KR20190010874A - 유동 치료 장치를 위한 유로 감지 - Google Patents

유동 치료 장치를 위한 유로 감지 Download PDF

Info

Publication number
KR20190010874A
KR20190010874A KR1020187036581A KR20187036581A KR20190010874A KR 20190010874 A KR20190010874 A KR 20190010874A KR 1020187036581 A KR1020187036581 A KR 1020187036581A KR 20187036581 A KR20187036581 A KR 20187036581A KR 20190010874 A KR20190010874 A KR 20190010874A
Authority
KR
South Korea
Prior art keywords
respiratory
patient
control signal
flow rate
flow
Prior art date
Application number
KR1020187036581A
Other languages
English (en)
Other versions
KR102426719B1 (ko
Inventor
러셀 윌리암 버지스
딘 안토니 바커
케빈 피터 오도넬
Original Assignee
피셔 앤 페이켈 핼스케어 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피셔 앤 페이켈 핼스케어 리미티드 filed Critical 피셔 앤 페이켈 핼스케어 리미티드
Priority to KR1020227025864A priority Critical patent/KR20220115810A/ko
Publication of KR20190010874A publication Critical patent/KR20190010874A/ko
Application granted granted Critical
Publication of KR102426719B1 publication Critical patent/KR102426719B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • A61B5/0878Measuring breath flow using temperature sensing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • A61M16/026Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1075Preparation of respiratory gases or vapours by influencing the temperature
    • A61M16/109Preparation of respiratory gases or vapours by influencing the temperature the humidifying liquid or the beneficial agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • A61M16/161Devices to humidify the respiration air with means for measuring the humidity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3365Rotational speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/60Muscle strain, i.e. measured on the user

Abstract

호흡 시스템에서 호흡 치료를 수행하기 위한 시스템 및 방법은 검출된 환자 호흡 주기에 기초하여 환자로의 호흡 가스의 유동을 조정할 수 있다. 호흡 시스템은 비-밀폐형 환자 인터페이스를 포함할 수 있다. 호흡 시스템은 고유량 치료를 전달하도록 구성될 수 있다. 환자 호흡 주기는 유량, 송풍기 모터 속도, 및/또는 시스템 압력과 같은 하나 이상의 측정 파라미터를 사용하여 결정될 수 있다. 유동 소스는 환자의 들숨에 대응하여 유량이 증가되고 환자의 날숨에 대응하여 유량이 감소되도록, 환자의 호흡 주기의 위상과 정합하는 위상을 갖도록 조정될 수 있다.

Description

유동 치료 장치를 위한 유로 감지
본 개시물은 환자에게 가스를 전달하기 위한 유동 치료 장치에서 유로(flow path) 감지를 위한 방법 및 시스템에 관한 것이다. 본 출원은 미국 특허 출원 제62/337,795호 및 제62/507,013호의 우선권을 주장하며, 그 전체 내용은 본원에 참조로 포함된다.
호흡 보조 장치는 병원, 의료 시설, 요양 시설 또는 가정 환경과 같은 다양한 환경에서 사용자 또는 환자에게 가스의 유동을 전달하기 위해 사용된다. 호흡 보조 장치 또는 유동 치료 장치는 가스의 유동과 함께 산소를 전달하는데 사용되는 밸브, 및/또는 가열 및 가습 가스를 전달하기 위한 가습 장치를 포함할 수 있다. 유동 치료 장치는 유량, 온도, 가스 농도, 습도, 압력 등을 포함하는 가스 유동의 특성에 대한 조정 및 제어를 가능하게 할 수 있다. 가열 온도 감지 소자 및/또는 서미스터와 같은 센서가 이러한 가스 특성을 측정하는데 사용된다.
본 개시물은 비-밀폐형(non-sealed) 또는 밀폐형 시스템에서 환자로의 가스의 유동을 제공하는데 사용될 수 있는 유동 치료 장치를 설명한다. 호흡 가스의 유동은 환자의 검출된 호흡 주기에 기초하여 조정될 수 있다. 환자의 호흡 주기는 유량, 송풍기 모터 속도, 및/또는 시스템 압력과 같은 하나 이상의 측정 파라미터를 사용하여 결정될 수 있다. 유동 소스는 환자의 호흡 주기의 위상에 기초하는 위상을 갖도록 조정되는 주기적 파형을 사용하여 제어됨으로써, 환자의 들숨(inhaling) 및 날숨(exhaling)에 대응하여 유량이 조정될 수 있다.
호흡 시스템에서 호흡 치료를 수행하기 위한 방법이 제공된다. 방법은 제어 신호를 사용하여 송풍기 모터를 구동하는 단계를 포함할 수 있으며, 송풍기 모터는 환자로의 기류를 생성하도록 구성된다. 방법은, 적어도 하나의 유량 센서로부터의 하나 이상의 유량 측정값을 포함하는 제1 센서 입력을 수신하고, 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값 및 송풍기 모터와 연관된 하나 이상의 모터 속도 측정값을 포함하는 제2 센서 입력을 수신하며, 적어도 수신된 유량 측정값을 사용하여 호흡 주기 파형을 생성함으로써, 환자의 호흡 주기를 검출하는 단계를 더 포함할 수 있으며, 호흡 주기 파형은 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함할 수 있다. 방법은, 호흡 주기 파형의 위상을 식별하고, 제어 신호가 환자의 들숨 및 날숨에 기초하여 송풍기 모터의 속도를 조정하도록 구성될 수 있도록, 제어 신호와 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 제어 신호의 위상을 반복적으로 업데이트함으로써, 제어 신호를 호흡 주기와 동기화하는 단계를 더 포함할 수 있다. 방법은, 송풍기 모터에 의해 수신되는 제어 신호와 하나 이상의 유량 측정값 사이의 시스템 지연에 기초하여 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 방법은, 제어 신호가 설정 시간량 만큼 호흡 주기 파형을 선취(pre-empt)할 수 있도록 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 적어도 하나의 유량 센서는 초음파 센서 조립체를 포함할 수 있다. 적어도 하나의 유량 센서는 가열 온도 감지 소자를 더 포함할 수 있다. 제어 신호는 호흡 주기 파형에 위상-동기될 수 있다. 제어 신호의 크기는 호흡 주기 파형의 진폭, 양의 피드백 파라미터, 및 음의 피드백 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 제2 센서 입력은 송풍기 모터와 연관된 하나 이상의 모터 속도 측정값일 수 있다. 호흡 주기 파형은 수신된 유량 및 모터 속도 측정값을 사용하여 생성될 수 있다. 호흡 주기 파형은 수신된 유량 및 모터 속도 측정값을 사용하여 계산된 유량 제한값에 적어도 부분적으로 기초하여 생성될 수 있다. 호흡 주기 파형은 계산된 환자 유량에 적어도 부분적으로 기초하여 생성될 수 있으며, 환자 유량은 수신된 유량 및 모터 속도 측정값을 사용하여 계산된 시스템 누출량에 기초할 수 있다. 모터 속도 측정값은 하나 이상의 송풍기 모터 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 송풍기 모터는 무브러시(brushless) DC 모터를 포함할 수 있다. 환자의 호흡 주기를 검출하는 단계는 제3 센서 입력을 수신하는 단계를 포함할 수 있으며, 제3 센서 입력은 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값을 포함한다. 제2 센서 입력은 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값일 수 있다. 호흡 치료를 수행하기 위한 방법은 고유량(high flow) 호흡 시스템에서 수행될 수 있다. 호흡 치료를 수행하기 위한 방법은 비-밀폐형 호흡 시스템에서 수행될 수 있다. 호흡 치료를 수행하기 위한 방법은 밀폐형 호흡 시스템에서 수행될 수 있다. 방법은, 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 시스템의 미리 결정된 압력을 달성하도록 모터 속도를 조정하는 단계를 더 포함할 수 있다. 밀폐형 호흡 시스템은 비침습성 환기 마스크를 포함할 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 시스템의 하우징 내에 위치될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
호흡 치료 장치가 제공된다. 장치는 환자를 위한 기류를 생성하기 위한 송풍기를 포함할 수 있으며, 송풍기는 모터와 연동되고, 모터는 제어 신호에 의해 구동되도록 구성될 수 있다. 장치는 적어도 유량을 측정하도록 구성된 하나 이상의 센서를 더 포함할 수 있으며, 하나 이상의 센서는 모터 속도 또는 압력을 측정하도록 추가로 구성된다. 장치는, 적어도 하나의 유량 센서로부터의 하나 이상의 유량 측정값을 포함하는 제1 센서 입력을 수신하고, 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값 또는 송풍기 모터와 연관된 하나 이상의 모터 속도 측정값을 포함하는 제2 센서 입력을 수신하며, 적어도 수신된 유량 측정값을 사용하여 호흡 주기 파형을 생성함으로써, 환자의 호흡 주기를 검출하도록 구성된 제어 시스템을 더 포함할 수 있으며, 호흡 주기 파형은 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함할 수 있다. 제어 시스템은, 호흡 주기 파형의 위상을 식별하고, 제어 신호가 환자의 들숨 및 날숨에 기초하여 송풍기 모터의 속도를 조정하도록 구성될 수 있도록, 제어 신호와 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 제어 신호의 위상을 반복적으로 업데이트함으로써, 제어 신호를 호흡 주기와 동기화하도록 추가로 구성될 수 있다. 제어 시스템은, 송풍기 모터에 의해 수신되는 제어 신호와 감지되는 결과적인 기류 사이의 시스템 지연에 기초하여 제어 신호를 위상-변이하도록 추가로 구성될 수 있다. 제어 시스템은, 제어 신호가 설정 시간량 만큼 호흡 주기 파형을 선취할 수 있도록 제어 신호를 위상-변이하도록 추가로 구성될 수 있다. 적어도 하나의 유량 센서는 초음파 센서 조립체를 포함할 수 있다. 적어도 하나의 유량 센서는 가열 온도 감지 소자를 더 포함할 수 있다. 제어 신호는 호흡 주기 파형에 위상-동기될 수 있다. 호흡 주기 파형은 환자의 호흡 속도를 계산하는데 사용될 수 있다. 제어 신호의 크기는 호흡 주기 파형의 진폭, 양의 피드백 파라미터, 및 음의 피드백 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 제2 센서 입력은 송풍기 모터와 연관된 하나 이상의 모터 속도 측정값일 수 있다. 호흡 주기 파형은 수신된 유량 및 모터 속도 측정값을 사용하여 생성될 수 있다. 호흡 주기 파형은 계산된 환자 유량에 적어도 부분적으로 기초하여 생성될 수 있으며, 환자 유량은 수신된 유량 및 모터 속도 측정값을 사용하여 계산된 시스템 누출량에 기초할 수 있다. 모터 속도 측정값은 하나 이상의 송풍기 모터 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 송풍기 모터는 무브러시 DC 모터를 포함할 수 있다. 제어 시스템은 제3 센서 입력을 수신함으로써 호흡 주기를 검출하도록 구성될 수 있으며, 제3 센서 입력은 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값을 포함한다. 제2 센서 입력은 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값일 수 있다. 호흡 치료 장치는 고유량 호흡 치료 장치일 수 있다. 호흡 치료 장치는 비-밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 밀폐형 호흡 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성될 수 있다. 호흡 치료 장치는 비침습성 환기 마스크와 결합되도록 구성될 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 치료 장치의 하우징 내에 위치될 수 있다. 장치는 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
환자의 들숨 및 날숨에 따라 호흡 시스템의 유량을 조정하기 위한 방법이 제공된다. 방법은, 제어 신호에 적어도 부분적으로 기초하여 소스에 의해 생성된 기류의 유량에 해당하는 제1 입력을 프로세서에서 수신하는 단계; 적어도 제2 입력을 프로세서에서 수신하는 단계; 및 제1 및 제2 입력에 적어도 부분적으로 기초하여 환자의 예측된 호흡 주기를 프로세서에 의해 결정하는 단계를 포함한다. 방법은, 양의 피드백 파라미터를 사용하여, 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 제어 신호를 조정하는 단계를 더 포함할 수 있다. 방법은, 음의 피드백 파라미터를 사용하여, 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 제어 신호를 조정하는 단계를 더 포함할 수 있다. 방법은 소스에 대한 제어 신호를 조정하는 단계를 더 포함할 수 있으며, 제어 신호를 조정하는 단계는, 제어 신호의 위상이 결정된 위상차 만큼 예측된 호흡 주기의 위상과 실질적으로 정합할 수 있도록, 예측된 호흡 주기와 대조하여 제어 신호에 대해 적어도 하나의 위상-동기 루프 반복을 수행하는 단계를 포함한다. 제2 입력은 소스와 연동되는 모터의 속도에 해당할 수 있다. 방법은 압력을 포함하는 제3 입력을 수신하는 단계를 더 포함한다. 제2 입력은 압력에 해당할 수 있다. 제어 신호를 조정하는 단계는 예측된 호흡 주기에 대하여 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 제어 신호를 조정하는 단계는 시스템 지연에 적어도 부분적으로 기초하여, 예측된 호흡 주기에 대하여 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 제어 신호를 조정하는 단계는 예측된 호흡 주기를 지정된 양만큼 선취하도록, 예측된 호흡 주기에 대하여 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 방법은 비-밀폐형 또는 밀폐형 호흡 시스템에서 사용될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 시스템이 제공된다. 시스템은 제어 신호에 적어도 부분적으로 기초하여 기류를 생성하도록 구성된 소스를 포함할 수 있다. 시스템은, 기류의 유량에 해당하는 제1 입력을 수신하고, 적어도 제2 입력을 수신하며, 제1 및 제2 입력에 적어도 부분적으로 기초하여 환자의 예측된 호흡 주기를 결정하도록 구성된 프로세서를 더 포함할 수 있다. 프로세서는, 양의 피드백 파라미터를 사용하여, 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 제어 신호를 조정하도록 구성될 수 있다. 프로세서는, 음의 피드백 파라미터를 사용하여, 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 제어 신호를 조정하도록 구성될 수 있다. 프로세서는 소스에 대한 제어 신호를 조정하도록 추가로 구성될 수 있으며, 제어 신호를 조정하는 것은, 제어 신호의 위상이 결정된 위상차 만큼 예측된 호흡 주기의 위상과 실질적으로 정합할 수 있도록, 예측된 호흡 주기와 대조하여 제어 신호에 대해 적어도 하나의 위상-동기 루프 반복을 수행하는 것을 포함할 수 있다. 제어 신호를 조정하는 것은 예측된 호흡 주기에 대하여 제어 신호를 위상-변이하는 것을 더 포함할 수 있다. 제어 신호는 시스템 지연에 적어도 부분적으로 기초하여, 예측된 호흡 주기에 대하여 위상-변이될 수 있다. 제어 신호는 예측된 호흡 주기를 지정된 양만큼 선취하도록, 예측된 호흡 주기에 대하여 위상-변이될 수 있다. 프로세서는 환자의 예측된 호흡 주기에 적어도 부분적으로 기초하여, 환자의 호흡 속도를 계산하도록 추가로 구성될 수 있다. 제2 입력은 소스와 연동되는 모터의 속도에 해당할 수 있다. 프로세서는 압력을 포함하는 제3 입력을 수신하도록 구성될 수 있다. 제2 입력은 압력에 해당할 수 있다. 시스템은 고유량 시스템을 포함할 수 있다. 시스템은 비-밀폐형 호흡 시스템일 수 있다. 시스템은 밀폐형 호흡 시스템일 수 있다. 호흡 치료 장치는 적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성될 수 있다. 시스템은 비침습성 환기 마스크를 포함할 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 시스템의 하우징 내에 위치될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
호흡 보조 장치를 위한 제어 파형을 조정하기 위한 방법이 제공된다. 방법은, 환자의 호흡 주기를 검출하는 단계, 제어 파형을 검출된 호흡 주기와 동기화하는 단계, 및 검출된 호흡 주기에 대하여 제어 파형을 위상-변이하는 단계를 포함할 수 있다. 제어 파형은 호흡 주기에 대하여 결정된 위상차를 갖도록 위상-변이될 수 있다. 제어 파형을 검출된 호흡 주기와 동기화하는 단계는 양의 피드백을 사용하여 호흡 주기를 강화하는 단계를 포함할 수 있다. 제어 파형을 검출된 호흡 주기와 동기화하는 단계는 음의 피드백을 사용하여 호흡 주기를 조절하는 단계를 포함할 수 있으며, 호흡 주기의 크기가 임계값을 충족시키는 경우, 호흡 주기에 음의 피드백이 적용될 수 있다. 제어 파형은 검출된 호흡 주기에 대한 위상-동기 루프일 수 있다. 위상-동기 루프는 제어 파형과 검출된 호흡 주기 사이의 오차를 각각의 주기마다 점진적으로 감소시킬 수 있다. 제어 파형은 호흡 보조 장치와 연관된 시스템 지연을 보상하기 위한 양만큼 위상-변이될 수 있다. 제어 파형은 호흡 주기를 선취하기 위한 양만큼 위상-변이될 수 있다. 호흡 보조 장치는 적어도 하나의 유량 센서를 포함할 수 있다. 적어도 하나의 유량 센서는 초음파 센서 조립체를 포함할 수 있다. 적어도 하나의 유량 센서로부터 유량 피드백이 수신될 수 있다. 호흡 보조 장치는 송풍기를 포함할 수 있다. 송풍기는 모터를 포함할 수 있다. 송풍기 모터로부터 모터 속도 피드백이 수신될 수 있다. 모터는 센서리스(sensorless) 피드백을 제공하도록 구성될 수 있는 무브러시 DC 모터일 수 있다. 모터는 낮은 관성 모터일 수 있다. 방법은 위상-변이된 제어 파형을 사용하여 송풍기 모터를 구동하는 단계를 더 포함할 수 있다. 호흡 보조 장치는 모터를 포함하는 송풍기 및 적어도 하나의 유량 센서를 포함할 수 있으며, 방법은 모터 및 적어도 하나의 유량 센서로부터 피드백 변수를 수신하는 단계를 더 포함할 수 있고, 수신된 모터 및 유량 센서 피드백 변수는 호흡 주기 파형을 생성하기 위해 조합하여 산출될 수 있다. 모터 속도 피드백은 송풍기 모터로부터 수신될 수 있다. 모터로부터의 피드백은 시스템 압력의 표시를 포함할 수 있다. 호흡 시스템은 압력 센서를 포함할 수 있다. 수신된 압력 및 유량 센서 피드백 변수는 호흡 주기 파형을 생성하기 위해 조합하여 산출될 수 있다. 수신된 압력, 모터 및 유량 센서 피드백 변수는 호흡 주기 파형을 생성하기 위해 조합하여 산출될 수 있다. 호흡 치료를 수행하기 위한 방법은 고유량 호흡 시스템에서 수행될 수 있다. 호흡 치료를 수행하기 위한 방법은 비-밀폐형 호흡 시스템에서 수행될 수 있다. 호흡 치료를 수행하기 위한 방법은 밀폐형 호흡 시스템에서 수행될 수 있다. 방법은, 압력 센서에 의한 압력 측정값에 기초하여 시스템의 미리 결정된 압력을 달성하도록 모터 속도를 조정하는 단계를 더 포함할 수 있다. 밀폐형 호흡 시스템은 비침습성 환기 마스크를 포함할 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 시스템의 하우징 내에 위치될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 호흡 보조 장치가 제공된다. 장치는 모터를 포함하는 송풍기를 포함할 수 있다. 장치는 유량을 측정하기 위한 적어도 하나의 센서를 더 포함할 수 있다. 장치는, 적어도 유량에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정하고, 환자의 호흡에 따라 호흡 가스의 유동을 조정하도록 구성된 프로세서를 더 포함할 수 있다. 적어도 하나의 센서는 제1 및 제2 초음파 변환기를 포함할 수 있다. 적어도 하나의 센서는 가열 온도 감지 소자를 포함할 수 있다. 적어도 하나의 센서는 제1 및 제2 초음파 변환기와 가열 온도 감지 소자를 모두 포함할 수 있다. 호흡 가스의 유동은 양의 피드백 및 음의 피드백을 모두 사용하는 쌍안정 시스템에 적어도 부분적으로 기초하여 조정될 수 있다. 프로세서는 송풍기 모터 속도를 나타내는 신호 및 유량에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정할 수 있으며, 모터는 송풍기 모터 속도를 나타내는 신호를 제공하도록 구성된다. 호흡 보조 장치는 압력을 측정하기 위한 압력 센서를 더 포함할 수 있다. 프로세서는 유량 및 압력에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정할 수 있다. 프로세서는 유량, 모터 속도 및 압력에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정할 수 있다. 호흡 보조 장치는 고유량 호흡 보조 장치일 수 있다. 호흡 치료 장치는 비-밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 압력 센서에 의해 측정된 압력에 기초하여 밀폐형 호흡 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성될 수 있다. 호흡 치료 장치는 비침습성 환기 마스크와 결합되도록 구성될 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 보조 장치의 하우징 내에 위치될 수 있다. 장치는 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 시스템이 제공된다. 시스템은 송풍기 및 프로세서를 포함할 수 있다. 프로세서는 유량에 해당하는 제1 입력, 및 제2 입력을 수신하도록 구성될 수 있다. 프로세서는 제1 및 제2 입력에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정하고, 환자의 들숨 및 날숨의 예측된 주기에 따라 호흡 가스의 유동을 조정하도록 추가로 구성될 수 있다. 유량은 제1 및 제2 초음파 변환기를 사용하여 결정될 수 있다. 유량은 가열 온도 감지 소자를 사용하여 결정될 수 있다. 유량은 가열 온도 감지 소자와 결합된 제1 및 제2 초음파 변환기를 사용하여 결정될 수 있다. 호흡 가스의 유동은 양의 피드백 및 음의 피드백을 모두 사용하는 쌍안정 시스템에 적어도 부분적으로 기초하여 조정될 수 있다. 제2 입력은 송풍기 모터 속도를 나타내는 신호를 제공하도록 구성된 모터 속도 피드백 수단일 수 있다. 프로세서는 압력을 포함하는 제3 입력을 수신하도록 구성될 수 있다. 제2 입력은 압력 센서로부터의 압력일 수 있다. 시스템은 고유량 시스템일 수 있다. 호흡 치료 장치는 비-밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 압력 센서로부터의 압력에 기초하여 밀폐형 호흡 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성될 수 있다. 호흡 치료 장치는 비침습성 환기 마스크와 결합되도록 구성될 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 치료 장치의 하우징 내에 위치될 수 있다. 제2 입력은 모터 피드백일 뿐만 아니라 압력일 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
환자의 호흡률을 결정하도록 구성된 호흡 시스템이 제공된다. 시스템은, 유량을 측정하도록 구성된 적어도 하나의 센서; 호흡 시스템을 사용하여 환자의 유량 측정값을 수신하기 위해 적어도 하나의 센서와 전기적으로 통신하도록 구성된 프로세서를 포함할 수 있으며, 프로세서는 시간에 대한 유량 측정값의 도표(plot)를 자기 상관시킴으로써 환자의 호흡률을 결정하도록 추가로 구성된다. 프로세서는 시간에 대한 유량 측정값의 도표의 자기 상관의 하나 이상의 피크 또는 제로-크로싱(zero-crossing)으로부터 호흡 주기를 결정하도록 구성될 수 있다. 적어도 하나의 센서는 제1 및 제2 초음파 변환기를 포함할 수 있다. 적어도 하나의 센서는 가열 온도 감지 소자를 포함할 수 있다. 적어도 하나의 센서는 제1 및 제2 초음파 변환기와 가열 온도 감지 소자를 모두 포함할 수 있다. 프로세서는 결정된 호흡률에 적어도 부분적으로 기초하여 호흡 주기 파형을 생성하도록 구성될 수 있으며, 호흡 주기 파형은 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함할 수 있다. 시스템은 환자를 위한 기류를 생성하기 위한 송풍기를 더 포함할 수 있으며, 송풍기는 모터와 연동되고, 모터는 제어 신호에 의해 구동되도록 구성될 수 있다. 송풍기 모터는 무브러시 DC 모터를 포함할 수 있다. 프로세서는, 호흡 주기 파형의 위상을 식별하고, 제어 신호가 환자의 들숨 및 날숨에 기초하여 송풍기 모터의 속도를 조정하도록 구성될 수 있도록, 제어 신호와 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 제어 신호의 위상을 반복적으로 업데이트함으로써, 제어 신호를 호흡 주기와 동기화하도록 구성될 수 있다. 프로세서는, 송풍기 모터에 의해 수신되는 제어 신호와 감지되는 결과적인 기류 사이의 시스템 지연에 기초하여 제어 신호를 위상-변이하도록 추가로 구성될 수 있다. 프로세서는, 제어 신호가 설정 시간량 만큼 호흡 주기 파형을 선취할 수 있도록 제어 신호를 위상-변이하도록 추가로 구성될 수 있다. 프로세서는 송풍기 모터와 연관된 모터 속도 측정값 및 유량 측정값에 기초하여 호흡 주기 파형을 생성하도록 구성될 수 있다. 모터 속도 측정값은 하나 이상의 송풍기 모터 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 호흡 주기 파형을 생성하는 것은 유량 측정값 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초할 수 있다. 호흡 주기 파형을 생성하는 것은 유량 측정값, 모터 속도 측정값, 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초할 수 있다. 호흡 시스템은 고유량 호흡 치료 장치를 포함할 수 있다. 호흡 시스템은 비-밀폐형 호흡 시스템일 수 있다. 호흡 시스템은 밀폐형 호흡 시스템일 수 있다. 프로세서는, 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성될 수 있다. 호흡 시스템은 비침습성 환기 마스크를 포함할 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 시스템의 하우징 내에 위치될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
호흡 시스템을 사용하여 환자의 호흡률을 결정하기 위한 방법이 제공된다. 방법은, 호흡 시스템을 사용하여 적어도 하나의 센서로부터 환자의 유량 측정값을 수신하는 단계; 시간에 대한 유량 측정값의 도표를 자기 상관시키는 단계; 및 자기 상관으로부터 환자의 호흡률을 결정하는 단계를 포함할 수 있다. 환자의 호흡률을 결정하는 단계는 자기 상관에서의 하나 이상의 피크 또는 제로-크로싱으로부터 환자의 호흡 주기를 결정하는 단계를 더 포함할 수 있다. 유량 측정값은 제1 및 제2 초음파 변환기에 의해 생성될 수 있다. 유량 측정값은 가열 온도 감지 소자에 의해 생성될 수 있다. 유량 측정값은 제1 및 제2 초음파 변환기와 가열 온도 감지 소자 모두에 의해 생성될 수 있다. 방법은 결정된 호흡률에 적어도 부분적으로 기초하여 호흡 주기 파형을 생성하는 단계를 더 포함할 수 있으며, 호흡 주기 파형은 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함할 수 있다. 호흡 시스템은 환자를 위한 기류를 생성하기 위한 송풍기를 포함할 수 있으며, 송풍기는 모터와 연동되고, 모터는 제어 신호에 의해 구동되도록 구성될 수 있다. 송풍기 모터는 무브러시 DC 모터를 포함한다. 방법은, 호흡 주기 파형의 위상을 식별하고, 제어 신호가 환자의 들숨 및 날숨에 기초하여 송풍기 모터의 속도를 조정하도록 구성될 수 있도록, 제어 신호와 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 제어 신호의 위상을 반복적으로 업데이트함으로써, 제어 신호를 호흡 주기와 동기화하는 단계를 더 포함할 수 있다. 동기화하는 단계는, 송풍기 모터에 의해 수신되는 제어 신호와 환자에 의해 감지되는 결과적인 기류 사이의 시스템 지연에 기초하여 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 동기화하는 단계는, 제어 신호가 설정 시간량 만큼 호흡 주기 파형을 선취할 수 있도록 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 방법은 송풍기 모터와 연관된 모터 속도 측정값 및 결정된 호흡률에 기초하여 호흡 주기 파형을 생성하는 단계를 더 포함할 수 있다. 방법은 하나 이상의 송풍기 모터 파라미터에 기초하여 모터 속도 측정값을 결정하는 단계를 더 포함할 수 있다. 호흡 주기 파형을 생성하는 단계는 결정된 호흡률 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초할 수 있다. 호흡 주기 파형을 생성하는 단계는 결정된 호흡률, 하나 이상의 송풍기 모터 파라미터, 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초할 수 있다. 호흡 시스템은 고유량 호흡 치료 장치를 포함할 수 있다. 호흡 시스템은 비-밀폐형 호흡 시스템일 수 있다. 호흡 시스템은 밀폐형 호흡 시스템일 수 있다. 프로세서는, 압력 센서로부터의 압력 측정값에 기초하여 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성될 수 있다. 호흡 시스템은 비침습성 환기 마스크를 포함할 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 시스템의 하우징 내에 위치될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
호흡 치료 장치가 제공된다. 호흡 치료 장치는, 제어 신호에 의해 구동되도록 구성될 수 있는 모터와 연동되며, 환자를 위한 기류를 생성하기 위한 송풍기; 적어도 유량을 측정하도록 구성된 하나 이상의 센서; 및 하나 이상의 센서로부터 하나 이상의 유량 측정값을 수신하고, 적어도 수신된 유량을 사용하여 호흡 주기 파형을 생성하며, 호흡 주기 파형 및 제어 신호의 상호-상관으로부터 제어 신호와 호흡 주기 파형 사이의 위상차를 식별함으로써, 환자의 호흡 주기를 검출하도록 구성된 제어 시스템을 포함할 수 있으며, 호흡 주기 파형은 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함할 수 있다. 제어 시스템은 호흡 주기 파형 및 제어 신호의 상호-상관의 하나 이상의 피크 또는 제로-크로싱으로부터 위상차를 결정하도록 구성될 수 있다. 제어 시스템은, 제어 신호가 환자의 들숨 및 날숨에 기초하여 송풍기 모터의 속도를 조정하도록 구성될 수 있도록, 식별된 위상차에 기초하여 제어 신호와 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 제어 신호의 위상을 반복적으로 업데이트함으로써, 제어 신호를 호흡 주기와 동기화하도록 구성될 수 있다. 제어 시스템은, 송풍기 모터에 의해 수신되는 제어 신호와 환자에 의해 감지되는 결과적인 기류 사이의 시스템 지연에 기초하여 제어 신호를 위상-변이하도록 추가로 구성될 수 있다. 제어 시스템은, 제어 신호가 설정 시간량 만큼 호흡 주기 파형을 선취할 수 있도록 제어 신호를 위상-변이하도록 추가로 구성될 수 있다. 하나 이상의 센서는 초음파 센서 조립체를 포함할 수 있다. 하나 이상의 센서는 가열 온도 감지 소자를 더 포함할 수 있다. 제어 신호는 호흡 주기 파형에 위상-동기될 수 있다. 호흡 주기 파형은 환자 호흡 속도를 계산하는데 사용될 수 있다. 환자 호흡 속도는 시간에 따른 유량 측정값의 자기 상관으로부터 계산될 수 있다. 환자 호흡 주기는 자기 상관에서의 하나 이상의 피크 또는 제로-크로싱으로부터 결정될 수 있다. 제어 신호의 크기는 호흡 주기 파형의 진폭, 양의 피드백 파라미터, 및 음의 피드백 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 호흡 주기 파형은 송풍기 모터와 연관된 모터 속도 측정값 및 수신된 유량에 기초하여 생성될 수 있다. 호흡 주기 파형은 계산된 환자 유량에 적어도 부분적으로 기초하여 생성될 수 있으며, 환자 유량은 송풍기 모터와 연관된 모터 속도 측정값 및 수신된 유량을 사용하여 계산된 시스템 누출량에 기초한다. 모터 속도 측정값은 하나 이상의 송풍기 모터 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 송풍기 모터는 무브러시 DC 모터를 포함할 수 있다. 제어 시스템은 수신된 유량 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 호흡 주기 파형을 생성하도록 구성될 수 있다. 제어 시스템은 수신된 유량, 송풍기 모터와 연관된 모터 속도 측정값, 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 호흡 주기 파형을 생성하도록 구성될 수 있다. 호흡 치료 장치는 고유량 호흡 치료 장치일 수 있다. 호흡 치료 장치는 비-밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 밀폐형 호흡 시스템에서 사용하도록 구성될 수 있다. 호흡 치료 장치는 압력 센서로부터의 압력 측정값에 기초하여 밀폐형 호흡 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성될 수 있다. 호흡 치료 장치는 비침습성 환기 마스크와 결합되도록 구성될 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 치료 장치의 하우징 내에 위치될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
호흡 시스템에서 호흡 치료를 수행하기 위한 방법이 개시된다. 방법은, 환자로의 기류를 생성하도록 구성된 송풍기 모터를 제어 신호를 사용하여 구동하는 단계; 적어도 하나의 유량 센서로부터 하나 이상의 유량 측정값을 수신함으로써 환자의 호흡 주기를 검출하는 단계; 적어도 수신된 유량을 사용하여, 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함할 수 있는 호흡 주기 파형을 생성하는 단계; 및 호흡 주기 파형 및 제어 신호의 상호-상관으로부터 제어 신호와 호흡 주기 파형 사이의 위상차를 식별하는 단계를 포함할 수 있다. 식별하는 단계는 호흡 주기 파형 및 제어 신호의 상호-상관의 하나 이상의 피크 또는 제로-크로싱으로부터 위상차를 결정하는 단계를 더 포함할 수 있다. 방법은, 제어 신호가 환자의 들숨 및 날숨에 기초하여 송풍기 모터의 속도를 조정하도록 구성될 수 있도록, 식별된 위상차에 기초하여 제어 신호와 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 제어 신호의 위상을 반복적으로 업데이트함으로써, 제어 신호를 호흡 주기와 동기화하는 단계를 더 포함할 수 있다. 동기화하는 단계는, 송풍기 모터에 의해 수신되는 제어 신호와 환자에 의해 감지되는 결과적인 기류 사이의 시스템 지연에 기초하여 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 동기화하는 단계는, 제어 신호가 설정 시간량 만큼 호흡 주기 파형을 선취할 수 있도록 제어 신호를 위상-변이하는 단계를 더 포함할 수 있다. 적어도 하나의 유량 센서는 초음파 센서 조립체를 포함할 수 있다. 적어도 하나의 유량 센서는 가열 온도 감지 소자를 포함할 수 있다. 방법은 제어 신호를 호흡 주기 파형에 위상-동기하는 단계를 더 포함할 수 있다. 호흡 주기 파형은 환자 호흡 속도를 계산하는데 사용될 수 있다. 검출하는 단계는 시간에 따른 유량 측정값의 자기 상관으로부터 환자 호흡 속도를 계산하는 단계를 더 포함할 수 있다. 환자 호흡 주기는 자기 상관에서의 하나 이상의 피크 또는 제로-크로싱으로부터 결정될 수 있다. 제어 신호의 크기는 호흡 주기 파형의 진폭, 양의 피드백 파라미터, 및 음의 피드백 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 호흡 주기 파형은 송풍기 모터와 연관된 모터 속도 측정값 및 하나 이상의 유량 측정값에 기초하여 생성될 수 있다. 호흡 주기 파형은 수신된 유량 및 송풍기 모터와 연관된 모터 속도 측정값을 사용하여 계산된 유량 제한값에 적어도 부분적으로 기초하여 생성될 수 있다. 호흡 주기 파형은 계산된 환자 유량에 적어도 부분적으로 기초하여 생성될 수 있으며, 환자 유량은 수신된 유량 및 모터 속도 측정값을 사용하여 계산된 시스템 누출량에 기초할 수 있다. 모터 속도 측정값은 하나 이상의 송풍기 모터 파라미터에 적어도 부분적으로 기초하여 결정될 수 있다. 송풍기 모터는 무브러시 DC 모터를 포함할 수 있다. 호흡 주기 파형은 수신된 유량 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 생성될 수 있다. 호흡 주기 파형은 하나 이상의 유량 측정값, 송풍기 모터와 연관된 모터 속도 측정값, 및 압력 센서로부터의 하나 이상의 압력 측정값에 기초하여 생성될 수 있다. 방법은 고유량 호흡 시스템에 수행될 수 있다. 방법은 비-밀폐형 호흡 시스템에 수행될 수 있다. 호흡 치료를 수행하기 위한 방법은 밀폐형 호흡 시스템에서 수행될 수 있다. 방법은, 압력 센서로부터의 압력 측정값에 기초하여 시스템의 미리 결정된 압력을 달성하도록 모터 속도를 조정하는 단계를 더 포함할 수 있다. 밀폐형 호흡 시스템은 비침습성 환기 마스크를 포함할 수 있다. 압력 센서는 비침습성 환기 마스크, 또는 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치될 수 있거나, 환자 호흡 도관 내 또는 호흡 시스템의 하우징 내에 위치될 수 있다. 시스템은 데이터를 저장하기 위한 메모리를 가질 수 있다. 저장된 데이터는 호흡률, 치료 시간, 모터 속도, 유량, 및/또는 압력을 포함할 수 있다. 메모리는 EEPROM일 수 있다.
도 1은 유동 치료 장치 형태의 예시적인 호흡 보조 장치의 개략도를 도시한다.
도 2a는 호흡 보조 시스템의 요소와 상호 작용 및/또는 호흡 보조 시스템의 요소에 제어 및 명령을 제공하는 제어 시스템의 예시적인 블록도를 도시한다.
도 2b는 호흡 보조 시스템의 요소와 상호 작용 및/또는 호흡 보조 시스템의 요소에 제어 및 명령을 제공하는 제어 시스템의 예시적인 블록도를 도시한다.
도 2c는 예시적인 제어기의 블록도를 도시한다.
도 3은 예시적인 모터/센서 모듈의 블록도를 도시한다.
도 4는 유동 치료 장치의 작동을 조정하기 위한 예시적인 방법의 흐름도를 도시한다.
도 5는 유량을 결정하기 위한 예시적인 방법의 흐름도를 도시한다.
도 6a는 유동 치료 장치에 대한 호흡 주기 강화를 수행하기 위한 예시적인 시스템의 블록도를 도시한다.
도 6b는 유동 치료 장치에 대한 위상-동기 제어 루프를 구현하기 위한 예시적인 시스템의 블록도를 도시한다.
도 7은 환자의 호흡 주기를 보조하기 위한 예시적인 방법의 흐름도를 도시한다.
도 8은 환자의 호흡 주기 파형 및 제어 신호 파형의 예시적인 그래프를 도시한다.
도 9는 환자의 감지된 호흡 주기와의 위상-동기 루프로서 송풍기 모터의 제어 신호를 구현하기 위한 예시적인 방법의 흐름도를 도시한다.
도 10은 시스템 지연을 보상하도록 제어 신호를 위상-변이하기 위한 예시적인 방법의 흐름도를 도시한다.
도 11은 시스템 지연을 보상하도록 제어 신호를 업데이트하는 것을 예시하는 그래프를 도시한다.
도 12는 환자의 호흡 주기 파형을 선취하도록 위상-변이된 제어 신호를 구성하기 위한 예시적인 방법의 흐름도를 도시한다.
도 13은 환자 호흡 주기 및 위상-변이된 제어 루프의 예시적인 그래프를 도시한다.
도 14a는 시스템에 의해 측정된 환자의 미가공 유량 판독값의 예시적인 그래프를 도시한다.
도 14b는 도 14a의 미가공 유량 판독값의 자기 상관의 예시적인 그래프를 도시한다.
유동 치료 장치(10)가 도 1에 도시된다. 일반적으로 말하면, 장치(10)는 모터/임펠러 배치 형태의 유동 발생기(11), 선택적인 가습기(12), 제어기(13), 및 사용자 인터페이스(14)(예를 들어, 버튼(들), 터치 스크린 등과 같은 입력 장치(들) 및 디스플레이를 포함함)를 수용하는 메인 하우징(100)을 포함할 수 있다. 제어기(13)는, 유동 발생기(11)를 작동시켜서 환자에게 전달하기 위한 가스의 유동(가스 유동)을 생성하고, 가습기(12)(존재하는 경우)를 작동시켜서 생성된 가스 유동을 가습 및/또는 가열하며, 장치(10)의 재구성 및/또는 사용자-정의된 작동을 위해 사용자 인터페이스(14)로부터 사용자 입력을 수신하고, 정보를 사용자에게 출력(예를 들어, 디스플레이 상에)하는 것을 포함하여, 장치의 요소를 제어하도록 구성 또는 프로그래밍된다. 사용자는 환자, 전문 의료진, 또는 장치를 사용하는데 관심이 있는 임의의 다른 사람일 수 있다.
환자 호흡 도관(16)은 유동 치료 장치(10)의 하우징(100)에서 가스 유동 출력(21)에 결합되고, 매니폴드(19) 및 비강 프롱(nasal prong)(18)을 갖는 비강 캐뉼라(cannula)와 같은 환자 인터페이스(17)에 결합된다. 부가적으로 또는 대안적으로, 환자 호흡 도관(16)은 안면 마스크에 결합될 수 있다. 가습될 수 있는 가스 유동은 유동 치료 장치(10)에 의해 생성되고, 환자 도관(16)을 거쳐서 캐뉼라(17)를 통하여 환자에게 전달된다. 환자 도관(16)은 환자에게로 통과하는 가스 유동을 가열하기 위한 히터 와이어(16a)를 가질 수 있다. 히터 와이어(16a)는 제어기(13)의 제어하에 있다. 환자 도관(16) 및/또는 환자 인터페이스(17)는 유동 치료 장치(10)의 일부, 또는 대안적으로 이의 주변부로 간주될 수 있다. 유동 치료 장치(10), 호흡 도관(16) 및 환자 인터페이스(17)는 함께 유동 치료 시스템을 형성한다.
이제 유동 치료 호흡 장치(10)의 일반적인 작동이 설명될 것이다. 제어기(13)는 유동 발생기(11)를 제어하여 원하는 유량의 가스 유동을 생성, 하나 이상의 밸브를 제어하여 가스 혼합물을 제어(예를 들어, O2 제어), 및/또는 가습기(12)(존재하는 경우)를 제어하여 적절한 레벨로 가스 유동을 가습 및/또는 가스 유동을 가열할 수 있다. 가스 유동은 환자 도관(16) 및 캐뉼라(17)를 통하여 환자에게로 지향된다. 또한, 제어기(13)는 가습기(12)의 발열체 및/또는 환자 도관(16)의 발열체(16a)를 제어하여, 환자를 위한 원하는 수준의 치료 및/또는 안락함 수준을 달성하는 원하는 온도로 가스를 가열할 수 있다. 제어기(13)는 가스 유동의 적절한 목표 온도로 프로그래밍될 수 있거나 또는 가스 유동의 적절한 목표 온도를 결정할 수 있다.
유량, 온도, 습도 및/또는 압력 센서와 같은 작동 센서(3a, 3b, 3c)는 유동 치료 장치(10)의 다양한 위치에 배치될 수 있다. 추가적인 센서(예를 들어, 센서(20, 25))는 환자 도관(16) 및/또는 캐뉼라(17) 상의 다양한 위치에 배치될 수 있다(예를 들어, 흡기 튜브의 단부 또는 단부 근처에 온도 센서가 있을 수 있다). 센서로부터의 출력이 제어기(11)에 의해 수신되어, 적절한 치료를 제공하는 방식으로 유동 치료 장치(10)를 작동시키도록 이를 보조할 수 있다. 적절한 치료를 제공하는 것은 환자의 들숨 요구를 충족시키는 것을 포함할 수 있다. 장치(10)는, 제어기(13)가 센서로부터 신호(8)를 수신할 수 있도록 하기 위해, 및/또는 유동 발생기(11), 가습기(12) 및 히터 와이어(16a), 또는 유동 치료 장치(10)와 연관된 부속장치 또는 주변장치를 포함하지만 이에 한정되지 않는, 유동 치료 장치(10)의 다양한 요소를 제어할 수 있도록 하기 위해, 송신기 및/또는 수신기(15)를 구비할 수 있다. 장치(10)는 호흡률, 치료 시간, 모터 속도, 유량, 압력 등과 같은 데이터를 저장하기 위한 메모리를 가질 수 있다. 메모리는 예를 들어, EEPROM일 수 있다. 부가적으로 또는 대안적으로, 송신기 및/또는 수신기(15)는 원격 서버에 데이터를 전달하거나 장치(10)의 원격 제어를 가능하게 할 수 있다.
유동 치료 장치(10)는 고유량 치료 장치를 포함할 수 있다. 본원에서 사용되는 바와 같은, "고유량" 치료는 비교적 높은 유량으로, 예를 들어 성인인 경우, 적어도 15 L/min, 또는 20 L/min, 또는 25 L/min, 또는 30 L/min, 또는 40 L/min, 또는 50 L/min, 또는 최대 150 L/min로 환자의 기도에 가스를 투여하는 것을 포함할 수 있다. 소아 및 유아인 경우, 유량은 1 L/min 및 최대 25 L/min, 또는 2 L/min, 또는 3 L/min, 또는 5 L/min, 또는 10 L/min, 또는 15 L/min, 또는 20 L/min일 수 있다. 고유량 치료는 사용자의 외비공 및/또는 구강으로 투여되거나, 또는 기관 절개 계면을 통해 투여될 수 있다. 고유량 치료는 의도된 사용자의 피크 들숨 유량 요건 또는 이를 초과하는 유량으로 사용자에게 가스를 전달할 수 있다. 환자의 기도에 도달하는 고유량의 가스는 환자의 기도를 세척하는데 유리할 수 있으며, 이는 해부학적 사강의 체적을 감소시킬 수 있다. 고유량 치료는 종종 예를 들어, 비강 캐뉼라와 같은 비-밀폐 환자 인터페이스에 의해 전달된다. 비강 캐뉼라는 의도된 사용자의 피크 들숨 유량 요건을 초과하는 유량으로 사용자의 외비공에 호흡 가스를 전달하도록 구성될 수 있다.
본원에서 사용되는 바와 같은 "비-밀폐 환자 인터페이스"라는 용어는 양의(positive) 가스 유동 소스(예를 들어, 유동 발생기(11)로부터)와 환자의 기도 사이에 공압 연결부를 제공하는 인터페이스를 지칭할 수 있으며, 환자의 기도를 완전히 폐쇄하지 않는 인터페이스를 지칭할 수 있다. 비-밀폐형 공압 연결부는 환자의 기도의 95% 미만의 폐쇄를 포함할 수 있다. 비-밀폐형 공압 연결부는 환자의 기도의 90% 미만의 폐쇄를 포함할 수 있다. 비-밀폐형 공압 연결부는 환자의 기도의 40% 내지 80%의 폐쇄를 포함할 수 있다. 기도는 환자의 외비공 또는 구강 중 하나 이상일 수 있다.
또한, 본원에서 설명되는 시스템은 밀폐형 환자 인터페이스로 사용될 수 있다. 밀폐형 환자 인터페이스의 비-제한적인 실시예는 비침습성 환기(NIV) 안면 및 비강 마스크를 포함할 수 있다. NIV 마스크는 삽관이나 기관 절개가 필요 없이 환자의 호흡을 지원할 수 있다. NIV 마스크는 마스크와 환자의 안면 사이에 밀폐형 끼워 맞춤을 제공하기 위해 환자의 안면의 윤곽을 이루는 환자 인터페이스를 가질 수 있다.
예시적인 유동 치료 장치의 추가적인 세부사항은 2015년 12월 2일자로 출원된 "유동 치료 장치를 위한 유로 감지"라는 명칭의 미국 가출원 일련번호 제62/262,325호에 개시되어 있으며, 그 전체 내용은 본원에 참조로 포함된다.
제어 시스템
도 2a는 환자 상태를 검출하여 가스 소스를 포함하는 유동 치료 장치의 작동을 제어할 수 있는 예시적인 제어 시스템(220)의 블록도(200)를 도시한다. 제어 시스템(220)은 환자에게 전달될 때 유동 치료 장치를 통하여 유동하는 가스의 유동을 관리할 수 있다. 예를 들어, 제어 시스템(220)은 송풍기(이하에서, "송풍기 모터"라고도 지칭됨)의 모터 속도의 출력(230), 또는 블렌더에서 밸브의 출력(232)을 제어함으로써, 유량을 증가 또는 감소시킬 수 있다. 제어 시스템(220)은 이하에서 논의되는 바와 같이, 특정 환자를 위한 유량의 설정값 또는 개인 맞춤형 값을 자동으로 결정할 수 있다. 유량은 환자의 안락함 및 치료를 개선하기 위해 제어 시스템(220)에 의해 최적화될 수 있다.
제어 시스템(220)은 또한 오디오 및/또는 디스플레이/시각적 출력(238, 239)을 생성할 수 있다. 예를 들어, 유동 치료 장치는 디스플레이(308) 및/또는 스피커를 포함할 수 있다. 디스플레이(308)는 제어 시스템(220)에 의해 생성된 임의의 경고 또는 경보를 의사에게 표시할 수 있다. 디스플레이(308)는 또한 의사에 의해 조정될 수 있는 제어 파라미터를 표시할 수 있다. 예를 들어, 제어 시스템(220)은 특정 환자를 위한 유량을 자동으로 권고할 수 있다. 또한, 제어 시스템(220)은 환자의 호흡률을 생성하는 것을 포함하지만 이에 한정되지 않는 환자의 호흡 상태를 결정할 수 있으며, 이를 디스플레이로 전송할 수 있다.
제어 시스템(220)은 (예를 들어, 환자에게 전달되는 가스의 온도 설정점을 유지하기 위해) 하나 이상의 발열체를 제어하도록 히터 제어 출력을 변경할 수 있다. 제어 시스템(220)은 또한 발열체의 작동 또는 듀티 사이클을 변경할 수 있다. 히터 제어 출력은 히터판 제어 출력(들)(234) 및 가열 호흡 튜브 제어 출력(들)(236)을 포함할 수 있다.
제어 시스템(220)은 하나 이상의 수신된 입력(201~216)에 기초하여 출력(230~239)을 결정할 수 있다. 입력(201~216)은 제어기(300)(도 2c에 도시됨)에 의해 자동으로 수신된 센서 측정값에 해당할 수 있다. 제어 시스템(220)은, 온도 센서(들) 입력(201), 유량 센서(들) 입력(202), 모터 속도 입력(203), 압력 센서(들) 입력(204), 가스(들)량 센서(들) 입력(205), 습도 센서(들) 입력(206), 맥박 산소측정기(예를 들어, SpO2) 센서(들) 입력(207), 저장된 또는 사용자 파라미터(들)(208), 듀티 사이클 또는 펄스폭 변조(PWM) 입력(209), 전압(들) 입력(210), 전류(들) 입력(211), 음향 센서(들) 입력(212), 전력(들) 입력(213), 저항(들) 입력(214), CO2 센서(들) 입력(215), 및/또는 폐활량계 입력(216)을 포함하지만 이에 한정되지 않는 센서 입력을 수신할 수 있다. 제어 시스템(220)은 사용자로부터의 입력 또는 메모리(304)(도 2c에 도시됨)의 저장된 파라미터 값을 수신할 수 있다. 제어 시스템(220)은 환자의 치료 시간 동안에 환자를 위한 유량을 동적으로 조정할 수 있다. 제어 시스템(220)은 시스템 파라미터 및 환자 파라미터를 연속적으로 검출할 수 있다. 통상의 당업자는 임의의 다른 적절한 입력 및/또는 출력이 제어 시스템(220)에 의해 사용될 수 있음을 본원의 개시물에 기초하여 인식할 것이다.
도 2b에 도시된 바와 같이, 제어 시스템(220)은 흉복부 비동시성(TAA) 센서 입력(202), 호흡 센서 입력(204), 호흡량(WOB) 센서 입력(206), CO2 및/또는 압력 센서 입력(208), 사용자 입력 및/또는 저장된 값(210)과 같은, 유동 치료 장치의 다수의 요소로부터의 입력을 수신할 수 있다. 도 2a에 도시된 입력(202~210)의 전부를 나타낸 것은 아닐 수 있다. 도 2b의 제어 시스템(220)은 입력(202~210)에 기초하여, 히터 제어 출력(230), 유동 제어 출력(들)(232), 및 디스플레이/오디오 출력(들)(234)을 출력할 수 있다. 입력(202 내지 210) 및 출력(230 내지 234)이 반드시 존재할 필요가 없을 수 있다. 예를 들어, 제어 시스템(220)은 단지 EMG 입력(206)만을 수신하여 유동 제어 측정값(232)를 생성할 수 있다. 구성에 따라, 입력에 해당하는 요소 중 일부는 유동 치료 장치에 포함되지 않을 수 있다. 입력 또는 시스템 조건을 결정하기 위해 제어 시스템(220)에 의해 입력 자체가 사용되지 않을 수 있다.
제어기
제어 시스템(220)은 입력 조건의 검출 및 출력 조건의 제어를 위한 프로그래밍 명령을 포함할 수 있다. 프로그래밍 명령은 도 2c에 도시된 바와 같은 제어기(300)의 메모리(304)에 저장될 수 있다. 프로그래밍 명령은 본원에서 설명되는 방법, 공정 및 기능에 해당할 수 있다. 제어 시스템(220)은 제어기(300)의 하나 이상의 하드웨어 프로세서(302)에 의해 실행될 수 있다. 프로그래밍 명령은 C, C++, 자바, 또는 임의의 다른 적절한 프로그래밍 언어로 구현될 수 있다. 제어 시스템(220)의 부분들의 일부 또는 전부는 ASIC 및 FPGA와 같은 주문형 회로(306)로 구현될 수 있다.
도 2c는 예시적인 제어기(300)의 블록도를 도시한다. 제어기는 메모리(304)에 저장된 명령을 실행할 수 있는 하드웨어 프로세서(302)를 포함할 수 있다. 제어 시스템(220)은 프로그래밍 명령으로서 메모리(304)에 저장될 수 있다. 제어기는 또한 센서 신호를 수신하기 위한 회로(306)를 포함할 수 있다. 제어기는 환자의 상태를 전송하기 위한 디스플레이(308) 및 호흡 보조 시스템을 더 포함할 수 있다. 또한, 디스플레이(308)는 경고를 표시할 수 있다. 또한, 제어기는 디스플레이(308)와 같은 사용자 인터페이스를 통해 사용자 입력을 수신할 수 있다. 사용자 인터페이스는 대안적으로 또는 부가적으로 버튼 또는 다이얼을 포함할 수 있다.
모터/센서 모듈
도 3은 유동 치료 장치의 일부로서 사용될 수 있는 모터/센서 모듈(2000)의 블록도를 도시한다. 모터/센서 모듈은 실내 공기를 혼입하여 환자에게 전달하는 송풍기(2001)를 포함한다. 송풍기(2001)는 원심 송풍기일 수 있다.
실내 공기는 실내 공기 유입구(2002)로 유입되어 유입구 포트(2003)를 통해 송풍기(2001)로 유입된다. 유입구 포트(2003)는 압축 가스가 송풍기(2001)로 유입될 수 있는 밸브(2004)를 포함할 수 있다. 밸브(2004)는 송풍기(2001) 내로의 산소 유동을 제어할 수 있다. 밸브(2004)는 비례 밸브 또는 이성분 밸브를 포함하는 임의의 유형의 밸브일 수 있다. 유입구 포트는 밸브를 포함하지 않을 수 있다.
송풍기(2001)는 1,000 RPM 초과 및 30,000 RPM 미만, 2,000 RPM 초과 및 25,000 RPM 미만, 20,000 RPM 초과 및 24,000 RPM 미만, 또는 임의의 상술한 값들 사이의 모터 속도로 작동될 수 있다. 송풍기(2001)의 작동에 의해 유입구 포트(2003)를 통하여 송풍기(2001)로 유입되는 가스를 혼합한다. 혼합은 에너지를 필요로 하는 반면에 송풍기는 에너지를 부여하기 때문에, 혼합기로서 송풍기(2001)를 사용하면, 배플을 포함하는 정적 혼합기와 같은 별개의 혼합기를 갖는 시스템에서 그렇지 않을 경우 발생하는 압력 강하를 감소시킬 수 있다.
혼합 공기는 도관(2005)을 통해 송풍기(2001)에서 배출되고 측정 챔버(2007)의 유로(2006)에 유입된다. 센서(2008)를 갖는 회로 기판은 회로 기판이 가스 유동에 침하되도록 측정 챔버(2007)에 위치된다. 회로 기판 상의 센서(2008)는 유동 내에서 가스 특성을 측정하기 위해 가스 유동 내에 위치된다. 측정 챔버(2007)에서 유로(2006)를 통과한 후에, 가스는 액체 챔버(300)로 배출된다(2009).
결합된 송풍기 및 혼합기(2001) 모두의 하류에 센서(2008)를 위치시키면, 송풍기 및/또는 혼합기의 상류에 센서를 위치시키는 시스템에 비해, 산소 농도를 포함하는 가스량 농도의 측정값과 같은 측정값의 정확도를 증가시킬 수 있다. 이러한 위치 설정은 반복 가능한 유동 프로파일을 제공할 수 있다. 또한, 송풍기 이전에 감지가 수행되는 경우, 배플을 갖는 정적 혼합기와 같은 별개의 혼합기가 유입구와 감지 시스템 사이에 요구되기 때문에, 결합된 송풍기 및 혼합기의 하류에 센서를 위치시키면, 그렇지 않을 경우 발생하는 압력 강하가 방지된다. 혼합기는 혼합기를 가로지르는 압력 강하를 도입시킨다. 송풍기 이후에 감지 장치를 위치시키면, 송풍기는 혼합기가 될 수 있고, 정적 혼합기가 압력을 감소시키지만, 이와 대조적으로, 송풍기는 압력을 증가시킨다. 또한, 유동에 침하되는 센서는 가스 유동과 동일한 온도가 될 가능성이 높고 이에 따라 가스 특성의 더 양호한 표시를 제공하기 때문에, 회로 기판 및 센서(2008)가 유로에 침하되면 측정값의 정확도가 증가된다.
측정 챔버
도 3에 도시된 바와 같이, 측정 챔버(2007)는 모터/센서 모듈(2000) 내에서 송풍기(2001)의 하류에 위치될 수 있다. 측정 챔버(2007)는 유로(2006)를 포함하고, 회로 기판 및 하나 이상의 센서(2008)를 유지하도록 설계된다.
가스 유동은 유동 치료 장치를 통과하는 동안에 압력 강하를 받아서 에너지를 소산시킬 수 있고, 결과적으로 특정 유량에 도달하는 시스템의 능력에 영향을 줄 수 있다. 압력 손실은 유로의 직선 구간에서의 마찰로 인해 발생할 수 있거나, 또는 경로에서의 굴곡, 밸브, 수축 또는 팽창과 같은 직선 경로로부터의 이탈로 인해 발생할 수 있다.
유로(2006)는 곡선형 형상을 갖는다. 가스 유동은 입구(2103)에서 유입되어, 곡선형 유로(2104)를 따라 유동하고, 유로의 대향 측면(2105)에서 배출된다. 입구와 출구는 수직으로 대향하는 방향으로 위치될 수 있으며, 가스 유동은 수직 상향 방향으로 경로에 유입된 다음, 수평 방향으로 만곡된 후, 다시 수직 상향 방향으로 만곡될 수 있다. 유로는 급격한 회전을 갖지 않을 수 있다. 유로는 더 직선형의 중간 구간을 갖는 곡선형 단부를 가질 수 있다. 유로는 유로의 길이 전반에 걸쳐서 일정한 단면 형상을 유지할 수 있다. 유로는 유로의 제1 단부로부터 약간 내향하게 테이퍼질 수 있으며, 유로의 제2 단부까지 다시 넓어져서, 측정값의 더 양호한 정확성, 안정성 및 재현성을 위해 유동을 촉진시킬 수 있다. 유로의 표면은 유로 내의 마찰을 감소시키기 위해 표면 조정제/윤활제로 라이닝될 수 있다. 곡선형 유로 형상은 측정 영역을 유로와 부분적으로 일치시킴으로써 유량 측정값의 감도를 감소시키지 않으면서 가스 유동의 압력 강하를 감소시킬 수 있다. 다수의 상이한 유로 구성이 사용될 수 있다. 가능한 유로 구성의 추가적인 실시예는 본원에 참조되는 미국 가출원 일련번호 제62/262,325호에 개시되어 있다.
호흡 주기에 기초하는 유량 조정
환자의 호흡을 보다 양호하게 보조하기 위해, 환자의 호흡 주기에 기초하여 유동 치료 장치의 작동을 조정할 수 있는 것이 유익할 수 있다. 예를 들어, 환자가 들숨 및 날숨을 쉼에 따라, 유동 치료 장치에 의해 제공되는 공기의 유량이 조정될 수 있다. 유량은 환자의 들숨 또는 날숨에 기초하여 조정될 수 있다. 예를 들어, 환자의 들숨 동안에 유량이 증가될 수 있으며, 환자의 날숨 동안 감소될 수 있다. 환자의 들숨 동안에 유량이 조정될 수 있으며(예를 들어, 들숨 동안에 증가됨), 환자의 날숨 동안에는 조정이 없을 수 있고, 그 반대도 가능하다. 들숨 및 날숨은 또한 흡입 및 내쉼으로도 지칭될 수 있다.
환자의 호흡 주기는 교번하는 날숨 및 들숨 단계를 포함하는 파형으로 표시될 수 있다. 환자의 호흡 주기 파형을 결정하고 모니터링함으로써, 환자의 호흡 주기에 기초하여 유동 치료 장치의 작동이 변경될 수 있다. 예를 들어, 유동 치료 장치는 환자의 측정된 호흡 주기 파형에 기초하여 조정될 수 있는 주기적 파형을 사용하여 가스 유동을 제어하도록 구성될 수 있다.
도 4는 유동 치료 장치의 작동을 조정하기 위한 예시적인 방법의 흐름도를 도시한다. 블록(402)에서, 제어 신호는 유동 치료 장치(예를 들어, 도 1에 도시된 바와 같은 유동 발생기(11) 또는 도 3에 도시된 송풍기(2001))와 연동되는 송풍기 모터를 구동하는데 사용된다. 송풍기 모터는 환자의 호흡을 보조하기 위해 기류를 발생시키는데 사용될 수 있다. 제어 신호는 초기 파형을 포함할 수 있다. 초기 파형은 디폴트 파형을 포함할 수 있거나, 또는 환자와 연관된 하나 이상의 측정값에 기초할 수 있다.
블록(404)에서, 환자의 호흡 주기를 결정하는데 사용될 수 있는 복수의 측정값이 수신된다. 이들은 유량(404a), 모터 속도(404b), 압력(404c) 등을 포함할 수 있다. 이러한 유형의 각각의 측정값은 아래에서 보다 상세하게 설명될 것이다.
블록(406)에서, 수신된 측정값은 환자의 예측된 호흡 주기를 결정하는데 사용된다. 환자의 예측된 호흡 주기는 유량 편차(406a), 유량 제한값(406b), 시스템 누출량(406c), 및/또는 기타와 같이, 하나 이상의 상이한 기술을 사용하여 결정될 수 있다. 이러한 각각의 기술에 대해서는 아래에서 보다 상세하게 설명될 것이다.
블록(408)에서, 송풍기 모터에 대한 제어 신호는 예측된 호흡 주기에 기초하여 조정된다. 예를 들어, 제어 신호는, 환자가 들숨을 쉴 때 유량이 증가되고 환자가 날숨을 쉴 때 유량이 감소되도록 조정될 수 있다. 제어 신호는 예측된 호흡 주기와 위상-동기 루프가 되도록 구성될 수 있다. 이러한 각각의 구현예는 아래에서 보다 상세하게 설명될 것이다.
그 다음, 방법은 환자를 위한 기류를 생성하기 위해, 조정된 제어 신호가 송풍기 모터를 구동하는데 사용되는 블록(402)으로 복귀할 수 있다.
시스템 파라미터 측정
논의된 바와 같이, 환자의 호흡 주기는 측정된 유량, 측정된 모터 속도, 측정된 압력, 또는 이들의 조합과 같은 복수의 상이한 측정값에 적어도 부분적으로 기초하여 결정될 수 있다.
a) 유량
유량은 시스템을 통과하는 가스의 유동(예를 들어, 송풍기 모터 또는 다른 유동 발생기로부터 환자로의)을 지칭한다. 유량은 하나 이상의 유량 센서를 사용하여 측정될 수 있다. 예를 들어, 유량은 가열 온도 감지 소자를 사용하여 측정될 수 있다. 가열 온도 감지 소자는 가열 온도 감지 소자, 백금선 또는 가열 서미스터와 같은 열선 풍속계, 및/또는 음의 온도 계수(NTC) 서미스터를 포함할 수 있다. 가열 온도 감지 소자의 다른 비-제한적인 실시예는 유리 또는 에폭시-캡슐화 또는 비-캡슐화 서미스터를 포함한다. 가열 온도 감지 소자는 가스의 유량을 측정하도록 구성된다.
유량은 제1 및 제2 초음파 변환기를 포함하는 초음파 센서 조립체와 같은 고속 응답-시간 유량 센서를 사용하여 측정될 수 있다. 하나 이상의 센서는 도 3에 도시된 것과 같은 유로에 근접하게 위치될 수 있다. 유로의 일부분을 따라 초음파 변환기를 사용하여 유량을 측정하는 일 실시예는 본원에 참조되는 미국 가출원 일련번호 제62/262,325호에 개시되어 있다. 구체적으로는, 제1 초음파 변환기는 위에서 설명된 측정 챔버에서 유로의 하류 부분에 있을 수 있고, 제2 초음파 변환기는 위에서 설명된 측정 챔버에서 유로의 상류 부분에 있을 수 있다. 제1 및 제2 초음파 변환기는 각각 서로 간에 초음파 신호를 송신 및 수신할 수 있다. 호흡 장치의 제어기는 제1 및 제2 초음파 변환기 사이의 전파 시간 측정값에 기초하여, 유량을 포함하지만 이에 한정되지 않는 가스 유동의 하나 이상의 특성을 결정할 수 있다. 또한, 유량은 하나 이상의 초음파 송신기 및 하나 이상의 초음파 수신기를 사용하여, 예컨대 마이크로폰을 사용하여 측정될 수 있다. 하나 이상의 초음파 송신기는 음향 경로를 따라 초음파 신호를 송신할 수 있다. 하나 이상의 초음파 수신기는 음향 경로를 따라 위치되어 초음파 신호를 수신할 수 있다. 호흡 장치의 제어기는 하나 이상의 초음파 송신기 및 수신기 사이의 전파 시간 측정값에 기초하여, 유량을 포함하지만 이에 한정되지 않는 가스 유동의 하나 이상의 특성을 결정할 수 있다.
환자의 들숨 및 날숨에 따라 시스템의 유량이 변동될 수 있기 때문에, 신속하고 정확하게 유량을 측정할 수 있는 것이 중요하다. 유량은 2개 이상의 상이한 센서의 조합을 사용하여 측정될 수 있다. 예를 들어, 제1 유형의 센서는 더 양호한 단기적 또는 국부적 정확도로 유량을 측정할 수 있지만(예를 들어, 유량에서 급속한 호흡간 변화를 검출함) 더 열악한 장기적 정확도(예를 들어, 작은 오차의 누적으로 인해)를 가질 수 있는 반면에, 제2 유형의 센서는 더 열악한 국부적 정확도(예를 들어, 국부적 노이즈로 인해)를 갖지만 더 양호한 평균 정확도로 유량을 측정할 수 있다. 제1 및 제2 유형의 센서 모두로부터의 출력 판독값이 조합되어 더 정확한 유량 측정값을 결정할 수 있다. 예를 들어, 제2 유형의 센서로부터의 하나 이상의 출력 및 이전에 결정된 유량이 예측된 현재의 유량을 결정하는데 사용될 수 있다. 그 다음, 예측된 현재의 유량은 최종 유량을 계산하기 위해 제1 유형의 센서로부터의 하나 이상의 출력을 사용하여 업데이트될 수 있다. 제1 유형의 센서는 초음파 센서 조립체를 포함할 수 있는 반면에, 제2 유형의 센서는 가열 온도 감지 소자를 포함할 수 있다.
도 5는 유량을 결정하기 위한 예시적인 방법의 흐름도를 도시한다. 블록(502)에서, 가열 온도 감지 소자 센서와 같은 제1 유량 센서로부터 제1 유량 측정값이 수신된다. 블록(504)에서, 위에서 설명된 바와 같은 초음파 센서 조립체로부터 제2 유량 측정값이 수신된다.
블록(506)에서, 제2 유량 측정값 및 이전의 유량 측정값에 기초하여, 현재의 유량 예측값이 결정된다. 블록(508)에서, 현재의 유량 예측값 및 제1 유량 측정값을 사용하여 유량이 결정된다. 가열 온도 감지 소자 센서와 초음파 변환기를 모두 이용함으로써, 2가지 유형의 센서의 단점이 완화될 수 있어서, 유량이 신속하고 정확하게 측정될 수 있다.
상이한 유형의 센서로부터의 측정값들은 상이한 방식으로 조합될 수 있다. 예를 들어, 하나 이상의 초음파 변환기로부터의 측정값은 직접 판독될 수 있는 반면에, 가열 온도 감지 소자 측정값은 필터링되어 초음파 유량 산출에 대한 기본적 보정을 제공할 수 있다(예를 들어, 더 빠른 응답 시간을 나타내는 초음파 변환기의 측정값을 보정하기 위해, 더 양호한 장기적 정확도를 갖는 가열 온도 감지 소자를 사용함으로써).
b) 모터 속도
하나 이상의 센서(예를 들어, 홀 효과 센서)가 송풍기 모터의 모터 속도를 측정하는데 사용될 수 있다. 송풍기 모터는 별개의 센서의 사용 없이 모터 속도가 측정될 수 있는 무브러시 DC 모터를 포함할 수 있다. 예를 들어, 무브러시 DC 모터의 작동 동안에, 모터의 무전압 상태(non-energized) 권선으로부터 역기전력이 측정될 수 있으며, 이로부터 모터 위치가 결정되어, 결과적으로 모터 속도를 계산하는데 사용될 수 있다. 또한, 모터 구동기가 모터 전류를 측정하는데 사용될 수 있으며, 모터 전류는 측정된 모터 속도와 함께 모터 토크를 계산하는데 사용될 수 있다. 송풍기 모터는 낮은 관성 모터를 포함할 수 있다.
c) 압력
시스템 압력은 하나 이상의 압력 센서를 사용하여 결정될 수 있다. 하나 이상의 압력 센서는 하나 이상의 게이지 압력 센서 또는 하나 이상의 절대 압력 센서일 수 있다. 하나 이상의 압력 센서는 시스템 내의 임의의 위치에 있을 수 있지만, 적어도 하나의 압력 센서는 호흡 장치의 메인 하우징 내의 유로에 위치될 수 있다. 별개의 압력 센서를 필요로 하지 않고 시스템 압력을 결정하기 위해 하나 이상의 모터 파라미터가 사용될 수 있다. 압력 센서는 모터의 파라미터로부터 결정된 시스템 압력을 확인하는데 사용될 수 있다.
모터 파라미터를 사용하여 시스템 압력을 계산하는 것은 양호한 단기적 정확도를 가질 수 있지만, 별개의 압력 센서를 사용하는 것과 비교하여 더 열악한 장기적 평균 정확도를 가질 수 있다. 이와 같이, 압력 센서로부터의 출력 및 모터 파라미터가 함께 사용되어 정확한 시스템 압력 측정값을 결정할 수 있다(예를 들어, 유량 측정값과 관련하여 위에서 설명된 하나 이상의 기술을 사용하여).
호흡 주기 결정
a) 유량 편차
환자의 호흡 주기는 평균 또는 설정점 유량 값
Figure pct00001
에 대한 시스템의 유량
Figure pct00002
의 편차를 관찰함으로써 결정될 수 있다. 예를 들어, 유량은 환자의 들숨에 대응하여 증가하고 환자의 날숨에 대응하여 감소하는 경향이 있을 수 있다. 그러나, 모터의 속도가 또한 변동될 수 있기 때문에, 편차의 어느 부분이 모터 속도의 변동으로 인한 것인지 그리고 어느 부분이 환자의 호흡 주기로 인한 것인지를 결정하는 것은 어려울 수 있다.
b) 제한값
유량 제한값이 환자의 호흡 주기를 결정하는데 사용될 수 있다. 일반적으로, 호흡 시스템은 전반적으로 유량에 대한 약간의 저항("제한값" 또는 R이라고도 지칭됨)을 가지며, 이는 하기의 수식에 나타낸 바와 같이, 시스템의 압력
Figure pct00003
의 변화와 시스템의 유량 제곱(
Figure pct00004
) 사이의 관계를 표시하는데 사용될 수 있다.
Figure pct00005
따라서, 제한값 R은 다음과 같이 근사화될 수 있다:
Figure pct00006
제한값 R은 환자의 들숨 및 날숨에 따라 변동될 수 있다. 더 작은 R 값은 더 큰 제한을 나타낸다(예를 들어, 환자가 날숨을 쉬는 경우).
또한, 압력
Figure pct00007
는 하기의 수식에 나타낸 바와 같이, 모터 속도의 함수로서 근사화될 수도 있다:
Figure pct00008
여기서,
Figure pct00009
는 모터 속도에 해당하고,
Figure pct00010
은 상수에 해당한다. 이와 같이, 제한값 R은 다음과 같이 근사화될 수 있다:
Figure pct00011
이와 같이, 환자의 호흡 주기의 표시로서 변동되는 R 값을 사용하여, 환자의 호흡 주기가 측정된 유량
Figure pct00012
및 측정된 모터 속도
Figure pct00013
에 기초하여 결정될 수 있다. 하나 이상의 압력 측정값은 상수
Figure pct00014
의 값을 계산하는데 사용될 수 있거나,
Figure pct00015
의 값이 가정될 수 있다.
하기의 수식에 나타낸 바와 같이, 환자 호흡 주기(들숨/날숨)로 인한 압력 강하 및 다른 요인으로 인한 압력 강하(시스템 압력 강하로도 지칭됨)가 합산될 수 있다:
Figure pct00016
여기서,
Figure pct00017
는 시스템 압력 강하와 연관된 상수에 해당한다. 환자의 호흡 주기의 검출은 R의 크기 대신에, R의 편차(예를 들어, 평균값
Figure pct00018
로부터의 편차)를 검출하는 것에 기초한다. 따라서, 상수
Figure pct00019
는 무시될 수 있다.
Figure pct00020
의 값은 제한값에서의 편차(예를 들어, 불규칙적인 호흡, 캐뉼라의 이동, 및/또는 기타로 인한)를 보상하여 더 평활한 파형을 제공하기 위해, 이동 평균으로 추적될 수 있다.
c) 시스템 누출량
송풍기에 의해 생성된 공기의 유량은 환자의 폐로 유동하는 제1 부분 및 "누출 유량"으로 지칭되는 시스템에 의해 누출되는 제2 부분을 포함할 수 있다. 이는 하기의 수식으로 표현될 수 있다:
Figure pct00021
여기서,
Figure pct00022
는 환자 유량에 해당하고,
Figure pct00023
은 누출 유량에 해당한다.
또한, 캐뉼라에서의 압력은 "누출 압력 강하"로 지칭될 수 있다. 시스템의 총 송풍기 압력은 시스템 압력 강하와 누출 압력 강하의 합으로 근사화될 수 있으며, 다음과 같이 표현될 수 있다:
Figure pct00024
여기서,
Figure pct00025
은 누출 상수에 해당한다. 폐쇄형 또는 밀폐형 시스템에서,
Figure pct00026
은 상수이다. 비-밀폐형 시스템에서,
Figure pct00027
은 환자가 호흡할 때 시간에 따라 변동될 수 있지만, 특정 호흡 주기 동안에 실질적으로 일정한 것으로 간주될 수 있다.
Figure pct00028
은 "시스템 누출량"을 특성화한다.
이와 같이, 누출 유량은 다음과 같이 근사화될 수 있다:
Figure pct00029
캐뉼라에서의 압력은
Figure pct00030
으로(누출 압력만으로) 근사화될 수 있으며, 환자의 폐 유량은
Figure pct00031
로 근사화될 수 있다. 환자의 폐 유량이 변동됨에 따라, 환자의 호흡 주기가 결정될 수 있다.
상술한 바와 같이, 변수
Figure pct00032
Figure pct00033
는 측정, 계산 또는 추정될 수 있다. 또한, 호흡을 보조하는 목적을 위해, 환자의 폐 내로의 평균 유량이 대략적으로 제로가 될 것임을 인지함으로써
Figure pct00034
이 추정될 수 있다. 즉, 이하의 가정이 이루어질 수 있다:
Figure pct00035
Figure pct00036
. 가스 교환("드리프트"라고도 지칭됨)으로 인한 환자가 들숨 및 날숨을 쉬는 가스의 양에서의 차이가 계산되어, 평균 유량에 대해 드리프트 보정이 수행될 수 있다. 환자의 호흡 기간 T가 알려진 경우, 시스템의 평균 누출량은 다음과 같이 근사화될 수 있다:
Figure pct00037
그 다음, 위의 수식은
Figure pct00038
을 산출하는데 사용될 수 있다. 기간 T가 알려지지 않은 경우, 기간 T를 근사화하기 위해 일정 수의 호흡이 있는 것으로 알려진 시간 기간에 대해 시간-가중 평균이 사용될 수 있다.
환자의 호흡 주기가 결정되면(예를 들어, 위에 개시된 임의의 기술을 사용하여), 제어 신호가 환자 호흡 주기에 기초하여 조정될 수 있다. 또한, 호흡 주기는 환자 호흡 속도(예를 들어, 분당 호흡수)를 계산하는데 사용될 수 있다. 계산된 호흡 속도는 (예를 들어, 디스플레이(308)에서) 디스플레이되거나, 저장되거나, 또는 송신될 수 있다.
밀폐형 시스템에서의 압력 제어
압력 센서 판독값은 위에서 설명된 바와 같이, 밀폐형 환자 인터페이스를 갖는 호흡 시스템에서 환자 호흡 도관의 일부분을 따라 또는 환자 선단에서 이용 가능할 수 있다. 또한, 압력 센서 판독값은 유동 치료 장치 내로부터 이용 가능할 수 있다. 압력 센서는 유로의 임의의 위치에 배치될 수 있다. 밀폐형 환자 인터페이스의 비-제한적인 실시예는 NIV 마스크이다. NIV 마스크는 환자의 안면에 밀폐될 수 있으므로, 실질적으로 시스템 누출을 초래하지 않는다. 이는 환자 근처 또는 환자 선단에서 환자에게 전달되는 가스의 압력을 측정할 수 있게 한다. 압력 센서는 NIV 마스크 내부에 위치될 수 있다. 압력 센서는 환자의 외비공 외부의 위치에 위치될 수 있다. 압력 센서는 환자 호흡 도관, 예를 들어 도 1에 도시된 환자 호흡 도관(16)에 NIV 마스크를 연결하는 매니폴드에 위치될 수 있다.
환자 호흡 도관의 일부분을 따라 또는 NIV 마스크 내의 압력 센서와 같이, 환자 선단 근처에 또는 환자 선단에 위치된 압력 센서로부터의 측정값은 위에서 설명된 수식 중 일부를 사용하여 환자에게 전달되는 압력을 제어할 수 있도록 할 수 있다. 구체적으로는, 수식
Figure pct00039
Figure pct00040
의 압력 항
Figure pct00041
은 이하의 수식에 도달하기 위해, 압력 센서 판독값
Figure pct00042
로 대체될 수 있다.
Figure pct00043
이러한 수식에서, 시스템의 작동이 급격히 변하지 않기 때문에,
Figure pct00044
는 대략적으로 일정하다고 가정될 수 있다. 이러한 수식은, 수식의 양변에 항
Figure pct00045
를 곱하여 추가로 재배열됨으로써, 압력 센서 판독값
Figure pct00046
및/또는 시스템의 유량
Figure pct00047
가 어떻게 모터 속도
Figure pct00048
에 영향을 줄 수 있는지를 더 명확하게 나타내는 수식에 도달할 수 있다.
Figure pct00049
이러한 수식에 기초하여, 모터 속도를 제어함으로써 시스템의 원하는 압력이 달성될 수 있다. 시스템의 원하는 압력 또는 미리 결정된 압력이 확인되면, 원하는 압력 또는 미리 결정된 압력을 달성하는데 필요한 모터 속도가 계산될 수 있다. 그 다음, 제어기는 밀폐형 호흡 시스템에서 모터 속도를 조정함으로써 시스템의 압력을 제어할 수 있다.
호흡 주기 강화
환자의 호흡 주기가 결정되었다면, 환자의 호흡을 더 양호하게 보조하기 위해, 결정된 호흡 주기에 기초하여 송풍기 모터로의 제어 신호가 조정될 수 있다. 예를 들어, 유동 치료 장치는 환자가 들숨을 쉬는 동안에 기류를 증가시키는 반면에, 환자가 날숨을 쉬는 동안에 기류를 감소시킴으로써 환자의 호흡 주기를 보조할 수 있다.
도 6a는 유동 치료 장치에 대한 호흡 주기 강화를 수행하기 위한 예시적인 시스템의 블록도를 도시한다. 도 6a에 도시된 바와 같이, 환자(602)는 유동 치료 장치(604)에 연결된다. 호흡 시스템 장치(604)는 환자(602)에게 기류를 제공하는데 사용될 수 있는 송풍기 모터(606) 또는 다른 유형의 유동 발생기를 포함한다.
유동 치료 장치(604)의 작동 동안에, 환자(602)의 호흡 주기에 기초하여 송풍기 모터(406)로의 제어 신호를 조정하기 위해, 복수의 측정값이 획득되어 제어 신호 피드백 모듈(610)로 송신될 수 있다. 예를 들어, 송풍기 모터(406)의 파라미터는 모터 속도 및/또는 시스템 압력을 측정하는데 사용될 수 있다. 기류의 유량은 하나 이상의 유량 센서(608)를 사용하여 모니터링될 수 있다. 유량 센서(408)는 가열 온도 감지 소자 및 초음파 센서 조립체와 같은 2개 이상의 상이한 유형의 센서를 포함할 수 있다. 또한, 하나 이상의 추가적인 측정값(예를 들어, 압력)을 측정하기 위해, 압력 센서(도시되지 않음)와 같은 하나 이상의 추가적인 센서가 사용될 수 있다.
호흡 주기 검출 모듈(612)에서 환자의 호흡 주기를 결정하기 위해, 복수의 측정값(예를 들어, 모터 속도, 유량, 및/또는 기타)이 사용될 수 있다. 결정된 호흡 주기는 교번하는 파형(예를 들어, 실질적으로 정현파 파형)의 형태일 수 있다.
환자의 호흡 주기가 결정되었다면, 이는 송풍기 모터(606)로의 제어 신호를 조정하는데 사용될 수 있다. 예를 들어, 호흡 주기 검출 모듈(612)로부터의 계산된 호흡 주기 파형에 대해 양의 피드백(614) 및/또는 음의 피드백(616)을 수행할 수 있다. 양의 피드백(614)과 음의 피드백(616)은 모두 계산된 호흡 주기에 기초하여 수행될 수 있으며, 618에서 결합되어 송풍기 모터(602)에 대한 제어 신호를 생성할 수 있다.
양의 피드백(614)은, 환자가 날숨을 쉴 때 모터 속도를 백오프시킴으로써, 및/또는 환자가 들숨을 쉴 때 모터 속도를 증가시킴으로써, 환자의 호흡 주기 동안에 환자에 작용하도록 기능할 수 있다. 환자의 들숨/날숨의 결정된 크기에 기초하여, 송풍기 모터(406)의 속도를 제어하는 제어 신호의 크기를 증가/감소시키기 위해 하나 이상의 스케일링 파라미터가 사용될 수 있다. 예를 들어, 송풍기 모터 제어 신호에 대한 양의 피드백은 다음과 같이 표현될 수 있다:
Figure pct00050
여기서,
Figure pct00051
는 모터 속도에 해당하고,
Figure pct00052
은 환자 제한값에 해당하며,
Figure pct00053
Figure pct00054
는 이들의 평균 또는 기준 값에 해당하고,
Figure pct00055
는 양의 피드백 파라미터에 해당한다.
한편, 음의 피드백(616)은 환자가 들숨 또는 날숨을 쉴 때 제어 신호에 대한 변화를 억제함으로써, 환자의 호흡 주기에 제공되는 양의 피드백을 제한하는데 사용될 수 있다. 예를 들어, 환자가 들숨을 쉴 때, 송풍기 모터의 모터 속도는 환자의 들숨의 크기가 증가하더라도, 특정 제한값까지만 증가될 수 있다. 음의 피드백(616)은 환자의 들숨 또는 날숨의 크기가 임계 레벨을 초과하는 경우에만 선택적으로 사용될 수 있다. 음의 피드백은 날숨 동안에는 제공되지 않고 들숨 동안에 제공될 수 있거나, 또는 그 반대로도 가능할 수 있다.
음의 피드백은 제어 신호에 인가되는 양의 피드백을 특정 한도로 제한하는 것을 포함할 수 있다. 음의 피드백은 다음과 같은 명시적 항을 포함할 수 있다:
Figure pct00056
여기서, 음의 피드백 파라미터
Figure pct00057
Figure pct00058
은, 제한값 편차(
Figure pct00059
)가 낮을 경우(예를 들어, 제로에 근접할 경우) 음의 피드백이 무시될 수 있지만 편차가 증가함에 따라 양의 피드백을 통제하기 시작하도록 설정된다. 양 또는 음의 피드백의 양(예를 들어, 양 및 음의 피드백 파라미터
Figure pct00060
Figure pct00061
의 값)은 환자의 호흡 주기(예를 들어, 환자가 들숨 또는 날숨을 쉬는지 여부)에 기초하여 조정될 수 있다.
도 7은 환자의 호흡 주기를 보조하기 위한 예시적인 방법의 흐름도를 도시한다. 블록(702)에서, 유동 치료 장치와 연동되는 송풍기 모터는 제어 신호를 사용하여 구동된다.
블록(704)에서, 환자 호흡 주기가 검출된다. 환자 호흡 주기를 검출하는 단계는 유량 측정값, 모터 속도 측정값, 압력 측정값, 및/또는 기타와 같은, 하나 이상의 센서로부터의 복수의 측정값을 수신하는 단계를 포함할 수 있다. 수신된 측정값은 예를 들어 상술한 임의의 기술을 사용하여, 환자의 호흡 주기를 결정하는데 사용될 수 있다.
블록(706)에서, 환자가 현재 들숨 또는 날숨을 쉬는지 여부에 관한 결정이 이루어진다. 환자가 들숨을 쉬는 경우, 블록(708)에서, 모터로의 제어 신호는 환자로의 기류를 증가시키도록 변경되어, 들숨 동안에 환자에 의해 이루어질 필요가 있는 호흡량을 잠재적으로 감소시킨다. 증가된 기류로 인하여 호흡량이 감소될 수 있다. 한편, 환자가 날숨을 쉬는 경우, 블록(710)에서, 모터로의 제어 신호는 환자로의 기류를 감소시키도록 변경될 수 있다. 이는 환자가 유입되는 기류 내로 호흡할 필요가 없기 때문에, 날숨 동안에 호흡량을 감소시킴에 따라 환자에게 유익할 수 있다. 또한, 환자의 날숨 가스와 캐뉼라로부터의 유입 가스 사이의 충돌로 인한 노이즈가 감소될 수 있다. 환자의 들숨/날숨에 기초하여 기류를 조정할 수 있으므로, 고유량 호흡 치료의 효과를 강화시킬 수 있다. 예를 들어, 환자가 날숨 동안에 유입 기류 내로 호흡할 필요가 없기 때문에, 실질적으로 더 많은 유량이 전달될 수 있어서(예를 들어, 들숨 동안에), 더 많은 사강 세척 및/또는 CO2 세척을 제공할 수 있다.
기류의 증가량 또는 감소량은 환자에 의한 들숨/날숨의 크기에 기초할 수 있다. 양 및 음의 피드백의 조합이 제어 신호를 조정하는데 사용될 수 있다. 예를 들어, 양의 피드백은 환자의 들숨/날숨의 크기에 기초하여, 환자가 들숨을 쉬는 경우 모터 속도를 증가시키고 환자가 날숨을 쉬는 경우 모터 속도를 감소시킴으로써 환자의 호흡을 보조하는데 사용될 수 있는 반면에, 음의 피드백은 모터 제어 신호에 적용되는 양의 피드백을 한정하거나 조절하는데 사용될 수 있다. 그 다음, 방법은 블록(702)으로 복귀하여, 업데이트된 제어 신호를 사용하여 모터가 구동되고, 환자의 호흡 주기가 계속 모니터링될 수 있다.
도 7은 위에서 논의된 바와 같이, 환자의 호흡 주기의 들숨 및 날숨 단계 모두 동안에 구현되는 피드백을 도시하지만, 환자가 호흡 주기에 있는 경우(예를 들어, 환자가 들숨 또는 날숨을 쉬는지 여부)에 적어도 부분적으로 기초하여, 양 또는 음의 피드백 파라미터가 조정될 수 있다. 예를 들어, 양의 피드백은 날숨 동안에는 구현되지 않고 들숨 동안에 구현될 수 있다. 예를 들어, 날숨을 쉴 때 "입술을 오므린 호흡"을 사용하여 호흡할 때 자신의 호흡량을 낮추려고 시도하는 환자는, 들숨 동안에 유량을 증가시키기 위한 양의 피드백을 보조하지만, 날숨 동안에는 유량을 감소시키기 위한 양의 피드백을 보조하지 않는 것이 유익할 수 있다. 날숨 동안에 양의 피드백을 구현하지 않음으로써, 날숨 압력 및 날숨 시간이 증가될 수 있으며, 이는 특정 환자를 위해 유익할 수 있다.
위상-변이된 제어 루프
환자의 호흡을 보조하기 위하여, 송풍기 모터를 구동하기 위한 제어 신호는 환자의 감지된 호흡 주기와 위상-동기 루프가 되도록 구성되어, 제어 신호를 환자의 호흡 주기와 동기화할 수 있다.
도 6b는 유동 치료 장치에 대한 위상-동기 제어 루프를 구현하기 위한 시스템의 블록도를 도시한다. 도 6b에 도시된 바와 같이, 환자(602)는 도 6a에 도시된 것과 유사한 유동 치료 장치(404)에 연결된다. 송풍기 모터(606)는 수신된 제어 신호에 따라 환자(602)에게 기류를 공급하도록 구성된다. 송풍기 모터(606)를 제어하는 제어 신호는 초기 주기적 파형(예를 들어, 디폴트 파형, 또는 하나 이상의 환자 측정값에 기초하는 파형)을 포함할 수 있다.
송풍기 모터(606) 및 유량 센서(608)는 제어 신호 피드백 모듈(610)에 의해 수신될 수 있는 모터 속도 및 유량을 각각 측정하도록 구성될 수 있으며, 여기서 환자의 호흡 주기는 호흡 주기 검출 모듈(612)에서 결정될 수 있다. 호흡 주기는 파형을 포함할 수 있다.
결정된 호흡 주기를 사용하여, 환자의 호흡 주기 파형의 위상(620)이 결정되고, 적용된 제어 신호 파형(624)의 위상(626)과 비교되어, 적용된 제어 신호 파형(624)의 위상을 업데이트하는 위상-동기 제어 루프(622)로 입력된다. 이와 같이, 적용된 제어 신호 파형(624)의 위상과 호흡 주기 파형 사이의 오차가 반복적으로 감소될 수 있으므로, 적용된 제어 신호 파형(624)은 환자의 호흡 주기와 위상이 실질적으로 정합하게 된다. 예를 들어, 도 8은 환자의 호흡 주기 파형(802) 및 제어 신호 파형(804)의 예시적인 그래프를 도시한다. 제어 신호(804)의 위상은 호흡 주기(802)의 위상과 비교되어 위상 부정합(806)을 결정한다. 제어 신호(804)의 위상은 제어 신호 및 호흡 주기의 위상들이 실질적으로 동기화되도록(예를 들어, 위상 부정합(806)을 감소시킴) 반복적으로 업데이트될 수 있다. 제어 신호의 위상은 위상 부정합이 임계값(예를 들어, 설정 시간, 위상 비율, 및/또는 기타) 내에 있을 때까지 반복적으로 업데이트될 수 있다.
또한, 제어 신호는 위상-변이 적용된 파형(628)을 생성하도록 위상-변이된다. 제어 신호 파형은 송풍기 모터로의 신호와 환자가 수신하는 결과적인 유량 사이의 지연을 보상하기 위해 위상-변이된다. 파형은 환자의 호흡 주기를 선취하기 위해 위상-변이될 수 있다. 예를 들어, 제어 신호는 환자가 들숨을 시작하기 전에 송풍기 모터의 속도를 약간 증가시키고, 환자가 날숨을 시작하기 전에 송풍기 모터의 속도를 약간 감소시키도록 구성될 수 있다. 이는 엄격한 반응성 시스템이 아닌 예측성 시스템을 제공하여, 환자가 들숨 및 날숨을 쉴 때 더 편안한 호흡 전이를 가능하게 한다.
도 9는 환자의 감지된 호흡 주기와의 위상-동기 루프로서 송풍기 모터의 제어 신호를 구현하기 위한 예시적인 방법의 흐름도를 도시한다. 블록(902)에서, 유동 치료 장치와 연동되는 송풍기 모터는 제어 신호를 사용하여 구동된다.
블록(904)에서, 환자 호흡 주기가 검출된다. 환자 호흡 주기를 검출하는 단계는 유량 측정값, 모터 속도 측정값, 압력 측정값, 및/또는 기타와 같은, 하나 이상의 센서로부터의 복수의 측정값을 수신하는 단계를 포함할 수 있다. 수신된 측정값은 예를 들어 상술한 임의의 기술을 사용하여, 환자의 호흡 주기를 결정하는데 사용될 수 있다. 또한, 결정된 호흡 주기에 기초하여 호흡 속도 또는 빈도가 계산될 수 있다.
제어기는 다수의 방식으로 호흡 속도를 추정할 수 있다. 제어기는 제어기가 초기에 시동될 때 및/또는 제어기가 실행 중일 때 호흡 속도를 추정할 수 있다. 호흡 속도는 본원에서 설명된 임의의 유형의 호흡 신호의 제로-크로싱을 카운팅함으로써 추정될 수 있다. 호흡 속도는 호흡 신호의 고속 푸리에 변환(FFT)을 수행하여 지배적 주파수를 구함으로써 추정될 수 있다. 호흡 속도는 호흡 신호의 자기 상관의 제로 크로싱 또는 피크를 발견함으로써 추정될 수 있다.
자기 상관은 지연의 함수로서 자신의 지연된 복사본과의 신호 비교일 수 있다. 자기 상관은 신호의 미가공 파형에 은폐된 반복 패턴을 예를 들어, 노이즈로 나타낼 수 있다. 구체적으로는, 도 14a에 도시된 것과 같은, 시간에 대하여 시스템에 의해 측정된 환자의 미가공 유량 판독값의 그래프는, 도 14b에 도시된 바와 같이 자기 상관될 수 있다. 자기 상관의 피크가 식별될 수 있다. 피크는 호흡률로도 알려진 환자의 호흡 속도를 추정하는데 사용될 수 있는 추정된 호흡 주기에 있을 수 있다. 또한, 호흡 주기는 자기 상관의 제로-크로싱을 식별함으로써 결정될 수도 있다. 자기 상관, 특히 처음 일부 주기들은, 미가공 호흡 신호 파형에서 직접 작업하는 경우보다 노이즈에 더 강건한 추정값의 호흡 주기를 제공할 수 있다. 이는 노이즈로 인해 미가공 파형에서 에지 검출이 불안정해질 수 있기 때문이다.
위상-동기 루프로서 송풍기 모터의 제어 신호를 구현하기 위해 호흡 속도 또는 빈도를 결정하도록 돕는 것 외에, 자기 상관으로부터 추출된 호흡률 정보를 사용하여 준수성(compliance) 정보를 제공할 수 있다. 예를 들어, 추출된 호흡률 정보는 환자가 시스템을 올바르게 사용하고 있는지 여부를 나타낼 수 있다. 추출된 호흡률 정보는 호흡량을 나타낼 수 있다.
블록(906)에서, 제어 신호의 위상이 감지된 환자 호흡 주기의 위상과 정합하는지 여부에 관한 결정이 이루어진다. 이러한 결정은 제어 신호의 위상이 감지된 환자 호흡 주기의 위상의 임계 값 또는 비율 내에 있는 경우 충족될 수 있다. 제어 신호와 감지된 환자 파형 사이의 위상차는 호흡 속도를 추정하기 위해 상술된 바와 유사한 방식으로 결정될 수 있다. 예를 들어, 제어기는 제어 신호와 감지된 환자 파형 사이에 상호-상관을 수행하여 상호-상관에서 피크를 구할 수 있다. 피크는 2개의 파형 사이의 시간 지연에서 발생할 수 있거나 또는 실질적으로 발생할 수 있다.
제어 신호 위상이 감지된 환자 호흡 주기의 위상과 정합하지 않는다고 결정되는 경우, 블록(908)에서, 제어 신호의 위상은 감지된 환자 호흡 주기의 위상과 정합하도록 반복적으로 조정된다. 제어 신호의 위상은, 미리 결정된 양, 미리 결정된 비율, 제어 신호의 위상과 감지된 환자 호흡 주기의 위상 사이의 차이에 기초하는 비율 또는 양, 및/또는 기타에 의해 조정될 수 있다. 그 다음, 방법은 블록(902)으로 복귀하여, 제어 신호에 의해 모터가 계속 구동될 수 있고, 환자의 호흡 주기가 계속 모니터링될 수 있다.
제어 신호의 진폭은 하나 이상의 양의 피드백 또는 음의 피드백 파라미터에 기초할 수 있다. 예를 들어, 환자의 들숨 또는 날숨의 크기가 측정될 수 있고, 양 및 음의 피드백 파라미터를 사용하여 제어 신호 파형의 진폭을 결정하는데 사용될 수 있다.
위상-동기 루프를 구현함으로써, 제어 신호와 환자의 호흡 주기 사이의 동기화가 달성되어, 환자가 들숨 및 날숨을 쉴 때 더 편안한 호흡 전이를 가능하게 할 수 있다. 비동기성이 의심되는 경우, 양의 피드백이 감소되거나 제거될 수 있다. 이러한 경우, 제어 신호는 유량의 피크를 감소시키거나 유량을 실질적으로 일정하게 하도록 구성될 수 있으며, 일정한 유량은 양의 피드백이 구현되는 경우의 유량보다 더 낮다. 양의 피드백의 감소 또는 제거는 제어 신호에 대한 양의 피드백으로 인한 환자의 잠재적인 불편함을 감소시키거나 제거할 수 있다. 제어 신호와 환자 호흡 주기 사이의 동기화가 재설정되면, 양의 피드백이 재개되거나 증가될 수 있다.
제어 신호 파형은 동기화가 달성됨에 따라 점진적으로 도입될 수 있다. 예를 들어, 제어 신호 파형의 진폭이 더 낮은 값에서 시작되어, 환자의 호흡 주기와 위상이 약간 상이한 제어 신호 파형으로 인해 환자에게 너무 많은 불편함을 유발하지 않도록 할 수 있다. 동기화가 달성됨에 따라, 제어 신호 파형의 진폭은 증가될 수 있다.
제어 신호 파형은 환자의 호흡 주기에 대한 목표된 위상차를 달성하도록 구성될 수 있다. 예를 들어, 제어 신호 파형은 시스템 지연을 보상하거나 환자의 호흡 주기를 선취하기 위해, 호흡 주기에 대한 목표된 양만큼 위상-변이될 수 있다. 이러한 구현예는 아래에서 더 상세하게 설명된다.
제어 신호가 송풍기 모터로 전달되는 시기와 송풍기 모터에 의해 생성된 결과적인 기류가 감지될 수 있는 시기 사이에 지연이 있을 수 있으며(예를 들어, 관성으로 인한 모터 가속 또는 감속 지연, 감지의 지연, 및/또는 기타로 인해), 이하에서 이를 시스템 지연이라 지칭한다. 제어 신호는 이러한 시스템 지연을 보상하기 위해 위상-변이될 수 있다. 도 10은 시스템 지연을 보상하도록 제어 신호를 위상-변이하기 위한 예시적인 방법의 흐름도를 도시한다. 블록(1002)에서, 유동 치료 장치와 연동되는 송풍기 모터는 제어 신호를 사용하여 구동된다.
블록(1004)에서, 송풍기 모터로부터의 결과적인 유량은 하나 이상의 센서를 사용하여 감지될 수 있다. 하나 이상의 센서는 가열 온도 감지 소자, 초음파 센서, 및/또는 기타를 포함할 수 있다. 측정된 유량에 기초하여, 제어 신호가 송풍기 모터에 의해 수신되는 시기와 결과적인 유량이 감지되는 시기 사이의 시스템 지연이 결정된다.
블록(1006)에서, 제어 신호는 결정된 시스템 지연에 기초하여 조정된다. 예를 들어, 도 11은 시스템 지연을 보상하도록 제어 신호를 업데이트하는 것을 예시하는 그래프를 도시한다. 제어 신호(1102)가 모터에 의해 수신되는 시기와 그 결과적인 유량(1104)이 환자에 의해 수신되는 시기 사이의 시스템 지연(1106)이 측정된다. 그 다음, 지연(1106)을 보상하기 위해, 위상-변이된 제어 신호(1108)를 형성하도록 제어 신호가 위상-변이될 수 있다.
제어 파형은 제어 파형이 감지된 호흡 주기 파형을 선취하도록 추가로 변이될 수 있다. 도 12는 환자의 호흡 주기 파형을 선취하도록 위상-변이된 제어 신호를 구성하기 위한 예시적인 방법의 흐름도를 도시한다. 블록(1202)에서, 유동 치료 장치와 연동되는 송풍기 모터는 제어 신호를 사용하여 구동된다.
블록(1204)에서, 환자 호흡 주기가 검출된다. 환자 호흡 주기를 검출하는 단계는 유량 측정값, 모터 속도 측정값, 압력 측정값, 및/또는 기타와 같은, 하나 이상의 센서로부터의 복수의 측정값을 수신하는 단계를 포함할 수 있다. 수신된 측정값은 예를 들어 상술한 임의의 기술을 사용하여, 환자의 호흡 주기를 결정하는데 사용될 수 있다.
블록(1206)에서, 제어 신호의 위상은 호흡 주기의 위상과 정합될 수 있다. 이는 도 8 및/또는 도 9를 참조하여 상술한 바와 같은 반복적인 방법을 포함할 수 있다.
블록(1208)에서, 환자 호흡 주기가 분석되어 환자가 들숨 또는 날숨을 쉬는 시기를 식별한다. 예를 들어, 도 13은 환자 호흡 주기(1302) 및 위상-변이된 제어 신호(1304)의 예시적인 그래프를 도시한다. 도 13에 도시된 바와 같이, 1306의 환자의 호흡 주기 파형의 피크 근처에서(예를 들어, 피크 직후에) 환자가 날숨을 시작하고, 1308의 호흡 주기 파형의 밸리 근처에서(예를 들어, 밸리 직후에) 환자가 들숨을 시작한다고 추정될 수 있다.
도 12를 다시 참조하면, 블록(1210)에서, 제어 신호의 위상은 환자 호흡 주기에 기초하여 변이된다. 예를 들어, 제어 신호의 위상은 제어 신호가 설정량의 위상 또는 시간만큼 호흡 주기의 위상보다 선행하도록 변이될 수 있다. 예를 들어, 도 13에 도시된 바와 같이, 환자가 날숨을 시작하기 전에 모터가 속도를 감소시키기 시작하고 환자가 들숨을 시작하기 전에 속도를 증가시키기 시작하도록, 제어 파형이 변이될 수 있다.
제어 파형은 미리 정의된 형상의 범위로부터 선택될 수 있으며, 하나 이상의 호흡 파라미터(예를 들어, 호흡 주기 파형의 진폭)에 기초하여 변경될 수 있다. 제어 파형은 감지된 호흡 파형에 기초하여 동적으로 생성될 수 있다.
문맥상 명확하게 달리 요구되지 않는 한, 상세한 설명 및 청구범위에 걸쳐서, "포함하다", "포함하는" 등의 단어는 배타적인 또는 완전한 의미와 반대되는 것으로서 포괄적인 의미로 해석되어야 한다; 즉, "포함하지만 이에 한정되지 않는다"는 의미이다.
"약"이란 용어는 표준 측정 정확도 이내를 의미하는 것으로 본원에서 사용된다.
본 명세서에서 임의의 종래기술에 대한 참조는, 세계의 임의의 나라에서 시도 중인 분야에서 공통의 일반적인 지식의 일부를 해당 종래기술이 형성하고 있다는 인정이나 임의의 형태의 제안이 아니며, 그렇게 간주되어서는 안된다.
또한, 개시된 장치 및 시스템은 2개 이상의 부분, 요소 또는 특징의 임의의 또는 모든 조합으로, 개별적으로 또는 집합적으로, 본 출원의 명세서에서 언급되거나 나타낸 부분, 요소 및 특징으로 구성되는 것으로 광범위하게 지칭될 수 있다.
상술한 설명에서, 그 공지된 등가물을 갖는 완전체 또는 요소를 언급한 경우, 그러한 완전체는 마치 개별적으로 상술된 것과도 같이 본원에 통합된다.
본원에서 설명된 임의의 알고리즘, 방법 또는 공정의 특정 동작, 이벤트 또는 기능은 상이한 순서로 수행될 수 있고, 추가되거나, 병합되거나 또는 완전히 생략될 수 있다(예를 들어, 설명된 모든 동작 또는 이벤트가 알고리즘의 실행을 위해 필요한 것은 아니다). 더욱이, 동작 또는 이벤트는 예를 들어, 멀티-스레드 처리, 인터럽트 처리, 또는 다중 프로세서 또는 프로세서 코어를 통해, 또는 순차적으로 수행되는 것이 아니라 다른 병렬 아키텍처를 통해 동시에 수행될 수 있다.
본원의 개시물에 기초하는 다양한 변경 및 변형은 당업자에게 명백할 것임을 유의해야 한다. 이러한 변경 및 변형은 개시된 장치 및 시스템의 사상과 범주를 벗어남이 없이 그리고 이의 부수적인 장점을 축소시키지 않고 이루어질 수 있다. 예를 들어, 다양한 요소가 원하는 대로 재배치될 수 있다. 따라서, 이러한 변경 및 변형은 개시된 장치 및 시스템의 범주 내에 포함되어야 하는 것으로 의도된다. 또한, 개시된 장치 및 시스템을 실행하기 위해 모든 특징, 양태 및 장점이 반드시 요구되는 것은 아니다. 따라서, 개시된 장치 및 시스템의 범주는 이하의 청구범위에 의해서만 한정되도록 의도된다.

Claims (81)

  1. 호흡 시스템에서 호흡 치료를 수행하기 위한 방법으로서,
    환자로의 기류를 생성하도록 구성된 송풍기 모터를 제어 신호를 사용하여 구동하는 단계;
    상기 환자의 호흡 주기를 검출하는 단계를 포함하며, 상기 환자의 호흡 주기를 검출하는 단계는,
    적어도 하나의 유량 센서로부터의 하나 이상의 유량 측정값을 포함하는 제1 센서 입력을 수신하는 단계;
    적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값 또는 상기 송풍기 모터와 연관된 하나 이상의 모터 속도 측정값을 포함하는 제2 센서 입력을 수신하는 단계;
    적어도 상기 수신된 하나 이상의 유량 측정값을 사용하여, 상기 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함하는 호흡 주기 파형을 생성하는 단계; 및
    상기 제어 신호를 상기 호흡 주기와 동기화하는 단계에 의해 이루어지고, 상기 제어 신호를 상기 호흡 주기와 동기화하는 단계는,
    상기 호흡 주기 파형의 위상을 식별하는 단계, 및
    상기 제어 신호가 상기 환자의 들숨 및 날숨에 기초하여 상기 송풍기 모터의 속도를 조정하도록 구성되도록, 상기 제어 신호와 상기 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 상기 제어 신호의 위상을 반복적으로 업데이트하는 단계에 의해 이루어지는,
    호흡 시스템에서 호흡 치료를 수행하기 위한 방법.
  2. 제1항에 있어서,
    상기 송풍 모터에 의해 수신되는 상기 제어 신호와 결과적인 상기 하나 이상의 유량 측정값 사이의 시스템 지연에 기초하여 상기 제어 신호를 위상-변이하는 단계를 더 포함하는, 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 제어 신호가 설정 시간량 만큼 상기 호흡 주기 파형을 선취하도록 상기 제어 신호를 위상-변이하는 단계를 더 포함하는, 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 적어도 하나의 유량 센서는 초음파 센서 조립체를 포함하는, 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 적어도 하나의 유량 센서는 가열 온도 감지 소자를 포함하는, 방법.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 제어 신호는 상기 호흡 주기 파형에 위상-동기되는, 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 제어 신호의 크기는 상기 호흡 주기 파형의 진폭, 양의 피드백 파라미터, 및 음의 피드백 파라미터에 적어도 부분적으로 기초하여 결정되는, 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 제2 센서 입력은 상기 송풍기 모터와 연관된 상기 하나 이상의 모터 속도 측정값인, 방법.
  9. 제8항에 있어서,
    상기 호흡 주기 파형은 상기 수신된 유량 및 모터 속도 측정값을 사용하여 생성되는, 방법.
  10. 제8항 또는 제9항에 있어서,
    상기 호흡 주기 파형은 상기 수신된 유량 및 모터 속도 측정값을 사용하여 계산된 유량 제한값에 적어도 부분적으로 기초하여 생성되는, 방법.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서,
    상기 호흡 주기 파형은 계산된 환자 유량에 적어도 부분적으로 기초하여 생성되고, 상기 환자 유량은 상기 수신된 유량 및 모터 속도 측정값을 사용하여 계산된 시스템 누출량에 기초하는, 방법.
  12. 제8항 내지 제11항 중 어느 한 항에 있어서,
    상기 모터 속도 측정값은 하나 이상의 송풍기 모터 파라미터에 적어도 부분적으로 기초하여 결정되는, 방법.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 송풍기 모터는 무브러시 DC 모터를 포함하는, 방법.
  14. 제8항 내지 제13항 중 어느 한 항에 있어서,
    상기 환자의 호흡 주기를 검출하는 단계는 제3 센서 입력을 수신하는 단계를 더 포함하고, 상기 제3 센서 입력은 상기 적어도 하나의 압력 센서로부터의 상기 하나 이상의 압력 측정값을 포함하는, 방법.
  15. 제1항 내지 제7항 또는 제13항 중 어느 한 항에 있어서,
    상기 제2 센서 입력은 상기 적어도 하나의 압력 센서로부터의 상기 하나 이상의 압력 측정값인, 방법.
  16. 제1항 내지 제14항 중 어느 한 항에 있어서,
    상기 호흡 치료를 수행하기 위한 방법은 고유량 호흡 시스템에서 수행되는, 방법.
  17. 제1항 내지 제14항 또는 제16항 중 어느 한 항에 있어서,
    상기 호흡 치료를 수행하기 위한 방법은 비-밀폐형 호흡 시스템에서 수행되는, 방법.
  18. 제1항 내지 제15항 중 어느 한 항에 있어서,
    상기 호흡 치료를 수행하기 위한 방법은 밀폐형 호흡 시스템에서 수행되는, 방법.
  19. 제18항에 있어서,
    상기 적어도 하나의 압력 센서로부터의 상기 하나 이상의 압력 측정값에 기초하여 상기 밀폐형 호흡 시스템의 미리 결정된 압력을 달성하도록 모터 속도를 조정하는 단계를 포함하는, 방법.
  20. 제18항 또는 제19항에 있어서,
    상기 밀폐형 호흡 시스템은 비침습성 환기 마스크를 포함하는, 방법.
  21. 제20항에 있어서,
    상기 압력 센서는 상기 비침습성 환기 마스크, 또는 상기 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치되거나, 상기 환자 호흡 도관 내 또는 상기 호흡 시스템의 하우징 내에 위치되는, 방법.
  22. 호흡 치료 장치로서,
    제어 신호에 의해 구동되도록 구성된 모터와 연동되며, 환자를 위한 기류를 생성하기 위한 송풍기;
    적어도 유량을 측정하도록 구성되고, 모터 속도 또는 압력을 측정하도록 추가로 구성되는 하나 이상의 센서; 및
    제어 시스템을 포함하며,
    상기 제어 시스템은,
    상기 하나 이상의 센서로부터의 하나 이상의 유량 측정값을 포함하는 제1 센서 입력을 수신하고,
    적어도 하나의 압력 센서로부터의 하나 이상의 압력 측정값 또는 상기 송풍기 모터와 연관된 하나 이상의 모터 속도 측정값을 포함하는 제2 센서 입력을 수신하며,
    적어도 상기 수신된 유량 측정값을 사용하여, 상기 환자에 의한 복수의 교번하는 들숨 및 날숨 기간을 포함하는 호흡 주기 파형을 생성함으로써, 상기 환자의 호흡 주기를 검출하도록 구성되고,
    상기 제어 시스템은,
    상기 호흡 주기 파형의 위상을 식별하고,
    상기 제어 신호가 상기 환자의 들숨 및 날숨에 기초하여 상기 송풍기 모터의 속도를 조정하도록 구성되도록, 상기 제어 신호와 상기 호흡 주기 파형 사이의 결정된 위상차를 달성하기 위해 상기 제어 신호의 위상을 반복적으로 업데이트함으로써, 상기 제어 신호를 상기 호흡 주기와 동기화하도록 구성되는,
    호흡 치료 장치.
  23. 제22항에 있어서,
    상기 제어 시스템은 상기 송풍기 모터에 의해 수신되는 상기 제어 신호와 감지되는 결과적인 상기 기류 사이의 시스템 지연에 기초하여 상기 제어 신호를 위상-변이하도록 추가로 구성되는, 호흡 치료 장치.
  24. 제22항 또는 제23항에 있어서,
    상기 제어 시스템은 상기 제어 신호가 설정 시간량 만큼 상기 호흡 주기 파형을 선취하도록, 상기 제어 신호를 위상-변이하도록 추가로 구성되는, 호흡 치료 장치.
  25. 제22항 내지 제24항 중 어느 한 항에 있어서,
    상기 하나 이상의 센서는 초음파 센서 조립체를 포함하는, 호흡 치료 장치.
  26. 제22항 내지 제25항 중 어느 한 항에 있어서,
    상기 하나 이상의 센서는 가열 온도 감지 소자를 더 포함하는, 호흡 치료 장치.
  27. 제22항 내지 제26항 중 어느 한 항에 있어서,
    상기 제어 신호는 상기 호흡 주기 파형에 위상-동기되는, 호흡 치료 장치.
  28. 제22항 내지 제27항 중 어느 한 항에 있어서,
    상기 호흡 주기 파형은 환자 호흡 속도를 계산하는데 사용되는, 호흡 치료 장치.
  29. 제22항 내지 제28항 중 어느 한 항에 있어서,
    상기 제어 신호의 크기는 상기 호흡 주기 파형의 진폭, 양의 피드백 파라미터, 및 음의 피드백 파라미터에 적어도 부분적으로 기초하여 결정되는, 호흡 치료 장치.
  30. 제22항 내지 제29항 중 어느 한 항에 있어서,
    상기 제2 센서 입력은 상기 송풍기 모터와 연관된 상기 하나 이상의 모터 속도 측정값인, 호흡 치료 장치.
  31. 제30항에 있어서,
    상기 호흡 주기 파형은 상기 수신된 유량 및 모터 속도 측정값을 사용하여 생성되는, 호흡 치료 장치.
  32. 제30항 또는 제31항에 있어서,
    상기 호흡 주기 파형은 계산된 환자 유량에 적어도 부분적으로 기초하여 생성되고, 상기 환자 유량은 상기 수신된 유량 및 모터 속도 측정값을 사용하여 계산된 시스템 누출량에 기초하는, 호흡 치료 장치.
  33. 제30항 내지 제32항 중 어느 한 항에 있어서,
    상기 모터 속도 측정값은 하나 이상의 송풍기 모터 파라미터에 적어도 부분적으로 기초하여 결정되는, 호흡 치료 장치.
  34. 제22항 내지 제29항 중 어느 한 항에 있어서,
    상기 송풍기 모터는 무브러시 DC 모터를 포함하는, 호흡 치료 장치.
  35. 제30항 내지 제34항 중 어느 한 항에 있어서,
    상기 제어 시스템은 제3 센서 입력을 수신함으로써 상기 호흡 주기를 검출하도록 구성되며, 상기 제3 센서 입력은 상기 적어도 하나의 압력 센서로부터의 상기 하나 이상의 압력 측정값을 포함하는, 호흡 치료 장치.
  36. 제22항 내지 제29항 또는 제34항 중 어느 한 항에 있어서,
    상기 제2 센서 입력은 상기 적어도 하나의 압력 센서로부터의 상기 하나 이상의 압력 측정값인, 호흡 치료 장치.
  37. 제22항 내지 제35항 중 어느 한 항에 있어서,
    상기 호흡 치료 장치는 고유량 호흡 치료 장치인, 호흡 치료 장치.
  38. 제22항 내지 제35항 또는 제37항 중 어느 한 항에 있어서,
    상기 호흡 치료 장치는 비-밀폐형 호흡 시스템에서 사용하도록 구성되는, 호흡 치료 장치.
  39. 제22항 내지 제36항 중 어느 한 항에 있어서,
    상기 호흡 치료 장치는 밀폐형 호흡 시스템에서 사용하도록 구성되는, 호흡 치료 장치.
  40. 제39항에 있어서,
    상기 호흡 치료 장치는 상기 적어도 하나의 압력 센서로부터의 상기 하나 이상의 압력 측정값에 기초하여 상기 밀폐형 호흡 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성되는, 호흡 치료 장치.
  41. 제40항에 있어서,
    상기 호흡 치료 장치는 비침습성 환기 마스크와 결합되도록 구성되는, 호흡 치료 장치.
  42. 제41항에 있어서,
    상기 압력 센서는 상기 비침습성 환기 마스크, 또는 상기 비침습성 환기 마스크를 환자 호흡 도관에 연결하는 매니폴드에 위치되거나, 상기 환자 호흡 도관 내 또는 상기 호흡 치료 장치의 하우징 내에 위치되는, 호흡 치료 장치.
  43. 환자의 들숨 및 날숨에 따라 호흡 시스템의 유량을 조정하기 위한 방법으로서,
    제어 신호에 적어도 부분적으로 기초하여 소스에 의해 생성된 기류의 유량에 해당하는 제1 입력을 프로세서에서 수신하는 단계;
    적어도 제2 입력을 상기 프로세서에서 수신하는 단계; 및
    상기 제1 및 제2 입력에 적어도 부분적으로 기초하여, 상기 환자의 예측된 호흡 주기를 상기 프로세서에 의해 결정하는 단계를 포함하는,
    환자의 들숨 및 날숨에 따라 호흡 시스템의 유량을 조정하기 위한 방법.
  44. 제43항에 있어서,
    양의 피드백 파라미터를 사용하여, 상기 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 상기 제어 신호를 조정하는 단계를 더 포함하는, 방법.
  45. 제44항에 있어서,
    음의 피드백 파라미터를 사용하여, 상기 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 상기 제어 신호를 조정하는 단계를 더 포함하는, 방법.
  46. 제43항 내지 제45항 중 어느 한 항에 있어서,
    상기 소스에 대한 상기 제어 신호를 조정하는 단계를 더 포함하며, 상기 제어 신호를 조정하는 단계는, 상기 제어 신호의 위상이 결정된 위상차 만큼 상기 예측된 호흡 주기의 위상과 실질적으로 정합하도록, 상기 예측된 호흡 주기와 대조하여 상기 제어 신호에 대해 적어도 하나의 위상-동기 루프 반복을 수행하는 단계를 포함하는, 방법.
  47. 제43항 내지 제46항 중 어느 한 항에 있어서,
    상기 제2 입력은 상기 소스와 연동되는 모터의 속도에 해당하는, 방법.
  48. 제47항에 있어서,
    압력을 포함하는 제3 입력을 수신하는 단계를 더 포함하는, 방법.
  49. 제43항 내지 제46항 중 어느 한 항에 있어서,
    상기 제2 입력은 압력에 해당하는, 방법.
  50. 제43항 내지 제49항 중 어느 한 항에 있어서,
    상기 제어 신호를 조정하는 단계는 상기 예측된 호흡 주기에 대해 상기 제어 신호를 위상-변이하는 단계를 더 포함하는, 방법.
  51. 제43항 내지 제49항 중 어느 한 항에 있어서,
    상기 제어 신호를 조정하는 단계는 시스템 지연에 적어도 부분적으로 기초하여, 상기 예측된 호흡 주기에 대해 상기 제어 신호를 위상-변이하는 단계를 더 포함하는, 방법.
  52. 제43항 내지 제50항 중 어느 한 항에 있어서,
    상기 제어 신호를 조정하는 단계는 상기 예측된 호흡 주기를 지정된 양만큼 선취하도록, 상기 예측된 호흡 주기에 대해 상기 제어 신호를 위상-변이하는 단계를 더 포함하는, 방법.
  53. 제43항 내지 제48항 또는 제50항 내지 제52항 중 어느 한 항에 있어서,
    상기 방법은 비-밀폐형 호흡 시스템에서 사용되는, 방법.
  54. 환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 시스템으로서,
    제어 신호에 적어도 부분적으로 기초하여 기류를 생성하도록 구성된 소스; 및
    프로세서를 포함하며,
    상기 프로세서는,
    상기 기류의 유량에 해당하는 제1 입력을 수신하고,
    적어도 제2 입력을 수신하며,
    상기 제1 및 제2 입력에 적어도 부분적으로 기초하여, 상기 환자의 예측된 호흡 주기를 결정하도록 구성되는,
    환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 시스템.
  55. 제54항에 있어서,
    상기 프로세서는 양의 피드백 파라미터를 사용하여, 상기 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 상기 제어 신호를 조정하도록 구성되는, 시스템.
  56. 제55항에 있어서,
    상기 프로세서는 음의 피드백 파라미터를 사용하여, 상기 예측된 호흡 주기의 진폭에 적어도 부분적으로 기초하여 상기 제어 신호를 조정하도록 구성되는, 시스템.
  57. 제54항 내지 제56항 중 어느 한 항에 있어서,
    상기 프로세서는 상기 소스에 대한 상기 제어 신호를 조정하도록 추가로 구성되고, 상기 제어 신호를 조정하는 것은, 상기 제어 신호의 위상이 결정된 위상차 만큼 상기 예측된 호흡 주기의 위상과 실질적으로 정합하도록, 상기 예측된 호흡 주기와 대조하여 상기 제어 신호에 대해 적어도 하나의 위상-동기 루프 반복을 수행하는 것을 포함하는, 시스템.
  58. 제54항 내지 제57항 중 어느 한 항에 있어서,
    상기 제2 입력은 상기 소스와 연동되는 모터의 속도에 해당하는, 시스템.
  59. 제58항에 있어서,
    상기 프로세서는 압력을 포함하는 제3 입력을 수신하도록 구성되는, 시스템.
  60. 제54항 내지 제57항 중 어느 한 항에 있어서,
    상기 제2 입력은 압력에 해당하는, 시스템.
  61. 제54항 내지 제60항 중 어느 한 항에 있어서,
    상기 제어 신호를 조정하는 것은 상기 예측된 호흡 주기에 대해 상기 제어 신호를 위상-변이하는 것을 더 포함하는, 시스템.
  62. 제54항 내지 제61항 중 어느 한 항에 있어서,
    상기 제어 신호는 시스템 지연에 적어도 부분적으로 기초하여, 상기 예측된 호흡 주기에 대해 위상-변이되는, 시스템.
  63. 제54항 내지 제62항 중 어느 한 항에 있어서,
    상기 제어 신호는 상기 예측된 호흡 주기를 지정된 양만큼 선취하도록 상기 예측된 호흡 주기에 대해 위상-변이되는, 시스템.
  64. 제54항 내지 제59항 또는 제61항 내지 제63항 중 어느 한 항에 있어서,
    상기 시스템은 비-밀폐형 호흡 시스템인, 시스템.
  65. 호흡 보조 장치를 위한 제어 파형을 조정하기 위한 방법으로서,
    환자의 호흡 주기를 검출하는 단계;
    상기 제어 파형을 상기 검출된 호흡 주기와 동기화하는 단계; 및
    상기 검출된 호흡 주기에 대해 상기 제어 파형을 위상-변이하는 단계를 포함하는,
    호흡 보조 장치를 위한 제어 파형을 조정하기 위한 방법.
  66. 제65항에 있어서,
    상기 제어 파형은 상기 호흡 주기에 대해 결정된 위상차를 갖도록 위상-변이되는, 방법.
  67. 제65항 또는 제66항에 있어서,
    상기 제어 파형을 상기 검출된 호흡 주기와 동기화하는 단계는 양의 피드백을 사용하여 상기 호흡 주기를 강화하는 단계를 포함하는, 방법.
  68. 제65항 내지 제67항 중 어느 한 항에 있어서,
    상기 제어 파형을 상기 검출된 호흡 주기와 동기화하는 단계는 음의 피드백을 사용하여 상기 호흡 주기를 조절하는 단계를 포함하며, 상기 호흡 주기의 크기가 임계값을 충족시키는 경우 음의 피드백이 상기 호흡 주기에 적용되는, 방법.
  69. 환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 호흡 보조 장치로서,
    모터를 포함하는 송풍기;
    유량을 측정하기 위한 적어도 하나의 센서; 및
    프로세서를 포함하며,
    상기 프로세서는,
    적어도 상기 유량에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정하고,
    환자의 호흡에 따라 상기 호흡 가스의 유동을 조절하도록 구성되는,
    환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 호흡 보조 장치.
  70. 제69항에 있어서,
    상기 호흡 가스의 유동은 양 및 음의 피드백 모두를 사용하는 쌍안정 시스템에 적어도 부분적으로 기초하여 조정되는, 호흡 보조 장치.
  71. 제69항 또는 제70항에 있어서,
    상기 프로세서는 상기 유량 및 송풍기 모터 속도를 나타내는 상기 신호에 기초하여 상기 환자의 들숨 및 날숨의 상기 예측된 주기를 결정하도록 구성되며, 상기 모터는 상기 송풍기 모터 속도를 나타내는 신호를 제공하도록 구성되는, 호흡 보조 장치.
  72. 제69항 또는 제70항에 있어서,
    압력 센서를 더 포함하고, 상기 프로세서는 적어도 상기 유량 및 압력에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정하도록 구성되는, 호흡 보조 장치.
  73. 제69항 내지 제71항 중 어느 한 항에 있어서,
    상기 호흡 보조 장치는 비-밀폐형 호흡 시스템에서 사용하도록 구성되는, 호흡 보조 장치.
  74. 제69항 내지 제72항 중 어느 한 항에 있어서,
    상기 호흡 보조 장치는 밀폐형 호흡 시스템에서 사용하도록 구성되는, 호흡 보조 장치.
  75. 환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 시스템으로서,
    송풍기; 및
    하나 이상의 센서와 전기적으로 통신하는 프로세서를 포함하며,
    상기 프로세서는,
    상기 하나 이상의 센서로부터 유량에 해당하는 제1 입력 및 제2 입력을 수신하고,
    상기 제1 및 제2 입력에 기초하여 환자의 들숨 및 날숨의 예측된 주기를 결정하며,
    상기 환자의 들숨 및 날숨의 상기 예측된 주기에 따라 상기 호흡 가스의 유동을 조정하도록 구성되는,
    환자의 들숨 및 날숨에 따라 유량을 조정하도록 구성된 시스템.
  76. 제75항에 있어서,
    상기 호흡 가스의 유동은 양 및 음의 피드백 모두를 사용하는 쌍안정 시스템에 적어도 부분적으로 기초하여 조정되는, 시스템.
  77. 제75항 또는 제76항에 있어서,
    상기 호흡 치료 장치는 비-밀폐형 호흡 시스템에서 사용하도록 구성되는, 시스템.
  78. 제75항 내지 제77항 중 어느 한 항에 있어서,
    상기 호흡 치료 장치는 밀폐형 호흡 시스템에서 사용하도록 구성되고, 상기 호흡 치료 장치는 상기 밀폐형 호흡 시스템의 미리 결정된 압력을 달성하기 위해 모터 속도를 조정하도록 구성되는, 시스템.
  79. 제75항 내지 제78항 중 어느 한 항에 있어서,
    상기 제2 입력은 송풍기 모터 속도를 나타내는 신호를 제공하도록 구성된 모터 속도 피드백 수단인, 시스템.
  80. 제79항에 있어서,
    상기 프로세서는 압력을 포함하는 제3 입력을 수신하도록 추가로 구성되는, 시스템.
  81. 제75항 내지 제78항 중 어느 한 항에 있어서,
    상기 제2 입력은 압력 센서로부터의 압력인, 시스템.
KR1020187036581A 2016-05-17 2017-05-17 유동 치료 장치를 위한 유로 감지 KR102426719B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227025864A KR20220115810A (ko) 2016-05-17 2017-05-17 유동 치료 장치를 위한 유로 감지

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662337795P 2016-05-17 2016-05-17
US62/337,795 2016-05-17
US201762507013P 2017-05-16 2017-05-16
US62/507,013 2017-05-16
PCT/NZ2017/050063 WO2017200394A1 (en) 2016-05-17 2017-05-17 Flow path sensing for flow therapy apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227025864A Division KR20220115810A (ko) 2016-05-17 2017-05-17 유동 치료 장치를 위한 유로 감지

Publications (2)

Publication Number Publication Date
KR20190010874A true KR20190010874A (ko) 2019-01-31
KR102426719B1 KR102426719B1 (ko) 2022-07-28

Family

ID=60326063

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187036581A KR102426719B1 (ko) 2016-05-17 2017-05-17 유동 치료 장치를 위한 유로 감지
KR1020227025864A KR20220115810A (ko) 2016-05-17 2017-05-17 유동 치료 장치를 위한 유로 감지

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020227025864A KR20220115810A (ko) 2016-05-17 2017-05-17 유동 치료 장치를 위한 유로 감지

Country Status (11)

Country Link
US (2) US11213643B2 (ko)
EP (2) EP4218869A3 (ko)
JP (3) JP7291483B2 (ko)
KR (2) KR102426719B1 (ko)
CN (6) CN114848996A (ko)
AU (2) AU2017267246B2 (ko)
CA (1) CA3024519A1 (ko)
ES (1) ES2943643T3 (ko)
GB (1) GB2567754B (ko)
SG (2) SG11201810186TA (ko)
WO (1) WO2017200394A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220102055A (ko) * 2021-01-12 2022-07-19 주식회사 멕 아이씨에스 호흡 동기화를 통한 고유량 호흡 치료 장치 및 방법

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200394A1 (en) 2016-05-17 2017-11-23 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus
WO2018072036A1 (en) * 2016-10-21 2018-04-26 Novaresp Technologies Inc. Method and apparatus for breathing assistance
AU2018372766A1 (en) * 2017-11-22 2020-04-30 Fisher & Paykel Healthcare Limited Respiratory rate monitoring for respiratory flow therapy systems
US20220031986A1 (en) * 2018-09-28 2022-02-03 Teijin Pharma Limited Respiratory rate measurement device
EP3877024A4 (en) 2018-11-10 2022-08-10 Novaresp Technologies Inc. METHOD AND DEVICE FOR CONTINUOUS MANAGEMENT OF AIRWAY PRESSURE FOR DETECTION AND/OR PREDICTION OF RESPIRATORY DEFECTS
US11135392B2 (en) 2018-12-05 2021-10-05 Aires Medical LLC Mechanical ventilator
US11400250B2 (en) 2018-12-05 2022-08-02 Aires Medical LLC Mechanical ventilator with non-invasive option
US11229763B2 (en) 2018-12-05 2022-01-25 Aires Medical LLC Mechanical ventilator with oxygen concentrator
US11123505B2 (en) * 2018-12-05 2021-09-21 Aires Medical LLC Breathing apparatus with breath detection software
JP7463389B2 (ja) 2019-02-22 2024-04-08 フィッシャー アンド ペイケル ヘルスケア リミテッド 呼吸療法における調整可能な呼気リリーフ
US20220134028A1 (en) 2019-03-05 2022-05-05 Fisher & Paykel Healthcare Limited Patient attachment detection in respiratory flow therapy systems
CN112336953A (zh) * 2019-08-06 2021-02-09 林信涌 正压呼吸设备
CN110448314B (zh) * 2019-09-06 2024-04-02 安徽阳光心健科技发展有限公司 一种用于心理评估的无线压触式呼吸采集器
WO2021168588A1 (en) 2020-02-26 2021-09-02 Novaresp Technologies Inc. Method and apparatus for determining and/or predicting sleep and respiratory behaviours for management of airway pressure
US20210299371A1 (en) * 2020-03-31 2021-09-30 Good Interfaces, Inc. Air filtration and user movement monitoring devices
EP4189334A1 (en) * 2020-08-03 2023-06-07 Uscom Limited Ultrasonic gas flow calibration device
CN113769213A (zh) * 2021-08-19 2021-12-10 北京怡和嘉业医疗科技股份有限公司 通气控制方法、装置、系统、终端设备及可读存储介质
EP4252813A1 (en) 2022-03-30 2023-10-04 Koninklijke Philips N.V. High flow nasal therapy system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005201A1 (en) * 2011-07-01 2013-01-10 Koninklijke Philips Electronics N.V. System and method for limited flow respiratory therapy
JP2013144104A (ja) * 2011-12-16 2013-07-25 Minato Ikagaku Kk 呼気ガス分析装置
US20130228181A1 (en) * 2012-03-02 2013-09-05 Breathe Technologies, Inc. Continuous Positive Airway Pressure (CPAP) Therapy Using Measurements of Speed and Pressure
US20140326241A1 (en) * 2008-04-15 2014-11-06 Resmed Limited Methods, systems and apparatus for paced breathing

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2324765B1 (en) * 1993-11-05 2015-10-07 ResMed Limited Control of CPAP treatment
AU683753B2 (en) * 1994-07-06 1997-11-20 Teijin Limited An apparatus for assisting in ventilating the lungs of a patient
AUPP366398A0 (en) * 1998-05-22 1998-06-18 Resmed Limited Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing
US6626175B2 (en) * 2000-10-06 2003-09-30 Respironics, Inc. Medical ventilator triggering and cycling method and mechanism
EP1399209B1 (en) * 2001-05-23 2016-08-17 ResMed Limited Ventilator patient synchronization
AU2003903138A0 (en) * 2003-06-20 2003-07-03 Resmed Limited Method and apparatus for improving the comfort of cpap
JP5138936B2 (ja) * 2003-11-26 2013-02-06 レスメド・リミテッド 呼吸不全の存在下での換気サポートの全身制御のための方法及び装置
JP4773368B2 (ja) * 2003-12-29 2011-09-14 レスメド・リミテッド 睡眠呼吸障害の存在下での機械的人工換気
US7942824B1 (en) * 2005-11-04 2011-05-17 Cleveland Medical Devices Inc. Integrated sleep diagnostic and therapeutic system and method
US7594508B2 (en) * 2006-07-13 2009-09-29 Ric Investments, Llc. Ventilation system employing synchronized delivery of positive and negative pressure ventilation
CN102056539B (zh) * 2008-06-06 2015-10-07 柯惠有限合伙公司 用于与患者努力成比例地进行换气的系统及方法
EP2755710B1 (en) * 2011-09-13 2018-05-23 ResMed Limited Vent arrangement for respiratory mask
MX2014004535A (es) * 2011-10-19 2014-08-01 Koninkl Philips Nv Deteccion de respiracion por la boca en la fase temprana de la expiracion.
US9750908B2 (en) * 2012-02-15 2017-09-05 Fisher & Paykel Healthcare Limited System, apparatus and methods for supplying gases
EP3998097A1 (en) * 2012-04-05 2022-05-18 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
EP2844325B1 (en) * 2012-04-30 2019-11-27 ResMed Pty Ltd Apparatus for oral flow therapy
US20150114396A1 (en) 2012-05-02 2015-04-30 Resmed Limited Methods and apparatus for pressure treatment modulation
WO2013173219A1 (en) * 2012-05-14 2013-11-21 Resmed Motor Technologies Inc. Control of pressure for breathing comfort
EP2938379B1 (en) * 2012-12-26 2019-04-24 Koninklijke Philips N.V. System for limiting flow compensation during limited flow respiratory therapy
SG11201509741SA (en) * 2013-06-05 2015-12-30 Fisher & Paykel Healthcare Ltd Breathing control using high flow respiration assistance
CN110960772A (zh) 2013-07-01 2020-04-07 瑞思迈私人有限公司 呼吸设备的电动机驱动系统
DE102014003542B4 (de) * 2014-03-12 2021-09-30 Drägerwerk AG & Co. KGaA Verfahren und Vorrichtung zur Erzeugung eines Alarms während einer maschinellen Patientenbeatmung
US11497870B2 (en) * 2015-02-24 2022-11-15 Somnetics International, Inc. Systems and methods for estimating flow in positive airway pressure therapy
CN105251088A (zh) * 2015-10-19 2016-01-20 广州弘凯物联网服务有限公司 一种呼吸机治疗质量管理方法及其系统
EP3370811A1 (en) * 2015-11-02 2018-09-12 Koninklijke Philips N.V. Breath by breath reassessment of patient lung parameters to improve estimation performance
WO2017200394A1 (en) 2016-05-17 2017-11-23 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus
DE102018000741A1 (de) * 2017-02-03 2018-08-09 Löwenstein Medical Technology S.A. Beatmungsgerät mit Synchronitätsindex

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140326241A1 (en) * 2008-04-15 2014-11-06 Resmed Limited Methods, systems and apparatus for paced breathing
WO2013005201A1 (en) * 2011-07-01 2013-01-10 Koninklijke Philips Electronics N.V. System and method for limited flow respiratory therapy
EP2753390B1 (en) * 2011-07-01 2016-11-09 Koninklijke Philips N.V. System and method for limited flow respiratory therapy
JP2013144104A (ja) * 2011-12-16 2013-07-25 Minato Ikagaku Kk 呼気ガス分析装置
US20130228181A1 (en) * 2012-03-02 2013-09-05 Breathe Technologies, Inc. Continuous Positive Airway Pressure (CPAP) Therapy Using Measurements of Speed and Pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220102055A (ko) * 2021-01-12 2022-07-19 주식회사 멕 아이씨에스 호흡 동기화를 통한 고유량 호흡 치료 장치 및 방법
WO2022154175A1 (ko) * 2021-01-12 2022-07-21 (주) 멕아이씨에스 호흡 동기화를 통한 고유량 호흡 치료 장치 및 방법

Also Published As

Publication number Publication date
US20220184329A1 (en) 2022-06-16
CN114848997A (zh) 2022-08-05
CN114848996A (zh) 2022-08-05
JP7410202B2 (ja) 2024-01-09
SG10202011364YA (en) 2021-01-28
CN115252985A (zh) 2022-11-01
EP3458135A4 (en) 2020-01-15
GB2567754A (en) 2019-04-24
CN109328084A (zh) 2019-02-12
AU2022202064B2 (en) 2024-03-07
KR20220115810A (ko) 2022-08-18
EP4218869A2 (en) 2023-08-02
CN114887176A (zh) 2022-08-12
CN109328084B (zh) 2022-06-21
GB2567754B (en) 2021-10-20
US11213643B2 (en) 2022-01-04
ES2943643T3 (es) 2023-06-15
JP2019516484A (ja) 2019-06-20
CA3024519A1 (en) 2017-11-23
CN114848995A (zh) 2022-08-05
SG11201810186TA (en) 2018-12-28
GB201819381D0 (en) 2019-01-09
JP2024026427A (ja) 2024-02-28
EP3458135A1 (en) 2019-03-27
EP4218869A3 (en) 2023-10-25
AU2022202064A1 (en) 2022-04-14
JP7291483B2 (ja) 2023-06-15
AU2017267246A1 (en) 2018-12-06
AU2017267246B2 (en) 2022-04-07
JP2022078288A (ja) 2022-05-24
WO2017200394A1 (en) 2017-11-23
KR102426719B1 (ko) 2022-07-28
US20190217030A1 (en) 2019-07-18
EP3458135B1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
JP7410202B2 (ja) フロー療法装置のための流路感知
CN107427655B (zh) 呼吸治疗装置及方法
JP2021007792A (ja) 装置、方法、及びコンピュータ可読記憶媒体
US20240115824A1 (en) Respiratory rate monitoring for respiratory flow therapy systems
WO2015033288A1 (en) Improvements to flow therapy
CN109803708A (zh) 使用压力控制呼吸来估计肺顺应性和肺阻力以允许所有呼吸肌反冲生成的压力消失
EP3634555B1 (en) Apparatus for treatment of respiratory disorders
JP7463389B2 (ja) 呼吸療法における調整可能な呼気リリーフ
EP3629919B1 (en) Expiratory flow limitation detection using pressure perturbations
CN110461395B (zh) 用于呼吸障碍的通气治疗的方法和设备
AU2024201836A1 (en) Flow path sensing for flow therapy apparatus

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant