KR20190004847A - Negative signals for advertisement targeting - Google Patents

Negative signals for advertisement targeting Download PDF

Info

Publication number
KR20190004847A
KR20190004847A KR1020197000504A KR20197000504A KR20190004847A KR 20190004847 A KR20190004847 A KR 20190004847A KR 1020197000504 A KR1020197000504 A KR 1020197000504A KR 20197000504 A KR20197000504 A KR 20197000504A KR 20190004847 A KR20190004847 A KR 20190004847A
Authority
KR
South Korea
Prior art keywords
user
topic
negative
social networking
advertisement
Prior art date
Application number
KR1020197000504A
Other languages
Korean (ko)
Inventor
안토니오 필리페 가르시아-마르티네즈
Original Assignee
페이스북, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/566,016 priority Critical
Priority to US13/566,016 priority patent/US10380606B2/en
Application filed by 페이스북, 인크. filed Critical 페이스북, 인크.
Priority to PCT/US2013/051702 priority patent/WO2014022157A1/en
Publication of KR20190004847A publication Critical patent/KR20190004847A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0242Determination of advertisement effectiveness
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0251Targeted advertisement
    • G06Q30/0254Targeted advertisement based on statistics
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0251Targeted advertisement
    • G06Q30/0255Targeted advertisement based on user history
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0251Targeted advertisement
    • G06Q30/0269Targeted advertisement based on user profile or attribute
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking

Abstract

소셜 네트워킹 시스템의 사용자는 소셜 네트워킹 시스템에 의해 관리되는 다양한 객체에 대한 행위를 수행한다. 이런 행위의 일부는 사용자가 객체에 대해 부정적인 감정을 가진다고 표시할 수 있다. 사용자에게 컨텐츠를 제공할 때 이런 부정적인 감정을 이용하기 위해, 소셜 네트워킹 시스템이 사용자가 객체에 대한 행위를 수행한다고 결정하는 경우, 소셜 네트워킹 시스템은 객체와 관련된 토픽을 식별하며 부정적인 감정을 하나 이상의 토픽과 연관시킨다. 하나 이상의 토픽과 부정적인 감정 사이의 이런 연관성은 소셜 네트워킹 시스템이 사용자의 부정적인 감정과 관련되는 토픽에 관한 컨텐츠를 제시할 가능성을 감소시키는데 사용될 수 있다. A user of a social networking system performs actions on various objects managed by a social networking system. Some of these behaviors can indicate that the user has negative feelings about the object. When a social networking system determines that a user performs an action on an object in order to take advantage of such negative emotions when providing content to a user, the social networking system identifies the topic associated with the object and sends a negative emotion to one or more topics Associate. This association between one or more topics and negative emotions can be used to reduce the likelihood that the social networking system will present content on topics related to the user ' s negative emotions.

Description

광고 타겟팅에 대한 부정적인 신호{NEGATIVE SIGNALS FOR ADVERTISEMENT TARGETING}Negative signals for ad targeting {NEGATIVE SIGNALS FOR ADVERTISEMENT TARGETING}
본 명세서는 일반적으로 소셜 네트워킹 시스템에 관한 것이며, 더 상세하게는 사용자에 대해 추론된 부정적인 감정을 기초로 소셜 네트워킹 시스템 사용자로의 컨텐츠의 분배를 수정하는 것에 관한 것이다. The present disclosure relates generally to social networking systems, and more particularly to modifying the distribution of content to users of social networking systems based on negative emotions inferred against the user.
소셜 네트워킹 시스템의 사용자는 실생활 상호작용, 온라인 상호작용 또는 이들의 혼합을 기초로 다른 사용자들과의 연결관계, 유대관계 또는 다른 관계를 형성할 수 있다. 사용자가 게시한 컨텐츠는 가령 뉴스피드 또는 스트림과 같이 소셜 네트워킹 시스템 내 다양한 통신 채널 중 하나 이상을 통해 사용자의 연결관계에 의해 이용가능해질 수 있다. 그러나, 소셜 네트워킹 시스템의 사용자는 흔히 사용자가 관심을 가지지 않는 컨텐츠를 수신한다. 광고를 포함하는 사용자에게 제공되는 컨텐츠를 향상시키기 위해서는, 사용자의 관심사 이외에 사용자가 싫어하는 토픽 및 다른 정보를 추론하기 위한 시스템을 가지는 것이 바람직할 수 있다. A user of a social networking system may establish a connection, relationship or other relationship with other users based on real-life interaction, online interaction, or a combination thereof. Content posted by the user may be made available by the user's connection relationship through one or more of various communication channels within the social networking system, such as a news feed or stream. However, users of social networking systems often receive content that the user is not interested in. In order to improve the content provided to the user including the advertisement, it may be desirable to have a system for inferring topics and other information that the user dislikes in addition to the interests of the user.
사용자 경험을 향상시키기 위해, 소셜 네트워킹 시스템은 가령 사용자와 연결된 다른 사용자들과 같이 소셜 네트워킹 시스템에서 토픽에 대해 다른 사용자들에 의한 부정적인 감정을 기초로 소셜 네트워킹 시스템 내 컨텐츠에 관한 토픽에 대한 사용자의 부정적인 감정을 추론한다. 추론된 감정을 사용하여, 시스템은 사용자의 추론된 부정적인 감정을 기초로 사용자에게 추후 전달되는 컨텐츠를 선택하거나, 필터링하거나, 예측하거나, 변경한다. 예컨대, 소셜 네트워킹 시스템은 특정 토픽에 대한 컨텐츠를 포함하는 하나 이상의 페이지를 관리하는데, 여기서 페이지와의 특정 상호작용은 관련 토픽에 대한 부정적인 감정을 표시한다고 알려져 있다. 일실시예로, 소셜 네트워킹 시스템은 페이지와 연관하여 수행된 특정 타입의 사용자 행위를 페이지와 관련된 토픽에 대한 부정적인 감정을 연관시킨다. 소셜 네트워킹 시스템의 사용자가 페이지와 상호작용하면, 소셜 네트워킹 시스템은 이런 사용자가 그 페이지와 관련된 토픽에 대해 부정적인 감정을 가진다고 추론한다. 또한, 사용자는 동일한 토픽과도 또한 관련되는 소셜 네트워킹 시스템 내(또는 소셜 네트워킹 시스템 외부) 다른 페이지와 상호작용할 수 있으나, 여기서 다른 페이지와 관련된 토픽에 대한 (예컨대, 긍정적인 또는 부정적인) 감정은 알려지지 않는다. 그러나, 토픽에 대한 이런 사용자의 감정이 추론되었기 때문에, 시스템은 다른 페이지와의 상호작용이 또한 토픽에 대해 부정적인 감정을 표시한다고 추론한다. 이후, 시스템은 다른 페이지와 상호작용한 다른 사용자가 또한 동일한 토픽에 대해 부정적인 감정을 가진다고 추론할 수 있다. 이후, 이런 추론된 부정적인 감정은 사용자에 대한 부정적인 토픽을 포함하는 부정적인 관심 프로필을 생성하는데 사용될 수 있다. 사용자의 부정적인 관심 프로필은 컨텐츠 필터링, 광고 타겟팅, 클릭 예측을 수행하거나 사용자에 대한 컨텐츠의 제시를 변경하는데 사용될 수 있다. In order to enhance the user experience, the social networking system may be able to provide a user's negative < Desc / Clms Page number 2 > with respect to the topic on the content in the social networking system based on negative emotions by other users to the topic in the social networking system, Infer the emotions. Using the inferred emotions, the system selects, filters, predicts, or alters content that is delivered to the user based on the user's inferred negative emotions. For example, a social networking system manages one or more pages containing content for a particular topic, where a particular interaction with a page is known to indicate negative feelings for the topic concerned. In one embodiment, the social networking system associates negative feelings for a topic associated with a page of a particular type of user action performed in connection with the page. When a user of a social networking system interacts with a page, the social networking system deduces that such a user has a negative feel for the topic associated with the page. In addition, a user may interact with other pages within the social networking system (or outside of the social networking system) that are also associated with the same topic, where no (e.g., positive or negative) feelings about the topic associated with another page are known . However, since this user's feelings for the topic have been inferred, the system inferences that interaction with other pages also displays a negative feel for the topic. Thereafter, the system can infer that another user who interacts with the other page also has a negative feel for the same topic. This inferred negative emotion can then be used to generate a negative interest profile that includes negative topics for the user. A user's negative interest profile can be used to perform content filtering, ad targeting, click prediction, or to change the presentation of content to a user.
예컨대, 소셜 네트워킹 시스템은 "I hate hockey(나는 하키를 싫어한다)"라는 제목의 페이지를 관리할 수 있으며, 제목에서 키워드 "hate(싫어한다)"는 토픽(이 예에서는 "hockey(하키)")을 향한 부정적인 감정을 표시한다. 한 세트의 소셜 네트워킹 시스템 사용자는 "I hate hockey" 페이지를 좋아할 수 있으므로, 소셜 네트워킹 시스템은 "hockey"의 토픽에 대한 부정적인 감정을 "I hate hockey" 페이지를 좋아하는 사용자 세트와 연관시킨다. "I hate hockey" 페이지를 좋아하는 다수의 소셜 네트워킹 시스템 사용자가 또한 "Hockey?"라는 제목의 소셜 네트워킹 시스템 내 다른 페이지를 좋아한다면, 소셜 네트워킹 시스템은 "Hockey?" 페이지를 좋아하는 사용자들에 대한 "hockey"의 토픽에 대한 부정적인 감정을 추론할 수 있다. 따라서, 소셜 네트워킹 시스템이 "hockey"의 토픽에 대한 감정을 식별하지 않는 사용자는 "Hockey?" 페이지를 좋아할 수 있으며, 소셜 네트워킹 시스템은 사용자가 "I hate hockey" 및 "Hockey?" 페이지와 다른 사용자들의 상호작용을 기초로 "hockey"의 토픽에 대한 부정적인 감정을 가진다고 추론한다. 따라서, 소셜 네트워킹 시스템은 "hockey"의 토픽을 사용자의 부정적인 프로필에 추가할 수 있으며, 이는 추후에 "hockey"에 관한 컨텐츠를 사용자에게 제시하는 것으로부터 필터링하는데 사용될 수 있다. For example, a social networking system may manage a page entitled " I hate hockey ", and the keyword " hate " in the title refers to a topic (in this example, " hockey " ). ≪ / RTI > Since a set of social networking system users may like the "I hate hockey" page, the social networking system associates the negative feelings of the "hockey" topic with a set of users who like the "I hate hockey" page. If a number of social networking system users who like the "I hate hockey" page also like other pages within the social networking system titled "Hockey?", The social networking system is called "Hockey?" You can infer the negative feelings about the topic of "hockey" for users who like the page. Thus, a user whose social networking system does not identify the feelings for the topic of " hockey " Pages, and social networking systems allow users to "I hate hockey" and "Hockey?" It is inferred that the page has negative feelings for the topic of "hockey" based on the interaction of other users. Thus, the social networking system can add a topic of " hockey " to the user's negative profile, which can then be used to filter out content about the " hockey " to the user.
상술한 바와 같이, 컨텐츠 분배를 개선하기 위해, 소셜 네트워킹 시스템은 부정적인 감정과 관련된 토픽을 포함하는 사용자에 대한 부정적인 프로필을 관리할 수 있다. 예컨대, 부정적인 프로필은 사용자의 사용자 프로필에 포함되거나 연관될 수 있다. 부정적인 프로필은 블랙리스트에 의해 식별된 토픽에 관한 페이지 또는 다른 컨텐츠를 사용자에게 제시되는 것으로부터 방지하는데 사용될 수 있다. 이는 사용자가 열람하는데 거의 관심이 없는 컨텐츠를 사용자에게 제시할 가능성을 감소시킨다. As discussed above, to improve content distribution, the social networking system may manage a negative profile for a user that includes a topic related to negative emotions. For example, a negative profile may be included or associated with a user's user profile. A negative profile may be used to prevent pages or other content about the topic identified by the blacklist from being presented to the user. This reduces the likelihood of users presenting content to the user with little interest in browsing.
본 발명의 상세한 설명에 기술된 특징 및 이점이 모두를 포함한 것은 아니며, 특히 많은 추가적인 특징 및 이점이 본 발명의 도면, 상세한 설명 및 청구범위의 관점에서 당업자에게 명백할 것이다. 게다가, 본 발명의 상세한 설명에서 사용되는 언어는 주로 판독하기 쉽도록 그리고 훈시적인 목적으로 선택되었고, 발명의 주제를 정확히 서술하거나 제한하도록 선택되지 않았다는 점을 유의해야 한다. Features and advantages described in the Detailed Description of the Invention are not all inclusive and many additional features and advantages will be apparent to those skilled in the art in view of the drawings, detailed description and claims. In addition, it should be noted that the language used in the detailed description of the present invention has been selected primarily for readability and for purposes of illustration, and is not selected to accurately describe or limit the subject matter of the invention.
본 발명의 내용 중에 포함되어 있다. Are included in the scope of the present invention.
도 1은 일실시예에 따라 컨텐츠 아이템에 대한 사용자의 부정적인 감정을 기초로 소셜 네트워킹 시스템 사용자에게 제공되는 컨텐츠를 변경하기 위한 시스템 환경의 상위계층 블록 다이어그램을 도시한다.
도 2는 일실시예에 따라 소셜 네트워킹 시스템에서 컨텐츠 아이템에 대한 부정적인 감정을 기초로 컨텐츠를 사용자에게 제공하기 위한 방법의 흐름도를 도시한다.
도면들은 단지 예시의 목적으로 본 발명의 다양한 실시예들을 도시한다. 당업자는 하기의 설명을 통해 본 명세서에 나타난 구성 및 방법의 대안적인 실시예들이 본 명세서에 기술된 본 발명의 원리에서 벗어남이 없이 이용될 수 있음을 용이하게 인식할 것이다.
FIG. 1 illustrates an upper layer block diagram of a system environment for modifying content provided to a user of a social networking system based on a user ' s negative feelings for a content item in accordance with an embodiment.
2 illustrates a flow diagram of a method for providing content to a user based on negative emotions for a content item in a social networking system according to one embodiment.
The Figures illustrate various embodiments of the present invention for purposes of illustration only. Those skilled in the art will readily appreciate that alternative embodiments of the configurations and methods described herein may be utilized without departing from the principles of the invention disclosed herein through the following description.
시스템 구조System structure
도 1은 소셜 네트워킹 시스템(100) 내 컨텐츠 아이템에 대한 사용자의 부정적인 감정을 기초로 소셜 네트워킹 시스템 사용자에게 제시되는 컨텐츠를 변경하기 위한 시스템 환경의 다이어그램을 도시한다. 컨텐츠 아이템에 대한 사용자의 부정적인 감정은 컨텐츠 아이템과 관련된 토픽에 대한 사용자의 관심의 결핍을 나타낸다. 사용자가 상호작용한 컨텐츠 아이템의 토픽에 대한 사용자의 부정적인 감정은 사용자가 상호작용한 컨텐츠 아이템과 동일한 토픽을 가진 다른 컨텐츠 아이템과의 소셜 네트워킹 시스템(100)의 다른 사용자들의 상호작용으로부터 추론될 수 있다. 소셜 네트워킹 시스템(100)은 다른 소셜 네트워킹 시스템 사용자가 동일한 토픽과 관련된 다른 컨텐츠 아이템과의 유사한 상호작용을 수행했을 때 토픽을 향한 부정적인 감정을 추론할 수 있다. 하나 이상의 토픽에 대한 부정적인 감정을 기초로, 소셜 네트워킹 시스템(100)은 사용자가 부정적인 감정을 가지는 토픽과 관련된 컨텐츠 아이템을 사용자가 제시받지 않도록 사용자에 대한 컨텐츠 아이템을 선택할 수 있다. 컨텐츠 아이템은 가령 광고, 쿠폰, 상태 업데이트, 소셜 네트워킹 시스템(100)이 관리하는 페이지 또는 다른 텍스트 메시지, 위치 정보(예컨대, 푸시 정보에 기반한 위치), 사진, 비디오 및 링크 등과 같은 임의의 타입의 미디어 컨텐츠를 포함할 수 있다. 또한, 소셜 네트워킹 시스템(100)은 사용자들에게 공통인 하나 이상의 토픽에 대한 부정적인 감정을 기초로 특정 사용자와 연결하기(즉, 친구가 되기) 위한 소셜 네트워킹 시스템(100)의 다른 사용자를 추천할 수 있다. 1 illustrates a diagram of a system environment for modifying content presented to a social networking system user based on a user ' s negative feelings for a content item in the social networking system 100. As shown in FIG. The user ' s negative feelings for the content item represent a lack of interest of the user to the topic associated with the content item. The user's negative feelings for the topic of the content item with which the user has interacted can be deduced from the interaction of other users of the social networking system 100 with other content items having the same topic as the content item with which the user interacted . The social networking system 100 can deduce negative emotions toward a topic when another social networking system user performs similar interactions with other content items associated with the same topic. Based on the negative feelings for one or more topics, the social networking system 100 may select a content item for the user such that the user is not presented with a content item associated with the topic for which the user has negative feelings. The content items may include any type of media, such as advertisements, coupons, status updates, pages managed by the social networking system 100 or other text messages, location information (e.g., location based on push information) Content. In addition, the social networking system 100 may recommend other users of the social networking system 100 to connect (i.e., become friends) with a particular user based on negative feelings for one or more topics common to the users have.
일반적으로, 소셜 네트워킹 시스템(100)은 다른 소셜 네트워킹 시스템 사용자들과 통신하고 상호작용하는 능력을 사용자에게 제공한다. 본 명세서에 사용되는 바와 같이, "사용자"는 개인 또는 엔티티(가령, 사업체 또는 제3자 애플리케이션)일 수 있다. 또한, 본 명세서에 사용되는 바와 같이, "연결관계"는 다른 사용자가 유대 관계 또는 다른 관계를 형성할 수 있거나 형성했던 소셜 네트워킹 시스템(100)의 사용자를 식별한다. 사용자는 소셜 네트워킹 시스템(100)에 가입한 후 사용자가 연결되기를 원하는 다른 사용자, 개인 및 엔티티와 연결한다. 사용자는 명시적으로 연결을 추가한다. 예컨대, 사용자는 사용자의 친구인 특정 다른 사용자를 선택한다. 대안으로, 사용자와 다른 사용자 사이의 연결은 사용자들의 공통의 특성(예컨대, 동일한 교육기관의 졸업생인 사용자들)을 기초로 소셜 네트워킹 시스템에 의해 자동으로 생성될 수 있다. 소셜 네트워킹 시스템 내 연결은 양방향일 수 있거나, 단지 단방향일 수 있다. 예컨대, 밥(Bob)과 조(Joe)가 둘 다 사용자들이고 서로 연결한다면, 밥과 조는 다른 하나에 대한 각각의 연결이다. 반면에, 밥이 샘(Sam)의 게시된 컨텐츠 아이템을 열람하도록 샘과 연결하고자 하지만 샘이 밥과 연결을 선택하지 않으면, 단방향 연결이 형성될 수 있는데, 여기서 샘은 밥의 연결이지만 밥은 샘의 연결이 아니다. 소셜 네트워킹 시스템의 일부 실시예는 연결이 하나 이상의 연결 레벨을 통해 간접적(예컨대, 친구들의 친구들)일 수 있게 한다. In general, the social networking system 100 provides the user with the ability to communicate and interact with other social networking system users. As used herein, a " user " may be an individual or an entity (e.g., a business or a third party application). Also, as used herein, a " connection relationship " identifies a user of the social networking system 100 that other users may or may not have established a relationship or other relationship with. The user joins the social networking system 100 and then connects with other users, individuals and entities that the user wants to connect to. The user explicitly adds the connection. For example, the user selects a specific other user who is a friend of the user. Alternatively, the connection between the user and another user may be automatically generated by the social networking system based on the common characteristics of the users (e.g., users who are graduates of the same educational institution). The connections within the social networking system may be bi-directional, or may be only unidirectional. For example, if Bob and Joe are both users and connect together, Bob and Joe are each connection to the other. On the other hand, if Bob tries to connect to Sam to browse the posted content item in Sam, but the Sam does not choose to connect with Bob, a one-way connection can be made where Sam is Bob's connection, . Some embodiments of the social networking system allow a connection to be indirect (e.g., friends of friends) through one or more connection levels.
다른 사용자와의 상호작용 이외에, 소셜 네트워킹 시스템(100)은 사용자에게 서비스에 의해 지원되는 다양한 타입의 객체에 대한 행위를 행하는 능력을 제공한다. 이런 객체는 소셜 네트워킹 시스템의 사용자가 속할 수 있는 사용자 그룹이나 네트워크, 사용자가 관심이 있을 수 있는 이벤트나 캘린더 엔트리, 사용자가 서비스를 통해 사용할 수 있는 컴퓨터-기반 애플리케이션, 사용자가 서비스를 통해 아이템을 구입하거나 판매할 수 있게 해주는 거래(transactions) 및 사용자가 소셜 네트워킹 시스템 내부나 외부에서 수행할 수 있는 광고와의 상호작용을 포함할 수 있다. 사용자가 소셜 네트워킹 시스템(100)에서 실행할 수 있는 객체들의 몇몇 예들이 있으며, 많은 다른 것들도 가능하다. 본 명세서에서 제공되는 많은 실시예와 예는 소셜 네트워킹 시스템(100)의 특정 실시예에 관한 것이지만, 다른 실시예들이 다른 타입의 소셜 네트워크, 소셜 컨텐츠 및 다른 타입의 웹사이트와 통신 메커니즘을 포함하는 다른 환경을 포함할 수 있다. In addition to interacting with other users, the social networking system 100 provides the user with the ability to perform actions on various types of objects supported by the service. Such objects may include user groups or networks to which a user of a social networking system may belong, events or calendar entries that may be of interest to the user, computer-based applications that the user may use through the service, Or interact with advertisements that a user may perform inside or outside the social networking system. There are several examples of objects that a user may run in the social networking system 100, and many others are possible. While many of the embodiments and examples provided herein relate to specific embodiments of the social networking system 100, other embodiments may also be applicable to other types of social networks, social content, and other types of websites Environment.
사용자 생성 컨텐츠는 소셜 네트워킹 시스템에서 사용자 경험을 향상시킨다. 상술한 바대로, 컨텐츠 아이템은 가령 상태 업데이트나 다른 텍스트 메시지, 위치 정보, 사진, 비디오, 광고 및 링크와 같은 임의의 타입의 미디어 컨텐츠를 포함할 수 있다. 컨텐츠 아이템은 소셜 네트워킹 시스템(100)에서 객체로 표현되는 컨텐츠 조각이다. 이런 방식으로, 소셜 네트워킹 시스템의 사용자는 통신 채널을 통해 다양한 타입의 미디어의 컨텐츠 아이템을 소셜 네트워킹 시스템으로 "게시(posting)"함으로써 서로 통신하도록 장려된다. 통신 채널을 사용하면, 소셜 네트워킹 시스템(100)의 사용자는 서로 간의 상호작용을 증가시키며 더 빈번하게 소셜 네트워킹 시스템에 참여한다. 하나의 타입의 통신 채널은 사용자가 서비스의 하나 이상의 사용자로부터 소셜 네트워킹 시스템으로 게시되거나, 업로드되거나, 제공되는 일련의 컨텐츠 아이템을 제공받는 "스트림(stream)"이다. 스트림은 사용자가 컨텐츠 아이템을 스트림으로 추가할 때 업데이트될 수 있다. 소셜 네트워킹 시스템에 대한 예시적인 통신 채널은 본 명세서에 전체로서 참조로 통합되고 2008년 10월 16일자로 출원된 미국특허출원 제12/253,149호에 더 논의된다. User generated content improves the user experience in social networking systems. As described above, the content items may include any type of media content, such as status updates or other text messages, location information, pictures, videos, advertisements and links. A content item is a piece of content represented as an object in the social networking system 100. In this manner, a user of a social networking system is encouraged to communicate with each other by " posting " content items of various types of media over a communication channel to a social networking system. Using the communication channel, the users of the social networking system 100 increase their interaction with each other and participate more frequently in the social networking system. One type of communication channel is a " stream " in which a user is presented with a set of content items that are posted, uploaded, or provided to a social networking system from one or more users of the service. The stream may be updated as the user adds the item of content as a stream. Exemplary communication channels for social networking systems are discussed further in U.S. Patent Application No. 12 / 253,149, filed October 16, 2008, which is incorporated herein by reference in its entirety.
사용자는 사용자 장치(105) 및 연결 장치(110)로서 도 1에 도시되는 클라이언트 장치를 사용하여 소셜 네트워킹 시스템(100)과 상호작용한다. 사용자 장치(105) 및/또는 연결 장치(110)는 소셜 네트워킹 시스템(100)과 상호작용하기 위한 것이며 데이터 처리 및 데이터 통신 능력을 가진 임의의 컴퓨팅 장치일 수 있다. 클라이언트 장치의 예는 개인용 컴퓨터(PC), 데스크톱 컴퓨터, 랩톱 컴퓨터, 노트북, 태블릿 PC, 휴대용 개인 단말기(PDA), 모바일 전화, 스마트폰 또는 인터넷 태블릿을 포함한다. 이런 장치는 이미지와 비디오 컨텐츠가 캡처되고 소셜 네트워킹 시스템(100)으로 업로드될 수 있게 해주는 카메라 센서를 포함할 수 있다. 또한, 이런 장치는 소셜 네트워킹 시스템(100)이 제공하는 사용자 인터페이스를 통해 사용자가 소셜 네트워킹 시스템(100)과 상호작용할 수 있게 해주는 터치 스크린, 동작 인식 시스템(gesture recognition system), 마우스 패드 또는 다른 기술을 구비할 수 있다. The user interacts with the social networking system 100 using the client device shown in FIG. 1 as user device 105 and connection device 110. User device 105 and / or connection device 110 are for interacting with social networking system 100 and may be any computing device having data processing and data communication capabilities. Examples of client devices include personal computers (PCs), desktop computers, laptop computers, laptops, tablet PCs, personal digital assistants (PDAs), mobile telephones, smart phones or Internet tablets. Such a device may include a camera sensor that allows image and video content to be captured and uploaded to the social networking system 100. Such devices also include a touch screen, gesture recognition system, mouse pad, or other technology that allows a user to interact with the social networking system 100 via a user interface provided by the social networking system 100 .
사용자 장치(105), 연결 장치(110) 및 소셜 네트워킹 시스템(100) 사이의 상호작용은 일반적으로 가령 인터넷과 같은 네트워크(165)를 통하여 수행된다. 네트워크(165)는 사용자 장치(105), 연결 장치(110) 및 소셜 네트워킹 시스템(100) 사이의 통신을 가능하게 한다. 일실시예로, 네트워크(165)는 표준 통신 기술 및/또는 프로토콜을 사용한다. 따라서, 네트워크(165)는 이더넷, 802.11, WiMAX(worldwide interoperability for microwave access), 3G, 4G, LTE, 디지털 가입자 회선(DSL), 비동기 전송 모드(ATM), 인피니밴드(InfiniBand), PCI EAS(Express Advanced Switching) 등과 같은 기술들을 사용하는 링크를 포함할 수 있다. The interaction between the user device 105, the connection device 110 and the social networking system 100 is typically performed through a network 165, such as the Internet. The network 165 enables communication between the user device 105, the connection device 110, and the social networking system 100. In one embodiment, the network 165 uses standard communication technologies and / or protocols. Thus, the network 165 may be implemented using any of a variety of communication protocols including, but not limited to, Ethernet, 802.11, worldwide interoperability for microwave access (WiMAX), 3G, 4G, LTE, Digital Subscriber Line (DSL), Asynchronous Transfer Mode (ATM), InfiniBand, Advanced Switching), and the like.
일실시예로, 클라이언트 장치(105)는 사용자가 소셜 네트워킹 시스템(100)과 상호작용할 수 있게 해주는 사용자 인터페이스 또는 애플리케이션을 실행한다. 사용자 인터페이스는 사용자가 소셜 네트워킹 시스템(100)과 관련된 다양한 행위나 활동을 수행하고 소셜 네트워킹 시스템(100)이 제공한 정보를 열람할 수 있게 해준다. 사용자 인터페이스를 사용하여 수행된 예시적인 행위는 연결관계를 추가하기, 메시지를 게시하기, 링크를 게시하기, 이미지나 비디오를 업로드하기, 사용자의 프로필 설정을 업데이트하기, 소식을 열람하기 등을 포함한다. 사용자 인터페이스를 사용하여 열람될 수 있는 소셜 네트워킹 시스템(100)이 제공한 정보의 예는: 사용자의 연결관계가 게시한 이미지나 비디오, 사용자의 연결관계가 게시한 코멘트, 다른 사용자가 사용자에게 송신한 메시지, 담벼락 게시물 등을 포함한다. In one embodiment, the client device 105 executes a user interface or application that allows a user to interact with the social networking system 100. The user interface allows a user to perform various actions or activities associated with the social networking system 100 and to view information provided by the social networking system 100. Exemplary actions performed using the user interface include adding a connection, posting a message, posting a link, uploading an image or video, updating a user's profile settings, viewing posts, etc. . Examples of information provided by the social networking system 100 that can be viewed using the user interface include: an image or video posted by the user's connection relationship; a comment posted by the user's connection relationship; Messages, wall posts, and the like.
일실시예로, 사용자 "A"가 다른 사용자 "B"의 데이터를 열람하는 경우, 사용자 "A"를 "열람 사용자(viewing user)"라 하며 사용자 "B"를 "대상 사용자(subject user)"라 한다. 사용자 인터페이스는 열람 사용자가 소셜 네트워킹 시스템(100)의 다른 대상 사용자들의 데이터뿐 아니라 뉴스, 스포츠, 관심사 등에 관한 일반 데이터를 열람할 수 있게 해준다. 사용자 인터페이스에서 정보는 다른 뷰로 열람 사용자에게 제시될 수 있다. 예컨대, 대상 사용자의 소셜 데이터는 대상 사용자의 소셜 네트워킹 데이터의 배열인 "프로필 페이지"로서 열람 사용자에게 제시될 수 있다. 또한, 대상 사용자에 대한 정보는 다양한 대상 사용자가 수행한 행위를 설명하는 소식을 포함하는 뉴스 피드의 형태로 제시될 수 있다. 일실시예로, 다른 뷰는 브라우저를 통하여 제시된 웹 표준 포맷의 데이터 및 코드를 사용하여 표현된다. 예컨대, 뉴스 피드는 서버로부터 가령 사용자 장치(105)와 같은 클라이언트에서 실행하는 웹 브라우저로 송신된 임의의 XML, HTML, CSS, JavaScript, 플레인텍스트(plaintext) 및 Java의 조합을 포함할 수 있다. 또 다른 실시예로, 뉴스 피드는 모바일 앱 또는 데스크톱 애플리케이션을 통하여 제시하기 위해 포맷팅된 데이터를 포함할 수 있다. In one embodiment, when user "A" browses data of another user "B", user "A" is referred to as a "viewing user" and user "B" . The user interface allows a viewing user to view general data about news, sports, interests, as well as data of other target users of the social networking system 100. In the user interface, information can be presented to the viewing user in another view. For example, the subject user's social data may be presented to the viewing user as a " profile page " which is an array of the subject's user's social networking data. In addition, the information about the target user may be presented in the form of a news feed including news describing the actions performed by the various target users. In one embodiment, the other views are represented using data and code in a web standard format presented via a browser. For example, the news feed may include any combination of XML, HTML, CSS, JavaScript, plaintext, and Java sent from a server to a web browser running on a client, such as user device 105. In another embodiment, the news feed may include data formatted for presentation via a mobile app or desktop application.
소셜 네트워크 소식(또는 "소식")은 다양한 소셜 네트워킹 시스템 뷰(사용자 인터페이스 뷰)에서 디스플레이하기 위해 구성되는 소셜 네트워킹 시스템(100)이 수집한 데이터의 집합이다. 예컨대, 소식은 웹 브라우저 내 연속적으로 업데이트된 실시간 뉴스 피드에서, 타임라인 뷰에서 또는 사용자의 프로필 페이지에서 열람중인 사용자에게 제시될 수 있다. 소식 집합은 디스플레이하기 위해 함께 수집된 하나 이상의 소식의 모음이다. 예컨대, 가령 생일 파티와 같은 특정 이벤트에 관한 모든 소식은 하나의 소식 집합으로 종합될 수 있다. A social network news (or "news") is a collection of data collected by a social networking system 100 configured for display in various social networking system views (user interface views). For example, the news may be presented to a user viewing continuously in a continuously updated real-time news feed in a web browser, in a timeline view, or on a user's profile page. A post set is a collection of one or more posts collected together for display. For example, all news about a particular event, such as a birthday party, can be combined into a news set.
사용자가 소셜 네트워킹 시스템(100)에 가입할 때, 그들은 사용자가 소셜 네트워킹 시스템(100) 상에서 영구적이고 안전한 신원을 유지할 수 있게 해주는 사용자 계정을 생성할 수 있다. 사용자 계정은 사용자에 대한 상세사항이나 특성을 저장하는 사용자 프로필을 포함할 수 있다. 사용자 프로필에 저장된 상세사항이나 특성의 예는 이름, 나이, 성별, 관심사, 위치, 학력, 경력, 관계 상태 등을 포함한다. 소셜 네트워킹 시스템(100)은 사용자의 연결관계의 활동에 대해 사용자에게 계속 업데이트되게 할 뿐 아니라 사용자의 관심사에 관한 뉴스와 정보에 대해 사용자에게 알리도록 데이터의 스트림을 사용자에게 제공할 수 있다. 이런 데이터의 스트림은 사용자에게 함께 제시된 관련 데이터의 모음인 소식 및 사용자가 제시한 소식의 모음인 소식 집합을 포함할 수 있다. When a user subscribes to the social networking system 100, they may create a user account that allows the user to maintain a permanent and secure identity on the social networking system 100. The user account may include a user profile that stores details or characteristics about the user. Examples of details or characteristics stored in a user profile include name, age, gender, interest, location, education, career, relationship status, and the like. The social networking system 100 may provide a stream of data to the user to notify the user of news and information about the interests of the user as well as to keep the user updated on the activity of the user's connection relationship. Such a stream of data may include news, a collection of related data presented to the user, and a collection of news, a collection of news presented by the user.
소셜 네트워킹 시스템(100)은 예컨대 사용자 데이터 객체, 행위 객체 및 에지 객체와 같은 다른 타입의 데이터 객체를 관리한다. 사용자 데이터 스토어(115)는 사용자 데이터 객체를 포함한다. 일실시예로, 사용자 데이터 객체는 소셜 네트워킹 시스템(100)의 사용자에 관한 사용자 프로필 정보를 포함한다. 예컨대, 사용자 데이터 객체는 가령 사용자의 생일, 관심사, 학력, 경력, 사용자의 사진, 사용자의 사진에 대한 레퍼런스 또는 다른 적절한 사용자에 대한 정보와 같은 사용자의 특성을 저장할 수 있다. The social networking system 100 manages other types of data objects, such as user data objects, behavior objects, and edge objects. The user data store 115 includes a user data object. In one embodiment, the user data object includes user profile information about the user of the social networking system 100. [ For example, the user data object may store characteristics of the user such as, for example, the user's birthday, interest, education, career, photograph of the user, reference to the photograph of the user, or other appropriate user information.
에지 스토어(120)는 에지 객체를 저장한다. 일실시예로, 에지 스토어(120)는 사용자들 사이, 다른 사용자들 사이, 사용자와 객체 스토어(170)에 저장된 객체 사이 및/또는 에지 객체 내 소셜 네트워킹 시스템(100)의 객체와 객체 사이의 관계 및/또는 유대를 기술하는 에지를 저장한다. 일부 에지는 사용자가 다른 사용자와의 관계를 명시할 수 있게 해주는 사용자에 의해 정의될 수 있다. 예컨대, 사용자는 가령 친구, 직장동료, 파트너 등과 같은 사용자의 실제생활 관계와 병행하는 다른 사용자를 가진 에지를 생성할 수 있다. 다른 에지는 가령 소셜 네트워킹 시스템의 페이지에 관심을 표현하기, 소셜 네트워킹 시스템의 다른 사용자와의 링크를 공유하기 및 소셜 네트워킹 시스템의 다른 사용자가 행한 게시물에 대해 코멘트하기와 같이 사용자가 소셜 네트워킹 시스템(100)에서 객체와 상호작용할 때 생성된다. 에지 스토어(120)는 하기에 더 기술되는 바와 같이 가령 객체, 관심사 및 다른 사용자에 대한 친밀성 점수와 같은 에지에 대한 정보를 포함하는 에지 객체를 저장한다. The edge store 120 stores the edge object. In one embodiment, the edge store 120 may store relationships between objects and objects in the social networking system 100 between users, between other users, between users and objects stored in the object store 170 and / And / or edges describing the bonds. Some edges can be defined by the user, which allows the user to specify relationships with other users. For example, a user may create an edge with other users in parallel with the user's actual life relationship, such as a friend, co-worker, partner, and the like. The other edge may allow the user to interact with the social networking system 100, such as expressing interest in pages of the social networking system, sharing a link with other users of the social networking system, and commenting on posts made by other users of the social networking system ) When it interacts with an object. The edge store 120 stores edge objects including information about edges, such as objects, interest and intimacy scores for other users, for example, as described further below.
행위 로그(125)는 컨텐츠 아이템에 대해 소셜 네트워킹 시스템(100)의 사용자가 수행한 행위 또는 객체 스토어(170)에 저장되거나 다른 사용자에 대한 객체를 포함한다. 일실시예로, 행위는 소셜 네트워킹 시스템(100)에서 사용자의 경험을 향상시키기 위해 로그되었던 컨텐츠 아이템에 대해 사용자가 수행한 상호작용에 관한 정보를 포함한다. 컨텐츠 아이템을 향한 사용자의 대부분의 임의의 활동은 행위 로그(125)에서 행위로서 저장될 수 있다. 예컨대, 상호작용은 새로운 코멘트나 상태 업데이트의 게시, 가령 광고나 게시물과 같은 컨텐츠 아이템을 제거하기일 수 있거나, 다른 사용자에 대한 에지를 형성하는 것과 같은 간단한 어떤 것일 수 있다. 추가로, 컨텐츠 아이템에 대한 활동하지 않음(inaction) 또는 활동 부족은 행위 로그(125)에 로그인될 수 있다. 예컨대, 사용자가 소셜 네트워킹 시스템(100)에서 게시물이나 메시지에 응답하지 않는다면, 활동하지 않음은 행위 로그(125)에 로그인될 수 있다. 일실시예로, 각각의 행위는 고유 행위 식별자(ID)에 할당되며, 행위에 해당하는 컨텐츠 아이템에 대해 행위를 수행한 사용자와 관련된 사용자 식별자(ID)와 함께 저장된다. 사용자 데이터 스토어(115)에 포함된 사용자 데이터 및 행위 로그(125)에 포함된 행위는 포괄하여 내러티브 데이터(narrative data)(130)라고 일컬어진다. The action log 125 includes an action performed by a user of the social networking system 100 for a content item or an object for another user stored in the object store 170 or the like. In one embodiment, the action includes information about the interaction that the user performed on the item of content that was logged to enhance the user experience in the social networking system 100. Most of the user ' s most activity towards the content item may be stored as an action in the action log 125. [ For example, the interaction may be a posting of a new comment or a status update, such as removing a content item such as an advertisement or a post, or something simple, such as forming an edge for another user. Additionally, an inaction or lack of activity for a content item may be logged in the activity log 125. For example, if the user does not respond to posts or messages in the social networking system 100, the inactivity may be logged in the activity log 125. [ In one embodiment, each action is assigned to a unique action identifier (ID), and is stored with a user identifier (ID) associated with the user who performed the action on the content item corresponding to the action. The user data included in the user data store 115 and the actions included in the activity log 125 are collectively referred to as narrative data 130. [
소셜 네트워킹 시스템(100)은 다양한 객체, 사용자 및 소셜 네트워킹 시스템(100)에 의해 캡처된 이벤트 사이의 관계를 추적하는 소셜 그래프를 관리한다. 소셜 그래프에서, 노드가 에지를 통해 서로 연결될 때 사용자들, 사용자 데이터 및 다른 엔티티들이 존재한다. 이 실시예로, 에지는 노드 사이의 관계를 생성하는 행위를 표현한다. 예컨대, 소셜 네트워킹 시스템(100)에 저장된 사진을 표현하는 노드는 사진을 업로드했던 사용자에 대한 에지를 가질 수 있고, 이런 에지는 "업로드됨(uploaded by)" 행위일 수 있다. 동일한 사진은 그 사진에서 사용자를 표현하는 몇몇 다른 노드에 대한 에지를 가질 수 있고, 이런 에지는 "태그됨(tagged in)" 행위일 수 있다. 마찬가지로, 소셜 네트워킹 시스템(100)에서 사용자를 표현하는 노드는 그 사용자가 행한 게시물을 표현하는 각각의 노드에 대한 에지를 가질 수 있다. 이런 에지는 모두 "게시됨(posted by)" 행위일 수 있다. 소셜 그래프의 에지는 소셜 네트워킹 시스템(100)의 사용자가 행한 다른 타입의 행위에 상응하는 다른 타입을 가질 수 있다. The social networking system 100 manages the social graphs that track the relationships between various objects, users, and events captured by the social networking system 100. In the social graph, there are users, user data, and other entities when nodes are connected to each other via an edge. In this embodiment, an edge represents an act of creating a relationship between nodes. For example, a node representing a photo stored in the social networking system 100 may have an edge for the user who uploaded the photo, and such an edge may be an " uploaded by " The same picture may have an edge for some other node representing the user in the picture, and such an edge may be a " tagged in " action. Similarly, a node representing a user in the social networking system 100 may have an edge for each node representing the post the user has made. These edges may all be "posted by" actions. The edges of the social graph may have other types corresponding to other types of actions performed by the user of the social networking system 100.
소셜 네트워킹 시스템(100)은 소셜 네트워킹 시스템(100)의 다른 사용자들(또는 객체들)에 대한 사용자의 "친밀도" 측정을 유지 또는 계산할 수 있다. 친밀도 측정은 친밀성 점수로 표현될 수 있으며, 이는 소셜 네트워킹 시스템(100)의 다른 사용자(또는 객체)와 사용자의 밀접성을 나타낼 수 있다. 다른 사용자 Y에 대한 사용자 X의 친밀성 점수는 예컨대 사용자 X가 사용자 Y의 사진을 열람하는 것에 관심이 있거나 열람할 확률이 높은지를 예측하는데 사용될 수 있다. 친밀성 점수는 예측기 함수, 기계-학습 알고리즘 또는 사용자 친밀성을 결정하기 위한 임의의 다른 적절한 알고리즘을 통하는 것을 포함하는 자동화된 방법을 통하여 소셜 네트워킹 시스템(100)에 의해 계산될 수 있다. 다양한 사용자 및 객체에 대한 친밀성 점수는 시간에 따라 변하기 때문에 소셜 네트워킹 시스템(100)은 사용자의 친밀성 점수 이력의 기록을 저장할 수 있다. 소셜 네트워킹 시스템(100)의 다른 사용자뿐 아니라 시스템 내의 다른 객체들에 대한 사용자 친밀성을 계산하기 위한 시스템 및 방법이 2010년 12월 23일자로 출원된 미국출원번호 제12/978,265호에 개시되어 있으며, 본 명세서에 그 내용이 전체로서 참조로 통합된다.The social networking system 100 may maintain or calculate a user's " intimacy " measurement for other users (or objects) of the social networking system 100. The intimacy measurement may be expressed as an intimacy score, which may indicate a user's close contact with other users (or objects) of the social networking system 100. The intimacy score of user X for another user Y can be used, for example, to predict whether user X is interested in viewing or viewing the picture of user Y. [ The intimacy score may be calculated by the social networking system 100 through an automated method, including through a predictor function, a machine-learning algorithm, or any other suitable algorithm for determining user friendliness. Since the intimacy scores for various users and objects change over time, the social networking system 100 can store a record of the user's intimacy score history. A system and method for computing user familiarity with other objects in the system as well as with other users of the social networking system 100 is disclosed in U.S. Application No. 12 / 978,265, filed December 23, 2010 , The contents of which are hereby incorporated by reference in their entirety.
또한, 소셜 네트워킹 시스템(100)은 사용자 인터페이스 관리자(135)를 포함한다. 사용자 인터페이스 관리자(135)는 소셜 네트워킹 시스템(100)의 사용자가 사용자 인터페이스를 사용하여 소셜 네트워킹 시스템(100)과 상호작용할 수 있게 해주는 서버-측 기능을 제공한다. 사용자가 소셜 네트워킹 시스템(100)으로부터 정보를 요청할 때, 사용자 인터페이스 관리자(135)는 가령 사용자 장치(105) 또는 연결 장치(110)와 같은 클라이언트 장치를 통해 디스플레이될 수 있는 포맷으로 요청된 정보를 사용자에게 발송한다. 예컨대, 사용자가 소셜 네트워킹 시스템(100)으로부터 뉴스 피드를 요청할 때, 사용자 인터페이스 관리자(135)는 장치에서 디스플레이되도록 구성된 사용자 장치(105) 및/또는 연결 장치(110)로 소식 및 소식 집합을 송신할 수 있다. 사용자가 요청한 정보의 타입에 따라, 사용자 인터페이스 관리자(135)는 소식, 소식 집합, 프로필 페이지, 타임라인 또는 다른 데이터를 클라이언트 장치로 송신할 수 있다. In addition, the social networking system 100 includes a user interface manager 135. The user interface manager 135 provides server-side functionality that allows a user of the social networking system 100 to interact with the social networking system 100 using a user interface. When a user requests information from the social networking system 100, the user interface manager 135 may send the requested information in a format that can be displayed via a client device, such as the user device 105 or the connecting device 110, . For example, when a user requests a news feed from the social networking system 100, the user interface manager 135 sends a news and news set to the user device 105 and / or the connected device 110 configured to be displayed on the device . Depending on the type of information requested by the user, the user interface manager 135 may transmit the news, news set, profile page, timeline, or other data to the client device.
소식 관리자(140)는 소식 생성 프로세스를 관리한다. 소식 관리자(140)는 소식 보관소(145)에 저장되는 다른 목적(즉, 다른 뷰)용 소식을 생성하도록 구성된 소식 생성기를 포함한다. 소식 생성기는 특정 타겟 뷰에 대한 소식을 생성하도록 구성되며, 타겟 뷰(target view)를 기초로 소식 생성에 사용되는 내러티브 데이터의 선택을 제한할 수 있다. 예컨대, 소식 생성기는 사진 앨범 뷰에 대한 소식을 생성하고 이미지를 포함하거나 참조하는 내러티브 데이터에 대한 소식 생성에 사용되는 내러티브 데이터를 제한하도록 구성될 수 있다. 사용자 인터페이스에 디스플레이되도록 생성된 소식은 데스크톱 컴퓨터 인터페이스에 디스플레이되도록 생성된 소식과는 다른 데이터를 포함할 수 있고, 이들은 데스크톱 컴퓨터 디스플레이와 촉각 디스플레이 사이의 차이를 최적화하기 위해 다른 방식으로(예컨대, 더 작은 스마트폰 스크린에 대해 더 큰 아이콘) 시각적으로 포맷팅될 수 있다. 또한, 소셜 네트워킹 시스템(100)은 열람중인 사용자의 연결관계에 관한 데이터를 포함하는 소식, 즉 소셜 네트워킹 시스템(100)에서 열람중인 사용자와 연결되는 대상 사용자에 대한 데이터를 포함하는 소식으로 열람중인 사용자에게 제공되는 소식을 제한할 수 있다. The news manager 140 manages the news creation process. The news manager 140 includes a news generator configured to generate news for another purpose (i.e., another view) stored in the news archive 145. The post generator is configured to generate posts for a particular target view, and may limit the selection of narrative data used in post creation based on the target view. For example, the post generator may be configured to generate posts to the photo album view and to limit the narrative data used to generate posts for the narrative data containing or referencing the images. The news generated to be displayed on the user interface may include data that is different from the news generated to be displayed on the desktop computer interface and may be used in other ways to optimize the difference between the desktop computer display and the tactile display, Larger icons for the smartphone screen) can be visually formatted. In addition, the social networking system 100 may include a user who is browsing by a news item including data on a connection relation of a user being browsed, that is, a news containing data on an object user connected with the user who is viewing in the social networking system 100 To limit the news provided to you.
일실시예로, 소식 관리자(140)는 열람중인 사용자가 관심을 가질 수 있는 가장 관련된 최근 소식의 스크롤 가능한 리스트를 포함하는 뉴스피드를 생성한다. 소식 내 열람중인 사용자의 관심사는 친밀성 또는 다른 인자를 기초로 소식 관리자(140)에 의해 결정될 수 있다. 소식 관리자(140)는 시간 구간으로 순서화되는 특정 대상 사용자에 관한 시계열적 소식 리스트인 타임라인을 생성할 수 있다. 일부의 실시예로, 타임라인은 가령 소셜 중요성 또는 가능성 있는 참여 값(likely engagement value)과 같은 다른 인자에 따라 일부 소식의 순위화를 변경할 수 있다. 타임라인에서 디스플레이하도록 구성되는 소식은 타임라인 유닛(timeline units)이라고 일컬어진다. 또한, 타임라인은 함께 종합되었던 다수의 타임라인 유닛을 포함하는 특별한 "리포트(report)" 유닛을 포함할 수 있다. 예컨대, 사용자는 11월달 동안 친구로부터의 몇몇 담벼락 게시물을 가질 수 있다. 이루, 그 사용자의 타임라인은 그달 동안 친구로부터의 모든 게시물을 포함하는 리포트 유닛을 포함할 수 있다. 뉴스피드와 타임라인에 대해 함께 디스플레이되는 다른 타입의 소식을 생성하는 다수의 소식 생성기가 있을 수 있다. 소셜 네트워킹 시스템에 의해 캡처된 데이터로부터 뉴스피드용 소식을 생성하기 위한 시스템 및 방법이 2006년 8월 11일자로 출원된 미국특허출원 제11/503,037호 및 2006년 8월 11일에 출원된 미국특허출원 제11/502,757호에 개시되어 있으며, 본 명세서에 전체로서 참조로 통합된다. 타임라인 및 타임라인 유닛은 2011년 9월 21일에 출원된 미국특허출원 제13/239,347호에 더 상세히 논의되며, 본 명세서에 또한 전체로서 참조로 통합된다. In one embodiment, the news manager 140 generates a news feed that includes a scrollable list of the most relevant news items that the viewing user may be interested in. The interests of the user viewing in the news may be determined by the news manager 140 based on intimacy or other factors. The news manager 140 may generate a timeline, which is a time series news list about a specific target user ordered in time intervals. In some embodiments, the timeline may change the ranking of some news according to other factors such as, for example, social importance or likely engagement value. The news that is configured to display in the timeline is referred to as timeline units. The timeline may also include a special " report " unit that includes a number of timeline units that have been aggregated together. For example, a user may have several wall posts from a friend during November. The user's timeline may include a report unit that includes all posts from a friend for that month. There may be multiple news generators that generate different types of news that are displayed together for news feeds and timelines. A system and method for generating news for a news feed from data captured by a social networking system is disclosed in U.S. Patent Application No. 11 / 503,037 filed on August 11, 2006 and U.S. Patent Application No. 11 / 503,037 filed on August 11, 2006 No. 11 / 502,757, which is incorporated herein by reference in its entirety. The timeline and timeline units are discussed in greater detail in U.S. Patent Application No. 13 / 239,347, filed September 21, 2011, which is also incorporated herein by reference in its entirety.
일실시예로, 토픽 추출 엔진(150)은 객체 스토어(170)에 저장된 컨텐츠 아이템과 관련된 토픽을 식별한다. 예컨대, 토픽 추출 엔진(150)은 열람중인 사용자가 상호작용한 컨텐츠 아이템과 관련된 하나 이상의 토픽을 결정한다. 또 다른 예로서, 토픽 추출 엔진(150)은 객체 스토어(170)에 소셜 네트워킹 시스템(100)에 의해 저장된 다양한 컨텐츠 아이템과 관련된 하나 이상의 토픽을 결정할 수 있다. 일실시예로, 토픽 추출 엔진(150)은 행위 로그(125)에 저장된 행위와 관련된 컨텐츠 아이템의 토픽을 식별한다. 컨텐츠 아이템과 관련된 토픽을 식별하기 위해, 토픽 추출 엔진(150)은 본 명세서에 전체로서 참조로 통합되는 2011년 6월 24일에 출원된 미국특허출원 제13/167,701호에 더 기술되는 바와 같이 행위와 관련된 컨텐츠 아이템에(예컨대, 사용자의 게시물에) 기술되는 앵커 용어(anchor terms)를 식별하고 그 용어의 의미를 결정할 수 있다. 예컨대, 한 행위가 텍스트 "Go Sharks!"를 포함하는 게시물 또는 페이지와 관련된다면, 토픽 추출 엔진(150)은: 가령 "Shark(동물)", "San Jose Sharks(하키 팀)", "Jumping the Shark" 및 "Loan Shark"와 같은 용어 "sharks"와 관련된 엔트리를 포함하는 사전 내 엔트리 또는 다른 저장된 데이터와 텍스트를 비교함으로써 후보 토픽을 식별할 수 있다. 식별된 후보 토픽은 식별된 앵커 용어에 대한 잠재적인 의미를 표현한다. In one embodiment, the topic extraction engine 150 identifies a topic associated with a content item stored in the object store 170. For example, the topic extraction engine 150 determines one or more topics associated with the content item with which the viewing user interacted. As another example, the topic extraction engine 150 may determine one or more topics associated with the various content items stored by the social networking system 100 in the object store 170. In one embodiment, the topic extraction engine 150 identifies a topic of a content item that is associated with an activity stored in the activity log 125. In order to identify a topic associated with a content item, the topic extraction engine 150 may be configured to perform the following tasks as described further in U.S. Patent Application No. 13 / 167,701, filed June 24, 2011, which is incorporated herein by reference in its entirety: And identify the anchor terms that are described (e.g., in a user's post) with respect to the content items associated with the anchor terms. For example, if an action involves a post or page that includes the text " Go Sharks! &Quot;, the topic extraction engine 150 may: Quot; sharks ", such as " Shark ", " Shark ", " Shark ", and " Loan Shark ". The identified candidate topic represents the potential meaning for the identified anchor term.
일실시예로, 토픽 추출 엔진(150)은 앵커 용어와 관련이 없다고 결정된 후보 토픽을 제거한다. 예컨대, 토픽 추출 엔진(150)은 다양한 식별된 후보 토픽의 관점에서 가령 게시물과 같은 컨텐츠 아이템 내 추가 용어를 식별하고 분석한다. 토픽 추출 엔진(150)은 후보 토픽 및 행위와 관련된 컨텐츠 아이템 내 식별된 용어 사이의 유사도 또는 관계도를 결정하도록 카테고리 트리(category tree)를 사용할 수 있다. 토픽 추출 엔진(150)은 카테고리 트리로부터 수신된 유사도 또는 관계도를 기초로 하나 이상의 후보 토픽을 제거할 수 있다. In one embodiment, the topic extraction engine 150 removes candidate topics that are determined to be unrelated to anchor terms. For example, the topic extraction engine 150 identifies and analyzes additional terms in an item of content, such as a post, in terms of various identified candidate topics. The topic extraction engine 150 may use a category tree to determine the similarity or degree of relationship between the candidate topics and the terms identified in the content items associated with the behavior. The topic extraction engine 150 may remove one or more candidate topics based on the similarity or relationship diagram received from the category tree.
토픽 추출 엔진(150)은 앵커 용어의 의미를 표현할 가능성이 가장 높은 것으로서 관련 후보 토픽들로부터 후보 토픽을 선택한다. 일실시예로, 토픽 추출 엔진(150)은 행위와 관련된 컨텐츠 아이템의 앵커 용어에 대한 컨텍스트 단어를 기초로, 행위와 관련된 사용자의 선언된 관심사를 기초로, 행위의 전반적인 컨텍스트를 기초로 및 행위와 관련된 소셜 컨텍스트를 기초로 각각의 후보 토픽에 대한 점수를 생성한다. 이후, 토픽 추출 엔진(150)은 생성된 점수를 기초로 앵커 용어에 대한 토픽을 표현하는 후보 토픽을 선택한다. 선택된 토픽은 컨텐츠 아이템에 해당하는 행위와 관련된다. 또한, 토픽 추출 엔진(150)은 행위 로그(125) 내 행위들로 표현되는 게시된 비디오 또는 사진으로부터 토픽을 추론할 수 있다. 토픽 추출 엔진(150)은 비디오/사진의 컨텐츠를 기술하는 관련 텍스트형 메타데이터를 기초로 비디오/사진과 관련된 토픽을 식별할 수 있다. The topic extraction engine 150 selects the candidate topic from the related candidate topics as the most likely to express the meaning of the anchor term. In one embodiment, the topic extraction engine 150 may be based on the contextual word for the anchor term of the content item associated with the action, based on the user's declared interests associated with the action, and based on the overall context of the action, And generates a score for each candidate topic based on the associated social context. Then, the topic extraction engine 150 selects a candidate topic that expresses the topic for the anchor term based on the generated score. The selected topic is related to the action corresponding to the content item. The topic extraction engine 150 may also infer topics from published videos or pictures represented by behaviors in the activity log 125. [ The topic extraction engine 150 may identify a topic related to the video / photo based on the associated textual metadata describing the content of the video / photo.
일실시예로, 피드백 모듈(155)은 사용자와 컨텐츠 아이템 사이의 상호작용을 기초로 컨텐츠 아이템의 토픽에 향한 사용자의 부정적인 감정을 식별한다. 식별된 부정적인 감정을 기초로, 피드백 모듈(155)은 사용자가 부정적인 감정을 가지는 부정적인 토픽을 포함하는 각각의 사용자에 대한 부정적인 프로필을 생성한다. 피드백 모듈(155)은 사용자와 관련된 부정적인 프로필을 사용하여 사용자에게 제공하도록 컨텐츠를 결정할 수 있다. 일실시예로, 사용자에 대한 부정적인 프로필은 사용자에게 제시되지 않는 토픽을 식별하는 블랙리스트의 역할을 한다. 예컨대, 피드백 모듈(155)은 사용자의 부정적인 프로필에 포함된 토픽과 관련되는 가령 광고, 게시물, 이미지, 비디오, 뉴스피드 또는 다른 컨텐츠 아이템과 같은 컨텐츠를 식별할 수 있고 사용자에 대한 식별된 컨텐츠 아이템의 제시를 방지할 수 있다. 이는 피드백 모듈(155)이 사용자에 대한 이런 토픽과 관련된 컨텐츠 아이템의 제시를 제한하도록 토픽에 대한 사용자의 부정적인 감정을 사용할 수 있게 해준다. In one embodiment, the feedback module 155 identifies the user's negative feelings toward the topic of the content item based on the interaction between the user and the content item. Based on the identified negative feelings, the feedback module 155 generates a negative profile for each user that includes a negative topic for which the user has negative feelings. The feedback module 155 may determine the content to provide to the user using a negative profile associated with the user. In one embodiment, the negative profile for the user serves as a blacklist to identify topics that are not presented to the user. For example, the feedback module 155 may identify content such as an advertisement, post, image, video, news feed or other content item associated with a topic contained in a user's negative profile, Presentation can be prevented. This allows the feedback module 155 to use the user ' s negative feelings for the topic to limit the presentation of content items related to such topics for the user.
사용자는 컨텐츠 아이템과 상호작용할 수 있으나, 사용자의 상호작용이 컨텐츠 아이템과 관련된 토픽을 향해 부정적인 감정을 나타내는지가 불명확하다. 사용자가 상호작용하는 컨텐츠 아이템과 관련된 토픽에 대한 사용자의 부정적인 감정을 식별하기 위해, 피드백 모듈(155)은 토픽에 대한 부정적인 감정을 가지는 다른 소셜 네트워킹 시스템 사용자가 컨텐츠 아이템과 유사한 상호작용을 수행했다면 토픽에 대한 부정적인 감정을 추론할 수 있다. 예컨대, 소셜 네트워킹 시스템 사용자가 토픽에 대한 부정적인 감정을 표현하는 페이지를 좋아하거나 공유하며 또한 동일한 토픽과 관련된 추가 페이지를 좋아하거나 공유한다면, 소셜 네트워킹 시스템은 추가 페이지를 좋아하거나 공유하는 다른 사용자가 토픽에 대한 부정적인 감정을 가진다고 추론할 수 있다. 일실시예로, 부정적인 감정이 추론된 다른 소셜 네트워킹 시스템 사용자는 소셜 네트워킹 시스템(100)에서 사용자와 연결된 사용자들을 포함한다. The user is able to interact with the content item, but it is unclear whether the user's interaction represents a negative emotion towards the topic associated with the content item. In order to identify a user's negative feelings for the topic associated with the content item with which the user interacts, the feedback module 155 may determine whether the user of the other social networking system, having a negative feel for the topic, Can be inferred. For example, if a user of a social networking system likes or shares a page that expresses negative feelings for a topic, and likes or shares additional pages associated with the same topic, the social networking system may allow the other user, I can deduce that I have negative feelings for. In one embodiment, a user of the other social networking system in which a negative emotion is inferred includes users connected with the user in the social networking system 100. [
예컨대, 사용자가 페이지 "Hockey?"와 상호작용한다면, 사용자는 "hockey"의 토픽에 대해 부정적인 감정을 가지는지가 불명확하다. 그러나, 소셜 네트워킹 시스템 사용자가 토픽 "hockey"에 대해 부정적인 감정을 나타내는 페이지 "I hate hockey"와 상호작용하고 또한 "Hockey?"와 상호작용한다면, 소셜 네트워킹 시스템은 "Hockey?" 페이지와 상호작용하는 사용자가 hockey에 대해 부정적인 감정을 가진다고 추론한다. 따라서, "Hockey?"와 사용자의 상호작용은 사용자가 토픽 "hockey"에 대해 부정적인 감정을 가진다고 추론하는데 소셜 네트워킹 시스템(100)에 의해 사용된다. For example, if the user interacts with the page " Hockey? &Quot;, it is unclear whether the user has a negative feel for the topic of " hockey. &Quot; However, if a social networking system user interacts with the page "I hate hockey", which also represents a negative emotion for the topic "hockey", and also interacts with "Hockey?", The social networking system is called "Hockey?" Infer that the user interacting with the page has a negative feel for hockey. Thus, the user interaction with " Hockey? &Quot; is used by the social networking system 100 to infer that the user has a negative feel for the topic " hockey ".
컨텐츠 아이템과 사용자의 상호작용이 사용자가 컨텐츠 아이템과 관련된 토픽에 대해 부정적인 감정을 가진다고 추론하는지를 결정하기 위해, 피드백 모듈(115)은 그 토픽에 대해 부정적인 감정을 가지는 다른 소셜 네트워킹 시스템 사용자에 의해 컨텐츠 아이템과의 상호작용을 분석한다. 토픽에 대해 부정적인 감정을 가지는 다른 소셜 네트워킹 시스템 사용자가 컨텐츠 아이템과 유사한 상호작용을 수행한다면, 피드백 모듈(115)은 컨텐츠 아이템과 사용자의 상호작용을 기초로 사용자가 토픽에 대해 부정적인 감정을 가진다고 추론한다. 일실시예로, 피드백 모듈(115)은 토픽에 대해 부정적인 감정을 명확히 표시한 하나 이상의 컨텐츠 아이템과의 다른 사용자에 의한 상호작용을 행위 로그(125)로부터 식별한다. 예컨대, 부정적인 감정을 표시한 키워드(예컨대, 반감(dislike), 증오(hate), 야유(sucks) 등)를 포함하는 토픽과 관련된 페이지를 좋아하고 또한 그와 동일한 컨텐츠 아이템을 좋아하는 다른 사용자는 컨텐츠 아이템을 좋아하는 사용자가 토픽에 대해 부정적인 관심을 가진다고 추론하는데 피드백 모듈(115)에 의해 사용된다. In order to determine whether the interaction of the content item and the user is inferred that the user has a negative feel for the topic associated with the content item, the feedback module 115 may determine that the content item < RTI ID = 0.0 > To analyze the interaction with. If another social networking system user having a negative feel for the topic performs an interaction similar to the content item, then the feedback module 115 deduces that the user has a negative feel for the topic based on the user's interaction with the content item . In one embodiment, the feedback module 115 identifies from the action log 125 an interaction by another user with one or more content items that clearly indicate a negative feel for the topic. For example, other users who like pages related to topics that include negative emotional keywords (e.g., dislike, hate, sucks, etc.), and who like the same content item, Is used by the feedback module 115 to infer that the user who likes the item has a negative interest in the topic.
일실시예로, 피드백 모듈(115)은 토픽에 대해 부정적인 감정을 가진 다른 사용자의 임계 수가 컨텐츠 아이템과 상호작용했는지를 식별하고, 토픽에 대해 부정적인 감정을 가지는 적어도 임계 수의 사용자가 컨텐츠 아이템과 상호작용했다면 컨텐츠 아이템과의 상호작용으로부터 부정적인 감정을 추론한다. 따라서, 적어도 임계 수의 사용자가 컨텐츠 아이템의 토픽에 대해 부정적인 감정을 가진다면, 컨텐츠 아이템과 사용자의 상호작용은 사용자가 또한 그 토픽에 대해 부정적인 감정을 가진다고 추론한다. 피드백 모듈(115)은 부정적인 감정이 추론된다면 사용자의 부정적인 프로필에 그 토픽을 추가할 수 있다. 일실시예로, 토픽에 대해 부정적인 감정을 가지는 사용자의 수는 토픽에 대한 사용자의 부정적인 감정에 대한 가중 인자를 결정하는데 사용될 수 있다. 예컨대, 가중 인자는 임계 수의 사용자에 대하여 토픽에 부정적인 감정을 가진 사용자의 수에 비례한다. 임계 수의 사용자가 토픽에 대해 부정적인 감정을 가진다면, "1"의 가중치가 그 토픽에 대한 사용자의 부정적인 감정에 적용될 수 있다. 그러나, 임계 수의 사용자의 절반이 토픽에 대해 부정적인 감정을 가진다면, "0.5"의 가중치가 그 토픽에 대한 사용자의 부정적인 감정에 적용될 수 있다. 따라서, 슬라이딩 스케일(sliding scale)이 토픽에 대한 사용자의 부정적인 감정에 적용될 수 있다. In one embodiment, the feedback module 115 identifies whether a threshold number of other users with negative feelings for the topic has interacted with the content item, and determines whether at least a threshold number of users with negative feelings for the topic Inferring negative emotions from interaction with content items if they worked. Thus, if at least a threshold number of users have a negative feel for the topic of a content item, the interaction of the content item and the user infer that the user also has a negative feel for the topic. The feedback module 115 may add the topic to the user's negative profile if a negative emotion is inferred. In one embodiment, the number of users with negative emotions for a topic can be used to determine a weighting factor for the user ' s negative feelings for the topic. For example, the weighting factor is proportional to the number of users with negative emotions in the topic for a threshold number of users. If the threshold number of users has a negative feel for the topic, a weight of " 1 " can be applied to the user's negative feelings for that topic. However, if half of the users in the critical number have a negative feel for the topic, a weight of " 0.5 " can be applied to the user's negative feelings for that topic. Thus, a sliding scale can be applied to a user's negative feelings for a topic.
대안의 실시예로, 컨텐츠 아이템과 관련된 토픽에 대한 사용자의 부정적인 감정을 식별하기 위해, 피드백 모듈(155)은 컨텐츠 아이템에 대해 사용자가 수행한 행위를 식별하는 행위 로그(125) 내 행위를 식별한다. 피드백 모듈(155)은 사용자가 수행한 행위가 부정적인 감정을 나타내는 행위인지를 결정한다. 예컨대, 피드백 모듈(155)은 부정적인 감정과 관련된 행위의 타입을 식별하는 데이터를 포함하고 사용자가 수행한 행위가 저장된 데이터에 의해 식별된 동일한 타입을 가지는지를 결정한다. 소셜 네트워킹 시스템(100)에서 컨텐츠 아이템에 대해 사용자가 수행한 특정 행위는 컨텐츠 아이템에 해당하는 토픽이나 토픽들에 대한 일반 부정적인 감정을 나타낼 수 있다. 예컨대, 사용자가 컨텐츠 아이템이 디스플레이되는 것에서 임계 시간(예컨대, 1초) 내에 가령 광고, 게시물, 비디오, 뉴스 피드, 타임라인, 소식 등과 같은 컨텐츠 아이템을 닫는 것(즉, 해제하는 것)은 사용자가 컨텐츠 아이템의 토픽과 관련된 부정적인 감정을 가짐을 나타낸다. 또 다른 예로, 사용자가 컨텐츠 아이템을 좋아하지 않거나 컨텐츠 아이템을 숨기는 것은 사용자가 컨텐츠 아이템의 토픽에 대해 부정적인 감정을 가짐을 나타낸다. 또 다른 예로서, 사용자가 소셜 네트워킹 시스템(100)으로 게시한 텍스트 컨텐츠는 부정적인 감정을 나타낸 부정적인 함축(negative connotations)과 관련될 수 있다. 피드백 모듈(155)은 컨텐츠 아이템의 토픽에 대해 일반 부정적인 감정을 나타내는, 가령 "반감", "증오", "야유" 등과 같은 텍스트 컨텐츠에서 키워드를 식별할 수 있다. 예컨대, 사용자는 가령 "I Hate School"과 같은 소셜 네트워킹 시스템(100) 내 페이지를 생성할 수 있는데, 이는 페이지와 관한 토픽과 관련될 수 있는 부정적인 감정과 관련된 키워드(예컨대, "증오")를 포함한다. In an alternative embodiment, the feedback module 155 identifies an action in the action log 125 that identifies the action the user performed on the content item, in order to identify the user's negative feelings for the topic associated with the content item . The feedback module 155 determines whether the action performed by the user is an act indicative of a negative emotion. For example, the feedback module 155 includes data identifying the type of action associated with the negative emotion and determines whether the action the user performed has the same type identified by the stored data. The specific actions performed by the user on the content items in the social networking system 100 may indicate general negative feelings about the topics or topics corresponding to the content items. For example, closing (i.e., releasing) a content item such as an advertisement, a post, a video, a news feed, a timeline, a news, etc. within a critical time (e.g., one second) And has a negative emotion associated with the topic of the content item. As another example, if a user does not like or hides a content item, it indicates that the user has a negative feel for the topic of the content item. As another example, the textual content posted by the user in the social networking system 100 may be associated with negative connotations indicating negative emotions. The feedback module 155 may identify keywords in textual content, such as " half-off ", " hate ", & For example, a user may create a page in the social networking system 100, such as " I Hate School ", which includes a keyword (e.g., " hate ") associated with a negative emotion that may be associated with a topic relating to the page do.
또한, 소셜 네트워킹 시스템(100) 내 컨텐츠 아이템에 대한 사용자의 상호작용은 컨텐츠 아이템의 토픽에 대한 부정적인 감정을 나타낼 수 있다. 즉, 컨텐츠 아이템에 대한 사용자의 행위의 부족은 사용자가 컨텐츠 아이템의 관련 토픽에 대해 부정적인 감정을 가진다고 나타낼 수 있다. 예컨대, 사용자는 컨텐트 아이템(예컨대, 게시물, 이메일 또는 메시지)을 수신할 수 있고 임계 시간 내에 컨텐츠 아이템에 대한 사용자의 응답 부족은 컨텐츠 아이템과 관련된 토픽에 대한 부정적인 감정을 나타낼 수 있다. 또한, 사용자의 응답 부족은 통신을 사용자에게 송신하는 사용자에 대한 사용자의 부정적인 감정을 나타낼 수 있는데, 이는 송신중인 사용자로부터 추후 컨텐츠 아이템을 사용자에게 제시하는 것을 변경하는데 사용될 수 있다. In addition, a user's interaction with a content item in the social networking system 100 may indicate a negative feel for the topic of the content item. That is, a lack of user behavior on a content item may indicate that the user has a negative feel for the related topic of the content item. For example, a user may receive a content item (e.g., a post, e-mail or message) and a lack of user's response to the content item within the threshold time may indicate a negative feel for the topic associated with the content item. Also, a lack of response from the user may indicate a negative feeling of the user to the user sending the communication to the user, which can be used to change the presentation of the content item to the user from the transmitting user.
일단 피드백 모듈(155)이 가령 부정적인 감정과 관련된 타입을 가진 행위와 같은 부정적인 감정을 나타내는 컨텐츠 아이템에 대해 수행된 행위를 행위 로그(125)로부터 식별하면, 피드백 모듈(155)은 부정적인 감정과 연관시키도록 컨텐츠 아이템의 하나 이상의 특징을 식별한다. 일실시예로, 피드백 모듈(155)은 부정적인 감정과 연관시키도록 토픽 추출 엔진(150)에 의해 결정된 컨텐츠 아이템의 하나 이상의 토픽을 검색한다. 따라서, 일실시예로, 피드백 모듈(155)은 부정적인 감정을 야기하거나 관련되는 특징으로서 컨텐츠 아이템의 토픽을 식별한다. 또 다른 실시예로, 피드백 모듈(155)은 사용자에 의해 어느 특징이 부정적인 감정과 관련되는지를 식별하도록 컨텐츠 아이템으로부터 추출된 다양한 특징에 대해 선형 회귀법(linear regression)을 수행한다. 컨텐츠 아이템에 대한 사용자의 부정적인 감정은 저장되고 컨텐츠 아이템이나 컨텐츠 아이템에 관한 행위와 관련될 수 있거나, 사용자와 컨텐츠 아이템에서 추출된 토픽 사이의 부정적인 감정이 저장된다. Once the feedback module 155 identifies an action performed on the content item indicating a negative emotion, such as an action having a type associated with the negative emotion, from the activity log 125, the feedback module 155 associates the negative emotion with the negative emotion Thereby identifying one or more features of the content item. In one embodiment, the feedback module 155 retrieves one or more topics of the content item determined by the topic extraction engine 150 to associate with negative emotions. Thus, in one embodiment, the feedback module 155 identifies the topic of the content item as causing a negative emotion or related feature. In another embodiment, the feedback module 155 performs linear regression on various features extracted from the content items to identify which features are associated with the negative emotions by the user. The negative feelings of the user for the content item may be stored and related to the action on the content item or content item, or the negative feelings between the user and the topic extracted from the content item are stored.
예컨대, 사용자는 가령 광고를 닫거나 숨기는 것과 같이 광고에 대한 부정적인 감정을 나타내는 광고에 대한 행위를 수행한다. 피드백 모듈(155)은 광고로부터 특징을 추출하고, 추출된 특징에 대해 선형 회귀법을 수행한다. 광고로부터 추출된 특징의 예는 광고에 대한 랜딩 페이지, 광고와 관련된 하나 이상의 토픽, 광고와 관련된 페이지, 광고의 송신자 또는 다른 특징을 포함한다. 피드백 모듈(155)은 사용자의 부정적인 감정을 광고의 특징(예컨대, 토픽)과 연관시키며 사용자의 부정적인 감정과 관련된 특징을 저장한다. 일실시예로, 피드백 모듈(115)은 소셜 네트워킹 시스템(100) 내 다른 객체에 대해 사용자가 수행한 행위들 및 사용자가 행위를 수행한 객체의 특징들을 분석하고, 사용자가 부정적인 감정과 연관시키기 위해 광고의 특징을 식별하도록 실행한 객체의 특징을 분석한다. 예컨대, 피드백 모듈(155)은 사용자가 부정적인 감정과 관련된 광고 특징을 식별하도록 행위를 수행한 객체의 특징을 기초로 선형 회귀법을 수행한다. For example, a user performs an action on an advertisement that indicates negative feelings about the advertisement, such as closing or hiding the advertisement. The feedback module 155 extracts features from the advertisements and performs linear regression on the extracted features. Examples of features extracted from an ad include a landing page for the ad, one or more topics associated with the ad, a page associated with the ad, a sender of the ad, or other feature. The feedback module 155 associates the negative emotions of the user with features of the advertisement (e.g., topics) and stores features associated with the negative emotions of the user. In one embodiment, the feedback module 115 analyzes the actions performed by the user on other objects in the social networking system 100 and the characteristics of the object on which the user performed the action, Analyze the characteristics of the executed object to identify the characteristics of the advertisement. For example, the feedback module 155 performs linear regression based on the characteristics of the object that performed the action to identify the ad feature associated with the negative emotion.
부정적인 감정과 관련된 광고 특징은 사용자에게 추후 제시되는 광고를 변경하는데 사용될 수 있다. 예컨대, 광고 특징은 부정적인 관심 프로필에 포함된 특징을 가진 추후 광고가 사용자에게 제시되지 않도록 피드백 모듈(155)에 의해 사용자에 대한 부정적인 관심 프로필에 포함될 수 있다. 또 다른 예로서, 광고의 부정적인 특징은 추후 광고를 선택할 때 사용될 수 있다; 추후 광고의 예상 값은 추후 광고가 식별된 부정적인 특징을 포함하거나 유사한 부정적 특징을 포함한다면 감쇠될 수 있다. An ad feature associated with a negative emotion may be used to change the advertisement presented to the user later. For example, the advertising feature may be included in a negative interest profile for the user by the feedback module 155 such that a subsequent advertisement with features included in the negative interest profile is not presented to the user. As another example, a negative characteristic of an advertisement may be used in future selection of an advertisement; The expected value of the future advertisement may be attenuated if the advertisement later includes the identified negative characteristic or includes a similar negative characteristic.
일실시예로, 광고의 토픽과 관련된 부정적인 감정은 사용자에게 광고를 분배하기 위한 광고 통찰(advertisement insights) 또는 지표의 조정을 가능하게 하는 광고자에게 제공될 수 있다. 일실시예로, 피드백 모듈(155)은 부정적인 감정과 관련된 사용자의 프로필 정보와 함께 토픽과 관련된 부정적인 감정(또는 긍정적인 감정)을 광고자에게 제공할 수 있다. 이후, 광고자는 가령 연령대, 성별, 민족성, 지리적 위치, 종교적 신념 등과 같은 토픽과 관련된 부정적인 감정을 가지는 사용자와 관련된 특성을 결정할 수 있다. 특성은 광고자가 광고에 관심을 가질 가능성이 있는 사용자에게 광고를 더 효과적으로 타겟팅할 수 있게 해줄 수 있다. 예컨대, 광고자는 18 내지 24세의 남성이 세탁용 세제의 토픽에 대해 부정적인 감정을 가진다고 결정할 수 있고, 따라서 세탁용 세제 광고를 수신하는 것에서 18 내지 24세의 남성을 배제하도록 사용자를 타겟팅할 수 있다. In one embodiment, the negative emotions associated with the topic of the advertisement may be provided to an advertiser enabling advertisement insights or adjustment of the indicator to distribute the advertisement to the user. In one embodiment, the feedback module 155 may provide the advertiser with negative emotions (or positive emotions) associated with the topic along with the user's profile information associated with the negative emotions. The advertiser can then determine the characteristics associated with the user with negative emotions associated with the topic, such as age, gender, ethnicity, geographic location, religious beliefs, and the like. Attributes can help advertisers more effectively target ads to users who may be interested in advertising. For example, an advertiser may decide that a male 18-24 year old has negative feelings about the topic of a laundry detergent, and thus may target a user to exclude males 18-24 from receiving a laundry detergent ad .
일실시예로, 피드백 모듈(155)은 다른 사용자가 부정적인 감정을 나타낸 토픽을 포함하는 다른 사용자에 대한 부정적인 관심 프로필을 생성한다. 사용자가 부정적인 감정을 가진 컨텐츠 아이템과 관련된 토픽은 부정적인 감정이 식별될 때 사용자의 부정적인 관심 프로필에 추가될 수 있다. 일실시예로, 피드백 모듈(155)은 사용자가 토픽에 대한 부정적인 감정을 나타내는 적어도 임계 수의 행위를 수행하는 것에 응답하여 사용자의 부정적인 관심 프로필에 토픽을 추가한다. 이는 피드백 모듈(155)이 부정적인 감정을 토픽에 부정확하게 할당하는 것을 방지한다. In one embodiment, the feedback module 155 generates a negative interest profile for another user that includes a topic for which the other user has expressed a negative emotion. A topic associated with a content item for which the user has a negative emotion may be added to the user's negative interest profile when a negative emotion is identified. In one embodiment, the feedback module 155 adds a topic to the user's negative interest profile in response to the user performing at least a threshold number of actions indicating a negative feel for the topic. This prevents the feedback module 155 from incorrectly assigning negative emotions to the topic.
피드백 모듈(155)은 부정적인 관심 프로필에 포함된 토픽을 기초로 추가 토픽에 대한 사용자의 부정적인 감정을 추론할 수 있다. 즉, 피드백 모듈(155)은 추가 토픽과 블랙리스트에 포함된 하나 이상의 토픽 사이의 관계성 또는 유사성을 기초로 부정적인 관심 프로필에 포함되지 않는 추가 토픽에 대한 부정적인 감정을 추론할 수 있다. 예컨대, 사용자에 대한 부정적인 관심 프로필이 "cats"에 대한 부정적인 감정을 나타낸다면, 피드백 모듈(155)은 가령 "American Longhair cats"와 같은 "cats"에 관한 토픽 또는 부정적인 관심 프로필에 포함되지 않는 "cats"에 관련되거나 연관된 다른 토픽에 대한 부정적인 감정을 추론할 수 있다. 사용자의 부정적인 감정이 부정적인 관심 프로필에서 토픽으로부터 추론되는 토픽은 이후 부정적인 관심 프로필에 추가될 수 있다. The feedback module 155 may infer the user's negative feelings for additional topics based on the topics included in the negative interest profile. That is, the feedback module 155 may deduce negative feelings for additional topics that are not included in the negative interest profile, based on the relationship or similarity between the additional topic and one or more topics included in the blacklist. For example, if the negative interest profile for the user indicates a negative feel for " cats ", then the feedback module 155 may determine that the cats " cats " &Quot; can be inferred from negative feelings about other topics associated with or related to < RTI ID = 0.0 > A topic whose negative emotions are inferred from a topic in a negative interest profile may then be added to a negative interest profile.
피드백 모듈(155)은 사용자와 관련된 부정적인 관심 프로필을 기초로 변경되도록 사용자에게 제시되는 컨텐츠 아이템의 변경을 가능하게 한다. 사용자에 대한 후보 컨텐츠 아이템은 소셜 네트워킹 시스템(100)에 의해 식별되며, 후보 컨텐츠 아이템과 관련된 토픽이나 다른 특징은 사용자와 관련된 부정적인 관심 프로필과 비교된다. 피드백 모듈(155)은 부정적인 관심 프로필에 포함된 토픽들에 부합하거나 관련되는 하나 이상의 토픽을 가진 컨텐츠 아이템의 서브세트를 후보 컨텐츠 아이템으로부터 제거한다. 예컨대, 토픽의 부정적인 관심 프로필은 "cats"의 토픽을 포함할 수 있으므로, 피드백 모듈(155)은 후보 컨텐츠로부터 "cats" 또는 관련 토픽과 관련된 컨텐츠 아이템을 제거한다. 또 다른 실시예로, 피드백 모듈(155)은 후보 컨텐츠 아이템으로서 사용자에 대한 부정적인 관심 프로필에 포함된 토픽과 관련된 컨텐츠 아이템을 선택하는 것을 억제할 수 있다. 사용자의 부정적인 감정을 기초로 컨텐츠 아이템을 사용자에게 제공함으로써, 소셜 네트워킹 시스템(100)은 사용자가 관심이 있는 컨텐츠를 제공할 개연성을 증가시킨다. The feedback module 155 enables modification of a content item presented to the user to be changed based on a negative interest profile associated with the user. The candidate content item for the user is identified by the social networking system 100 and the topic or other feature associated with the candidate content item is compared to a negative interest profile associated with the user. The feedback module 155 removes from the candidate content item a subset of the content items having one or more topics that match or are related to the topics included in the negative interest profile. For example, the negative interest profile of the topic may include a topic of " cats ", so the feedback module 155 removes the " cats " or the content item associated with the related topic from the candidate content. In another embodiment, the feedback module 155 may inhibit selection of a content item associated with a topic included in a negative interest profile for the user as a candidate content item. By providing a content item to the user based on the user's negative feelings, the social networking system 100 increases the likelihood that the user will provide the content of interest.
사용자로의 컨텐츠의 제공Providing content to users
도 2는 사용자의 부정적인 감정을 기초로 소셜 네트워킹 시스템에서 사용자에게 컨텐츠를 제공하는 방법(200)을 도시한다. 다른 실시예로, 도 2에 도시된 것과는 다른 단계 및/또는 추가 단계가 수행될 수 있다. 2 illustrates a method 200 of providing content to a user in a social networking system based on a user's negative feelings. In another embodiment, steps and / or additional steps different from those shown in Fig. 2 may be performed.
소셜 네트워킹 시스템(100)은 소셜 네트워킹 시스템(100)에 의해 관리된 하나 이상의 객체에 대해 소셜 네트워킹 시스템 사용자가 수행한 행위를 수신(201)한다. 객체는 소셜 네트워킹 시스템 내 광고, 게시물, 뉴스피드, 타임라인 또는 임의의 다른 컨텐츠 아이템일 수 있다. 행위의 예는 컨텐츠 아이템을 닫기, 컨텐츠 아이템을 숨기기, 컨텐츠를 좋아하지 않기, 컨텐츠를 무시하기, 컨텐츠에 회답하기 등을 포함한다. 사용자가 행위를 수행한 각각의 객체에 대하여, 소셜 네트워킹 시스템(100)은 객체와 관련된 토픽을 식별(203)한다. 일실시예로, 소셜 네트워킹 시스템에서 토픽 추출 엔진(150)은 도 1과 함께 상술한 바대로 객체와 관련된 하나 이상의 토픽을 식별(203)한다. 도 2는 객체와 관련된 하나 이상의 토픽(203)이 식별(203)되는 한 실시예를 기술하지만, 다른 실시예로 토픽 추출 엔진(150)은 객체와 관련된 임의의 적절한 특징을 식별(203)한다. 예컨대, 객체가 광고라면, 토픽 추출 엔진(150)은 광고와 관련된 하나 이상의 랜딩 페이지, 광고와 관련된 토픽, 광고와 관련된 광고자, 광고와 관련된 키워드, 광고와 관련된 페이지 또는 임의의 다른 특징을 식별(203)할 수 있다.The social networking system 100 receives (201) an action performed by a user of the social networking system on one or more objects managed by the social networking system 100. The object may be an advertisement in a social networking system, a post, a news feed, a timeline or any other content item. Examples of actions include closing content items, hiding content items, disliking content, ignoring content, and responding to content. For each object on which the user performed an action, the social networking system 100 identifies (203) a topic associated with the object. In one embodiment, the topic extraction engine 150 in the social networking system identifies (203) one or more topics associated with an object as described in conjunction with FIG. Figure 2 illustrates one embodiment in which one or more topics 203 associated with an object are identified 203, while in another embodiment, the topic extraction engine 150 identifies 203 any suitable feature associated with the object. For example, if the object is an advertisement, the topic extraction engine 150 may identify one or more landing pages associated with the advertisement, a topic associated with the advertisement, an advertiser associated with the advertisement, a keyword associated with the advertisement, 203).
피드백 모듈(150)은 사용자가 객체에 대해 수행한 하나 이상의 행위가 객체의 토픽에 대한 부정적인 감정과 관련되는지를 결정(205)한다. 예컨대, 피드백 모듈(150)은 소셜 네트워킹 시스템(100)에 의해 부정적인 감정과 관련된 행위의 리스트(listing)를 포함하며, 사용자가 수행한 하나 이상의 행위가 리스트에 포함되는지를 결정(205)한다. 부정적인 감정과 관련된 행위의 예는: 객체가 제시되는 것에서 임계 시간 내에 객체를 닫기(즉, 해제하기), 객체를 좋아하지 않기, 특정 시간 간격 내에 객체에 대한 응답을 송신하지 않기, 부정적인 감정과 관련된 하나 이상의 단어를 포함한 객체에 대한 텍스트 입력을 제공하기 또는 임의의 다른 적절한 행위를 포함한다. The feedback module 150 determines 205 whether the one or more actions that the user performed on the object are related to the negative feelings for the topic of the object. For example, the feedback module 150 includes a listing of actions associated with negative emotions by the social networking system 100 and determines 205 whether one or more actions performed by the user are included in the list. Examples of behaviors related to negative emotions include: closing (i.e., releasing) an object within a threshold time from being presented, not liking the object, not sending a response to the object within a certain time interval, Providing textual input for an object containing such words or any other suitable action.
객체에 대해 수행된 하나 이상의 사용자의 행위가 객체의 토픽에 대한 부정적인 감정과 관련된다면, 피드백 모듈(150)은 사용자가 객체에 대해 부정적인 감정을 가진다고 추론한다. 대안으로, 객체에 대한 사용자의 행위가 토픽에 대한 부정적인 감정을 나타내는지가 불명확하다면, 피드백 모듈(150)은 상술한 바대로 토픽에 대해 공지된 부정적인 감정을 가진 다른 소셜 네트워킹 시스템 사용자에 의한 토픽과 관련된 다른 객체와의 상호작용을 기초로 부정적인 감정을 추론할 수 있다. If the behavior of one or more of the users performed on the object is related to a negative feel for the topic of the object, then the feedback module 150 deduces that the user has a negative feel for the object. Alternatively, if it is unclear whether the user's behavior on the object is indicative of a negative feel for the topic, the feedback module 150 may be associated with a topic by another social networking system user with a negative emotion known to the topic as described above Negative emotions can be inferred based on interaction with other objects.
도 2에 의해 도시된 실시예에서, 피드백 모듈은 이런 부정적인 감정을 객체와 관련된 하나 이상의 토픽과 연관시킨다(207). 특징 추출 모듈(150)이 객체와 관련된 추가 특징을 식별하는 다른 실시예에서, 피드백 모듈(150)은 부정적인 감정을 식별된 특징 중 하나와 연관시킨다(207). 예컨대, 객체에 대해 사용자가 수행한 적어도 하나의 행위가 부정적인 감정과 관련된다면, 피드백 모듈(150)은 부정적인 감정을 객체와 연관시킨다(207). 또 다른 예로서, 피드백 모듈(150)은 객체에 대해 사용자가 수행한 다수의 행위가 부정적인 감정을 나타내는지를 결정하고, 부정적인 감정을 나타내는 수행된 행위의 수가 임계치와 동일하거나 초과한다면 부정적인 감정을 객체와 연관시킨다(207). In the embodiment illustrated by FIG. 2, the feedback module associates (207) this negative emotion with one or more topics associated with the object. In another embodiment in which the feature extraction module 150 identifies additional features associated with the object, the feedback module 150 associates (207) a negative emotion with one of the identified features. For example, if at least one action performed by a user on an object is associated with a negative emotion, the feedback module 150 associates a negative emotion with the object (207). As another example, the feedback module 150 may determine whether a number of actions performed by the user on the object represent negative emotions, and if the number of actions performed indicating a negative emotion equals or exceeds the threshold, (207).
일실시예로, 부정적인 감정 및 객체와 관련된 토픽 사이의 연관성은 부정적인 관심 프로필을 생성(209)하는데 사용된다. 부정적인 관심 프로필은 사용자에 의한 부정적인 감정과 관련된 토픽 또는 다른 특징을 식별한다. 일실시예로, 부정적인 관심 프로필은 사용자에게 추후 제시(213)되는 사용자에 대한 추가 컨텐츠를 선택(211)하는데 사용된다. 예컨대, 소셜 네트워킹 시스템(100)은 추가 컨텐츠와 관련된 하나 이상의 토픽을 부정적인 관심 프로필과 비교하며, 사용자에게 제시하기 위해 부정적인 관심 프로필에 포함된 적어도 하나의 토픽과 관련되는 컨텐츠를 선택하지 않는다(211). 또 다른 예로서, 소셜 네트워킹 시스템(100)은 부정적인 관심 프로필에 포함된 토픽과 관련된 추가 컨텐츠 아이템의 예상 값을 감쇠시키고, 다른 추가 컨텐츠 아이템의 예상 값을 사용하여 사용자에게 제시(213)되는 컨텐츠 아이템을 선택(211)한다. In one embodiment, the association between the negative emotion and the topic associated with the object is used to generate (209) a negative interest profile. A negative interest profile identifies a topic or other feature associated with a negative emotion by the user. In one embodiment, a negative interest profile is used to select (211) additional content for a user who is later presented 213 to the user. For example, the social networking system 100 compares one or more topics associated with additional content to a negative interest profile, and does not select (211) content associated with at least one topic included in the negative interest profile to present to the user, . As another example, the social networking system 100 may attenuate the expected value of an additional content item associated with a topic included in a negative interest profile, (211).
상술한 설명은 컨텐츠 아이템과 사용자의 상호작용 및 동일한 토픽과 관련된 컨텐츠 아이템와의 토픽에 대한 공지된 부정적인 감정을 가진 다른 소셜 네트워킹 시스템 사용자에 의한 상호작용을 기초로 사용자의 부정적인 감정을 추론하는 것에 대해 기술되었지만, 앞선 설명은 또한 토픽에 대해 공지된 긍정적인 감정을 가진 소셜 네트워킹 시스템 사용자에 의한 상호작용을 사용하여 토픽에 대한 사용자의 긍정적인 감정을 추론하는데 사용될 수 있다. 또한, 다른 타입의 감정은 상술한 방법을 사용하여 추론될 수 있다. 게다가, 상술한 설명은 컨텐츠 아이템과 사용자의 상호작용 및 소셜 네트워킹 컨텍스트 내 다른 사용자들에 의한 상호작용을 기초로 사용자의 부정적인 감정을 추론하는 것에 대해 기술되었지만, 본 명세서에 개시된 실시예들은 소셜 네트워킹 시스템의 외부에 저장되지만 소셜 네트워킹 시스템에 의해 관리되는 객체와 관련된 컨텐츠 아이템에 적용가능할 수 있다. The foregoing description is directed to inferring a user's negative feelings based on interaction by a user of another social networking system with known negative feelings about the user's interaction with the content item and the topic with the content item associated with the same topic , The foregoing discussion can also be used to infer a user's positive feelings about a topic using an interaction by a user of the social networking system with a positive emotion known to the topic. In addition, other types of emotions can be inferred using the methods described above. Furthermore, while the above description has been described in terms of inferring the user's negative feelings based on the interaction of the content item with the user and by other users in the social networking context, But may be applicable to content items associated with objects managed by the social networking system.
요약summary
본 발명의 실시예들의 상술한 설명은 예시의 목적으로 제시된 것으로, 배타적이거나 개시된 정확한 형태들로 본 발명을 제한하고자 하는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 명세서로부터 다양한 수정 및 변형이 가능함을 인식할 수 있을 것이다.The foregoing description of embodiments of the present invention has been presented for purposes of illustration and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Those skilled in the art will appreciate that various modifications and changes may be made thereto without departing from the scope of the present invention.
본 명세서의 몇몇 부분들은 알고리즘 또는 정보에 대한 동작의 기호적 표현으로 본 발명의 실시예들을 설명한다. 이러한 알고리즘적 설명이나 표현은 본 기술분야에서 통상의 지식을 가진 자들에게 효과적으로 그들의 작업의 실체를 전달하기 위하여 데이터 프로세싱 기술분야에서 통상의 지식을 가진 자에 의하여 공통적으로 사용되는 것이다. 기능적으로, 계산적으로 또는 논리적으로 설명되고 있는 이들 동작은 컴퓨터 프로그램 또는 등가의 전기 회로, 마이크로 코드 등에 의해 구현되는 것으로 이해된다. 또한, 종종 이러한 동작의 배열은 일반성의 손실 없이 모듈로 언급될 수 있는 것으로 확인된다. 기술된 동작 및 그와 관련된 모듈들은 소프트웨어, 펌웨어, 하드웨어 또는 이들의 임의의 결합으로 구현될 수 있을 것이다.Some portions of the disclosure describe embodiments of the present invention in terms of algorithms or symbolic representations of operations on information. These algorithmic descriptions or representations are commonly used by those of ordinary skill in the data processing arts to convey the substance of their work effectively to those of ordinary skill in the art. These operations, which are functionally, computationally, or logically described, are understood to be implemented by a computer program or equivalent electrical circuit, microcode, or the like. Also, it is often found that the arrangement of such operations can be referred to as modules without loss of generality. The described operations and their associated modules may be implemented in software, firmware, hardware, or any combination thereof.
본 명세서에 기술된 임의의 단계들, 동작들 또는 프로세스들은 하나 이상의 하드웨어 또는 소프트웨어 모듈들에 의해 또는 이들과 다른 장치들의 결합에 의해 수행되거나 구현될 수 있다. 일실시예에서, 소프트웨어 모듈은 기술된 단계들, 동작들 또는 프로세스들 일부 또는 전부를 수행하기 위하여 컴퓨터 프로세서에 의해 실행될 수 있는 컴퓨터 프로그램 코드를 포함하는 비-일시적 컴퓨터 판독가능한 매체를 포함하는 컴퓨터 프로그램 제품으로 구현된다.Any of the steps, operations, or processes described herein may be performed or implemented by one or more hardware or software modules, or by a combination of these and other devices. In one embodiment, a software module is a computer program that includes non-transitory computer readable media including computer program code executable by a computer processor to perform some or all of the described steps, operations, or processes Product.
본 발명에 기술된 실시예들은 또한 본 명세서의 동작들을 수행하기 위한 장치와 관련될 수 있다. 이 장치는 요청된 목적을 위하여 구체적으로 구성될 수 있고/있거나 컴퓨터에 저장된 컴퓨터 프로그램에 의해 선택적으로 활성화되거나 재구성되는 범용 컴퓨팅 장치를 포함할 수 있다. 이런 컴퓨터 프로그램은 비-일시적 컴퓨터 판독가능한 저장 매체나 컴퓨터 시스템 버스에 결합될 수 있는 전자 명령어를 저장하기에 적절한 임의의 매체에 저장될 수 있다. 게다가, 본 명세서에서 언급된 임의의 컴퓨팅 시스템들은 단일 프로세서를 포함할 수 있거나, 증가한 컴퓨팅 능력을 위해 다중 프로세서 설계를 채용한 구조일 수 있다.The embodiments described in the present invention may also be associated with an apparatus for performing the operations herein. The device may include a general purpose computing device that may be specifically configured for the requested purpose and / or selectively activated or reconfigured by a computer program stored on the computer. Such a computer program may be stored in a non-transient computer readable storage medium or any medium suitable for storing electronic instructions that may be coupled to a computer system bus. In addition, any computing system referred to herein may include a single processor, or it may be a structure employing a multiprocessor design for increased computing power.
마지막으로, 본 명세서에 사용된 언어는 가독성과 지시의 목적으로 이론적으로 선택된 것으로 발명의 사상을 제한하거나 한정하기 위하여 선택된 것이 아니다. 따라서 본 발명의 범위는 이 상세한 설명에 의해 제한되지 않으며, 이에 근거하여 본 출원을 통하여 등록될 임의의 특허청구범위에 의해 제한된다. 따라서, 본 발명의 실시예들의 개시는 설명을 위한 것이며, 본 발명의 범위를 제한하고자 하는 것이 아니다. 본 발명의 범위는 이하의 청구범위에 개시된다.Finally, the language used herein is theoretically selected for purposes of readability and instruction and is not selected to limit or limit the inventive idea. Accordingly, the scope of the present invention is not to be limited by this detailed description, but is limited only by the scope of the appended claims. Accordingly, the disclosure of embodiments of the present invention is intended to be illustrative, and not to limit the scope of the invention. The scope of the invention is set forth in the following claims.

Claims (22)

  1. 소셜 네트워킹 시스템의 제1 사용자에 대한 사용자 프로필을 저장하는 단계;
    소셜 네트워킹 시스템에 의해 관리되는 제1 객체에 대해 제1 사용자가 수행한 하나 이상의 행위를 수신하는 단계;
    제1 객체와 관련된 토픽을 식별하는 단계;
    제1 객체의 토픽과도 관련된 하나 이상의 제2 객체에 대해 소셜 네트워킹 시스템의 제2 사용자가 이전에 수행한 하나 이상의 행위를 검색하는 단계;
    제1 객체가 제1 사용자에게 디스플레이된 이후 제1 객체에 대한 제1 사용자의 긍정적인 감정을 표시한 제1 사용자의 하나 이상의 행위를 수신한 제1 객체에 대해 제2 사용자가 이전에 하나 이상의 행위를 수행했다고 결정하는 단계;
    제1 사용자에 의한 하나 이상의 행위를 수신한 제1 객체에 대해 제2 사용자가 이전에 수행한 하나 이상의 행위, 제1 객체의 토픽과도 관련된 하나 이상의 제2 객체에 대해 제2 사용자가 이전에 수행한 하나 이상의 행위, 및 제1 객체와 관련된 토픽에 대한 부정적인 감정을 표시한 제2 사용자의 사용자 프로필에 기반하여, 제1 객체가 제1 사용자에게 디스플레이된 이후 제1 객체에 대해 제1 사용자가 수행한 하나 이상의 행위가 제1 객체에 대해 제1 사용자가 긍정적인 감정을 가진다고 표시하더라도, 제1 객체와 관련된 토픽에 대해 제1 사용자가 부정적인 감정을 가진다고 추론하는 단계;
    사용자 프로필과 결부시켜 토픽을 부정적인 관심사로 저장하는 단계;
    부정적인 관심사를 적어도 일부 기초로 하여 사용자에게 제시하기 위한 컨텐츠를 선택하는 단계; 및
    선택된 컨텐츠를 사용자에게 제시하는 단계를 포함하고,
    제1 객체가 제1 사용자에게 디스플레이된 이후 제1 객체에 대해 제1 사용자가 수행한 하나 이상의 행위는 제1 사용자가 제1 객체에 대해 긍정적인 감정을 가짐을 표시하지만, 제1 객체에 대해 제1 사용자가 수행한 하나 이상의 행위는 제1 객체에서 토픽의 사용의 컨텍스트에 기반하여 제1 사용자가 제1 객체와 관련된 토픽에 대해 부정적인 감정을 가지는지 또는 긍정적인 감정을 가지는지 여부를 표시하지 않으며,
    제2 사용자는, 제1 객체가 제1 사용자에게 디스플레이된 이후 제1 객체에 대한 제1 사용자의 긍정적인 감정을 표시한 제1 사용자의 하나 이상의 행위를 수신한 제1 객체와 관련된 토픽에 대해 부정적인 감정을 표시한 사용자 프로필을 가지며, 했고, 토픽에 대한 제2 사용자의 부정적인 감정은 제2 객체에 대해 제2 사용자가 수행한 하나 이상의 행위에 기반하는 컴퓨터-구현 방법.
    Storing a user profile for a first user of the social networking system;
    The method comprising: receiving one or more actions performed by a first user on a first object managed by a social networking system;
    Identifying a topic associated with the first object;
    Retrieving one or more actions previously performed by a second user of the social networking system for one or more second objects also associated with a topic of the first object;
    For a first object that has received at least one action of a first user indicating a positive emotion of the first user for the first object after the first object is displayed to the first user, ≪ / RTI >
    One or more actions previously performed by a second user on a first object that has received one or more actions by a first user, a second user previously performed on one or more second objects that are also associated with a topic of the first object Based on a user profile of a second user indicating one or more actions and a negative emotion for a topic associated with the first object, a first user performs a first action on the first object after the first object is displayed to the first user Inferring that the first user has a negative emotion for a topic associated with the first object, even though the one or more actions indicate that the first user has a positive emotion for the first object;
    Associating the user profile with a topic to store the topic as a negative concern;
    Selecting content to present to a user based at least in part on a negative concern; And
    And presenting the selected content to a user,
    The one or more actions performed by the first user on the first object after the first object is displayed to the first user indicates that the first user has a positive emotion for the first object, One or more actions performed by a user does not indicate whether the first user has a negative emotion or a positive emotion for a topic associated with the first object based on the context of use of the topic in the first object ,
    The second user may be a negative user for a topic associated with the first object that received the one or more actions of the first user that indicated a positive emotion of the first user for the first object after the first object was displayed to the first user Wherein the second user's negative emotions for the topic are based on one or more actions performed by the second user for the second object.
  2. 제 1 항에 있어서,
    제1 사용자가 토픽에 대해 부정적인 감정을 가진다고 추론하는 단계는:
    제1 사용자가 수행한 적어도 하나의 행위가 제1 객체와 관련된 토픽에 대해 부정적인 감정을 표시한 사용자 프로필을 가진 소셜 네트워킹 시스템의 적어도 하나의 제2 사용자들이 토픽에 관한 적어도 하나의 제2 객체에 대해 이전에 수행했던 행위에 매치한다고 결정함에 응답하여, 제1 사용자가 토픽에 대해 부정적인 감정을 가진다고 추론하는 단계를 포함하는 컴퓨터-구현 방법.
    The method according to claim 1,
    The inferring that the first user has a negative emotion for the topic may comprise:
    At least one second user of a social networking system having a user profile displaying at least one action performed by a first user for a topic related to the first object is displayed for at least one second object related to a topic And inferring that the first user has a negative feel for the topic in response to determining to match the previously performed behavior.
  3. 제 1 항에 있어서,
    제1 사용자가 토픽에 대해 부정적인 감정을 가진다고 추론하는 단계는:
    제1 사용자가 수행한 적어도 임계 수의 행위가 제1 객체와 관련된 토픽에 대해 부정적인 감정을 표시한 사용자 프로필을 가진 소셜 네트워킹 시스템의 제2 사용자들이 토픽에 관한 하나 이상의 제2 객체에 대해 이전에 수행했던 행위에 매치한다고 결정함에 응답하여, 제1 사용자가 토픽에 대해 부정적인 감정을 가진다고 추론하는 단계를 포함하는 컴퓨터-구현 방법.
    The method according to claim 1,
    The inferring that the first user has a negative emotion for the topic may comprise:
    The second users of the social networking system having a user profile in which at least a threshold number of actions performed by the first user exhibited negative emotions for the topic related to the first object were performed previously for one or more second objects related to the topic And inferring that the first user has a negative feel for the topic in response to determining to match the action that was made.
  4. 제 1 항에 있어서,
    제1 객체와 관련된 토픽에 대해 부정적인 감정을 표시한 사용자 프로필을 가진 소셜 네트워킹 시스템의 제2 사용자들이 토픽에 관한 하나 이상의 제2 객체에 대해 이전에 수행했던 행위는: 토픽과 관련된 제2 객체를 닫기, 토픽과 관련된 제2 객체를 숨기기, 토픽과 관련된 제2 객체를 무시하기, 토픽과 관련된 제2 객체를 좋아하지 않기, 특정 시간 구간 내에 토픽에 관한 제2 객체에 대한 응답을 송신하지 않기 및 부정적인 감정과 관련된 하나 이상의 단어를 포함하는 토픽에 관한 제2 객체에 대한 텍스트 입력을 제공하기로 구성된 그룹에서 선택되는 적어도 하나를 포함하는 컴퓨터-구현 방법.
    The method according to claim 1,
    The actions previously performed by the second users of the social networking system with the user profile indicating a negative emotion for the topic associated with the first object on the one or more second objects related to the topic may include closing the second object associated with the topic , Disregarding a second object associated with a topic, disregarding a second object associated with a topic, not liking a second object associated with a topic, not sending a response to a second object with respect to a topic within a certain time period, And providing a textual input for a second object related to a topic including one or more words associated with the at least one word.
  5. 제 1 항에 있어서,
    제1 사용자가 하나 이상의 행위를 수행했던 하나 이상의 제3 객체를 식별하는 단계; 및
    하나 이상의 제3 객체에 대해 수행된 행위를 기초로 부정적인 감정을 하나 이상의 제3 객체와 연관시키는 단계를 더 포함하며,
    하나 이상의 제3 객체는 제1 객체와 관련된 하나 이상의 토픽에 매치하는 하나 이상의 토픽과 관련되는 컴퓨터-구현 방법.
    The method according to claim 1,
    Identifying one or more third objects from which a first user has performed one or more actions; And
    Further comprising associating a negative emotion with one or more third objects based on an action performed on the one or more third objects,
    Wherein the one or more third objects are associated with one or more topics that match one or more topics associated with the first object.
  6. 제 1 항에 있어서,
    제1 객체는: 광고, 게시물, 비디오, 이미지, 소식, 이벤트 및 그룹으로 구성된 그룹에서 선택되는 적어도 하나를 포함하는 컴퓨터-구현 방법.
    The method according to claim 1,
    Wherein the first object comprises at least one selected from the group consisting of an advertisement, a post, a video, an image, a news, an event and a group.
  7. 객체에 대해 부정적인 감정을 표시한 소셜 네트워킹 시스템의 사용자가 복수의 토픽과 각각 관련된 객체에 대해 수행한 행위를 수신하는 단계;
    복수의 토픽으로부터 모든 객체에 공통인 토픽을 식별하는 단계;
    객체에 대해 부정적인 감정을 표시한 사용자가 객체에 대해 수행한 행위의 총 횟수를 결정하는 단계;
    부정적인 감정과 관련된 행위의 총 횟수가 임계치 이상일 때에 응답하여, 모든 객체에 공통인 토픽에 부정적인 감정을 연관시키는 단계; 및
    토픽에 대한 부정적인 감정을 기초로, 행위를 수행한 사용자에게 제시하기 위한 컨텐츠를 선택하는 단계를 포함하는 컴퓨터-구현 방법.
    Receiving a behavior of a user of a social networking system displaying a negative emotion for an object on an object associated with each of the plurality of topics;
    Identifying a topic that is common to all objects from a plurality of topics;
    Determining a total number of behaviors performed by a user who has displayed negative emotions on the object;
    Associating a negative emotion with a topic common to all objects in response to a total number of behaviors associated with negative emotions greater than a threshold; And
    And selecting content to present to a user who performed the action based on the negative feelings about the topic.
  8. 제 7 항에 있어서,
    객체에 대한 행위를 기초로 객체에 대한 부정적인 감정을 식별하는 단계는:
    객체에 대해 수행된 하나 이상의 행위가 소셜 네트워킹 시스템에 의해 부정적인 감정과 관련된 행위인지를 결정하는 단계; 및
    객체에 대해 수행된 적어도 하나의 행위가 소셜 네트워킹 시스템에 의해 부정적인 감정과 관련된 행위라는 결정에 응답하여, 적어도 하나의 행위가 수행되었던 객체에 대한 부정적인 감정을 식별하는 단계를 포함하는 컴퓨터-구현 방법.
    8. The method of claim 7,
    Identifying a negative emotion for an object based on an action on the object includes:
    Determining if one or more actions performed on the object are actions associated with negative emotions by the social networking system; And
    Responsive to a determination that at least one action performed on an object is an affair related to a negative emotional response by the social networking system, identifying a negative emotional response to the object on which at least one action was performed.
  9. 제 7 항에 있어서,
    소셜 네트워킹 시스템에 의한 부정적인 감정과 관련된 행위는 소셜 네트워킹 시스템에 의해 토픽에 대한 부정적인 감정과 관련된 하나 이상의 추가 사용자가 토픽과 관련된 추가 토픽에 대해 수행한 행위를 포함하는 컴퓨터-구현 방법.
    8. The method of claim 7,
    An act associated with a negative emotion by the social networking system comprises an action performed by the social networking system on an additional topic associated with the topic by one or more additional users associated with the negative emotions on the topic.
  10. 제 8 항에 있어서,
    소셜 네트워킹 시스템에 의한 부정적인 감정과 관련된 행위는: 객체를 닫기, 객체를 숨기기, 객체를 무시하기, 객체를 좋아하지 않기, 특정된 시간 간격 내에서 객체에 대한 응답을 송신하기 않기 및 부정적인 감정과 관련된 하나 이상의 단어를 포함하는 객체에 대한 텍스트 입력을 제공하기로 구성된 그룹에서 선택되는 적어도 하나를 포함하는 컴퓨터-구현 방법.
    9. The method of claim 8,
    Actions related to negative emotions by the social networking system include: closing an object, hiding an object, ignoring an object, not liking an object, not sending a response to an object within a specified time interval, At least one selected from the group consisting of providing text input for an object containing at least one word.
  11. 제 7 항에 있어서,
    소셜 네트워킹 시스템에 의한 부정적인 감정과 관련된 행위는: 객체를 닫기, 객체를 숨기기, 객체를 무시하기, 객체를 좋아하지 않기, 특정된 시간 간격 내에서 객체에 대한 응답을 송신하지 않기 및 부정적인 감정과 관련된 하나 이상의 단어를 포함하는 객체에 대한 텍스트 입력을 제공하기로 구성된 그룹에서 선택되는 적어도 하나를 포함하는 컴퓨터-구현 방법.
    8. The method of claim 7,
    Behaviors associated with negative emotions by the social networking system include: closing an object, hiding an object, ignoring an object, not liking an object, not sending a response to an object within a specified time interval, At least one selected from the group consisting of providing text input for an object containing at least one word.
  12. 제 7 항에 있어서,
    소셜 네트워킹 시스템에 의한 부정적인 감정과 관련된 행위는 소셜 네트워킹 시스템에 의한 토픽에 대한 부정적인 감정과 관련된 하나 이상의 추가 사용자가 토픽과 관련된 추가 토픽에 대해 수행한 행위를 포함하는 컴퓨터-구현 방법.
    8. The method of claim 7,
    The act involving negative emotions by the social networking system comprises an act performed by the one or more additional users associated with the negative emotions on the topic by the social networking system on an additional topic associated with the topic.
  13. 제 7 항에 있어서,
    하나 이상의 토픽에 대한 부정적인 감정 사이의 연관성을 기초로 사용자에 대해 제시하기 위한 컨텐츠를 선택하는 단계는:
    부정적인 감정과 관련된 토픽을 포함하는 사용자에 관한 블랙리스트를 생성하는 단계; 및
    컨텐츠와 관련된 토픽이 토픽의 블랙리스트를 기초로 블랙리스트에 포함되지 않도록 사용자에게 제공하기 위한 컨텐츠를 선택하는 단계를 포함하는 컴퓨터-구현 방법.
    8. The method of claim 7,
    Selecting content for presentation to a user based on an association between negative emotions for one or more topics comprises:
    Generating a blacklist of users including topics related to negative emotions; And
    Selecting content to provide to a user such that the topic associated with the content is not included in the blacklist based on the blacklist of topics.
  14. 제 7 항에 있어서,
    부정적인 감정과 관련된 토픽에 관한 하나 이상의 추가 토픽을 식별하는 단계; 및
    부정적인 감정을 하나 이상의 추가 토픽과 연관시키는 단계를 더 포함하는 컴퓨터-구현 방법.
    8. The method of claim 7,
    Identifying one or more additional topics relating to a topic associated with a negative emotion; And
    And associating the negative emotions with one or more additional topics.
  15. 제 7 항에 있어서,
    객체는 하나 이상의 광고, 게시물, 비디오, 이미지, 소식, 이벤트 및 그룹을 포함하는 컴퓨터-구현 방법.
    8. The method of claim 7,
    Wherein the object includes one or more advertisements, posts, videos, images, news, events, and groups.
  16. 제 7 항에 있어서,
    사용자에게 제공되는 컨텐츠는: 광고, 비디오, 이미지, 소식 또는 링크로 구성된 그룹에서 선택되는 적어도 하나인 컴퓨터-구현 방법.
    8. The method of claim 7,
    Wherein the content provided to the user is at least one selected from the group consisting of: an advertisement, a video, an image, a post or a link.
  17. 소셜 네트워킹 시스템의 사용자에 대한 사용자 프로필을 저장하는 단계;
    사용자에게 광고가 제시된 이후 사용자가 광고에 대해 수행하고 소셜 네트워킹 시스템에 의해 광고에 대한 긍정적인 감정과 관련되는 행위를 수신하는 단계;
    광고로부터 하나의 광고 특징을 추출하는 단계;
    광고 내 광고 특징의 사용의 컨텍스트를 기초로, 사용자에게 광고가 제시된 이후 광고에 대해 사용자가 행한 행위가 광고 특징에 대해 사용자가 긍정적인 감정 또는 부정적인 감정을 가지는지 여부를 표시하지 않는다고 식별하는 단계;
    소셜 네트워킹 시스템에 의해 관리되고, 사용자에게 복수의 추가 객체가 제시된 이후 추가 객체에 관한 부정적인 감정을 표시하는 복수의 추가 객체에 대해 사용자가 수행한 행위를 검색하는 단계;
    복수의 추가 객체로부터 특징을 추출하는 단계;
    사용자에게 복수의 추가 객체가 제시된 이후, 광고로부터 추출된 광고 특징에 매치하는 식별된 추가 객체의 특징에 대한 부정적인 감정을 표시하는 복수의 추가 객체에 대해 사용자가 수행한 행위를 기초로, 부정적인 감정과 광고로부터 추출된 광고 특징을 연관시키는 단계;
    광고 특징과 부정적인 감정 사이의 연관성을 사용자 프로필에 저장하는 단계; 및
    부정적인 감정과 관련된 광고 특징을 기초로 사용자에게 제시하기 위한 추가 광고를 선택하는 단계를 포함하는 컴퓨터-구현 방법.
    Storing a user profile for a user of the social networking system;
    Receiving an action performed by a user on an advertisement and related to a positive emotion for the advertisement by the social networking system after the advertisement is presented to the user;
    Extracting an advertisement feature from the advertisement;
    Identifying, based on the context of use of the advertising features within the advertisement, that the user's action on the advertisement after presentation of the advertisement does not indicate whether the user has a positive emotional or negative emotional response to the ad characteristic;
    Retrieving an action performed by a user for a plurality of additional objects managed by the social networking system and displaying a negative emotion about the additional object after the plurality of additional objects are presented to the user;
    Extracting features from a plurality of additional objects;
    Based on an action performed by a user on a plurality of additional objects indicating a negative emotion for a feature of the identified additional object matching the feature extracted from the advertisement after the plurality of additional objects are presented to the user, Associating advertisement features extracted from the advertisement;
    Storing associations between the ad features and negative emotions in a user profile; And
    Selecting an additional advertisement to present to a user based on an advertising feature associated with a negative emotion.
  18. 제 17 항에 있어서,
    소셜 네트워킹 시스템에 의한 부정적인 감정과 관련된 행위는: 객체를 닫기, 객체를 숨기기, 객체를 무시하기, 객체를 좋아하지 않기, 특정된 시간 간격 내에서 객체에 대한 응답을 송신하지 않기 및 부정적인 감정과 관련된 하나 이상의 단어를 포함하는 객체에 대한 텍스트 입력을 제공하기로 구성된 그룹에서 선택되는 적어도 하나를 포함하는 컴퓨터-구현 방법.
    18. The method of claim 17,
    Behaviors associated with negative emotions by the social networking system include: closing an object, hiding an object, ignoring an object, not liking an object, not sending a response to an object within a specified time interval, At least one selected from the group consisting of providing text input for an object containing at least one word.
  19. 제 18 항에 있어서,
    부정적인 감정과 관련된 광고 특징을 기초로 사용자에게 제시하기 위한 추가 광고를 선택하는 단계는:
    부정적인 감정과 관련된 광고 특징에 매치하지 않는 광고를 포함하지 않는 광고를 선택하는 단계를 포함하는 컴퓨터-구현 방법.
    19. The method of claim 18,
    The step of selecting additional advertisements for presenting to a user based on an advertising feature associated with a negative emotion comprises:
    Selecting an advertisement that does not include an advertisement that does not match an ad feature associated with a negative emotion.
  20. 제 18 항에 있어서,
    부정적인 감정과 관련되는 선택된 광고 특징을 기초로 사용자에게 제시하기 위한 추가 광고를 선택하는 단계는:
    각각의 복수의 후보 광고와 관련된 예상 값을 계산하는 단계;
    부정적인 감정과 관련된 광고 특징에 매치하는 광고 특징을 포함하는 후보 광고와 관련된 예상 값을 감축하는 단계; 및
    계산된 예상 값을 기초로 복수의 후보 광고로부터 추가 광고를 선택하는 단계를 포함하는 컴퓨터-구현 방법.
    19. The method of claim 18,
    The step of selecting additional advertisements for presenting to the user based on the selected advertisement features associated with the negative emotions comprises:
    Calculating an expected value associated with each of the plurality of candidate advertisements;
    Reducing an estimate associated with a candidate advertisement that includes an ad feature that matches an ad feature associated with a negative emotion; And
    And selecting an additional advertisement from the plurality of candidate ads based on the calculated expected value.
  21. 제 18 항에 있어서,
    하나 이상의 광고 특징은: 광고에 대한 랜딩 페이지(landing page), 광고와 관련된 하나 이상의 토픽, 광고와 관련된 페이지 및 광고의 송신자로 구성된 그룹에서 선택되는 컴퓨터-구현 방법.
    19. The method of claim 18,
    The one or more ad features are selected from the group consisting of: a landing page for the ad, one or more topics associated with the ad, a page associated with the ad, and a sender of the ad.
  22. 제 17 항에 있어서,
    부정적인 감정과 관련된 행위는 광고로부터 추출된 하나 이상의 광고 특징 중 적어도 하나에 매치하는 하나 이상의 광고 특징을 가진 추가 광고에 대해 수행된 다른 행위를 기초로 하는 컴퓨터-구현 방법.
    18. The method of claim 17,
    Wherein the act associated with the negative emotion is based on another action performed on the additional advertisement having one or more ad features matching at least one of the one or more ad features extracted from the ad.
KR1020197000504A 2012-08-03 2013-07-23 Negative signals for advertisement targeting KR20190004847A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/566,016 2012-08-03
US13/566,016 US10380606B2 (en) 2012-08-03 2012-08-03 Negative signals for advertisement targeting
PCT/US2013/051702 WO2014022157A1 (en) 2012-08-03 2013-07-23 Negative signals for advertisement targeting

Publications (1)

Publication Number Publication Date
KR20190004847A true KR20190004847A (en) 2019-01-14

Family

ID=50026393

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197000504A KR20190004847A (en) 2012-08-03 2013-07-23 Negative signals for advertisement targeting
KR1020157004801A KR102173250B1 (en) 2012-08-03 2013-07-23 Negative signals for advertisement targeting

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020157004801A KR102173250B1 (en) 2012-08-03 2013-07-23 Negative signals for advertisement targeting

Country Status (6)

Country Link
US (1) US10380606B2 (en)
JP (1) JP6248106B2 (en)
KR (2) KR20190004847A (en)
AU (1) AU2013296857A1 (en)
CA (1) CA2879830C (en)
WO (1) WO2014022157A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140172544A1 (en) * 2012-12-17 2014-06-19 Facebook, Inc. Using negative feedback about advertisements to serve advertisements
US20140172545A1 (en) * 2012-12-17 2014-06-19 Facebook, Inc. Learned negative targeting features for ads based on negative feedback from users
JP5787949B2 (en) * 2013-08-28 2015-09-30 ヤフー株式会社 Information processing apparatus, identification method, and identification program
JP6122735B2 (en) * 2013-08-28 2017-04-26 ヤフー株式会社 Information processing apparatus, determination method, and determination program
US9619470B2 (en) 2014-02-04 2017-04-11 Google Inc. Adaptive music and video recommendations
US9319367B2 (en) 2014-05-27 2016-04-19 InsideSales.com, Inc. Email optimization for predicted recipient behavior: determining a likelihood that a particular receiver-side behavior will occur
US9088533B1 (en) 2014-05-27 2015-07-21 Insidesales.com Email optimization for predicted recipient behavior: suggesting a time at which a user should send an email
US9092742B1 (en) * 2014-05-27 2015-07-28 Insidesales.com Email optimization for predicted recipient behavior: suggesting changes in an email to increase the likelihood of an outcome
US9563693B2 (en) * 2014-08-25 2017-02-07 Adobe Systems Incorporated Determining sentiments of social posts based on user feedback
US20160140627A1 (en) * 2014-11-14 2016-05-19 Adobe Systems Incorporated Generating high quality leads for marketing campaigns
US10284537B2 (en) 2015-02-11 2019-05-07 Google Llc Methods, systems, and media for presenting information related to an event based on metadata
US10223459B2 (en) 2015-02-11 2019-03-05 Google Llc Methods, systems, and media for personalizing computerized services based on mood and/or behavior information from multiple data sources
US9769564B2 (en) * 2015-02-11 2017-09-19 Google Inc. Methods, systems, and media for ambient background noise modification based on mood and/or behavior information
US10445776B2 (en) * 2015-11-10 2019-10-15 International Business Machines Corporation User-configurable settings for web-based advertising
US10789258B2 (en) * 2015-12-18 2020-09-29 Facebook, Inc. Systems and methods for content presentation
US20170351678A1 (en) * 2016-06-03 2017-12-07 Facebook, Inc. Profile Suggestions
US20180196876A1 (en) * 2017-01-07 2018-07-12 International Business Machines Corporation Sentiment-driven content management in a social networking environment
JP2018156187A (en) * 2017-03-15 2018-10-04 ヤフー株式会社 Creation device, creation method, and creation program
US20190333104A1 (en) * 2018-04-26 2019-10-31 Mastercard International Incorporated Systems and Methods for Use in Controlling Network Activities

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715468A (en) 1994-09-30 1998-02-03 Budzinski; Robert Lucius Memory system for storing and retrieving experience and knowledge with natural language
US6185558B1 (en) 1998-03-03 2001-02-06 Amazon.Com, Inc. Identifying the items most relevant to a current query based on items selected in connection with similar queries
US20070288461A1 (en) 2002-12-16 2007-12-13 News Technologies, Llc High-Speed Term and Phrase Matching via Successive Complexity Reduction
US7346606B2 (en) 2003-06-30 2008-03-18 Google, Inc. Rendering advertisements with documents having one or more topics using user topic interest
US7499913B2 (en) 2004-01-26 2009-03-03 International Business Machines Corporation Method for handling anchor text
DE102004048552A1 (en) 2004-10-04 2006-04-13 Nec Europe Ltd. A method for providing information concerning broadcast content to a user
WO2008022433A1 (en) 2006-08-21 2008-02-28 Lafleur Philippe Johnathan Gab Text messaging system and method employing predictive text entry and text compression and apparatus for use therein
US7640233B2 (en) 2006-08-29 2009-12-29 International Business Machines Corporation Resolution of abbreviated text in an electronic communications system
US7899822B2 (en) 2006-09-08 2011-03-01 International Business Machines Corporation Automatically linking documents with relevant structured information
US20080077494A1 (en) 2006-09-22 2008-03-27 Cuneyt Ozveren Advertisement Selection For Peer-To-Peer Collaboration
US8135617B1 (en) 2006-10-18 2012-03-13 Snap Technologies, Inc. Enhanced hyperlink feature for web pages
US7730017B2 (en) * 2007-03-30 2010-06-01 Google Inc. Open profile content identification
US7870141B2 (en) 2007-04-17 2011-01-11 International Business Machines Corporation Method and system for finding a focus of a document
JP2009099088A (en) 2007-10-19 2009-05-07 Kddi R & D Laboratories Inc Sns user profile extraction device, extraction method and extraction program, and device using user profile
US8336024B2 (en) 2007-11-08 2012-12-18 International Business Machines Corporation Extracting ontological information from software design data
US8862608B2 (en) 2007-11-13 2014-10-14 Wal-Mart Stores, Inc. Information retrieval using category as a consideration
US7925743B2 (en) 2008-02-29 2011-04-12 Networked Insights, Llc Method and system for qualifying user engagement with a website
US20110060649A1 (en) 2008-04-11 2011-03-10 Dunk Craig A Systems, methods and apparatus for providing media content
US20100030648A1 (en) * 2008-08-01 2010-02-04 Microsoft Corporation Social media driven advertisement targeting
JP4587236B2 (en) 2008-08-26 2010-11-24 Necビッグローブ株式会社 Information search apparatus, information search method, and program
US9077857B2 (en) * 2008-09-12 2015-07-07 At&T Intellectual Property I, L.P. Graphical electronic programming guide
KR101480711B1 (en) 2008-09-29 2015-01-09 에스케이플래닛 주식회사 A detecting system and a method for subject, a storage means, an information offering system, an information offering service server and an information offering method
US20100114887A1 (en) 2008-10-17 2010-05-06 Google Inc. Textual Disambiguation Using Social Connections
US8346534B2 (en) 2008-11-06 2013-01-01 University of North Texas System Method, system and apparatus for automatic keyword extraction
KR20100079617A (en) * 2008-12-31 2010-07-08 엔에이치엔(주) System of displaying pros and cons on online issue and method thoereof
US20110055017A1 (en) 2009-09-01 2011-03-03 Amiad Solomon System and method for semantic based advertising on social networking platforms
US20110106630A1 (en) * 2009-11-03 2011-05-05 John Hegeman User feedback-based selection and prioritizing of online advertisements
US20110153412A1 (en) 2009-12-23 2011-06-23 Victor Novikov Selection and Presentation of Related Social Networking System Content and Advertisements
JP6111071B2 (en) 2009-12-23 2017-04-05 フェイスブック,インク. Selection and presentation of relevant social networking system content and advertisements
US8527496B2 (en) 2010-02-11 2013-09-03 Facebook, Inc. Real time content searching in social network
US20110295612A1 (en) * 2010-05-28 2011-12-01 Thierry Donneau-Golencer Method and apparatus for user modelization
JP5454357B2 (en) 2010-05-31 2014-03-26 ソニー株式会社 Information processing apparatus and method, and program
US9262517B2 (en) 2010-08-18 2016-02-16 At&T Intellectual Property I, L.P. Systems and methods for social media data mining
US9928484B2 (en) 2011-06-24 2018-03-27 Facebook, Inc. Suggesting tags in status messages based on social context
US9773283B2 (en) 2011-06-24 2017-09-26 Facebook, Inc. Inferring topics from social networking system communications using social context

Also Published As

Publication number Publication date
CA2879830C (en) 2020-04-21
CA2879830A1 (en) 2014-02-06
WO2014022157A1 (en) 2014-02-06
KR20150038315A (en) 2015-04-08
US10380606B2 (en) 2019-08-13
KR102173250B1 (en) 2020-11-03
JP2015531119A (en) 2015-10-29
JP6248106B2 (en) 2017-12-13
US20140040010A1 (en) 2014-02-06
AU2013296857A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
US10614467B2 (en) Displaying recommendations for social networking system entity information via a timeline interface
US10305847B2 (en) Structuring notification of events to users in a social networking system
US10931622B1 (en) Associating an indication of user emotional reaction with content items presented by a social networking system
US10606929B2 (en) Template selection for mapping a third-party web page to an object in a social networking system
US20170116650A1 (en) Targeting stories based on influencer scores
CA2884201C (en) Customized predictors for user actions in an online system
AU2017202596C1 (en) Querying features based on user actions in online systems
US10083239B2 (en) Aggregating social networking system user information for display via stories
KR101731437B1 (en) Implicit social graph connections
JP6539856B2 (en) Providing Extended Message Elements in Electronic Communication Threads
US10375188B2 (en) Sending notifications as a service
JP2018206419A (en) Cognitive relevance targeting in social networking system
US9740752B2 (en) Determining user personality characteristics from social networking system communications and characteristics
US10379703B2 (en) Filtering content in a social networking service
US10715566B1 (en) Selectively providing content on a social networking system
US10679147B2 (en) Sentiment polarity for users of a social networking system
US10489025B2 (en) Incorporating external event information into a social networking system
KR102104256B1 (en) Sponsored advertisement ranking and pricing in a social networking system
US9286575B2 (en) Adaptive ranking of news feed in social networking systems
KR20170094375A (en) User-Aware Notification Delivery
US10423984B2 (en) Sponsored stories in notifications
KR101656819B1 (en) Feature-extraction-based image scoring
US10178197B2 (en) Metadata prediction of objects in a social networking system using crowd sourcing
US20130311568A1 (en) Suggesting connections to a user based on an expected value of the suggestion to the social networking system
CA2919438C (en) Selecting content items for presentation to a social networking system user in a newsfeed

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
WITB Written withdrawal of application