 있어서, 상기 파이프유닛으로부터 배출된 상기 유체가 이동하는 제1 경로 상에 배치되고, 상기 제1 제어부로부터 상기 유체 내 상기 미생물이 존재한다는 신호가 입력되면 상기 유체를 사전에 설정된 시간 또는 유량만큼 상기 제1 경로와 다른 제2 경로로 배출하는 밸브유닛을 더 포함할 수 있다.In one embodiment of the present invention, when a signal indicating that the microorganism is present in the fluid is input from the first control unit, And a valve unit for discharging the fuel to the second path different from the first path by a set time or flow rate.

전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages will become apparent from the following drawings, claims, and detailed description of the invention.

본 발명의 실시예들에 따른 유체 내 미생물 감지 시스템은 레이저 스펙클의 시간 상관관계의 변화를 이용함으로써, 저렴한 비용으로 신속하게 유체 내 미생물의 존재 여부 또는 농도를 추정할 수 있다.The microbial detection system in the fluid according to the embodiments of the present invention can estimate the presence or concentration of the microorganism in the fluid at a low cost by using the change of the time correlation of the laser speckle.

도 1은 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템을 개략적으로 도시한 개념도이다.
도 2는 도 1의 파이프유닛 및 제1 센서유닛을 이용하여 미생물을 감지하는 과정을 설명하기 위한 개념도이다.
도 3은 본 발명의 일 실시예에 따른 혼돈파 센서의 원리를 설명하기 위한 도면이다.
도 4a 및 도 4b는 본 발명의 다른 실시예에 따른 제1 센서유닛을 개략적으로 도시한 개념도이다.
도 5는 본 발명의 일 실시예에 따른 저장유닛 및 제2 센서유닛을 설명하기 위한 개념도이다.
도 6은 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템의 다른 실시형태를 개략적으로 도시한 개념도이다.
도 7은 본 발명의 일 실시예에 따른 파이프유닛의 다른 실시형태를 개략적으로 도시한 개념도이다.
도 8은 본 발명의 다른 실시예에 따른 유체 내 미생물 감지 시스템을 개략적으로 도시한 개념도이다.
도 9는 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템을 실험 장치로서 구현한 예시도이다.
도 10a 내지 도 10c는 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템에 있어서 유체 내 박테리아 농도에 따른 시간 상관관계 계수를 도시한 그래프이다.
FIG. 1 is a conceptual diagram schematically showing a microbial detection system in a fluid according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram for explaining a process of detecting microorganisms using the pipe unit and the first sensor unit of FIG. 1;
3 is a view for explaining the principle of a chaotic wave sensor according to an embodiment of the present invention.
4A and 4B are conceptual diagrams schematically showing a first sensor unit according to another embodiment of the present invention.
5 is a conceptual diagram illustrating a storage unit and a second sensor unit according to an embodiment of the present invention.
6 is a conceptual diagram schematically showing another embodiment of a microbial detection system in a fluid according to an embodiment of the present invention.
7 is a conceptual diagram schematically showing another embodiment of a pipe unit according to an embodiment of the present invention.
8 is a conceptual diagram schematically showing a microbial detection system in a fluid according to another embodiment of the present invention.
FIG. 9 is an exemplary diagram illustrating a system for sensing microbes in a fluid according to an embodiment of the present invention.
10A to 10C are graphs showing time correlation coefficients according to bacteria concentration in a fluid in a microbe detection system in a fluid according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 이하의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like or corresponding parts throughout the drawings, and a duplicate description thereof will be omitted.

본 실시예들은 다양한 변환을 가할 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 실시예들의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 내용들을 참조하면 명확해질 것이다. 그러나 본 실시예들은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. These embodiments are capable of various transformations, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. The effects and features of the embodiments, and how to achieve them, will be apparent from the following detailed description taken in conjunction with the drawings. However, the embodiments are not limited to the embodiments described below, but may be implemented in various forms.

이하의 실시예에서 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, the terms first, second, and the like are used for the purpose of distinguishing one element from another element, not the limitative meaning.

이하의 실시예에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.

이하의 실시예에서 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as inclusive or having mean that a feature or element described in the specification is present, and do not exclude the possibility that one or more other features or elements are added in advance.

이하의 실시예에서 유닛, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 유닛, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다. In the following embodiments, when a unit, a region, an element, or the like is on or on another portion, not only the case where the portion is directly on another portion but also another unit, region, .

이하의 실시예에서 연결하다 또는 결합하다 등의 용어는 문맥상 명백하게 다르게 뜻하지 않는 한, 반드시 두 부재의 직접적 및/또는 고정적 연결 또는 결합을 의미하는 것은 아니며, 두 부재 사이에 다른 부재가 개재된 것을 배제하는 것이 아니다.In the following embodiments, terms such as joining or joining do not necessarily mean a direct and / or fixed connection or coupling of two members unless the context clearly indicates otherwise, and it is understood that other members are interposed between the two members It is not excluded.

명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.Means that there is a feature or element described in the specification and does not preclude the possibility that one or more other features or components will be added.

도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 이하의 실시예는 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of explanation. For example, the sizes and thicknesses of the components shown in the drawings are arbitrarily shown for convenience of explanation, and therefore, the following embodiments are not necessarily drawn to scale.

도 1은 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템(10)을 개략적으로 도시한 개념도이고, 도 2는 도 1의 파이프유닛(100) 및 제1 센서유닛(110)을 이용하여 미생물을 감지하는 과정을 설명하기 위한 개념도이다. FIG. 1 is a conceptual diagram schematically showing a system 10 for detecting microbes in a fluid according to an embodiment of the present invention. FIG. 2 is a schematic view showing a microbe- FIG. 2 is a conceptual diagram for explaining a process of detecting a user.

도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템(10)은 파이프유닛(100), 제1 센서유닛(110), 밸브유닛(130), 저장유닛(140), 제2 센서유닛(150)을 포함할 수 있다. 또한, 도 1의 유체 내 미생물 감지 시스템(10)은 유체공급유닛(160) 및 경보유닛(170)을 더 포함할 수 있다. 1 and 2, a microfluidic biological fluid sensing system 10 according to an embodiment of the present invention includes a pipe unit 100, a first sensor unit 110, a valve unit 130, a storage unit 140 ), And a second sensor unit 150. 1 may further include a fluid supply unit 160 and an alarm unit 170. In addition,

파이프유닛(100)은 제1 단면(A1)을 통해 유입된 유체(L)가 제2 단면(A2)을 통해 배출될 수 있다. 또한, 파이프유닛(100)은 제1 단면(A1)과 제2 단면(A2) 사이로 입사되는 제1 파동이 유체(L) 내에서 다중 산란(multiple scattering)되는 횟수를 증폭시키기 위한 다중산란증폭영역(101)을 포함할 수 있다. The pipe unit 100 can discharge the fluid L introduced through the first end face A1 through the second end face A2. The pipe unit 100 further includes a multiple scattering amplification region for amplifying the number of times that the first wave which is incident between the first end face A1 and the second end face A2 is subjected to multiple scattering in the fluid L, (101).

여기서, 유체(L)는 액체 또는 기체일 수 있다. 또한, 유체(L)는 미생물이 증식될 수 있는 물질일 수 있으며, 예를 들면, 내부에 산란물질이 포함되지 않은 물일 수 있다. 그러나, 본 발명은 이에 제한되지 않으며, 다른 실시예로서, 유체(L)는 내부에 산란물질이 포함된 우유와 같은 물질일 수도 있다. 또한, 또 다른 실시예로서, 유체(L)는 공기일 수도 있다. 이하에서는, 설명의 편의를 위하여 유체(L) 내부에 산란물질이 포함되지 않는 경우를 먼저 설명하고, 산란물질이 포함된 유체(L)에 대하여는 후술하기로 한다. Here, the fluid L may be a liquid or a gas. Further, the fluid L may be a substance in which microorganisms can be propagated, for example, water not containing scattering substances therein. However, the present invention is not limited thereto, and as another embodiment, the fluid L may be a material such as milk containing a scattering material therein. Further, as another embodiment, the fluid L may be air. Hereinafter, for convenience of explanation, the case where the scattering material is not contained in the fluid L will be described first, and the fluid L containing the scattering material will be described later.

유체(L)는 유체공급유닛(160)을 통해 상기한 파이프유닛(100)으로 유입될 수 있다. 유체공급유닛(160)은 도시하지 않았지만, 유체저장조(미도시)와 유체저장조에 수용된 유체(L)에 유동력을 제공하기 위한 유압펌프 또는 압축기(미도시)와 같은 공급수단을 포함할 수 있다. 유체(L)는 공급수단을 통해 일방향을 갖고 파이프유닛(100)을 통과할 수 있다. The fluid L may be introduced into the pipe unit 100 through the fluid supply unit 160. Although not shown, the fluid supply unit 160 may include a fluid reservoir (not shown) and a supply means such as a hydraulic pump or a compressor (not shown) for supplying fluid to the fluid L contained in the fluid reservoir . The fluid L can pass through the pipe unit 100 in one direction through the supply means.

일 실시예로서, 파이프유닛(100)은 제1 단면(A1)의 전체 면적을 통해 유체(L)가 유입되고, 제2 단면(A2)의 전체 면적을 통해 유체(L)가 배출될 수 있다. 다시 말해, 파이프유닛(100)은 내부를 꽉 채운 상태로 유체(L)가 이동될 수 있다. 유체(L)가 상기한 파이프유닛(100)의 단면적을 100% 채우지 못한 상태에서 이동하는 경우, 유체(L)의 흐름으로 인하여 유체에 파면이 발생될 수 있다. 이러한 파면은 산란체로 작용될 수 있어, 후술하는 제1 센서유닛(110)을 통해 미생물을 감지하는데 노이즈(noise)로 작용할 수 있다. 따라서, 파이프유닛(100)은 이러한 노이즈를 최소화하기 위하여 제1 단면(A1)과 제2 단면(A2)의 전체 면적을 통해 유체(L)가 배출될 수 있다. In one embodiment, the pipe unit 100 may be introduced with the fluid L through the entire area of the first end face A1 and the fluid L may be discharged through the entire area of the second end face A2 . In other words, the fluid unit L can be moved in a state where the pipe unit 100 is filled with the inside. When the fluid L moves in a state in which the cross-sectional area of the pipe unit 100 is not 100%, a wave front may be generated in the fluid due to the flow of the fluid L. Such a wavefront can act as a scattering body, and can act as noise for sensing microorganisms through the first sensor unit 110 described later. Thus, the pipe unit 100 can be discharged with the fluid L through the entire area of the first end face A1 and the second end face A2 to minimize such noise.

또한, 파이프유닛(100)의 다중산란증폭영역(101)은 유체(L)로부터 출사되는 제1파동의 적어도 일부를 다시 유체(L) 내로 반시시켜 유체(L)에서의 다중산란 횟수를 증폭시킬 수 있다. 다중산란증폭영역(101)은 다중산란물질(multiple scattering material)을 포함할 수 있다. 예를 들면, 다중산란물질은 굴절률이 큰 마이크로 미터 크기 이하의 지름을 가지는 입자, 예를 들면 산화티타늄(TiO2) 나노입자를 포함할 수 있다. 이때, 다중산란증폭영역(101)은 파이프유닛(100) 본체의 외표면에 다중산란물질을 코팅하여 형성될 수 있다. 그러나, 본 발명은 이에 제한되지 않으며, 다른 실시예로서, 다중산란증폭영역(101)은 파이프유닛(100) 본체 내에 다중산란물질을 포함시킴으로써 형성될 수도 있다. The multiple scattering amplification region 101 of the pipe unit 100 further includes at least a portion of the first wave emitted from the fluid L back into the fluid L to amplify the number of multiple scatterings in the fluid L . The multiple scattering amplification region 101 may include multiple scattering materials. For example, the multiple scattering material may comprise particles having a diameter less than a micrometer in size, such as titanium oxide (TiO2) nanoparticles, having a high refractive index. At this time, the multiple scattering amplification region 101 may be formed by coating multiple scattering materials on the outer surface of the main body of the pipe unit 100. However, the present invention is not limited thereto, and as another embodiment, the multiple scattering amplification region 101 may be formed by including multiple scattering materials in the body of the pipe unit 100.

또 다른 실시예로서, 다중산란증폭영역(101)은 파이프유닛(100)의 본체와 인접하게 배치되어, 유체(L)로부터 파이프유닛(100)의 외부로 출사되는 파동의 적어도 일부를 파이프유닛(100)의 내부로 반사시키는 다중산란증폭부(미도시)를 포함할 수 있다. 이때, 다중산란증폭부(미도시)는 파이프유닛(100)으로부터 출사되는 파동이 파이프유닛(100)과 다중산란증폭부(미도시) 사이의 공간을 적어도 1회 이상 왕복하도록 할 수 있다. 한편, 다중산란증폭영역(101)은 파이프유닛(100)의 제1 단면(A1)과 제2 단면(A2) 사이 전(全) 영역에 배치될 수 있다. The scattering amplification region 101 may be disposed adjacent to the main body of the pipe unit 100 so that at least a part of the wave that is emitted from the fluid L to the outside of the pipe unit 100 is supplied to the pipe unit 100 Scattering amplification unit (not shown) that reflects the scattered light to the inside of the substrate 100. At this time, the multiple scattering amplifying unit (not shown) can make the wave emitted from the pipe unit 100 reciprocate at least one time between the pipe unit 100 and the multiple scattering amplifying unit (not shown). On the other hand, the multiple scattering amplification region 101 can be arranged in the entire region between the first end face A1 and the second end face A2 of the pipe unit 100. [

한편, 다중산란증폭영역(101)의 적어도 일부는 유체(L)로부터 출사되는 제1 파동의 전부를 유체(L)로 반사시키는 반사영역(103)으로 이루어질 수 있다. 반사영역(103)은 유체(L)로부터 파이프유닛(100)의 외부로 제1 파동이 출사되는 것을 최소화하여 제1 센서유닛(110)의 미생물 감지율을 증폭시킬 수 있다. 반사영역(103)은 후술하는 제1 센서유닛(110)의 제1 파동원(111)으로부터 제1 파동이 입사되는 입사영역에 대하여 대향되도록 배치될 수 있다. 반사영역(103)은 제1 파동원(111)으로부터 조사된 제1 파동의 전부를 유체(L) 내로 반사시킴으로써, 유체(L)에서 다중산란가능한 파동량을 증가시킬 수 있고 이를 통해 제1 센서유닛(110)에서의 미생물 감지율을 증폭시킬 수 있다. 다른 실시예로서, 제1 센서유닛(110)의 제1 검출부(113)로 출사되는 제1 파동의 이동 경로를 제외한 다중산란증폭영역(101)의 전체 영역이 반사영역으로 이루어질 수도 있다. At least a part of the multiple scattering amplification region 101 may be a reflection region 103 for reflecting all of the first wave emitted from the fluid L to the fluid L. [ The reflection area 103 can minimize the first wave to be emitted from the fluid L to the outside of the pipe unit 100 to amplify the microorganism detection rate of the first sensor unit 110. [ The reflection area 103 may be arranged to be opposed to the incident area where the first wave is incident from the first wave source 111 of the first sensor unit 110 to be described later. The reflective region 103 can increase the amount of multiple scatterable waves in the fluid L by reflecting all of the first wave emitted from the first wave source 111 into the fluid L, The microorganism detection rate in the unit 110 can be amplified. In another embodiment, the entire region of the multiple scattering amplification region 101 excluding the traveling path of the first wave outputted to the first detection portion 113 of the first sensor unit 110 may be a reflection region.

한편, 제1 센서유닛(110)은 제1 단면(A1)과 제2 단면(A2) 사이의 파이프유닛(100) 상에 배치될 수 있다. 제1 센서유닛(110)은 제1 파동을 이용하여 유체(L) 내의 불순물인 미생물(M)의 존재여부를 감지할 수 있다. 본 명세서에서 제1 센서유닛(110)은 혼돈파 센서일 수 있다. 여기서, 불순물은 비용해성 부유물질일 수도 있다. 제1 센서유닛(110)은 미생물(M) 뿐만 아니라 유체(L) 내 포함된 불순물을 검출하는 기능도 수행할 수 있다. 다만, 이하에서는 설명의 편의를 위하여 유체(L) 내 미생물(M)을 검출하는 경우를 중심으로 설명하기로 한다. On the other hand, the first sensor unit 110 can be disposed on the pipe unit 100 between the first end face A1 and the second end face A2. The first sensor unit 110 can detect the presence of microorganisms M which are impurities in the fluid L by using the first wave. In this specification, the first sensor unit 110 may be a chaotic wave sensor. Here, the impurity may be an insoluble suspended material. The first sensor unit 110 may also function to detect not only the microorganisms M but also the impurities contained in the fluid L. [ Hereinafter, for convenience of explanation, the case of detecting the microorganism M in the fluid L will be mainly described.

먼저, 도 3을 참조하여, 본 발명의 혼돈파 센서의 원리에 대하여 설명한다.First, the principle of the chaos wave sensor of the present invention will be described with reference to FIG.

도 3은 본 발명의 일 실시예에 따른 혼돈파 센서의 원리를 설명하기 위한 도면이다.3 is a view for explaining the principle of a chaotic wave sensor according to an embodiment of the present invention.

유리와 같이 내부 굴절율이 균질한 물질의 경우에는 광을 조사했을 때에 일정한 방향으로 굴절이 일어난다. 하지만, 내부 굴절률이 불균질한 물체에 레이저와 같은 간섭광(Coherent Light)을 조사하면, 물질 내부에서 매우 복잡한 다중 산란(multiple scattering)이 발생하게 된다. In the case of a material having a homogeneous internal refractive index like glass, refraction occurs in a certain direction when light is irradiated. However, when a coherent light such as a laser is irradiated on an object having an inhomogeneous internal refractive index, a very complex multiple scattering occurs inside the material.

도 3을 참고하면, 파동원에서 조사한 빛 또는 파동(이하, 간략화를 위하여 파동이라 함) 중, 다중 산란을 통해 복잡한 경로로 산란된 파동의 일부는 검사 대상면을 통과하게 된다. 검사 대상면의 여러 지점을 통과하는 파동들이 서로 보강 간섭(constructive interference) 또는 상쇄 간섭(destructive interference)를 일으키게 되고, 이러한 파동들의 보강/상쇄 간섭은 낱알 모양의 무늬(스펙클; speckle)를 발생시키게 된다.Referring to FIG. 3, a portion of a wave scattered by a complex path through multiple scattering among light or waves (hereinafter referred to as waves for simplicity) irradiated from a wave source passes through the surface to be inspected. The waves passing through various points on the surface to be inspected cause constructive interference or destructive interference with each other and the reinforcement / destructive interference of these waves causes a speckle do.

본 명세서에서는 이러한 복잡한 경로로 산란되는 파동들을 "혼돈파(Chaotic wave)"라고 명명하였으며, 혼돈파는 레이저 스펙클을 통해 검출할 수 있다.In this specification, waves that are scattered by this complex path are called "Chaotic wave", and chaotic waves can be detected through laser speckle.

다시, 도 3의 좌측 도면은 안정한 매질을 레이저로 조사하였을 때를 나타낸 도면이다. 내부 구성 물질의 움직임이 없는 안정한 매질을 간섭광(예를 들면 레이저)로 조사하였을 때에는 변화가 없는 안정한 스펙클 무늬를 관측할 수 있다.3 is a view showing a state in which a stable medium is irradiated with a laser. When a stable medium free from movement of the internal constituent material is irradiated with interference light (for example, laser), a stable spectacle pattern with no change can be observed.

그러나, 도 3의 우측 도면과 같이, 내부에 박테리아 등, 내부 구성 물질 중 움직임이 있는 불안정한 매질을 포함하고 있는 경우에는 스펙클 무늬가 변화하게 된다. However, as shown in the right side of Fig. 3, when the unstable medium including movement of internal constituent substances such as bacteria is included therein, the specicle pattern changes.

즉, 생물의 미세한 생명활동(예컨대, 세포 내 움직임, 미생물의 이동, 진드기의 움직임 등)으로 인해 광경로가 시간에 따라 미세하게 변화할 수 있다. 스펙클 패턴은 파동의 간섭으로 인해 발생하는 현상이기 때문에, 미세한 광경로의 변화는 스펙클 패턴에 변화를 발생시킬 수 있다. 이에 따라, 스펙클 패턴의 시간적인 변화를 측정함으로써, 생물의 움직임을 신속하게 측정할 수 있다. 이처럼, 스펙클 패턴의 시간에 따른 변화를 측정하는 경우, 생물의 존재여부 및 농도를 알 수 있으며, 더 나아가서는 생물의 종류 또한 알 수 있다.That is, microscopic life activity of an organism (for example, intracellular movement, microbial movement, mite movement, etc.) may cause microscopic changes in the optical path over time. Since the speckle pattern is a phenomenon caused by wave interference, a change in the fine light path can cause a change in the speckle pattern. Thus, by measuring the temporal change of the speckle pattern, the movement of the creature can be measured quickly. As described above, when the change of the speckle pattern with time is measured, the existence and concentration of the living thing can be known, and furthermore, the kind of the living thing can be known.

본 명세서는 이러한 스펙클 패턴의 변화를 측정하는 구성을 혼돈파 센서(Chaotic Wave Sensor)라 정의한다. In the present specification, a configuration for measuring the change of the speckle pattern is defined as a Chaotic Wave Sensor.

한편, 물과 같은 유체(L)는 전술한 바와 같이 내부에 산란을 발생시키는 균질한 물질을 포함하지 않기 때문에 미생물(M)이 존재하지 않는 경우 레이저 스펙클이 발생시킬 수 없다. 다만, 본 발명의 일 실시예예 따른 유체 내 미생물 감지 시스템(10)은 전술한 파이프유닛(100)의 다중산란증폭영역(101)을 통해 제1 파동을 다중산란시켜 안정한 레이저 스펙클 무늬를 발생시킬 수 있다. 유체 내 미생물 감지 시스템(10)은 파이프유닛(100)을 이동하는 유체(L) 내에 미생물(M)이 존재하는 경우 미생물의 움직임에 의해 제1 파동의 경로가 미세하게 변화할 수 있다. 미세한 제1 파동경로의 변화는 스펙클 패턴에 변화를 발생시킬 수 있고, 이에 따라 스펙클 패턴의 시간적인 변화를 측정함으로써, 유체(L) 내에 미생물(M)의 존재여부를 신속하게 검출할 수 있다. On the other hand, since the fluid (L) such as water does not contain a homogeneous material that generates scattering in the inside as described above, laser speckles can not be generated when the microorganism (M) is not present. However, the microbial sensing system 10 in accordance with the present invention may multiply the first wave through the multiple scattering amplification region 101 of the pipe unit 100 to generate a stable laser speckle pattern . The microbial detection system 10 in the fluid may slightly change the path of the first wave due to the movement of microorganisms when the microorganism M is present in the fluid L moving through the pipe unit 100. The change in the fine first wave path can cause a change in the speckle pattern and thus the temporal change in the speckle pattern can be measured to quickly detect the presence or absence of the microorganism M in the fluid L have.

다시 도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 제1 센서유닛(110)은 제1 파동원(111), 제1 검출부(113) 및 제1 제어부(115)를 포함할 수 있다. 1 and 2, the first sensor unit 110 according to an embodiment of the present invention includes a first wave source 111, a first detection unit 113, and a first control unit 115 .

제1 파동원(111)은 상기한 파이프유닛(100) 내부를 따라 이동하는 유체(L)를 향하여 제1 파동을 조사할 수 있다. 제1 파동원(111)은 파동(wave)을 생성할 수 있는 모든 종류의 소스 장치를 적용할 수 있으며, 예를 들면, 특정 파장 대역의 광을 조사할 수 있는 레이저(laser)일 수 있다. 본 발명은 파동원 종류에 제한이 없으나, 다만, 이하에서는 설명의 편의를 위하여 레이저인 경우를 중심으로 설명하기로 한다. The first wave source 111 can irradiate the first wave toward the fluid L moving along the inside of the pipe unit 100. The first wave source 111 may be any type of source device capable of generating a wave, for example, a laser capable of irradiating light of a specific wavelength band. The present invention is not limited to the kind of the wave source, but the following description will focus on the case of a laser for convenience of explanation.

예를 들어, 유체(L)에 스펙클을 형성하기 위해서 간섭성(coherence)이 좋은 레이저를 제1 파동원(111)으로 이용할 수 있다. 이때, 레이저 파동원의 간섭성을 결정하는 파동원의 스펙트럴 대역폭(spectral bandwidth)이 짧을수록 측정 정확도가 증가할 수 있다. 즉, 간섭길이(coherence length)가 길수록 측정 정확도가 증가할 수 있다. 이에 따라, 파동원의 스펙트럴 대역폭이 기정의된 기준 대역폭 미만인 레이저광이 제1 파동원(111)으로 이용될 수 있으며, 기준 대역폭보다 짧을수록 측정 정확도는 증가할 수 있다. 예컨대, 아래의 수학식 1의 조건이 유지되도록 제1 파동원의 스펙트럴 대역폭이 설정될 수 있다.For example, a laser having good coherence can be used as the first wave source 111 in order to form a speckle in the fluid L. [ In this case, the shorter the spectral bandwidth of the wave source that determines the coherence of the laser source, the greater the measurement accuracy. That is, the longer the coherence length, the greater the measurement accuracy. Accordingly, the laser beam whose spectral bandwidth of the wave source is less than the predetermined reference bandwidth can be used as the first wave source 111, and the measurement accuracy can be increased as it is shorter than the reference bandwidth. For example, the spectral bandwidth of the first wave source may be set such that the condition of Equation 1 below is maintained.

Figure pat00001
Figure pat00001

수학식 1에 따르면, 레이저 스펙클의 패턴 변화를 측정하기 위해, 기준 시간마다 유체 내에 광을 조사 시에, 제1 파동원(111)의 스펙트럴 대역폭은 1nm 미만을 유지될 수 있다.According to Equation (1), in order to measure the pattern change of the laser speckle, the spectral bandwidth of the first wave source 111 can be kept less than 1 nm when the light is irradiated in the fluid for each reference time.

제1 검출부(113)는 조사된 제1 파동이 유체(L) 내에서 다중 산란되어 발생되는 제1 레이저 스펙클을, 사전에 설정된 시점마다 검출할 수 있다. 여기서, 시점(time)이란, 연속적인 시간의 흐름 가운데 어느 한 순간을 의미하며, 시점(time)들은 동일한 시간 간격으로 사전에 설정될 수 있으나 반드시 이에 제한되지 않으며, 임의의 시간 간격으로 사전에 설정될 수도 있다. 제1 검출부(113)는 제1 파동원(111) 종류에 대응한 감지수단을 포함할 수 있으며, 예를 들면, 가시광선 파장 대역의 광원을 이용하는 경우에는 영상을 촬영하는 촬영장치인 CCD 카메라(camera)가 이용될 수 있다. 제1 검출부(113)는 적어도 제1 시점에서의 레이저 스펙클을 검출하고, 제2 시점에서의 레이저 스펙클을 검출하여 제1 제어부(115)로 제공할 수 있다. 한편, 제1 시점 및 제2 시점은 설명의 편의를 위하여 선택된 하나의 예시일 뿐이며, 제1 검출부(113)는 제1 시점 및 제2 시점보다 많은 복수의 시점에서 레이저 스펙클을 검출할 수 있다.The first detection unit 113 can detect the first laser speckle generated by multiplying the irradiated first wave in the fluid L every predetermined time. Here, time refers to any one of continuous time flows, and time points can be set in advance at the same time interval, but are not limited thereto, and may be set in advance at an arbitrary time interval . The first detection unit 113 may include detection means corresponding to the first wave source 111. For example, when the light source of the visible light wavelength band is used, the first detection unit 113 may be a CCD camera camera may be used. The first detection unit 113 can detect the laser speckle at the first time point and detect the laser speckle at the second time point and provide the laser speckle to the first control unit 115. The first and second points of view are merely examples selected for convenience of explanation. The first detector 113 can detect the laser speckles at a plurality of points of time greater than the first point and the second point of time .

구체적으로, 유체(L)에 제1 파동이 조사되면, 입사된 제1 파동은 다중 산란에 의해 제1 레이저 스펙클을 형성할 수 있다. 제1 레이저 스펙클은 빛의 간섭 현상에 의해 발생하므로, 유체 내에 미생물이 없다면 다중산란증폭영역에 의해 시간에 따라 항상 일정한 간섭 무늬를 나타낼 수 있다. 이와 비교하여, 유체(L) 내에 미생물이 존재하는 경우, 제1 레이저 스펙클은 미생물(M)의 움직임에 의해 시간에 따라 변화할 수 있다. 제1 검출부(113)는 이러한 시간에 따라 변화하는 레이저 스펙클을 사전에 설정된 시점마다 검출하여 제1 제어부(115)로 제공할 수 있다. 제1 검출부(113)는 미생물(M)의 움직임을 감지할 수 있을 정도의 속도로 제1 레이저 스펙클을 검출할 수 있으며, 예를 들면, 초당 25 프레임 내지 30 프레임의 속도로 검출할 수 있다.Specifically, when the first wave is irradiated to the fluid L, the incident first wave can form the first laser speckle by multiple scattering. Since the first laser speckle is generated by the light interference phenomenon, if there is no microorganism in the fluid, the multiple scattering amplification region can always exhibit a constant interference pattern with time. In contrast, when microorganisms are present in the fluid L, the first laser speckle may change with time due to the movement of the microorganism M. The first detection unit 113 may detect the laser speckles varying in time according to the time and provide the laser speckles to the first control unit 115 at predetermined time points. The first detection unit 113 can detect the first laser speckle at a speed that can detect the movement of the microorganism M and can detect the first laser speckle at a speed of, for example, 25 frames to 30 frames per second .

한편, 제1 검출부(113)로 이미지 센서가 이용되는 경우, 이미지 센서 한 픽셀(pixel)의 크기 d가 스펙클 패턴의 입자 크기(grain size)보다 작거나 같아지도록 이미지 센서가 배치될 수 있다. 예컨대, 아래의 수학식 2의 조건을 만족하도록, 제1 검출부(113)에 포함된 광학계에서 이미지 센서가 배치될 수 있다.Meanwhile, when the image sensor is used as the first detection unit 113, the image sensor may be arranged such that the size d of one pixel of the image sensor is smaller than or equal to the grain size of the speckle pattern. For example, the image sensor may be disposed in the optical system included in the first detection unit 113 so as to satisfy the condition of the following equation (2).

Figure pat00002
Figure pat00002

수학식 2와 같이, 이미지 센서의 한 픽셀(pixel)의 크기 d가 스펙클 패턴의 입자 크기(grain size) 이하이어야 하나, 픽셀의 크기가 너무 작아지게 되면 언더샘플링(undersampling)이 발생해서 픽셀 해상도를 활용하는데 어려움이 존재할 수 있다. 이에 따라, 효과적인 SNR(Signal to Noise Ratio)를 달성하기 위해 스펙클 입자 크기(speckle grain size)에 최대 5개 이하의 픽셀이 위치하도록 이미지 센서가 배치될 수 있다.If the size d of one pixel of the image sensor is less than the grain size of the speckle pattern as shown in Equation (2), if the size of the pixel becomes too small, undersampling occurs and the pixel resolution There may be difficulties in utilizing Thus, the image sensor can be arranged so that no more than five pixels are located in the speckle grain size to achieve an effective SNR (Signal to Noise Ratio).

제1 제어부(115)는 검출된 제1 레이저 스펙클을 이용하여 검출된 제1 레이저 스펙클의 시간 상관관계(temporal correlation)를 획득할 수 있다. 제1 제어부(115)는 획득된 시간 상관관계에 기초하여 유체(L) 내의 미생물의 존재여부를 실시간(real-time)으로 추정할 수 있다. 본 명세서에서 실시간(real-time)이란 3초 이내 미생물(M)의 존재 여부를 추정하는 것을 의미하며, 바람직하게는 1초 내에 미생물(M)의 존재 여부를 추정할 수 있다. The first controller 115 may obtain a temporal correlation of the detected first laser speckle using the detected first laser speckle. The first control unit 115 can estimate in real time whether or not microorganisms are present in the fluid L based on the obtained time correlation. In this specification, real-time means estimation of the presence of microorganisms (M) within 3 seconds, and it is possible to estimate the presence of microorganisms (M) in 1 second.

일 실시예로서, 제1 제어부(115)는 제1 시점에서 검출된 제1 레이저 스펙클의 제1 영상정보와, 제1 시점과 다른 제2 시점에서 검출된 제2 레이저 스펙클의 제2 영상정보 차이를 이용하여 미생물(M)의 존재여부를 추정할 수 있다. 여기서, 제1 영상정보 및 제2 영상정보는 제1 레이저 스펙클의 패턴 정보 및 파동의 세기 정보 중 적어도 어느 하나일 수 있다. 한편, 본 발명의 일 실시예는, 제1 시점에서의 제1 영상정보와 제2 시점에서의 제2 영상정보의 차이만을 이용하는 것은 아니며, 이를 확장하여 복수의 시점에서 복수의 제1 레이저 스펙클의 영상 정보를 이용할 수 있다. 제1 제어부(115)는 사전에 설정된 복수의 시점마다 생성된 제1 레이저 스펙클의 영상정보를 이용하여 영상들 간의 시간 상관 계수를 계산할 수 있으며, 시간 상관 관계 계수에 기초하여 유체(L) 내에 미생물(M)의 존재여부를 추정할 수 있다. 검출된 제1 레이저 스펙클 영상의 시간 상관 관계는 아래의 수학식 3을 이용하여 계산될 수 있다.In one embodiment, the first control unit 115 generates first image information of the first laser speckle detected at the first point of time and second image information of the second laser speckle detected at the second point of time other than the first point of view, The presence of the microorganism (M) can be estimated using the information difference. Here, the first image information and the second image information may be at least one of pattern information of the first laser speckle and intensity information of the wave. Meanwhile, an embodiment of the present invention does not use only the difference between the first image information at the first viewpoint and the second image information at the second viewpoint, and extends the plurality of first laser speckles Can be used. The first controller 115 may calculate the temporal correlation coefficient between images using the image information of the first laser speckles generated at a plurality of predetermined points in time, The presence or absence of the microorganism M can be estimated. The temporal correlation of the detected first laser speckle image can be calculated using the following equation (3).

Figure pat00003
Figure pat00003

수학식 3에서

Figure pat00004
은 시간 상관 관계 계수,
Figure pat00005
은 표준화된 빛 세기, (x,y)는 카메라의 픽셀 좌표, t는 측정된 시간, T는 총 측정 시간,
Figure pat00006
는 타임래그(time lag)를 나타낸다. In Equation 3,
Figure pat00004
Time correlation coefficient,
Figure pat00005
(X, y) is the pixel coordinates of the camera, t is the measured time, T is the total measurement time,
Figure pat00006
Represents a time lag.

수학식 3에 따라 시간 상관 관계 계수가 계산될 수 있으며, 일 실시예로서, 시간 상관 관계 계수가 사전에 설정된 기준값 이하로 떨어지는 분석을 통해 미생물의 존재여부를 추정할 수 있다. 구체적으로, 시간 상관 관계 계수가 사전에 설정된 오차 범위를 넘어 기준값 이하로 떨어지는 것으로 미생물이 존재한다고 추정할 수 있다. The time correlation coefficient may be calculated according to Equation (3). In one embodiment, the presence or absence of the microorganism may be estimated through an analysis in which the time correlation coefficient falls below a preset reference value. Specifically, it can be assumed that microorganisms exist because the temporal correlation coefficient falls below a reference value beyond a predetermined error range.

한편, 도 4a 및 도 4b는 본 발명의 다른 실시예에 따른 제1 센서유닛(110)을 개략적으로 도시한 개념도이다.4A and 4B are conceptual diagrams schematically showing a first sensor unit 110 according to another embodiment of the present invention.

도 4a 및 도 4b를 참조하면, 제1 센서유닛(110)은 유체(L)에서 산란된 제1 파동 신호를 제1 파동원(111)의 제1 파동이 유체(L)에 의해 산란되기 전의 제2 파동신호로 복원하는 변조하는 광학부(35)를 더 포함할 수 있다. 이때, 광학부(35)는 공간 광 변조부(Spatial Light Modulator; SLM, 351) 및 제1 검출부(113)를 포함할 수 있다. 광학부(35)는 측정 대상으로부터 산란된 파동이 입사되면, 산란된 파동의 파면을 제어하여, 다시 산란되기 전의 파동(광)으로 복원하여 제1 검출부(113)로 제공할 수 있다. 4A and 4B, the first sensor unit 110 detects a first wave signal that is scattered in the fluid L by applying a first wave signal to the first wave source 111 before the first wave of the first wave source 111 is scattered by the fluid L And a modulating optical unit 35 for reconstructing the second wave signal. In this case, the optical unit 35 may include a spatial light modulator (SLM) 351 and a first detection unit 113. When the scattered wave is incident from the measurement object, the optical unit 35 controls the wavefront of the scattered wave, restores the wave to the scattered wave (light), and provides the wave to the first detection unit 113.

공간 광 변조부(351)는 시료에서 산란된 파동(광)이 입사될 수 있다. 공간 광 변조부(351)는 시료에서 산란된 파동의 파면을 제어하여 렌즈(352)에 제공할 수 있다. 렌즈(352)는 제어된 광을 집약하여 다시 검출부(240)로 제공할 수 있다. 검출부(240)는 렌즈에서 집약된 파동을 감지하여 산란되기 최초 파동원에서 출력된 파동으로 복원하여 출력할 수 있다. The spatial light modulator 351 can receive waves (light) scattered from the sample. The spatial light modulator 351 can control the wavefront of the scattered wave in the sample and provide it to the lens 352. The lens 352 can collect the controlled light and provide it to the detector 240 again. The detection unit 240 may detect the wave condensed in the lens and may restore the waveform output from the original wave source to be scattered and output.

여기서, 광학부(35)는 안정적인 매질, 즉, 유체 내에 미생물이 존재하지 않는 경우, 유체(L)로부터 산란된 제1 파동신호를 산란되기 이전의 파동으로 복원할 수 있다. 그러나, 유체(L) 내에 미생물(M)이 존재하는 경우, 미생물의 움직임으로 인하여 제1 파동신호가 달라지므로 위상 제어 파면을 감지할 수 없게 되고, 이로 인하여 위상 공액 파면을 갖는 제2 파동신호로 변조할 수 없다. 전술한 광학부(35)를 포함하는 제1 센서유닛(110)은 이러한 제2 파동신호의 차이를 이용하여 좀 더 미세하게 미생물의 존재 여부를 추정할 수 있다.Here, the optical unit 35 can restore the first wave signal scattered from the fluid L to the wave before scattering when the stable medium, that is, the microbe is not present in the fluid. However, when the microorganism M is present in the fluid L, the first wave signal is changed due to the movement of the microorganisms, so that the phase control wavefront can not be detected. As a result, the second wave signal having the phase conjugate wavefront It can not be modulated. The first sensor unit 110 including the optical unit 35 can estimate the presence of microorganisms more finely using the difference of the second wave signal.

다시 도 1을 참조하면, 밸브유닛(130)은 파이프유닛(100)으로부터 배출된 유체(L)가 이동하는 제1 경로(P1) 상에 배치될 수 있다. 밸브유닛(130)은 제1 제어부(115)로부터 유체(L) 내 미생물(M)이 존재한다는 신호(t1)가 입력되면, 유체(L)를 사전에 설정된 시간 도는 유량만큼 제1 경로(P1)와 다른 제2 경로(P2)로 배출할 수 있다. 밸브유닛(130)은 예를 들면, 3방 밸브(3way valve)일 수 있다. 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템(10)은 미생물이 존재한다고 판단되면 일정량의 유체를 배출할 수 있도록 함으로써, 미생물로 인하여 오염된 유체를 제거할 수 있다. Referring again to FIG. 1, the valve unit 130 may be disposed on the first path P1 on which the fluid L discharged from the pipe unit 100 moves. When the signal t1 indicating the presence of the microorganisms M in the fluid L is input from the first control unit 115, the valve unit 130 sets the fluid L to the first path P1 To the second path P2 different from the first path P2. The valve unit 130 may be, for example, a 3-way valve. The microbial sensing system 10 according to an embodiment of the present invention can discharge a predetermined amount of fluid when it is determined that microbes are present, thereby removing contaminated fluid due to microbes.

도 5는 본 발명의 일 실시예에 따른 저장유닛(140) 및 제2 센서유닛(150)을 설명하기 위한 개념도이다. 5 is a conceptual diagram illustrating a storage unit 140 and a second sensor unit 150 according to an embodiment of the present invention.

도 1 및 도 5를 참조하면, 저장유닛(140)은 복수의 수용부(141)를 구비하고, 복수의 수용부(141)에 제2 경로(P2)로 배출된 유체(L)를 일정량으로 분류하여 수용할 수 있다. 복수의 수용부(141)는 서로 소정의 이격 거리를 갖고 배열될 수 있다. 제1 센서유닛(110)에 의해 미생물(M)이 감지되는 경우, 오염된 유체(L)는 밸브유닛(130)을 통해 순식간에 배출되기 때문에 유체(L) 내 미생물(M) 농도는 검출하기 어려울 수 있다. 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템(10)은 저장유닛(140)을 통해 배출된 유체(L)를 수용하고, 제2 센서유닛(150)을 통해 유체(L) 내 미생물의 농도를 검출할 수 있다. 특히, 저장유닛(140)은 제2 경로(P2)로 배출된 유체(L)를 시간에 따라 순차적으로 분류하여 수용할 수 있다. 1 and 5, the storage unit 140 includes a plurality of receiving portions 141, and a predetermined amount of the fluid L discharged through the second path P2 to the plurality of receiving portions 141 Can be classified and accepted. The plurality of receiving portions 141 may be arranged at a predetermined distance from each other. Since the contaminated fluid L is discharged instantaneously through the valve unit 130 when the microorganism M is detected by the first sensor unit 110, the concentration of the microorganism M in the fluid L is detected It can be difficult. The microbial sensing system 10 in accordance with an embodiment of the present invention includes a microcomputer for receiving the fluid L discharged through the storage unit 140 and for sensing the microorganisms in the fluid L through the second sensor unit 150 Concentration can be detected. In particular, the storage unit 140 can sequentially sort and accommodate the fluid L discharged in the second path P2 sequentially in time.

한편, 저장유닛(140)은 복수의 수용부(141)로부터 다중산란되어 출사되는 제2 파동의 적어도 일부를 복수의 수용부(141)로 반사시켜 수용부(141) 내의 유체(L)에서의 다중산란횟수를 증폭시키는 다중산란증폭부(미도시)를 더 포함할 수 있다. The storage unit 140 reflects at least a part of the second wave that is multiple scattered and emitted from the plurality of storage portions 141 to a plurality of storage portions 141 to store the liquid L in the storage portion 141 And a multiple scattering amplifying unit (not shown) amplifying the multiple scattering times.

제2 센서유닛(150)은 복수의 수용부(141) 각각에 수용된 유체(L) 내의 불순물의 존재여부를 감지할 수 있다. 제2 센서유닛(150)은 제2 파동원(151), 제2 검출부(153) 및 제2 제어부(155)를 포함할 수 있다. 일 실시예로서, 제2 파동원(151)은 복수의 수용부(141) 각각에 제2 파동을 조사할 수 있다. 제2 검출부(153)는 조사된 제2 파동이 복수의 수용부(141)에 수용된 유체(L) 내에서 다중 산란되어 발생되는 제2 레이저스페클을, 사전에 설정된 시점마다 검출할 수 있다. 제2 제어부(155)는 검출된 제2 레이저 스펙클을 이용하여 검출된 제2 레이저 스펙클의 시간 상관관계를 획득할 수 있다. 제2 제어부(155)는 획득된 시간 상관관계에 기초하여 복수의 수용부(141) 중 어느 수용부에 수용된 유체(L) 내에 불순물인 미생물이 존재하는지 검출할 수 있다. The second sensor unit 150 can detect the presence of impurities in the fluid L contained in each of the plurality of storage portions 141. [ The second sensor unit 150 may include a second wave source 151, a second detection unit 153, and a second control unit 155. In one embodiment, the second wave source 151 can irradiate each of the plurality of receiving portions 141 with the second wave. The second detection unit 153 can detect the second laser speckle generated by multiple scattering of the irradiated second wave in the fluid L contained in the plurality of receiving portions 141 at predetermined time points. The second control unit 155 can obtain the time correlation of the detected second laser speckle using the detected second laser speckle. The second control unit 155 can detect whether there is a microorganism that is an impurity in the fluid L contained in any of the plurality of accommodating units 141 based on the acquired time correlation.

여기서, 제2 센서유닛(150)은 제1 센서유닛(110)과 동일한 구성을 갖는 혼돈파 센서일 수 있다. 이하에서는 설명의 편의를 위하여, 제1 센서유닛(110)과 중복되는 설명은 생략하기로 한다.Here, the second sensor unit 150 may be a chaotic wave sensor having the same configuration as that of the first sensor unit 110. Hereinafter, for the sake of convenience of description, a description overlapping with the first sensor unit 110 will be omitted.

제2 센서유닛(150)은 도시된 바와 같이, 하나로 이루어져 복수의 수용부(141) 각각에 제2 파동을 조사하고, 제2 레이저 스펙클을 이용하여 어느 수용부(141)의 유체(L)에 미생물이 존재하는지 검출할 수 있다. 이때, 제2 센서유닛(150)은 제2 파동의 파동경로변경부(미도시)를 더 포함할 수 있으며, 이를 통해, 복수의 수용부(141)로 제2 파동을 조사할 수 있다. The second sensor unit 150 is formed as a single unit and irradiates the second waves to each of the plurality of receiving portions 141. The second sensor unit 150 irradiates each of the plurality of receiving portions 141 with the fluid L of the receiving portion 141 using the second laser speckle, It is possible to detect whether or not microorganisms are present. At this time, the second sensor unit 150 may further include a wave path changing unit (not shown) of the second wave, through which the second wave can be irradiated.

파동경로변경부(미도시)는 마이크로 미러로 이루어질 수 있다. 파동경로변경부(미도시)는 반사면을 구비하여, 입사된 파동을 복수의 수용부(141)들을 향해 반사시킬 수 있다. 파동경로변경부(미도시)는 구동제어부(미도시)에 의해 미세 구동될 수 있다. 다른 실시예로서, 파동경로변경부(미도시)는 제2 제어부(155)에 의해 미세 구동되며, 이에 따라 복수의 수용부(141)들 각각에 파동을 조사할 수 있다. 파동경로변경부(미도시)를 구성하는 마이크로 미러는 전기적 제어에 따라 반사면의 역학적 변위가 일어날 수 있는 다양한 구성이 채용될 수 있다. 예를 들면, 파동경로변경부(미도시)는 일반적으로 알려진 멤스(micro electromechanical system; MEMS) 미러, 디지털 마이크로미러 디바이스(digital micromirror device, DMD) 소자 등이 채용될 수 있다. The wave path changing unit (not shown) may be formed of a micromirror. The wave path changing unit (not shown) may include a reflecting surface to reflect the incident waves toward the plurality of receiving portions 141. The wave path changing unit (not shown) may be finely driven by a drive control unit (not shown). In another embodiment, the wave path changing unit (not shown) is finely driven by the second control unit 155, and thus the waves can be irradiated to each of the plurality of receiving units 141. The micromirror constituting the wave path changing part (not shown) may have various configurations in which the mechanical displacement of the reflecting surface can be caused by electrical control. For example, the wave path changing unit (not shown) may adopt a generally known micro electromechanical system (MEMS) mirror, a digital micromirror device (DMD) device, or the like.

다른 실시예로서, 제2 센서유닛(150)은 상기한 파동경로변경부(미도시)를 대신하여, 제2 파동원(151) 및 제2 검출부(153)와 연결되어 각각의 위치를 이동시키는 구동수단(미도시)을 포함할 수 있다. 제2 파동원(151) 및 제2 검출부(153)는 구동수단(미도시)을 통해 상기한 복수의 수용부(141) 각각에 대응되는 위치로 이동하면서 복수의 수용부(141) 내에 수용된 유체(L) 내의 미생물의 존재 여부를 감지할 수 있다.In another embodiment, the second sensor unit 150 is connected to the second wave source 151 and the second detection unit 153 in place of the wave path changing unit (not shown) And may include driving means (not shown). The second wave source 151 and the second detection unit 153 are moved through the drive means (not shown) to positions corresponding to the plurality of storage portions 141, It is possible to detect the presence of the microorganisms in the liquid (L).

한편, 또 다른 실시예로서, 제2 센서유닛(150)은 복수의 수용부(141) 각각에 대응되도록 복수의 제2 파동원(151) 및 제2 검출부(153)를 구비하고, 각각에서 검출된 제2 레이저 스펙클을 이용하여 미생물이 존재하는 수용부(141)의 위치를 검출할 수 있다. 제2 경로(P2)를 통해 배출된 유체(L)는 전술한 저장유닛(140)에 시간에 따라 순차적으로 일정량으로 분류될 수 있다. 따라서, 제2 센서유닛(150)은 미생물(M)이 존재하는 수용부(141)의 위치를 이용하여 어느 시점에서 미생물(M)이 유체(L)에 발생되었는지를 검출할 수 있다. In another embodiment, the second sensor unit 150 includes a plurality of second wave sources 151 and a second detection unit 153 corresponding to each of the plurality of storage units 141, It is possible to detect the position of the accommodating portion 141 where the microorganism exists. The fluid L discharged through the second path P2 may be sequentially classified into a predetermined amount in time according to the storage unit 140 described above. Therefore, the second sensor unit 150 can detect the point at which the microorganism M is generated in the fluid L by using the position of the receiving portion 141 where the microorganism M exists.

또한, 제2 센서유닛(150)은 수용부(141)에 수용된 유체(L) 내 불순물의 농도를 추정할 수 있다. 이때, 제2 센서유닛(150)은 유체(L) 내 불순물의 농도를 추정하여 유체(L)의 탁도를 측정하는 기능도 수행할 수 있다. 일반적인 탁도측정장치는 105 cfu/m 이하의 불순물 농도를 측정하는 것이 어렵다. 그러나, 본 발명의 일 실시예에 따른 제2 센서유닛(150)은 하기와 같이 불순물의 농도를 판단하는 방법을 통해 106 cfu/m 이하의 불순물 농도도 측정이 가능하다. 여기서 불순물은 미생물로 한정하지 않는다. 이하에서는, 설명의 편의를 위하여 불순물이 미생물인 경우를 중심으로 제2 제어부(155)에서, 제2 레이저 스펙클을 이용하여 미생물의 농도를 판단하는 방법에 대하여 구체적으로 설명한다.Also, the second sensor unit 150 can estimate the concentration of the impurities in the fluid L accommodated in the accommodating portion 141. At this time, the second sensor unit 150 may also perform a function of measuring the turbidity of the fluid L by estimating the concentration of impurities in the fluid L. It is difficult to measure an impurity concentration of 10 5 cfu / m or less in a general turbidity measuring apparatus. However, the second sensor unit 150 according to the embodiment of the present invention can measure the impurity concentration of 10 6 cfu / m or less through the method of determining the impurity concentration as described below. Here, impurities are not limited to microorganisms. Hereinafter, for convenience of explanation, a method for determining the concentration of microorganisms using the second laser speckles in the second control unit 155 will be described in detail, focusing on the case where the impurities are microorganisms.

제2 제어부(155)는 기준 시간마다 측정된 제2 레이저 스펙클 영상을 대상으로, 제2 레이저 스펙클의 빛 세기(intensity)의 표준 편차를 계산할 수 있다. 유체(L) 내 포함된 미생물들이 지속적으로 움직임에 따라 보강 간섭과 상쇄 간섭이 상기 움직임에 대응하여 변화할 수 있다. 이때, 보강 간섭과 상쇄 간섭이 변화함에 따라, 빛 세기의 정도가 크게 변화할 수 있다. 그러면, 제2 제어부(155)는, 빛 세기의 변화 정도를 나타내는 표준 편차를 구하여 복수의 수용부(141)에서 미생물이 있는 수용부(141)를 검출할 수 있으며, 이들의 분포도를 측정할 수 있다. The second controller 155 can calculate the standard deviation of the intensity of the second laser specimen with respect to the second laser speckle image measured for each reference time. As the microorganisms contained in the fluid L continue to move, constructive interference and destructive interference can change in response to the movement. At this time, as the constructive interference and the destructive interference change, the degree of light intensity may vary greatly. Then, the second control unit 155 can detect the storage unit 141 having the microorganisms in the plurality of storage units 141 by obtaining the standard deviation representing the degree of change in the light intensity, have.

예를 들어, 제2 제어부(155)는 미리 정해진 시간마다 측정된 제2 레이저 스펙클 영상을 합성하고, 합성된 영상에서 제2 레이저 스펙클의 시간에 따른 빛 세기 표준편차를 계산할 수 있다. 제2 레이저 스펙클의 시간에 따른 빛 세기 표준편차는 아래의 수학식 4에 기초하여 계산될 수 있다.For example, the second controller 155 may synthesize the second laser speckle images measured at predetermined time intervals, and calculate the light intensity standard deviation of the second laser speckles with time in the synthesized image. The light intensity standard deviation of the second laser speckle over time can be calculated based on Equation (4) below.

Figure pat00007
Figure pat00007

수학식 4에서, S: 표준편차, (x,y): 카메라 픽셀 좌표, T: 총 측정 시간, t: 측정 시간, It: t 시간에 측정된 빛 세기,

Figure pat00008
: 시간에 따른 평균 빛 세기를 나타낼 수 있다.In Equation 4, S: standard deviation, (x, y): camera pixel coordinates, T: total measurement time, t: measurement time,
Figure pat00008
: It can indicate the average light intensity over time.

미생물의 움직임에 따라 보강 및 상쇄 간섭 패턴이 달라지게 되고, 수학식 5에 기초하여 계산된 표준편차 값이 커지게 되기 때문에 이에 기초하여 미생물의 농도가 측정될 수 있다. 그러나, 본 발명은 상기한 수학식 4에 의해 미생물의 농도를 측정하는 방법이 제한되지 않으며, 검출된 제2 레이저 스펙클의 차이를 이용한 어떠한 방법으로든 미생물의 농도를 측정할 수 있다. The reinforcing and destructive interference patterns are changed according to the movement of the microorganisms, and the standard deviation value calculated based on the formula (5) becomes larger, so that the concentration of the microorganisms can be measured based on this. However, the present invention is not limited to the method of measuring the concentration of the microorganism by the above-described Equation (4), and the concentration of the microorganism can be measured by any method using the difference of the detected second laser speckle.

그리고, 제2 제어부(155)는 제2 레이저 스펙클의 빛 세기의 표준편차 값의 크기와 미생물 농도와 선형적인 관계에 기초하여 유체에 포함된 미생물의 분포도, 즉 농도를 추정할 수 있다. The second controller 155 can estimate the distribution, that is, the concentration of the microorganisms contained in the fluid based on the linear relationship between the magnitude of the standard deviation of the light intensity of the second laser speckle and the microbial concentration.

다시 도 1을 참조하면, 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템(10)은 경보유닛(170), 단말기(20) 및 서버(미도시)를 더 포함할 수 있다.Referring again to FIG. 1, the microbial sensing system 10 in fluid according to an embodiment of the present invention may further include an alarm unit 170, a terminal 20, and a server (not shown).

경보유닛(170)은 제1 센서유닛(110)의 제1 제어부(115)로부터 미생물이 존재한다는 신호(t1)가 입력되면, 이를 사용자에게 알릴 수 있다. 경보유닛(170)은 소리, 빛 중 적어도 어느 하나를 이용하여 미생물이 유체 내 존재함을 외부로 알릴 수 있다. 경보유닛(170)은 빛을 통해 경고신호를 생성하는 LED와 같은 조명수단 및 소리를 통해 경고신호를 생성하는 스피커(미도시)를 포함할 수 있으며, 빛과 소리는 동시에 생성될 수 있다. The alarm unit 170 can notify the user of a signal t1 indicating that microorganisms are present from the first control unit 115 of the first sensor unit 110. [ The alarm unit 170 may announce at least one of sound and light that the microorganism is present in the fluid. The alarm unit 170 may include an illumination means such as an LED for generating an alarm signal through light and a speaker (not shown) for generating an alarm signal through sound, and light and sound may be simultaneously generated.

또한, 경보유닛(170)은 사용자의 단말기(20)와 통신할 수 있는 통신수단(미도시)을 더 포함할 수 있다. 경보유닛(170)은 제1 제어부(115)로부터 미생물이 존재한다는 신호(t1)가 입력되면, 무선 또는 유선의 통신수단(미도시)을 통해 단말기(20)로 미생물 감지 신호를 포함하는 정보를 제공할 수 있다. 또한, 경보유닛(170)은 도시하지 않았지만 서버(미도시)로도 상기한 정보를 제공할 수 있다. 유체 내 미생물 감지 시스템(10)은 경보유닛(170)을 통해 미생물 감지 여부, 미생물이 감지된 시간, 미생물의 농도에 대한 정보를 업로드하면, 이를 서버(미도시)에 등록하며, 다른 사용자들이 서버(미도시)에 등록된 데이터를 조회할 수 있는 인터페이스를 제공한다. 일 실시예에 따른 유체 내 미생물 감지 시스템(10)은 상기한 과정을 통해 미생물 발생 상황 등을 데이터베이스로 구축할 수 있다. 단말기(20)는 유무선 통신 환경에서 웹 서비스를 이용할 수 있는 퍼스널 컴퓨터 또는 휴대용 단말일 수 있다. In addition, the alert unit 170 may further include communication means (not shown) capable of communicating with the user terminal 20. The alarm unit 170 receives information including the microorganism detection signal from the first control unit 115 through the wireless or wired communication means (not shown) . In addition, the alarm unit 170 can provide the above-described information even though it is not shown in the figure. The in-fluid microorganism detection system 10 registers information on whether or not to detect microorganisms, the time at which the microorganisms are detected, and the concentration of microorganisms through the alarm unit 170, registers them in a server (not shown) (Not shown), and provides an interface for inquiring data registered in the database (not shown). The in-fluid microorganism detection system 10 according to one embodiment can construct the microorganism generation status and the like through a database as described above. The terminal 20 may be a personal computer or a portable terminal that can use a web service in a wired / wireless communication environment.

도 6은 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템(10)의 다른 실시형태를 개략적으로 도시한 개념도이다. 6 is a conceptual diagram schematically showing another embodiment of the microbial detection system 10 in fluid according to an embodiment of the present invention.

도 6을 참조하면, 다른 실시예에 있어서, 유체 내 미생물 감지 시스템(10)은 필터 유닛(180)을 더 포함할 수 있다. 필터 유닛(180)은 파이프유닛(100)의 제1 단면(A1)에 배치되며 제1 단면(A1)으로 유입되는 유체(L) 내에 포함된 일정 크기 이상의 산란물질(C)을 여과할 수 있다. 필터 유닛(180)은 미생물(M)을 통과시킬 수 있으며, 이를 통해 유체(L) 내 미생물(M)이 존재하는 경우, 파이프유닛(100)에서 제1 센서유닛(110)에 의해 감지될 수 있다. Referring to FIG. 6, in another embodiment, the in-fluid microbe detection system 10 may further include a filter unit 180. The filter unit 180 can filter the scattering material C disposed on the first end face A1 of the pipe unit 100 and having a predetermined size or larger included in the fluid L flowing into the first end face A1 . The filter unit 180 can pass the microorganism M through which the microbe M in the fluid L can be detected by the first sensor unit 110 in the pipe unit 100 have.

우유와 같은 유체(L)는 내부에 다양한 산란물질(C)을 포함한다. 이러한 유체(L)의 유동 및 산란물질(C)로 인하여 안정적인 레이저 스펙클을 검출할 수가 없고, 미생물이 존재하더라도 레이저 스펙클의 차이를 구분할 수 없어 미생물이 검출되기가 어렵다. 본 발명의 다른 실시예에 따른 유체 내 미생물 감지 시스템(10)은 필터 유닛(180)을 파이프유닛(100)의 제1 단면(A1)에 배치시키고, 일정 크기 이상의 산란물질(C)을 여과시킴으로써, 파이프유닛(100)을 통과하는 유체(L) 내의 미생물(M)을 감지할 수 있다. A fluid (L) such as milk contains various scattering materials (C) therein. Due to the flow of the fluid (L) and the scattering material (C), stable laser speckles can not be detected. Even if microorganisms are present, it is difficult to distinguish the differences in the laser speckles and it is difficult to detect microorganisms. The microbial detection system 10 according to another embodiment of the present invention may be configured such that the filter unit 180 is disposed on the first end face A1 of the pipe unit 100 and the scattering material C having a predetermined size or more is filtered , And can sense the microorganisms (M) in the fluid (L) passing through the pipe unit (100).

이때, 유체 내 미생물 감지 시스템(10)은 상기한 필터유닛(180)이 배치되는 파이프유닛(100)을 기준경로(P0)로부터 우회하는 우회경로(P01) 상에 배치할 수 있다. 유체(L)가 필터 유닛(180)을 통과하는 경우, 유체(L) 내 포함된 산란물질(C)이 제거된 상태이기 때문에 실제로 공급하려는 유체(L)와 다를 수 있다. 따라서, 유체 내 미생물 감지 시스템(10)은 기준배관(200)의 경로(P02)와 다른 우회경로(P01)를 통해 미생물(M)을 감지할 수 있는 환경을 제공함으로써, 기존 유체(L) 공급 환경을 간섭하지 않으면서 미생물(M)을 감지할 수 있다. At this time, the in-fluid microorganism detection system 10 can arrange the pipe unit 100 on which the filter unit 180 is disposed on the detour path P01 bypassing the reference path P0. When the fluid L passes through the filter unit 180, it may be different from the fluid L actually supplied because the scattering material C contained in the fluid L is removed. The microbial detection system 10 in the fluid can provide an environment in which the microorganism M can be detected through the bypass path P01 and the path P02 of the reference pipe 200, The microorganism M can be detected without interfering with the environment.

도 7은 본 발명의 일 실시예에 따른 파이프유닛(100)의 다른 실시형태를 개략적으로 도시한 개념도이다. 7 is a conceptual view schematically showing another embodiment of the pipe unit 100 according to an embodiment of the present invention.

도 7을 참조하면, 파이프유닛(100)의 다중산란증폭영역(101)은 제1 단면(A1)과 제2 단면(A2) 사이에 파이프유닛(100)의 길이방향을 따라 순차적으로 배치되며 서로 다른 산란율을 갖는 복수의 분할영역(D1, D2, D3)을 포함할 수 있다. 이때, 유체 내 미생물 감지 시스템(10)은 제1 센서유닛(110)을 복수 개 구비하고, 복수의 분할영역(D1, D2, D3) 각각에 대응되도록 배치시킬 수 있다. 7, the multiple scattering amplification regions 101 of the pipe unit 100 are sequentially disposed along the longitudinal direction of the pipe unit 100 between the first end face A1 and the second end face A2, And may include a plurality of divided regions (D1, D2, D3) having different egg production rates. At this time, the microbial sensing system 10 may include a plurality of first sensor units 110, and may be arranged to correspond to each of the plurality of divided regions D1, D2, and D3.

도 7에서는 복수의 분할영역(D1, D2, D3)을 일정 간격으로 이격되게 도시하였으나, 본 발명은 이에 제한되지 않는다. 다른 실시예로서, 복수의 분할영역(D1, D2, D3)은 서로 연결되게 배치될 수 있다. 또한, 복수의 분할영역(D1, D2, D3)은 파이프유닛(100)의 길이 방향을 따라 산란율이 일정하게 증가하거나 감소할 수 있다. 이때, 복수의 분할영역(D1, D2, D3)은 서로 다른 산란물질을 포함하거나, 산란물질을 포함하는 정도를 달리하여 서로 다른 산란율을 가질 수 있다. In FIG. 7, the plurality of divided areas D1, D2, and D3 are spaced apart at regular intervals, but the present invention is not limited thereto. In another embodiment, the plurality of divided areas D1, D2, and D3 may be arranged to be connected to each other. In addition, the plurality of divided regions D1, D2, and D3 may have a constant or increased egg production rate along the length direction of the pipe unit 100. At this time, the plurality of divided regions D1, D2, and D3 may include different scattering materials, or may have different scattering ratios with different degrees of inclusion of scattering materials.

일 실시예로서, 다중산란증폭영역(101)이 제1 분할영역(D1), 제2 분할영역(D2) 및 제3 분할영역(D3)을 포함하는 경우, 유체 내 미생물 감지 시스템(10)은 각각에 대응되는 제1-1 센서유닛(110-1), 제1-2 센서유닛(110-2) 및 제1-3 센서유닛(110-3)을 포함할 수 있다. 제1-1 센서유닛(110-1), 제1-2 센서유닛(110-2) 및 제1-3 센서유닛(110-3)은 제1 분할영역(D1), 제2 분할영역(D2) 및 제3 분할영역(D3)의 산란율에 대응하여 미생물(M)을 감지하는 민감도가 다를 수 있다. 유체 내 미생물 감지 시스템(10)은 유체(L)가 이동하는 경로 상에서 민감도를 달리하여 여러 번 검출하는 것에 의해 정밀하고 정확하게 미생물(M)을 감지할 수 있다. In one embodiment, in the case where the multiple scattering amplification region 101 includes the first division D1, the second division D2 and the third division D3, the microbial sensing system 10 in fluid The first sensor unit 110-1, the first sensor unit 110-2, and the first sensor unit 110-3 corresponding to the first sensor unit 110-1, the second sensor unit 110-2, and the first sensor unit 110-3. The first-first sensor unit 110-1, the first-second sensor unit 110-2, and the first-third sensor unit 110-3 have a first divided area D1, a second divided area D2 ) And the third divisional area D3 may be different from each other in sensitivity to detect the microorganisms M. The in-fluid microorganism detection system 10 can accurately and accurately detect the microorganisms M by detecting the fluid L several times with different sensitivities on the moving path.

도 8은 본 발명의 다른 실시예에 따른 유체 내 미생물 감지 시스템(10-1)을 개략적으로 도시한 개념도이다. 8 is a conceptual diagram schematically showing a microbial detection system 10-1 in fluid according to another embodiment of the present invention.

도 8을 참조하면, 본 발명의 다른 실시예에 따른 유체 내 미생물 감지 시스템(10-1)은 밸브유닛(130)을 통해 배출된 유체(L)의 제2 경로(P2) 상에 배치되는 살균유닛(190)을 포함할 수 있다. 다른 실시예에 따른 유체 내 미생물 감지 시스템(10-1)은 일 실시예의 저장유닛(140) 및 제2 센서유닛(150)을 포함하지 않으며, 제1 경로(P1)와 다른 제2 경로(P2)를 지나가는 유체(L)를 살균시킨 후 다시 제1 경로(P1)의 유체(L)와 합류시킬 수 있다. 8, the microbial detection system 10-1 according to another embodiment of the present invention includes a microbial detection system 10-1 disposed on the second path P2 of the fluid L discharged through the valve unit 130, Unit 190, as shown in FIG. The microbial sensing system 10-1 in accordance with another embodiment does not include the storage unit 140 and the second sensor unit 150 of the embodiment and does not include the first path P1 and the second path P2 The fluid L passing through the first path P1 may be sterilized and then joined with the fluid L of the first path P1.

살균유닛(190)은 밸브유닛(130)을 통해 제2 경로(P2)로 유체(L)가 배출되면 동작하여 제2 경로(P2)로 흐르는 유체(L) 내 미생물을 제거할 수 있다. 살균유닛(190)은 미생물을 제거할 수 있는 어떠한 수단도 가능하다. 예를 들면, 살균유닛(190)은 자외선(UV) 램프 또는 일정 이상 출력을 갖는 레이저 중 적어도 어느 하나를 포함할 수 있다. 또는, 살균유닛(190)은 전기분해를 이용하여 살균할 수도 있다. 그러나, 본 발명은 이에 제한되지 않으며, 또 다른 실시예로서, 살균유닛(190)을 유체(L)의 제1 경로(P1) 상에 배치할 수 있음은 물론이다. 이때, 제1 센서유닛(110)에 의해 불순물인 미생물이 감지되면 제1 경로(P1) 상에 배치된 살균유닛(190)이 동작하여 유체(L) 내 미생물을 제거할 수 있다.The sterilizing unit 190 operates when the fluid L is discharged through the valve unit 130 to the second path P2 to remove microorganisms in the fluid L flowing in the second path P2. The sterilizing unit 190 may be any means capable of removing microorganisms. For example, the sterilization unit 190 may include at least one of an ultraviolet (UV) lamp or a laser with a power above a certain level. Alternatively, the sterilizing unit 190 may be sterilized using electrolysis. However, it should be understood that the present invention is not limited thereto, and as another embodiment, the sterilizing unit 190 may be disposed on the first path P1 of the fluid L. [ At this time, if the microorganisms as impurities are detected by the first sensor unit 110, the sterilizing unit 190 disposed on the first path P1 operates to remove the microorganisms in the fluid L.

한편, 유체 내 미생물 감지 시스템(10-1)은 제2 경로(P2) 상에 여과수단(F1)을 더 포함하여, 유체(L) 내 감지된 미생물을 걸러낼 수 있다. On the other hand, the in-fluid microorganism detection system 10-1 may further include filtration means F1 on the second path P2 to filter the microorganisms detected in the fluid L. [

도 9는 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템(10)을 실험 장치로서 구현한 예시도이다. FIG. 9 is an exemplary diagram illustrating a system 10 for detecting microbes in a fluid according to an embodiment of the present invention.

도 9의 유체 내 미생물 감지 시스템(10)은 유체(L)를 순환식으로 공급하고, 미생물(M)을 인위적으로 주입한 후 흐르는 유체(L) 내에서 미생물(M)이 감지되는지 여부를 확인하기 위한 실험 장치로서, 본 발명의 기술적 사상은 도 9의 유체 내 미생물 감지 시스템(10)에 의해 제한되지 않는다. The microbial detection system 10 in FIG. 9 circulates the fluid L and artificially infuses the microorganisms M to check whether the microorganisms M are detected in the flowing fluid L. As an experimental apparatus to do so, the technical spirit of the present invention is not limited by the in-fluid microorganism detection system 10 of FIG.

도 9의 유체 내 미생물 감지 시스템(10)은 파이프유닛(100)으로 유입되기 전의 유체(L)에 미생물(M)을 주입하는 미생물주입부(미도시)를 더 포함할 수 있다. 도 9의 유체 내 미생물 감지 시스템(10)은 미생물주입부(미도시)를 통해 미생물(M)이 주입한 후 경보유닛(170)에 의해 경고신호가 외부로 제공되는 것에 의해 미생물(M)이 정확히 감지되고 있음을 확인할 수 있다. 유체 내 미생물 감지 시스템(10)은 디스플레이유닛(미도시)을 더 포함하여, 제1 센서유닛(110)을 통해 검출된 제1 레이저스펙클의 시간상관관계 그래프 및 미생물 검출 정보를 외부로 표시할 수 있다. 9 may further include a microorganism injection unit (not shown) for injecting the microorganisms M into the fluid L before the microorganisms are introduced into the pipe unit 100. The microbial detection system 10 of FIG. 9 has a structure in which microorganisms M are injected by a microorganism injecting unit (not shown) and then an alarm signal is provided to the outside by an alarm unit 170, It can be confirmed that it is correctly detected. The in-fluid microorganism detection system 10 further includes a display unit (not shown) to display the temporal correlation graph of the first laser speckle detected through the first sensor unit 110 and the microorganism detection information externally .

도 10a 내지 도 10c는 본 발명의 일 실시예에 따른 유체 내 미생물 감지 시스템에 있어서 유체 내 박테리아 농도에 따른 시간 상관관계 계수를 도시한 그래프이다. 도 10a 내지 도 10c는 유체 내 미생물 감지 시스템에 인위적으로 미생물을 투입하였을 때 그 농도에 따른 시간 상관관계 게수의 변화를 나타낸다. 10A to 10C are graphs showing time correlation coefficients according to bacteria concentration in a fluid in a microbe detection system in a fluid according to an embodiment of the present invention. FIGS. 10A to 10C show the change in the time correlation coefficient according to the concentrations when microorganisms are artificially introduced into the microbial detection system in the fluid.

도 10a 내지 도 10c의 그래프에 있어서, x축은 시간(t)에 관한 축이며, y축은 시간 상관관계 계수(C(t))에 관한 축이다. 여기서, 점선(L2)은 제1 센서유닛(110)에 사전에 설정된 레이저 스펙클의 시간 상관관계 계수의 기준값을 나타낸다. 또한, 실선(L1)은 제1 센서유닛(110)을 통해 시간에 따라 획득된 레이저 스펙클의 시간 상관관계 계수의 측정 데이터를 나타낸다.In the graphs of Figs. 10A to 10C, the x-axis is the axis with respect to time t and the y-axis is the axis with respect to the time correlation coefficient C (t). Here, the dotted line L2 indicates a reference value of the temporal correlation coefficient of the laser speckles previously set in the first sensor unit 110. [ The solid line L1 represents the measurement data of the time correlation coefficient of the laser speckle acquired over time through the first sensor unit 110. [

도 10a의 실선(L1)은 유체 내 미생물을 투입하지 않은 경우에 있어서, 제1 센서유닛(110)을 통해 획득된 레이저 스펙클의 시간 상관관계 계수를 나타낸다. 도 10a를 참조하면, 유체 내 미생물이 존재하지 않는 경우, 유체 내 산란되어 발생되는 레이저 스펙클에 변화가 없기 때문에, 시간 상관관계 계수 또한 시간에 따라 거의 일정하며, 사전에 설정된 기준값(L1)을 초과하지 않음을 알 수 있다. The solid line L1 in FIG. 10A represents the time correlation coefficient of the laser speckle acquired through the first sensor unit 110 when no microorganisms are injected into the fluid. Referring to FIG. 10A, when there is no microorganism in the fluid, since the laser speckle generated by scattering in the fluid is not changed, the time correlation coefficient is also substantially constant with time, and the preset reference value L1 It can be seen that the value does not exceed.

도 10b의 실선(L1)은 유체 내에 10^0 cfu/ml 농도의 미생물을 4ml 투입한 경우에 있어서, 제1 센서유닛(110)을 통해 획득된 레이저 스펙클의 시간 상관관계 계수를 나타낸다. 또한, 도 10c의 실선(L1)은 유체 내에 10^1 cfu/ml 농도의 미생물을 4ml 투입한 경우에 있어서, 제1 센서유닛(110)을 통해 획득된 레이저 스펙클의 시간 상관관계 계수를 나타낸다. The solid line L1 in FIG. 10B represents the time correlation coefficient of the laser speckle acquired through the first sensor unit 110 when 4 ml of microorganism having a concentration of 10 ^ 0 cfu / ml is injected into the fluid. The solid line L1 in FIG. 10C represents the time correlation coefficient of the laser speckle acquired through the first sensor unit 110 when 4 ml of the microorganism having a concentration of 10 ^ 1 cfu / ml is injected into the fluid .

도 10b 및 도 10c를 참조하면, 유체 내 미생물이 존재하는 경우, 유체 내 산란되어 발생되는 레이저 스펙클이 시간에 따라 변하기 때문에, 시간 상관관계 계수는 미생물이 감지되는 시점에서 변하게 된다. 도 10b 및 도 10c의 음영처리된 영역(Bacteria Deteting Signal)은 이러한 미생물이 감지되는 시점에서의 시간 상관관계 계수의 변화를 나타내며, 미생물의 농도가 높을수록 시간 상관관계 계수의 피크치가 높아짐을 확인할 수 있다. 한편, 도 10b 및 도 10c의 음영처리된 영역에 있어서, 제1 센서유닛(110)은 레이저 스펙클의 시간 상관관계 계수(L1)가 사전에 설정된 기준값인 점선(L2)을 초과하는 경우 미생물이 존재한다고 판단할 수 있다. 이때, 미생물이 존재하는 경우, 제1 센서유닛(110)이 미생물을 감지하는데 걸리는 측정 시간은 시간 상관관계 계수가 급격히 변화하는 시점부터 기준값인 점선(L2)과 만나는 시점까지의 구간일 수 있으며, 10b 및 10c를 참조할 때, 약 0.2 초 이내임을 확인할 수 있다. Referring to FIGS. 10B and 10C, when microorganisms are present in the fluid, since the laser speckles generated by scattering in the fluid change with time, the time correlation coefficients change at the time when the microorganisms are detected. The Bacteria Deteting Signal in FIGS. 10B and 10C shows the change in the time correlation coefficient at the time when such microorganisms are detected, and it is found that the peak value of the time correlation coefficient increases with the concentration of the microorganism have. On the other hand, in the shaded areas of Figs. 10B and 10C, when the time correlation coefficient L1 of the laser speckle exceeds the previously set reference value L2, Can be judged to exist. At this time, when microorganisms are present, the measurement time required for the first sensor unit 110 to sense microorganisms may be a period from a time point at which the temporal correlation coefficient changes abruptly to a point at which it meets with a reference line (L2) 10b and 10c, it can be confirmed that it is within about 0.2 second.

이를 통해, 본 발명의 실시예들에 따른 유체 내 미생물 감지 시스템은 0.2초 이내인 매우 빠른 시간, 다시 말해 실시간(real-time)으로 유체 내 불순물인 미생물을 감지함을 확인할 수 있다. 또한, 본 발명의 실시예들에 따른 유체 내 미생물 감지 시스템은 시간 상관관계 계수의 변화율 또는 피크치를 이용하여 미생물의 농도를 추정함을 확인할 수 있다. 또한, 유체 내 미생물 감지 시스템은 미생물의 농도가 낮은 경우(10^0 cfu/ml)라도 검출이 가능함을 확인할 수 있다. Accordingly, it can be seen that the microbial detection system in the fluid according to the embodiments of the present invention detects microbes which are impurities in the fluid at a very short time within 0.2 seconds, that is, real-time. In addition, the microbial detection system in the fluid according to the embodiments of the present invention can confirm that the concentration of the microorganism is estimated using the rate of change or the peak value of the time correlation coefficient. In addition, it can be confirmed that the microorganism detection system in the fluid can detect even a low concentration of microorganisms (10 ^ 0 cfu / ml).

전술한 바와 같이, 본 발명의 실시예들에 따른 유체 내 미생물 감지 시스템은 레이저 스펙클의 시간 상관관계의 변화를 이용함으로써, 저렴한 비용으로 신속하게 유체 내 미생물의 존재 여부 또는 농도를 추정할 수 있다. As described above, the microbial detection system in the fluid according to the embodiments of the present invention can estimate the presence or concentration of the microorganism in the fluid at a low cost by using the change of the time correlation of the laser speckle .

이제까지 본 발명에 대하여 바람직한 실시예를 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 본 발명을 구현할 수 있음을 이해할 것이다. 그러므로 상기 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 한다.The present invention has been described above with reference to preferred embodiments. It will be understood by those skilled in the art that the present invention may be embodied in various other forms without departing from the spirit or essential characteristics thereof. Therefore, the above-described embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

10 : 유체 내 미생물 감지 시스템
100 : 파이프유닛
110 : 제1 센서유닛
130 : 밸브유닛
140 : 저장유닛
150 : 제2 센서유닛
10: Microbial detection system in fluid
100: Pipe unit
110: first sensor unit
130: Valve unit
140: storage unit
150: second sensor unit

Claims (1)

제1 단면을 통해 유입된 유체가 제2 단면을 통해 배출되며, 상기 제1 단면과 상기 제2 단면 사이로 입사되는 제1 파동이 상기 유체 내에서 다중 산란(multiple scattering)되는 횟수를 증폭시키기 위한 다중산란증폭영역을 포함하는 파이프유닛; 및
상기 제1 단면과 상기 제2 단면 사이의 상기 파이프유닛 상에 배치되며, 상기 제1 파동을 이용하여 상기 유체 내의 불순물의 존재여부를 감지하는 제1 센서유닛;을 포함하며,
상기 불순물은 미생물을 포함하는, 유체 내 미생물 감지 시스템.
Wherein the fluid introduced through the first cross-section is discharged through the second cross-section, and wherein a first wave incident between the first cross-section and the second cross-section is multiplied to amplify the number of times of multiple scattering in the fluid, A pipe unit including a scattering amplification region; And
And a first sensor unit disposed on the pipe unit between the first end face and the second end face to detect the presence of impurities in the fluid using the first wave,
Wherein the impurity comprises a microorganism.
KR1020190003955A 2017-09-12 2019-01-11 System for detecting microorganism in fluid with chaotic sensor KR102275361B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190003955A KR102275361B1 (en) 2017-09-12 2019-01-11 System for detecting microorganism in fluid with chaotic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170116666A KR101939779B1 (en) 2017-09-12 2017-09-12 System for detecting microorganism in fluid with chaotic sensor
KR1020190003955A KR102275361B1 (en) 2017-09-12 2019-01-11 System for detecting microorganism in fluid with chaotic sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170116666A Division KR101939779B1 (en) 2017-09-12 2017-09-12 System for detecting microorganism in fluid with chaotic sensor

Publications (2)

Publication Number Publication Date
KR20190029539A true KR20190029539A (en) 2019-03-20
KR102275361B1 KR102275361B1 (en) 2021-07-12

Family

ID=66036385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190003955A KR102275361B1 (en) 2017-09-12 2019-01-11 System for detecting microorganism in fluid with chaotic sensor

Country Status (1)

Country Link
KR (1) KR102275361B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114897A1 (en) * 2020-11-30 2022-06-02 주식회사 더웨이브톡 Turbidimeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235004A (en) * 1998-02-18 2000-08-29 Sukiyan Technol:Kk Foreign matter inspecting system
KR20070001177A (en) * 2004-03-12 2007-01-03 엠케이에스 인스트루먼츠, 인코포레이티드 Ozone concentration sensor
KR101686766B1 (en) * 2015-11-17 2016-12-15 한국과학기술원 Apparatus and method for detecting microbes or bacteria
WO2017086719A1 (en) * 2015-11-17 2017-05-26 한국과학기술원 Apparatus for detecting sample properties using chaotic wave sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235004A (en) * 1998-02-18 2000-08-29 Sukiyan Technol:Kk Foreign matter inspecting system
KR20070001177A (en) * 2004-03-12 2007-01-03 엠케이에스 인스트루먼츠, 인코포레이티드 Ozone concentration sensor
KR101686766B1 (en) * 2015-11-17 2016-12-15 한국과학기술원 Apparatus and method for detecting microbes or bacteria
WO2017086719A1 (en) * 2015-11-17 2017-05-26 한국과학기술원 Apparatus for detecting sample properties using chaotic wave sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114897A1 (en) * 2020-11-30 2022-06-02 주식회사 더웨이브톡 Turbidimeter
KR20220076212A (en) * 2020-11-30 2022-06-08 주식회사 더웨이브톡 Turbidity Meter
EP4253935A4 (en) * 2020-11-30 2024-05-01 The Wave Talk, Inc. Turbidimeter

Also Published As

Publication number Publication date
KR102275361B1 (en) 2021-07-12

Similar Documents

Publication Publication Date Title
KR101939779B1 (en) System for detecting microorganism in fluid with chaotic sensor
JP7377475B2 (en) Sample characteristic detection device using chaotic wave sensor
CN109313114A (en) Automated power control liquid particle counter with flow and bubble detection system
AU2017281681B2 (en) Arrangement for in-line holography microscopy
US20160061822A1 (en) Method and apparatus for bacterial monitoring
JP7315991B2 (en) Optical detection system
JP4538497B2 (en) Flow state observation apparatus and flow state observation method
KR20200004128A (en) System for detecting impurities in fluid with chaotic sensor
JP2016048185A (en) Method and device for measuring bubble diameter distribution
KR20190029539A (en) System for detecting microorganism in fluid with chaotic sensor
US20230366816A1 (en) Turbidimeter
KR102279585B1 (en) System for detecting underwater bacteria in real time using bubble
JP5336503B2 (en) Method and apparatus for determining the flow rate of a flowing liquid
JP2020190459A (en) Method and device for evaluating cytotoxicity
JP2016156742A (en) Bubble diameter distribution measurement method and bubble diameter distribution measurement device
KR20220037795A (en) Device for water examination
KR101959023B1 (en) Individual identification device with chaotic sensor and individual identification method using the same
KR102496066B1 (en) Device for water examination
KR20200096564A (en) Detection of microscopic objects in fluid
JP7535170B2 (en) Measuring particle density in a tube
KR20180047853A (en) Virus detecting device with chaotic sensor and virus detecting method using the same
Gupta et al. Performance Enhancement of Fiber Optic Turbidity Sensor through Design Modifications
KR20180040364A (en) Organism detector and organism detector system comprising the same
Hongxian Zhoua et al. Measurement of total velocity components of particle flow with optical coherence tomography
JP2005003653A (en) Dark field type laser flow velocity measuring system

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant