KR20180134285A - 웨이퍼 생성 장치 - Google Patents

웨이퍼 생성 장치 Download PDF

Info

Publication number
KR20180134285A
KR20180134285A KR1020180058206A KR20180058206A KR20180134285A KR 20180134285 A KR20180134285 A KR 20180134285A KR 1020180058206 A KR1020180058206 A KR 1020180058206A KR 20180058206 A KR20180058206 A KR 20180058206A KR 20180134285 A KR20180134285 A KR 20180134285A
Authority
KR
South Korea
Prior art keywords
unit
single crystal
wafer
ingot
sic ingot
Prior art date
Application number
KR1020180058206A
Other languages
English (en)
Other versions
KR102482218B1 (ko
Inventor
겐타로 이이즈카
나오키 오미야
다카시 모리
사토시 야마나카
가즈야 히라타
Original Assignee
가부시기가이샤 디스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시기가이샤 디스코 filed Critical 가부시기가이샤 디스코
Publication of KR20180134285A publication Critical patent/KR20180134285A/ko
Application granted granted Critical
Publication of KR102482218B1 publication Critical patent/KR102482218B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Abstract

본 발명은 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 자동적으로 생성할 수 있는 웨이퍼 생성 장치를 제공하는 것을 목적으로 한다.
웨이퍼 생성 장치(2)는, 단결정 SiC 잉곳(150)을 유지하는 유지 유닛(4)과, 유지 유닛(4)에 유지된 단결정 SiC 잉곳(150)의 상면을 연삭하여 평탄화하는 평탄화 유닛(6)과, 유지 유닛(4)에 유지된 단결정 SiC 잉곳(150)의 상면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 단결정 SiC 잉곳(150)에 대해 투과성을 갖는 파장의 레이저 광선(LB)의 집광점(FP)을 위치시키고 레이저 광선(LB)을 단결정 SiC 잉곳(150)에 조사하여 박리층(170)을 형성하는 레이저 조사 유닛(8)과, 단결정 SiC 잉곳(150)의 상면을 유지하고 박리층(170)으로부터 SiC 웨이퍼(172)를 박리하는 웨이퍼 박리 유닛(10)과, 박리된 SiC 웨이퍼(172)를 수용하는 웨이퍼 수용 유닛(12)을 포함한다.

Description

웨이퍼 생성 장치{APPARATUS FOR GENERATING WAFER}
본 발명은 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 웨이퍼 생성 장치에 관한 것이다.
IC, LSI, LED 등의 디바이스는, Si(실리콘)나 Al2O3(사파이어) 등을 소재로 한 웨이퍼의 표면에 기능층이 적층되고 분할 예정 라인에 의해 구획되어 형성된다. 또한, 파워 디바이스, LED 등은 단결정 SiC(탄화규소)를 소재로 한 웨이퍼의 표면에 기능층이 적층되고 분할 예정 라인에 의해 구획되어 형성된다. 디바이스가 형성된 웨이퍼는, 절삭 장치, 레이저 가공 장치에 의해 분할 예정 라인에 가공이 실시되어 개개의 디바이스 칩으로 분할되고, 분할된 디바이스 칩은 휴대 전화나 퍼스널 컴퓨터 등의 전기 기기에 이용된다.
디바이스가 형성되는 웨이퍼는, 일반적으로 원기둥 형상의 반도체 잉곳을 와이어 소(wire saw)로 얇게 절단함으로써 생성된다. 절단된 웨이퍼의 표면 및 이면은, 연마함으로써 경면으로 마무리된다(예컨대 특허문헌 1 참조). 그러나, 반도체 잉곳을 와이어 소로 절단하고, 절단한 웨이퍼의 표면 및 이면을 연마하면, 반도체 잉곳의 대부분(70%∼80%)이 버려지게 되어 비경제적이라고 하는 문제가 있다. 특히 단결정 SiC 잉곳에 있어서는, 경도가 높아 와이어 소로의 절단이 곤란하며 상당한 시간을 필요로 하기 때문에 생산성이 나쁘고, 단결정 SiC 잉곳의 단가가 높아 효율적으로 SiC 웨이퍼를 생성하는 것에 과제를 갖고 있다.
그래서, 단결정 SiC에 대해 투과성을 갖는 파장의 레이저 광선의 집광점을 단결정 SiC 잉곳의 내부에 위치시키고 단결정 SiC 잉곳에 레이저 광선을 조사하여 절단 예정면에 박리층을 형성하고, 박리층이 형성된 절단 예정면을 따라 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 박리하는 기술이 제안되어 있다(예컨대 특허문헌 2 참조).
[특허문헌 1] 일본 특허 공개 제2000-94221호 공보 [특허문헌 2] 일본 특허 공개 제2013-49161호 공보
그러나, 단결정 SiC 잉곳에 박리층을 형성하는 공정, 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 박리하는 공정, 단결정 SiC 잉곳의 상면을 연삭하여 평탄화하는 공정은 사람 손을 통해 행해지고 있어, 생산 효율이 나쁘다고 하는 문제가 있다.
따라서, 본 발명의 목적은, 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 자동적으로 생성할 수 있는 웨이퍼 생성 장치를 제공하는 것이다.
본 발명에 의하면, 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 웨이퍼 생성 장치로서, 단결정 SiC 잉곳을 유지하는 유지 유닛과, 상기 유지 유닛에 유지된 단결정 SiC 잉곳의 상면을 연삭하여 평탄화하는 평탄화 유닛과, 상기 유지 유닛에 유지된 단결정 SiC 잉곳의 상면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 단결정 SiC 잉곳에 대해 투과성을 갖는 파장의 레이저 광선의 집광점을 위치시키고 레이저 광선을 단결정 SiC 잉곳에 조사하여 박리층을 형성하는 레이저 조사 유닛과, 단결정 SiC 잉곳의 상면을 유지하고 박리층으로부터 SiC 웨이퍼를 박리하는 웨이퍼 박리 유닛과, 박리된 SiC 웨이퍼를 수용하는 웨이퍼 수용 유닛을 구비한 웨이퍼 생성 장치가 제공된다.
바람직하게는, 웨이퍼 생성 장치는, 단결정 SiC 잉곳을 수용하는 잉곳 수용 유닛과, 상기 잉곳 수용 유닛으로부터 단결정 SiC 잉곳을 상기 유지 유닛에 반송하는 잉곳 반송 유닛을 더 포함한다. 상기 평탄화 유닛에 의해 평탄화된 단결정 SiC 잉곳을 세정하는 세정 유닛을 포함하는 것이 적합하다. 바람직하게는, 상기 유지 유닛은 턴테이블에 배치되어 있고, 상기 유지 유닛은 상기 턴테이블의 회전에 의해 적어도 상기 평탄화 유닛, 상기 레이저 조사 유닛, 상기 웨이퍼 박리 유닛에 위치된다.
본 발명의 웨이퍼 생성 장치에 의하면, 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 자동적으로 생성하여 웨이퍼 수용 유닛에 수용할 수 있고, 따라서 생산 효율이 향상된다.
도 1은 본 발명 실시형태의 웨이퍼 생성 장치의 사시도이다.
도 2는 도 1에 도시된 웨이퍼 생성 장치의 주요부 사시도이다.
도 3은 도 2에 도시된 평탄화 유닛의 주요부 확대 사시도이다.
도 4는 세정 유닛의 제1 세정부로부터 세정수가 분사되고 있고, 제2 세정부로부터 압축 공기가 분사되고 있는 상태를 도시한 모식도이다.
도 5는 도 1에 도시된 레이저 조사 유닛의 사시도이다.
도 6은 도 5에 도시된 레이저 조사 유닛으로부터 프레임을 생략하여 도시한 레이저 조사 유닛의 사시도이다.
도 7은 도 5에 도시된 레이저 조사 유닛의 블록도이다.
도 8은 도 1에 도시된 웨이퍼 박리 유닛의 사시도이다.
도 9는 도 1에 도시된 웨이퍼 박리 유닛의 단면도이다.
도 10은 도 1에 도시된 잉곳 반송 유닛의 사시도이다.
도 11의 (a)는 단결정 SiC 잉곳의 정면도이고, 도 11의 (b)는 단결정 SiC 잉곳의 평면도이다.
도 12의 (a)는 단결정 SiC 잉곳 및 서브스트레이트의 사시도이고, 도 12의 (b)는 단결정 SiC 잉곳에 서브스트레이트가 장착된 상태를 도시한 사시도이다.
도 13은 유지 공정이 실시되고 있는 상태를 도시한 사시도이다.
도 14는 제1 단결정 SiC 잉곳이 평탄화 위치에 위치되고, 제2 단결정 SiC 잉곳이 대기 위치에 위치된 상태를 도시한 평면도이다.
도 15는 제1 단결정 SiC 잉곳이 박리층 형성 위치에 위치되고, 제2 단결정 SiC 잉곳이 평탄화 위치에 위치되며, 또한, 제3 단결정 SiC 잉곳이 대기 위치에 위치된 상태를 도시한 평면도이다.
도 16의 (a)는 박리층 형성 공정이 실시되고 있는 상태를 도시한 사시도이고, 도 16의 (b)는 박리층 형성 공정이 실시되고 있는 상태를 도시한 정면도이다.
도 17의 (a)는 박리층이 형성된 단결정 SiC 잉곳의 평면도이고, 도 17의 (b)는 도 17의 (a)에 있어서의 B-B선 단면도이다.
도 18은 제1 단결정 SiC 잉곳이 웨이퍼 박리 위치에 위치되고, 제2 단결정 SiC 잉곳이 박리층 형성 위치에 위치되며, 제3 단결정 SiC 잉곳이 평탄화 위치에 위치되고, 또한, 제4 단결정 SiC 잉곳이 대기 위치에 위치된 상태를 도시한 평면도이다.
도 19의 (a)는 척 테이블의 상방에 액조(液槽)가 위치하고 있는 상태를 도시한 사시도이고, 도 19의 (b)는 액조의 하면이 척 테이블의 상면에 접촉한 상태를 도시한 사시도이다.
도 20은 웨이퍼 박리 유닛에 의해 단결정 SiC 잉곳으로부터 SiC 웨이퍼가 박리된 상태를 도시한 사시도이다.
도 21은 제1 단결정 SiC 잉곳이 대기 위치에 위치되고, 제2 단결정 SiC 잉곳이 웨이퍼 박리 위치에 위치되며, 제3 단결정 SiC 잉곳이 박리층 형성 위치에 위치되고, 또한, 제4 단결정 SiC 잉곳이 평탄화 위치에 위치된 상태를 도시한 평면도이다.
도 22는 제1 단결정 SiC 잉곳이 평탄화 위치에 위치되고, 제2 단결정 SiC 잉곳이 대기 위치에 위치되며, 제3 단결정 SiC 잉곳이 웨이퍼 박리 위치에 위치되고, 또한, 제4 단결정 SiC 잉곳이 박리층 형성 위치에 위치된 상태를 도시한 평면도이다.
도 23은 제1 단결정 SiC 잉곳이 박리층 형성 위치에 위치되고, 제2 단결정 SiC 잉곳이 평탄화 위치에 위치되며, 제3 단결정 SiC 잉곳이 대기 위치에 위치되고, 또한, 제4 단결정 SiC 잉곳이 웨이퍼 박리 위치에 위치된 상태를 도시한 평면도이다.
이하, 본 발명에 따라 구성된 웨이퍼 생성 장치의 실시형태에 대해 도면을 참조하면서 설명한다.
도 1에 도시된 웨이퍼 생성 장치(2)는, 단결정 SiC 잉곳을 유지하는 유지 유닛(4)과, 유지 유닛(4)에 유지된 단결정 SiC 잉곳의 상면을 연삭하여 평탄화하는 평탄화 유닛(6)과, 유지 유닛(4)에 유지된 단결정 SiC 잉곳의 상면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 단결정 SiC 잉곳에 대해 투과성을 갖는 파장의 레이저 광선의 집광점을 위치시키고 레이저 광선을 단결정 SiC 잉곳에 조사하여 박리층을 형성하는 레이저 조사 유닛(8)과, 단결정 SiC 잉곳의 상면을 유지하고 박리층으로부터 SiC 웨이퍼를 박리하는 웨이퍼 박리 유닛(10)과, 박리된 SiC 웨이퍼를 수용하는 웨이퍼 수용 유닛(12)을 구비하고 있다.
도 2를 참조하여 유지 유닛(4)에 대해 설명한다. 웨이퍼 생성 장치(2)의 베이스(14)에는, 베이스(14)의 상면으로부터 하방으로 몰입한 직사각형 형상의 턴테이블 수용부(16)가 형성되고, 턴테이블 수용부(16)에는 원형 형상의 턴테이블(18)이 회전 가능하게 수용되어 있다. 턴테이블(18)은, 베이스(14)에 내장된 턴테이블용 모터(도시하고 있지 않음)에 의해, 턴테이블(18)의 직경 방향 중심을 지나 Z축 방향으로 연장되는 축선을 회전 중심으로 하여 회전된다. 그리고, 본 실시형태에서의 유지 유닛(4)은, 턴테이블(18)의 상면에 회전 가능하게 배치된 4개의 원형 형상의 척 테이블(20)로 구성되어 있다. 바람직하게는, 각 척 테이블(20)은, 턴테이블(18)의 회전에 의해, 적어도 평탄화 유닛(6), 레이저 조사 유닛(8), 웨이퍼 박리 유닛(10)에 위치된다. 본 실시형태에서는 도 2에 도시된 바와 같이, 각 척 테이블(20)은, 턴테이블(18)의 회전에 의해, 대기 위치(P1), 평탄화 유닛(6)의 하방의 평탄화 위치(P2), 레이저 조사 유닛(8)의 하방의 박리층 형성 위치(P3), 웨이퍼 박리 유닛(10)의 하방의 웨이퍼 박리 위치(P4)에 위치된다. 각 척 테이블(20)은, 베이스(14)에 내장된 4개의 척 테이블용 모터(도시하고 있지 않음)에 의해, 각 척 테이블(20)의 직경 방향 중심을 지나 Z축 방향으로 연장되는 축선을 회전 중심으로 하여 회전된다. 턴테이블(18)의 둘레 방향으로 등간격을 두고(90도의 간격을 두고) 배치되어 있는 4개의 척 테이블(20)은, 턴테이블(18)의 상면에 배치된 십자 형상의 칸막이벽(18a)에 의해 구획되어 있다. 또한, 각 척 테이블(20)의 상면에는, 다공질 재료로 형성되며 실질적으로 수평으로 연장되는 원형 형상의 흡착 척(22)이 배치되고, 각 흡착 척(22)은 유로에 의해 흡인 유닛(도시하고 있지 않음)에 접속되어 있다. 그리고, 유지 유닛(4)을 구성하는 각 척 테이블(20)은, 흡인 유닛에 의해 흡착 척(22)의 상면에 흡인력을 생성함으로써, 흡착 척(22)의 상면에 실린 단결정 SiC 잉곳을 흡착하여 유지할 수 있다. 한편, Z축 방향은 도 2에 화살표 Z로 나타내는 상하 방향이다. 또한, 도 2에 화살표 X로 나타내는 X축 방향은 Z축 방향에 직교하는 방향이고, 도 2에 화살표 Y로 나타내는 Y축 방향은 X축 방향 및 Z축 방향에 직교하는 방향이다. X축 방향 및 Y축 방향이 규정하는 평면은 실질적으로 수평이다.
도 2에 도시된 바와 같이, 평탄화 유닛(6)은, 베이스(14)의 Y축 방향 일단부의 상면으로부터 Z축 방향으로 연장되는 직사각형 형상의 장착벽(24)과, Z축 방향에 있어서 이동 가능하게 장착벽(24)에 장착된 직사각형 형상의 Z축 방향 가동판(26)과, Z축 방향 가동판(26)을 Z축 방향으로 이동시키는 Z축 방향 이동 기구(28)를 포함한다. 장착벽(24)의 한쪽 면(도 2에 있어서 전방측의 면)에는, X축 방향으로 간격을 두고 Z축 방향으로 연장되는 한 쌍의 안내 레일(24a)이 부설되어 있다. Z축 방향 가동판(26)에는, 장착벽(24)의 각 안내 레일(24a)에 대응하여 Z축 방향으로 연장되는 한 쌍의 피안내 레일(26a)이 형성되어 있다. 그리고, 장착벽(24)의 안내 레일(24a)에 Z축 방향 가동판(26)의 피안내 레일(26a)이 결합함으로써, Z축 방향 가동판(26)은 Z축 방향으로 이동 가능하게 장착벽(24)에 장착되어 있다. Z축 방향 이동 기구(28)는, 장착벽(24)의 한쪽 면을 따라 Z축 방향으로 연장되는 볼 나사(30)와, 볼 나사(30)의 한쪽 단부에 연결된 모터(32)를 갖는다. 볼 나사(30)의 너트부(도시하고 있지 않음)는, Z축 방향 가동판(26)에 고정되어 있다. 그리고 Z축 방향 이동 기구(28)는, 볼 나사(30)에 의해 모터(32)의 회전 운동을 직선 운동으로 변환하여 Z축 방향 가동판(26)에 전달하고, 장착벽(24)의 안내 레일(24a)을 따라 Z축 방향 가동판(26)을 Z축 방향으로 이동시킨다.
도 2와 함께 도 3을 참조하여 평탄화 유닛(6)에 대한 설명을 계속하면, Z축 방향 가동판(26)의 외면에는 Y축 방향으로 돌출하는 지지 블록(34)이 고정되어 있다. 지지 블록(34)의 상면에는 모터(36)가 지지되고, 지지 블록(34)의 하면에는 하방으로 연장되는 원통형의 스핀들 하우징(38)이 지지되어 있다. 스핀들 하우징(38)에는, Z축 방향으로 연장되는 축선을 중심으로 하여 회전 가능하게 원기둥형의 스핀들(40)이 회전 가능하게 지지되어 있다. 스핀들(40)의 상단은 모터(36)에 연결되고, Z축 방향으로 연장되는 축선을 중심으로 하여 모터(36)에 의해 스핀들(40)이 회전된다. 도 3에 도시된 바와 같이, 스핀들(40)의 하단에는 원판형의 휠 마운트(42)가 고정되어 있다. 휠 마운트(42)의 하면에는 볼트(44)에 의해 환형의 연삭 휠(46)이 고정되어 있다. 연삭 휠(46)의 하면의 외주 가장자리부에는, 둘레 방향으로 간격을 두고 환형으로 배치된 복수의 연삭 지석(48)이 고정되어 있다. 도 3에 도시된 바와 같이, 척 테이블(20)이 평탄화 위치(P2)에 위치되었을 때에, 척 테이블(20)의 회전 중심을 연삭 지석(48)이 지나도록, 연삭 휠(46)의 회전 중심은 척 테이블(20)의 회전 중심에 대해 변위하고 있다. 이 때문에 평탄화 유닛(6)에 있어서는, 척 테이블(20)과 연삭 휠(46)이 상호 회전하면서, 척 테이블(20)에 유지된 단결정 SiC 잉곳의 상면과 연삭 지석(48)이 접촉하면 단결정 SiC 잉곳의 상면 전체를 연삭 지석(48)으로 연삭할 수 있고, 따라서 척 테이블(20)에 유지된 단결정 SiC 잉곳의 상면을 연삭하여 평탄화할 수 있다.
바람직하게는, 웨이퍼 생성 장치(2)는, 평탄화 유닛(6)에 의해 평탄화된 단결정 SiC 잉곳을 세정하는 세정 유닛(50)을 포함한다. 본 실시형태에서는 도 2에 도시된 바와 같이, 세정 유닛(50)은, 평탄화 유닛(6)의 장착벽(24)의 측면을 따라 베이스(14)의 상면에 탑재된 지지체(52)와, 지지체(52)의 상부로부터 Y축 방향으로 연장되는 제1 세정부(54)와, 제1 세정부(54)와 나란히 지지체(52)의 상부로부터 Y축 방향으로 연장되는 제2 세정부(56)를 갖는다. 중공 부재로 형성될 수 있는 제1 세정부(54)의 하면에는 Y축 방향으로 간격을 두고 복수의 분사 구멍(도시하고 있지 않음)이 형성되어 있고, 제1 세정부(54)는 유로에 의해 세정수 공급 유닛(도시하고 있지 않음)에 접속되어 있다. 또한, 중공 부재로 형성될 수 있는 제2 세정부(56)의 하면에도 Y축 방향으로 간격을 두고 복수의 분사 구멍(도시하고 있지 않음)이 형성되어 있고, 제2 세정부(56)는 유로에 의해 압축 공기원(도시하고 있지 않음)에 접속되어 있다. 그리고 세정 유닛(50)에 있어서는, 도 4에 도시된 바와 같이, 제1 세정부(54)의 각 분사 구멍으로부터 하방을 향해 평탄화 유닛(6)측으로 경사져서 세정수(55)를 분사함으로써 단결정 SiC 잉곳으로부터 연삭 부스러기를 제거하고, 제2 세정부(56)의 각 분사 구멍으로부터 하방을 향해 압축 공기(57)를 분사함으로써 단결정 SiC 잉곳으로부터 세정수(55)를 제거함으로써, 평탄화 유닛(6)에 의해 평탄화된 단결정 SiC 잉곳을 세정할 수 있다.
도 1, 도 5 및 도 6을 참조하여 레이저 조사 유닛(8)에 대해 설명한다. 레이저 조사 유닛(8)은, 평탄화 유닛(6)의 장착벽(24)과 나란히 베이스(14)의 상면으로부터 상방으로 연장되는 프레임(58)과, 프레임(58)의 상부로부터 Y축 방향으로 연장되는 직사각형 형상의 안내판(60)과, Y축 방향에 있어서 이동 가능하게 안내판(60)에 지지된 Y축 방향 가동 부재(62)와, Y축 방향 가동 부재(62)를 Y축 방향으로 이동시키는 Y축 방향 이동 기구(64)를 포함한다. 안내판(60)의 X축 방향 양단 하부에는, Y축 방향으로 연장되는 한 쌍의 안내 레일(60a)이 형성되어 있다. 도 6에 도시된 바와 같이, Y축 방향 가동 부재(62)는, X축 방향으로 간격을 두고 배치된 한 쌍의 피안내부(66)와, 피안내부(66)의 하단 사이에 가설되며 X축 방향으로 연장되는 장착부(68)를 갖는다. 각 피안내부(66)의 상부에는 Y축 방향으로 연장되는 피안내 레일(66a)이 형성되어 있다. 피안내부(66)의 피안내 레일(66a)과 안내판(60)의 안내 레일(60a)이 결합함으로써, Y축 방향 가동 부재(62)는 Y축 방향으로 이동 가능하게 안내판(60)에 지지되어 있다. 또한, 장착부(68)의 Y축 방향 양단 하부에는, X축 방향으로 연장되는 한 쌍의 안내 레일(68a)이 형성되어 있다. 도 6에 도시된 바와 같이, Y축 방향 이동 기구(64)는, 안내판(60)의 하방에 있어서 Y축 방향으로 연장되는 볼 나사(70)와, 볼 나사(70)의 한쪽 단부에 연결된 모터(72)를 갖는다. 볼 나사(70)의 문형 형상의 너트부(70a)는 장착부(68)의 상면에 고정되어 있다. 그리고 Y축 방향 이동 기구(64)는, 볼 나사(70)에 의해 모터(72)의 회전 운동을 직선 운동으로 변환하여 Y축 방향 가동 부재(62)에 전달하고, 안내판(60)의 안내 레일(60a)을 따라 Y축 방향 가동 부재(62)를 Y축 방향으로 이동시킨다.
도 6을 참조하여 레이저 조사 유닛(8)에 대한 설명을 계속한다. 레이저 조사 유닛(8)은, 또한, X축 방향으로 이동 가능하게 Y축 방향 가동 부재(62)의 장착부(68)에 장착된 X축 방향 가동판(74)과, X축 방향 가동판(74)을 X축 방향으로 이동시키는 X축 방향 이동 기구(76)를 포함한다. X축 방향 가동판(74)의 Y축 방향 양단부와 장착부(68)의 안내 레일(68a)이 결합함으로써, X축 방향 가동판(74)은 X축 방향으로 이동 가능하게 장착부(68)에 장착되어 있다. X축 방향 이동 기구(76)는, 장착부(68)의 상방에 있어서 X축 방향으로 연장되는 볼 나사(78)와, 볼 나사(78)의 한쪽 단부에 연결된 모터(80)를 갖는다. 볼 나사(78)의 너트부(78a)는, 장착부(68)의 개구(68b)를 통해 X축 방향 가동판(74)의 상면에 고정되어 있다. 그리고 X축 방향 이동 기구(76)는, 볼 나사(78)에 의해 모터(80)의 회전 운동을 직선 운동으로 변환하여 X축 방향 가동판(74)에 전달하고, 장착부(68)의 안내 레일(68a)을 따라 X축 방향 가동판(74)을 X축 방향으로 이동시킨다.
도 6과 함께 도 7을 참조하여 레이저 조사 유닛(8)에 대한 설명을 계속한다. 레이저 조사 유닛(8)은, 또한, 프레임(58)에 내장된 레이저 발진기(82)와, 레이저 발진기(82)와 Y축 방향으로 간격을 두고 Y축 방향 가동 부재(62)의 장착부(68)의 하면에 장착된 제1 미러(84)와, 제1 미러(84)와 X축 방향으로 간격을 두고 X축 방향 가동판(74)의 하면에서 집광기(86) 바로 위에 장착되며 펄스 레이저 광선(LB)을 집광기(86)로 유도하는 제2 미러(도시하고 있지 않음)와, X축 방향 가동판(74)의 하면에 Z축 방향으로 이동 가능하게 장착된 집광기(86)와, 집광기(86)와 X축 방향으로 간격을 두고 X축 방향 가동판(74)의 하면에 장착된 얼라인먼트 유닛(88)과, 집광기(86)를 Z축 방향으로 이동시켜 집광기(86)의 집광점의 Z축 방향 위치를 조정하는 집광점 위치 조정 유닛(도시하고 있지 않음)을 포함한다. 레이저 발진기(82)는, 단결정 SiC 잉곳에 대해 투과성을 갖는 파장의 펄스 레이저 광선(LB)을 발진하도록 되어 있다. 집광기(86)는, 레이저 발진기(82)가 발진한 펄스 레이저 광선(LB)을 집광하는 집광 렌즈(도시하고 있지 않음)를 갖고, 집광 렌즈는 제2 미러의 하방에 위치하고 있다. 얼라인먼트 유닛(88)은, 척 테이블(20)에 유지된 단결정 SiC 잉곳을 촬상하여 레이저 가공해야 할 영역을 검출하도록 되어 있다. 집광점 위치 조정 유닛은, 예컨대, 너트부가 집광기(86)에 고정되고 Z축 방향으로 연장되는 볼 나사(도시하고 있지 않음)와, 이 볼 나사의 한쪽 단부에 연결된 모터(도시하고 있지 않음)를 갖는 구성이어도 좋다. 이러한 구성의 집광점 위치 조정 유닛에 있어서는, 볼 나사에 의해 모터의 회전 운동을 직선 운동으로 변환하여 집광기(86)에 전달하고, Z축 방향으로 연장되는 안내 레일(도시하고 있지 않음)을 따라 집광기(86)를 이동시키며, 이에 의해 집광 렌즈로 집광하는 펄스 레이저 광선(LB)의 집광점의 Z축 방향 위치를 조정한다. 그리고, 광로가 Y축 방향으로 설정되어 레이저 발진기(82)로부터 발진된 펄스 레이저 광선(LB)은, 제1 미러(84)에 의해 광로가 Y축 방향으로부터 X축 방향으로 변환되어 제2 미러로 유도되고, 계속해서 제2 미러에 의해 광로가 X축 방향으로부터 Z축 방향으로 변환되어 집광기(86)의 집광 렌즈로 유도된 후, 집광기(86)의 집광 렌즈에 의해 집광되어 척 테이블(20)에 유지된 단결정 SiC 잉곳에 조사된다. 또한, Y축 방향 이동 기구(64)로 Y축 방향 가동 부재(62)를 이동시킴으로써 집광기(86)를 Y축 방향으로 이동시킨 경우라도, 그리고 또한, X축 방향 이동 기구(76)로 X축 방향 가동판(74)을 이동시킴으로써 집광기(86)를 X축 방향으로 이동시킨 경우라도, Y축 방향과 평행하게 레이저 발진기(82)로부터 발진된 펄스 레이저 광선(LB)은, 제1 미러(84)에 의해 광로가 Y축 방향으로부터 X축 방향으로 변환되어 제2 미러로 유도되고, 제2 미러로 유도된 펄스 레이저 광선(LB)은 제2 미러에 의해 광로가 X축 방향으로부터 Z축 방향으로 변환되어 집광기(86)로 유도된다. 이상과 같이 구성된 레이저 조사 유닛(8)에 있어서는, 척 테이블(20)에 유지된 단결정 SiC 잉곳을 얼라인먼트 유닛(88)으로 촬상하여 레이저 가공해야 할 영역을 검출하고, 집광점 위치 조정 유닛으로 집광기(86)를 Z축 방향으로 이동시켜 척 테이블(20)에 유지된 단결정 SiC 잉곳의 상면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 단결정 SiC 잉곳에 대해 투과성을 갖는 파장의 펄스 레이저 광선(LB)의 집광점을 위치시킨 후에, X축 방향 이동 기구(76)로 X축 방향 가동판(74)을 적절히 이동시키고, Y축 방향 이동 기구(64)로 Y축 방향 가동 부재(62)를 Y축 방향으로 적절히 이동시키면서, 척 테이블(20)에 유지된 단결정 SiC 잉곳에 펄스 레이저 광선(LB)을 조사함으로써, 단결정 SiC 잉곳의 내부에 박리층을 형성할 수 있다.
도 1 및 도 8을 참조하여 웨이퍼 박리 유닛(10)에 대해 설명한다. 레이저 조사 유닛(8)에 의해 박리층이 형성된 단결정 SiC 잉곳에 초음파 진동을 부여해서 박리층을 기점으로 하여 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 박리하는 웨이퍼 박리 유닛(10)은, 베이스(14)의 상면에 고정된 지지체(90)와, Z축 방향으로 이동 가능하게 지지체(90)에 지지된 기단부로부터 X축 방향으로 연장되는 아암(92)과, 아암(92)을 Z축 방향으로 이동시키는 아암 이동 기구(94)를 포함한다. 아암 이동 기구(94)는, 지지체(90)의 내부에 있어서 Z축 방향으로 연장되는 볼 나사(도시하고 있지 않음)와, 이 볼 나사의 한쪽 단부에 연결된 모터(96)를 갖는다. 아암 이동 기구(94)의 볼 나사의 너트부(도시하고 있지 않음)는, 아암(92)의 기단부에 고정되어 있다. 그리고 아암 이동 기구(94)는, 볼 나사에 의해 모터(96)의 회전 운동을 직선 운동으로 변환하여 아암(92)에 전달하고, 지지체(90)에 내장된 Z축 방향으로 연장되는 안내 레일(도시하고 있지 않음)을 따라 아암(92)을 Z축 방향으로 이동시킨다.
도 8 및 도 9를 참조하여 웨이퍼 박리 유닛(10)에 대한 설명을 계속한다. 아암(92)의 선단부에는, 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 박리할 때에 척 테이블(20)과 협동하여 액체를 수용하는 액조(液槽; 98)가 고정되어 있다. 액조(98)는, 원형 형상의 상부면벽(100)과, 상부면벽(100)의 주연(周緣)으로부터 수하(垂下)하는 원통형의 측벽(102)을 갖고, 하단측이 개방되어 있다. 상부면벽(100)에는 액조(98)의 외부와 내부를 연통(連通)하는 원통형의 액체 공급부(104)가 부설되어 있다. 액체 공급부(104)는 유로에 의해 액체 공급 유닛(도시하고 있지 않음)에 접속되어 있다. 또한, 도 9에 도시된 바와 같이, 측벽(102)의 하단에는 환형의 패킹(106)이 부설되어 있다. 그리고, 아암 이동 기구(94)에 의해 아암(92)을 하강시켜 척 테이블(20)의 상면에 측벽(102)의 하단을 밀착시키면, 척 테이블(20)의 상면과 액조(98)의 내면에 의해 액체 수용 공간(108)이 규정된다. 액체 공급 유닛으로부터 액체 공급부(104)를 통해 액체 수용 공간(108)에 공급된 액체(110)는, 패킹(106)에 의해 액체 수용 공간(108)으로부터 누설되는 것이 방지된다.
도 8 및 도 9를 참조하여 웨이퍼 박리 유닛(10)에 대한 설명을 더 계속하면, 액조(98)의 상부면벽(100)에는 에어 실린더(112)가 장착되어 있다. 에어 실린더(112)의 실린더 튜브(112a)는 상부면벽(100)의 상면으로부터 상방으로 연장되어 있다. 도 9에 도시된 바와 같이, 에어 실린더(112)의 피스톤 로드(112b)의 하단부는, 상부면벽(100)의 관통 개구(100a)를 통과하여 상부면벽(100)의 하방으로 돌출되어 있다. 피스톤 로드(112b)의 하단부에는 압전 세라믹스 등으로 형성될 수 있는 원판형의 초음파 진동 생성 부재(114)가 고정되어 있다. 초음파 진동 생성 부재(114)의 하면에는 원판형의 흡착편(116)이 고정되어 있다. 하면에 복수의 흡인 구멍(도시하고 있지 않음)이 형성되어 있는 흡착편(116)은, 유로에 의해 흡인 유닛(도시하고 있지 않음)에 접속되어 있다. 흡인 유닛에 의해 흡착편(116)의 하면에 흡인력을 생성함으로써, 흡착편(116)은 단결정 SiC 잉곳을 흡착하여 유지할 수 있다. 그리고 웨이퍼 박리 유닛(10)에 있어서는, 아암 이동 기구(94)에 의해 아암(92)을 하강시켜, 레이저 조사 유닛(8)에 의해 박리층이 형성된 단결정 SiC 잉곳을 유지한 척 테이블(20)의 상면에 측벽(102)의 하단을 밀착시키고, 에어 실린더(112)의 피스톤 로드(112b)를 하강시켜 단결정 SiC 잉곳의 상면에 흡착편(116)을 흡착시킨 후에, 액체 수용 공간(108)에 액체(110)를 수용한 후, 초음파 진동 생성 부재(114)를 작동시켜 단결정 SiC 잉곳에 초음파 진동을 부여함으로써, 박리층을 기점으로 하여 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 박리할 수 있다.
도 1 및 도 2를 참조하여 웨이퍼 수용 유닛(12)에 대해 설명한다. 웨이퍼 수용 유닛(12)은, 웨이퍼 박리 유닛(10)에 의해 박리층을 기점으로 하여 단결정 SiC 잉곳으로부터 박리된 SiC 웨이퍼를, 상하 방향으로 간격을 두고 복수 수용 가능한 카세트로 구성되고, 베이스(14)의 상면에 착탈 가능하게 탑재되어 있다. 또한, 웨이퍼 박리 유닛(10)과 웨이퍼 수용 유닛(12) 사이에는, 웨이퍼 박리 유닛(10)에 의해 박리층을 기점으로 하여 단결정 SiC 잉곳으로부터 박리된 SiC 웨이퍼를 웨이퍼 박리 유닛(10)으로부터 웨이퍼 수용 유닛(12)에 반송하는 웨이퍼 반송 유닛(118)이 배치되어 있다. 도 2에 도시된 바와 같이, 웨이퍼 반송 유닛(118)은, 베이스(14)의 상면으로부터 상방으로 연장되는 승강 유닛(120)과, 승강 유닛(120)의 선단에 고정된 제1 모터(122)와, Z축 방향으로 연장되는 축선을 중심으로 하여 회전 가능하게 제1 모터(122)에 기단부가 연결된 제1 아암(124)과, 제1 아암(124)의 선단부에 고정된 제2 모터(126)와, Z축 방향으로 연장되는 축선을 중심으로 하여 회전 가능하게 제2 모터(126)에 기단부가 연결된 제2 아암(128)과, 제2 아암(128)의 선단부에 고정된 원판형의 흡착편(130)을 포함한다. 승강 유닛(120)에 의해 Z축 방향으로 승강되는 제1 모터(122)는, 제1 아암(124)의 기단부를 지나 Z축 방향으로 연장되는 축선을 회전 중심으로 하여 승강 유닛(120)에 대해 제1 아암(124)을 회전시킨다. 제2 모터(126)는, 제2 아암(128)의 기단부를 지나 Z축 방향으로 연장되는 축선을 중심으로 하여 제1 아암(124)에 대해 제2 아암(128)을 회전시킨다. 상면에 복수의 흡인 구멍(130a)이 형성되어 있는 흡착편(130)은, 유로에 의해 흡인 유닛(도시하고 있지 않음)에 접속되어 있다. 그리고, 웨이퍼 반송 유닛(118)에 있어서는, 흡인 유닛에 의해 흡착편(130)의 상면에 흡인력을 생성함으로써, 웨이퍼 박리 유닛(10)에 의해 박리층을 기점으로 하여 단결정 SiC 잉곳으로부터 박리된 SiC 웨이퍼를 흡착편(130)으로 흡착하여 유지할 수 있고, 승강 유닛(120), 제1 모터(122) 및 제2 모터(126)로 제1 아암(124) 및 제2 아암(128)을 작동시킴으로써, 흡착편(130)으로 흡착한 SiC 웨이퍼를 웨이퍼 박리 유닛(10)으로부터 웨이퍼 수용 유닛(12)에 반송할 수 있다.
도 1에 도시된 바와 같이, 웨이퍼 생성 장치(2)는, 또한, 단결정 SiC 잉곳을 수용하는 잉곳 수용 유닛(132)과, 잉곳 수용 유닛(132)으로부터 단결정 SiC 잉곳을 유지 유닛(4)에 반송하는 잉곳 반송 유닛(134)을 포함하는 것이 바람직하다. 본 실시형태에서의 잉곳 수용 유닛(132)은, Y축 방향으로 간격을 두고 베이스(14)의 상면에 형성된 원형 형상의 4개의 수용 오목부(132a)로 구성되어 있다. 단결정 SiC 잉곳의 직경보다 약간 큰 직경의 4개의 수용 오목부(132a)의 각각에는 단결정 SiC 잉곳이 수용된다.
도 1 및 도 10을 참조하여 잉곳 반송 유닛(134)에 대해 설명한다. 잉곳 반송 유닛(134)은, 베이스(14)의 상면에 있어서 잉곳 수용 유닛(132)을 따라 Y축 방향으로 연장되는 프레임(136)과, Y축 방향으로 이동 가능하게 프레임(136)에 지지된 기단부로부터 X축 방향으로 연장되는 아암(138)과, Y축 방향으로 아암(138)을 이동시키는 아암 이동 기구(140)를 구비한다. 프레임(136)에는, Y축 방향으로 연장되는 직사각형 형상의 안내 개구(136a)가 형성되어 있다. 아암 이동 기구(140)는, 프레임(136)의 내부에 있어서 Y축 방향으로 연장되는 볼 나사(도시하고 있지 않음)와, 이 볼 나사의 한쪽 단부에 연결된 모터(142)를 갖는다. 아암 이동 기구(140)의 볼 나사의 너트부(도시하고 있지 않음)는, 아암(138)의 기단부에 고정되어 있다. 그리고 아암 이동 기구(140)는, 볼 나사에 의해 모터(142)의 회전 운동을 직선 운동으로 변환하여 아암(138)에 전달하고, 프레임(136)의 안내 개구(136a)를 따라 아암(138)을 Y축 방향으로 이동시킨다. 도 10에 도시된 바와 같이, 아암(138)의 선단부에는 Z축 방향으로 연장되는 에어 실린더(144)가 장착되고, 에어 실린더(144)의 피스톤 로드(144a)의 하단부에는 원판형의 흡착편(146)이 고정되어 있다. 하면에 복수의 흡인 구멍(도시하고 있지 않음)이 형성되어 있는 흡착편(146)은, 유로에 의해 흡인 유닛(도시하고 있지 않음)에 접속되어 있다. 그리고, 잉곳 반송 유닛(134)에 있어서는, 흡인 유닛에 의해 흡착편(146)의 하면에 흡인력을 생성함으로써, 잉곳 수용 유닛(132)에 수용된 단결정 SiC 잉곳의 상면을 흡착편(146)으로 흡착하여 유지할 수 있고, 또한, 아암 이동 기구(140)로 아암(138)을 이동시키며 및 에어 실린더(144)로 흡착편(146)을 이동시킴으로써, 흡착편(146)으로 유지한 단결정 SiC 잉곳을 잉곳 수용 유닛(132)으로부터 유지 유닛(4)에 반송할 수 있다.
도 11에는, 전술한 바와 같은 웨이퍼 생성 장치(2)에 의해 가공이 실시될 수 있는 단결정 SiC 잉곳(150)이 도시되어 있다. 단결정 SiC 잉곳(150)은, 육방정 단결정 SiC로부터 전체로서 원기둥 형상으로 형성되어 있고, 원형 형상의 제1 면(152)과, 제1 면(152)과 반대측의 원형 형상의 제2 면(154)과, 제1 면(152) 및 제2 면(154) 사이에 위치하는 둘레면(156)과, 제1 면(152)으로부터 제2 면(154)에 이르는 c축(<0001> 방향)과, c축에 직교하는 c면({0001}면)을 갖는다. 단결정 SiC 잉곳(150)에 있어서는, 제1 면(152)의 수선(垂線; 158)에 대해 c축이 기울어져 있고, c면과 제1 면(152)으로 오프각(α)(예컨대 α=1, 3, 6도)이 형성되어 있다. 오프각(α)이 형성되는 방향을 도 11에 화살표 A로 나타낸다. 또한, 단결정 SiC 잉곳(150)의 둘레면(156)에는, 결정 방위를 나타내는 직사각형 형상의 제1 오리엔테이션 플랫(160) 및 제2 오리엔테이션 플랫(162)이 형성되어 있다. 제1 오리엔테이션 플랫(160)은, 오프각(α)이 형성되는 방향(A)에 평행하고, 제2 오리엔테이션 플랫(162)은, 오프각(α)이 형성되는 방향(A)에 직교하고 있다. 도 11의 (b)에 도시된 바와 같이, 상방에서 보아, 제2 오리엔테이션 플랫(162)의 길이(L2)는, 제1 오리엔테이션 플랫(160)의 길이(L1)보다 짧다(L2<L1). 한편, 웨이퍼 생성 장치(2)에 의해 가공이 실시될 수 있는 단결정 SiC 잉곳은, 상기 단결정 SiC 잉곳(150)에 한정되지 않고, 예컨대, 제1 면의 수선에 대해 c축이 기울어져 있지 않고, c면과 제1 면과의 오프각이 0도인(즉, 제1 면의 수선과 c축이 일치하고 있는) 단결정 SiC 잉곳이어도 좋으며, 혹은 GaN(질화갈륨) 등의 단결정 SiC 이외의 소재로 형성되어 있는 단결정 SiC 잉곳이어도 좋다.
전술한 바와 같은 웨이퍼 생성 장치(2)에 의해 단결정 SiC 잉곳(150)으로부터 SiC 웨이퍼를 생성하는 웨이퍼 생성 방법에 대해 설명한다. 웨이퍼 생성 장치(2)를 이용하는 웨이퍼 생성 방법에서는, 먼저, 4개의 단결정 SiC 잉곳(150)을 준비하고, 도 12에 도시된 바와 같이, 준비한 각 단결정 SiC 잉곳(150)의 단부면[예컨대 제2 면(154)]에 적절한 접착제를 통해 원판형의 서브스트레이트(164)를 장착시키는 서브스트레이트 장착 공정을 실시한다. 서브스트레이트 장착 공정을 실시하는 것은, 제1 오리엔테이션 플랫(160) 및 제2 오리엔테이션 플랫(162)이 형성된 단결정 SiC 잉곳(150)을 척 테이블(20)의 원형 형상의 흡착 척(22)에 의해 소정의 흡인력으로 흡착하여 유지하기 위함이다. 서브스트레이트(164)의 직경은, 단결정 SiC 잉곳(150)의 직경보다 약간 크고, 또한, 척 테이블(20)의 흡착 척(22)의 직경보다 약간 크다. 그리고, 서브스트레이트(164)를 하방으로 향하게 하여 단결정 SiC 잉곳(150)을 척 테이블(20)에 실었을 때에 흡착 척(22)이 서브스트레이트(164)로 덮여지기 때문에, 흡착 척(22)에 접속된 흡인 유닛을 작동시키면, 흡착 척(22)에 의해 소정의 흡인력으로 서브스트레이트(164)를 흡착하고, 이에 의해 제1 오리엔테이션 플랫(160) 및 제2 오리엔테이션 플랫(162)이 형성된 단결정 SiC 잉곳(150)을 척 테이블(20)로 유지할 수 있다. 한편, 단결정 SiC 잉곳의 직경이 흡착 척(22)보다 커서, 단결정 SiC 잉곳이 척 테이블(20)에 실렸을 때에 흡착 척(22)의 상면 전부가 단결정 SiC 잉곳으로 덮여지는 경우에는, 흡착 척(22)에 의한 흡인 시에 흡착 척(22)의 노출 부분으로부터 에어가 빨려들어가는 일이 없어, 흡착 척(22)에 의해 소정의 흡인력으로 단결정 SiC 잉곳을 흡착 가능하기 때문에, 서브스트레이트 장착 공정을 실시하지 않아도 좋다.
서브스트레이트 장착 공정을 실시한 후, 잉곳 수용 유닛(132)에 단결정 SiC 잉곳(150)을 수용하는 잉곳 수용 공정을 실시한다. 본 실시형태에서는 도 1에 도시된 바와 같이, 잉곳 수용 공정에 있어서, 잉곳 수용 유닛(132)의 4개의 수용 오목부(132a)에, 서브스트레이트(164)를 하방으로 향하게 하여 4개의 단결정 SiC 잉곳(150)을 수용한다.
잉곳 수용 공정을 실시한 후, 잉곳 수용 유닛(132)으로부터 유지 유닛(4)에 단결정 SiC 잉곳(150)을 잉곳 반송 유닛(134)으로 반송하는 잉곳 반송 공정을 실시한다. 잉곳 반송 공정에서는, 먼저, 잉곳 반송 유닛(134)의 아암 이동 기구(140)로 아암(138)을 Y축 방향으로 이동시켜, 잉곳 수용 유닛(132)에 수용되어 있는 4개의 단결정 SiC 잉곳(150) 중 임의의 1개의 단결정 SiC 잉곳(150)[이하 「제1 단결정 SiC 잉곳(150a)」이라고 함]의 상방에 흡착편(146)을 위치시킨다. 계속해서, 잉곳 반송 유닛(134)의 에어 실린더(144)로 흡착편(146)을 하강시켜, 제1 단결정 SiC 잉곳(150a)의 상면[예컨대 제1 면(152)]에 흡착편(146)의 하면을 밀착시킨다. 계속해서, 흡착편(146)에 접속된 흡인 유닛을 작동시켜 흡착편(146)의 하면에 흡인력을 생성하여, 제1 단결정 SiC 잉곳(150a)의 상면에 흡착편(146)의 하면을 흡착시킨다. 계속해서, 제1 단결정 SiC 잉곳(150a)을 흡착한 흡착편(146)을 에어 실린더(144)로 상승시킨다. 계속해서, 아암 이동 기구(140)로 아암(138)을 Y축 방향으로 이동시켜, 대기 위치(P1)에 위치되어 있는 척 테이블(20)의 상방에 제1 단결정 SiC 잉곳(150a)을 흡착한 흡착편(146)을 위치시킨다. 계속해서, 도 13에 도시된 바와 같이, 제1 단결정 SiC 잉곳(150a)을 흡착한 흡착편(146)을 에어 실린더(144)로 하강시켜, 대기 위치(P1)에 위치되어 있는 척 테이블(20)의 상면에 서브스트레이트(164)의 하면을 접촉시킨다. 그리고, 흡착편(146)에 접속된 흡인 유닛의 작동을 정지시켜 흡착편(146)의 흡인력을 해제하여, 대기 위치(P1)에 위치되어 있는 척 테이블(20)의 상면에 제1 단결정 SiC 잉곳(150a)을 싣는다. 이에 의해, 잉곳 수용 유닛(132)으로부터 유지 유닛(4)을 구성하는 척 테이블(20)에 제1 단결정 SiC 잉곳(150a)을 잉곳 반송 유닛(134)으로 반송할 수 있다.
잉곳 반송 공정을 실시한 후, 유지 유닛(4)으로 단결정 SiC 잉곳(150)을 유지하는 유지 공정을 실시한다. 유지 공정에서는, 제1 단결정 SiC 잉곳(150a)이 실린 흡착 척(22)에 접속되어 있는 흡인 유닛을 작동시켜 흡착 척(22)의 상면에 흡인력을 생성하여, 척 테이블(20)에 의해 제1 단결정 SiC 잉곳(150a)을 흡착하여 유지한다.
유지 공정을 실시한 후, 상방에서 보아 시계 방향으로 90도만큼 턴테이블(18)을 턴테이블용 모터로 회전시켜, 도 14에 도시된 바와 같이, 제1 단결정 SiC 잉곳(150a)을 흡착하고 있는 척 테이블(20)을 대기 위치(P1)로부터 평탄화 위치(P2)로 이동시킨다. 평탄화 위치(P2)에 위치된 제1 단결정 SiC 잉곳(150a)에 대해서는, 유지 유닛(4)에 유지된 단결정 SiC 잉곳(150)의 상면을 연삭하여 평탄화하는 평탄화 공정을 이 단계에서는 실시하지 않아도 좋다. 단결정 SiC 잉곳(150)은, 통상, 후술하는 박리층 형성 공정에 있어서의 레이저 광선의 입사를 방해하지 않을 정도로 단부면[제1 면(152) 및 제2 면(154)]이 평탄화되어 있기 때문에, 잉곳 수용 유닛(132)으로부터 반송되어 최초로 평탄화 위치(P2)에 위치된 단결정 SiC 잉곳(150)에 대해서는 평탄화 공정을 실시하지 않아도 좋다. 그리고, 잉곳 수용 유닛(132)에 수용되어 있는 나머지 3개의 단결정 SiC 잉곳(150) 중 임의의 1개의 단결정 SiC 잉곳(150)[이하 「제2 단결정 SiC 잉곳(150b)」이라고 함]에 대해, 잉곳 반송 유닛(134)으로 잉곳 반송 공정을 실시하고, 대기 위치(P1)에 위치되어 있는 척 테이블(20)로 유지하는 유지 공정을 실시한다. 한편, 도 14에서는 편의상, 평탄화 위치(P2)에 위치하는 제1 단결정 SiC 잉곳(150a)과, 대기 위치(P1)에 위치하는 제2 단결정 SiC 잉곳(150b)을 동일한 방향으로 기재하고 있으나, 턴테이블(18)의 회전이나 각 척 테이블(20)의 회전에 의해, 척 테이블(20)에 흡착된 단결정 SiC 잉곳(150)은 임의의 방향이 되고, 이 점은 도 15 등에 있어서도 마찬가지이다.
제2 단결정 SiC 잉곳(150b)에 대해 잉곳 반송 공정 및 유지 공정을 실시한 후, 상방에서 보아 시계 방향으로 90도만큼 턴테이블(18)을 턴테이블용 모터로 회전시킨다. 이에 의해 도 15에 도시된 바와 같이, 제1 단결정 SiC 잉곳(150a)을 흡착하고 있는 척 테이블(20)을 평탄화 위치(P2)로부터 박리층 형성 위치(P3)로 이동시키고, 제2 단결정 SiC 잉곳(150b)을 흡착하고 있는 척 테이블(20)을 대기 위치(P1)로부터 평탄화 위치(P2)로 이동시킨다. 그리고, 제1 단결정 SiC 잉곳(150a)에 대해서는, 유지 유닛(4)에 유지된 단결정 SiC 잉곳(150)의 상면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 단결정 SiC 잉곳(150)에 대해 투과성을 갖는 파장의 레이저 광선의 집광점을 위치시키고 레이저 광선을 단결정 SiC 잉곳(150)에 조사하여 박리층을 형성하는 박리층 형성 공정을 레이저 조사 유닛(8)으로 실시한다. 한편, 제2 단결정 SiC 잉곳(150b)에 대해서는, 전술한 바와 같이 잉곳 수용 유닛(132)으로부터 반송되어 최초로 평탄화 위치(P2)에 위치되어 있기 때문에, 평탄화 공정을 실시하지 않아도 좋다. 또한, 잉곳 수용 유닛(132)에 수용되어 있는 나머지 2개의 단결정 SiC 잉곳(150) 중 임의의 1개의 단결정 SiC 잉곳(150)[이하 「제3 단결정 SiC 잉곳(150c)」이라고 함]에 대해, 잉곳 반송 유닛(134)으로 잉곳 반송 공정을 실시하고, 대기 위치(P1)에 위치되어 있는 척 테이블(20)로 유지하는 유지 공정을 실시한다.
레이저 조사 유닛(8)으로 실시하는 박리층 형성 공정에 대해 설명한다. 본 실시형태에서의 박리층 형성 공정에서는, 먼저, 레이저 조사 유닛(8)의 X축 방향 이동 기구(76)(도 5 및 도 6 참조)로 X축 방향 가동판(74)을 이동시키고, Y축 방향 이동 기구(64)로 Y축 방향 가동 부재(62)를 Y축 방향으로 이동시키며, 얼라인먼트 유닛(88)을 단결정 SiC 잉곳(150)의 상방에 위치시키고, 단결정 SiC 잉곳(150)의 상방으로부터 얼라인먼트 유닛(88)으로 단결정 SiC 잉곳(150)을 촬상한다. 계속해서, 얼라인먼트 유닛(88)으로 촬상한 단결정 SiC 잉곳(150)의 화상에 기초하여, 척 테이블용 모터로 척 테이블(20)을 회전시키고, 또한, X축 방향 이동 기구(76)로 X축 방향 가동판(74)을 이동시키며, Y축 방향 이동 기구(64)로 Y축 방향 가동 부재(62)를 Y축 방향으로 이동시킴으로써, 단결정 SiC 잉곳(150)의 방향을 소정의 방향으로 조정하고, 단결정 SiC 잉곳(150)과 집광기(86)의 XY 평면에 있어서의 위치를 조정한다. 단결정 SiC 잉곳(150)의 방향을 소정의 방향으로 조정할 때에는, 도 16의 (a)에 도시된 바와 같이, 제1 오리엔테이션 플랫(160)을 Y축 방향에 정합시키고, 제2 오리엔테이션 플랫(162)을 X축 방향에 정합시킴으로써, 오프각(α)이 형성되는 방향(A)을 Y축 방향에 정합시키고, 오프각(α)이 형성되는 방향(A)과 직교하는 방향을 X축 방향에 정합시킨다. 계속해서, 집광점 위치 조정 유닛으로 집광기(86)를 Z축 방향으로 이동시켜, 도 16의 (b)에 도시된 바와 같이, 단결정 SiC 잉곳(150)의 상면[본 실시형태에서는 제1 면(152)]으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 집광점(FP)을 위치시킨다. 계속해서, X축 방향 이동 기구(76)로 X축 방향 가동판(74)을 이동시킴으로써, 오프각(α)이 형성되는 방향(A)과 직교하는 방향에 정합하고 있는 X축 방향으로, 단결정 SiC 잉곳(150)에 대해 상대적으로 집광점(FP)을 소정의 이송 속도로 이동시키면서, 단결정 SiC 잉곳(150)에 대해 투과성을 갖는 파장의 펄스 레이저 광선(LB)을 집광기(86)로부터 단결정 SiC 잉곳(150)에 조사하는 박리층 형성 가공을 행한다.
박리층 형성 가공을 행하면, 도 17의 (a) 및 도 17의 (b)에 도시된 바와 같이, 펄스 레이저 광선(LB)의 조사에 의해 SiC가 Si(실리콘)와 C(탄소)로 분리되고 다음에 조사되는 펄스 레이저 광선(LB)이 전에 형성된 C에 흡수되어 연쇄적으로 SiC가 Si와 C로 분리되어 형성되는 직선형의 개질층(166)과, 개질층(166)으로부터 c면을 따라 개질층(166)의 양측으로 전파하는 크랙(168)이 형성된다. 한편, 박리층 형성 가공에서는, 개질층(166)이 형성되는 깊이에 있어서 인접하는 펄스 레이저 광선(LB)의 스폿이 상호 겹쳐지도록 단결정 SiC 잉곳(150)에 대해 집광점(FP)을 상대적으로 X축 방향으로 가공 이송하면서 펄스 레이저 광선(LB)을 단결정 SiC 잉곳(150)에 조사하여, Si와 C로 분리된 개질층(166)에 재차 펄스 레이저 광선(LB)이 조사되도록 한다. 인접하는 스폿이 상호 겹쳐지기 위해서는, 펄스 레이저 광선(LB)의 반복 주파수(F)와, 집광점(FP)의 이송 속도(V)와, 스폿의 직경(D)으로 규정되는 G=(V/F)-D가 G<0인 것을 요한다. 또한, 인접하는 스폿의 겹침율은 |G|/D로 규정된다.
도 16 및 도 17을 참조하여 설명을 계속하면, 박리층 형성 공정에서는 박리층 형성 가공에 이어서, Y축 방향 이동 기구(64)로 Y축 방향 가동 부재(62)를 이동시킴으로써, 오프각(α)이 형성되는 방향(A)에 정합하고 있는 Y축 방향으로, 단결정 SiC 잉곳(150)에 대해 상대적으로 집광점(FP)을 소정 인덱스량(Li)만큼 인덱스 이송한다. 그리고, 박리층 형성 공정에 있어서 박리층 형성 가공과 인덱스 이송을 교대로 반복함으로써, 오프각(α)이 형성되는 방향(A)과 직교하는 방향을 따라 연장되는 직선형의 개질층(166)을, 오프각(α)이 형성되는 방향(A)으로 소정 인덱스량(Li)의 간격을 두고 복수 형성하고, 오프각(α)이 형성되는 방향(A)에 있어서 인접하는 크랙(168)과 크랙(168)이 겹쳐지도록 한다. 이에 의해, 단결정 SiC 잉곳(150)의 상면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에, 복수의 개질층(166) 및 크랙(168)으로 이루어지는, 단결정 SiC 잉곳(150)으로부터 SiC 웨이퍼를 박리하기 위한 박리층(170)을 형성할 수 있다. 단결정 SiC 잉곳(150)에 박리층(170)을 형성하기 위한 박리층 형성 공정은, 예컨대 이하의 가공 조건으로 실시할 수 있다.
펄스 레이저 광선의 파장 : 1064 nm
반복 주파수 : 80 ㎑
평균 출력 : 3.2 W
펄스폭 : 4 ㎱
집광점의 직경 : 3 ㎛
집광 렌즈의 개구수(NA) : 0.43
집광점의 Z축 방향 위치 : 단결정 SiC 잉곳의 상면으로부터 300 ㎛
집광점의 이송 속도 : 120 ㎜/s∼260 ㎜/s
인덱스량 : 250 ㎛∼400 ㎛
제1 단결정 SiC 잉곳(150a)에 대해 박리층 형성 공정을 실시하고, 제3 단결정 SiC 잉곳(150c)에 대해 단결정 SiC 잉곳 반송 공정 및 유지 공정을 실시한 후, 상방에서 보아 시계 방향으로 90도만큼 턴테이블(18)을 턴테이블용 모터로 회전시킨다. 이에 의해 도 18에 도시된 바와 같이, 박리층(170)이 형성된 제1 단결정 SiC 잉곳(150a)을 흡착하고 있는 척 테이블(20)을 박리층 형성 위치(P3)로부터 웨이퍼 박리 위치(P4)로 이동시키고, 제2 단결정 SiC 잉곳(150b)을 흡착하고 있는 척 테이블(20)을 평탄화 위치(P2)로부터 박리층 형성 위치(P3)로 이동시키며, 또한, 제3 단결정 SiC 잉곳(150c)을 흡착하고 있는 척 테이블(20)을 대기 위치(P1)로부터 평탄화 위치(P2)로 이동시킨다. 그리고, 제1 단결정 SiC 잉곳(150a)에 대해서는, 단결정 SiC 잉곳(150)의 상면을 유지하고 박리층(170)으로부터 SiC 웨이퍼를 박리하는 웨이퍼 박리 공정을 웨이퍼 박리 유닛(10)으로 실시한다. 또한, 제2 단결정 SiC 잉곳(150b)에 대해서는 레이저 조사 유닛(8)으로 박리층 형성 공정을 실시한다. 한편, 제3 단결정 SiC 잉곳(150c)에 대해서는, 전술한 바와 같이 잉곳 수용 유닛(132)으로부터 반송되어 최초로 평탄화 위치(P2)에 위치되어 있기 때문에, 평탄화 공정을 실시하지 않아도 좋다. 또한, 잉곳 수용 유닛(132)에 수용되어 있는 나머지 1개의 단결정 SiC 잉곳(150)[이하 「제4 단결정 SiC 잉곳(150d)」이라고 함]에 대해, 잉곳 반송 유닛(134)으로 잉곳 반송 공정을 실시하고, 대기 위치(P1)에 위치되어 있는 척 테이블(20)로 유지하는 유지 공정을 실시한다.
도 9, 도 19 및 도 20을 참조하여, 웨이퍼 박리 유닛(10)으로 실시하는 웨이퍼 박리 공정에 대해 설명한다. 본 실시형태에서의 웨이퍼 박리 공정에서는, 먼저, 도 19의 (a) 및 도 19의 (b)에 도시된 바와 같이, 아암 이동 기구(94)로 아암(92)을 하강시켜, 박리층(170)이 형성된 단결정 SiC 잉곳(150)을 유지하고 있는 척 테이블(20)의 상면에 액조(98)의 측벽(102)의 하단을 밀착시킨다. 계속해서, 도 9에 도시된 바와 같이, 웨이퍼 박리 유닛(10)의 에어 실린더(112)의 피스톤 로드(112b)를 이동시켜, 단결정 SiC 잉곳(150)의 상면에 흡착편(116)의 하면을 밀착시킨다. 계속해서, 흡착편(116)에 접속된 흡인 유닛을 작동시켜 흡착편(116)의 하면에 흡인력을 생성하여, 단결정 SiC 잉곳(150)의 상면에 흡착편(116)의 하면을 흡착시켜 유지시킨다. 계속해서, 액체 공급부(104)에 접속된 액체 공급 유닛을 작동시켜, 초음파 진동 생성 부재(114)가 침지될 때까지 액체 공급부(104)로부터 액체 수용 공간(108)에 액체(110)(예컨대 물)를 공급한다. 계속해서, 초음파 진동 생성 부재(114)를 작동시켜, 단결정 SiC 잉곳(150)에 초음파 진동을 부여하면, 박리층(170)을 기점으로 하여 단결정 SiC 잉곳(150)으로부터 생성해야 할 SiC 웨이퍼(172)를 박리할 수 있다. 계속해서, 아암 이동 기구(94)로 아암(92)을 상승시키고, 액체 수용 공간(108)으로부터 액체(110)를 배출한다. 액체 수용 공간(108)으로부터 배출된 액체(110)는, 베이스(14)의 턴테이블 수용부(16)에 있어서 웨이퍼 박리 유닛(10)에 인접하여 형성된 배수구(16a)(도 2 참조)를 통해 웨이퍼 생성 장치(2)의 외부로 배출된다. 그리고, 도 20에 도시된 바와 같이, 단결정 SiC 잉곳(150)으로부터 생성한 SiC 웨이퍼(172)가 액조(98)의 측벽(102)의 하단보다 하방으로 돌출할 때까지, 에어 실린더(112)의 피스톤 로드(112b)를 하강시킨다. 한편, 도 20에 도시된 바와 같이, SiC 웨이퍼(172)가 박리된 단결정 SiC 잉곳(150)의 박리면(174)은 요철로 되어 있고, 박리면(174)의 요철의 높이는, 예컨대 100 ㎛ 정도이다.
제1 단결정 SiC 잉곳(150a)에 대해 웨이퍼 박리 공정을 실시한 후, 제1 단결정 SiC 잉곳(150a)으로부터 생성한 SiC 웨이퍼(172)를 웨이퍼 박리 유닛(10)으로부터 웨이퍼 수용 유닛(12)에 반송하여 수용하는 웨이퍼 반송 공정을 웨이퍼 반송 유닛(118)으로 실시한다. 웨이퍼 반송 공정에서는, 웨이퍼 반송 유닛(118)의 제1 모터(122)로 제1 아암(124)을 작동시키고, 제2 모터(126)로 제2 아암(128)을 작동시켜, 웨이퍼 박리 유닛(10)에 의해 박리되어 흡착편(116)으로 흡착되어 있는 SiC 웨이퍼(172)의 하방에 웨이퍼 반송 유닛(118)의 흡착편(130)을 위치시킨다. 계속해서, 웨이퍼 반송 유닛(118)의 승강 유닛(120)을 작동시켜, 웨이퍼 반송 유닛(118)의 흡착편(130)의 상면을 SiC 웨이퍼(172)의 하면에 밀착시킨다. 계속해서, 웨이퍼 박리 유닛(10)의 흡착편(116)에 접속된 흡인 유닛의 작동을 정지시켜 웨이퍼 박리 유닛(10)의 흡착편(116)의 흡인력을 해제하고, 웨이퍼 반송 유닛(118)의 흡착편(130)에 접속된 흡인 유닛을 작동시켜 웨이퍼 반송 유닛(118)의 흡착편(130)의 상면에 흡인력을 생성하여, 웨이퍼 반송 유닛(118)의 흡착편(130)의 상면에 SiC 웨이퍼(172)의 하면을 흡착시킨다. 이에 의해, 웨이퍼 박리 유닛(10)으로부터 웨이퍼 반송 유닛(118)에 SiC 웨이퍼(172)가 전달된다. 계속해서, 웨이퍼 반송 유닛(118)의 승강 유닛(120), 제1 모터(122) 및 제2 모터(126)로 제1 아암(124) 및 제2 아암(128)을 작동시킴으로써, 웨이퍼 반송 유닛(118)의 흡착편(130)으로 흡착한 SiC 웨이퍼(172)를 웨이퍼 박리 유닛(10)으로부터 웨이퍼 수용 유닛(12)에 반송하여 수용할 수 있다.
제1 단결정 SiC 잉곳(150a)에 대해 웨이퍼 박리 공정을 실시하고, 제1 단결정 SiC 잉곳(150a)으로부터 생성한 SiC 웨이퍼(172)에 대해 웨이퍼 반송 공정을 실시하며, 제2 단결정 SiC 잉곳(150b)에 대해 박리층 형성 공정을 실시하고, 또한, 제4 단결정 SiC 잉곳(150d)에 대해 잉곳 반송 공정 및 유지 공정을 실시한 후, 상방에서 보아 시계 방향으로 90도만큼 턴테이블(18)을 턴테이블용 모터로 회전시킨다. 이에 의해 도 21에 도시된 바와 같이, 제1 단결정 SiC 잉곳(150a)을 흡착하고 있는 척 테이블(20)을 웨이퍼 박리 위치(P4)로부터 대기 위치(P1)로 이동시키고, 제2 단결정 SiC 잉곳(150b)을 흡착하고 있는 척 테이블(20)을 박리층 형성 위치(P3)로부터 웨이퍼 박리 위치(P4)로 이동시키며, 제3 단결정 SiC 잉곳(150c)을 흡착하고 있는 척 테이블(20)을 평탄화 위치(P2)로부터 박리층 형성 위치(P3)로 이동시키고, 또한, 제4 단결정 SiC 잉곳(150d)을 흡착하고 있는 척 테이블(20)을 대기 위치(P1)로부터 평탄화 위치(P2)로 이동시킨다. 그리고, 제2 단결정 SiC 잉곳(150b)에 대해서는 웨이퍼 박리 유닛(10)으로 웨이퍼 박리 공정을 실시하고, 제2 단결정 SiC 잉곳(150b)으로부터 생성한 SiC 웨이퍼(172)에 대해서는 웨이퍼 반송 유닛(118)으로 웨이퍼 반송 공정을 실시한다. 또한, 제3 단결정 SiC 잉곳(150c)에 대해서는 레이저 조사 유닛(8)으로 박리층 형성 공정을 실시한다. 한편, 제4 단결정 SiC 잉곳(150d)에 대해서는, 전술한 바와 같이 잉곳 수용 유닛(132)으로부터 반송되어 최초로 평탄화 위치(P2)에 위치되어 있기 때문에, 평탄화 공정을 실시하지 않아도 좋다. 한편, 대기 위치(P1)에 위치된 제1 단결정 SiC 잉곳(150a)은, 다음에 턴테이블(18)이 회전될 때까지 대기 위치(P1)에서 대기하게 된다.
제2 단결정 SiC 잉곳(150b)에 대해 웨이퍼 박리 공정을 실시하고, 제2 단결정 SiC 잉곳(150b)으로부터 생성한 SiC 웨이퍼(172)에 대해 웨이퍼 반송 공정을 실시하며, 또한, 제3 단결정 SiC 잉곳(150c)에 대해 박리층 형성 공정을 실시한 후, 상방에서 보아 시계 방향으로 90도만큼 턴테이블(18)을 턴테이블용 모터로 회전시킨다. 이에 의해 도 22에 도시된 바와 같이, 제1 단결정 SiC 잉곳(150a)을 흡착하고 있는 척 테이블(20)을 대기 위치(P1)로부터 평탄화 위치(P2)로 이동시키고, 제2 단결정 SiC 잉곳(150b)을 흡착하고 있는 척 테이블(20)을 웨이퍼 박리 위치(P4)로부터 대기 위치(P1)로 이동시키며, 제3 단결정 SiC 잉곳(150c)을 흡착하고 있는 척 테이블(20)을 박리층 형성 위치(P3)로부터 웨이퍼 박리 위치(P4)로 이동시키고, 또한, 제4 단결정 SiC 잉곳(150d)을 흡착하고 있는 척 테이블(20)을 평탄화 위치(P2)로부터 박리층 형성 위치(P3)로 이동시킨다. 그리고, 제1 단결정 SiC 잉곳(150a)에 대해서는, 유지 유닛(4)에 유지된 단결정 SiC 잉곳(150)의 상면을 연삭하여 평탄화하는 평탄화 공정을 평탄화 유닛(6)으로 실시한다. 제3 단결정 SiC 잉곳(150c)에 대해서는 웨이퍼 박리 유닛(10)으로 웨이퍼 박리 공정을 실시하고, 제3 단결정 SiC 잉곳(150c)으로부터 생성한 SiC 웨이퍼(172)에 대해서는 웨이퍼 반송 유닛(118)으로 웨이퍼 반송 공정을 실시한다. 제4 단결정 SiC 잉곳(150d)에 대해서는 레이저 조사 유닛(8)으로 박리층 형성 공정을 실시한다. 한편, 대기 위치(P1)에 위치된 제2 단결정 SiC 잉곳(150b)은, 다음에 턴테이블(18)이 회전될 때까지 대기 위치(P1)에서 대기하게 된다.
도 3을 참조하여, 평탄화 유닛(6)으로 실시하는 평탄화 공정에 대해 설명한다. 평탄화 공정에서는, 먼저, SiC 웨이퍼(172)가 박리된 단결정 SiC 잉곳(150)을 유지하고 있는 척 테이블(20)을 상방에서 보아 반시계 방향으로 소정의 회전 속도(예컨대 300 rpm)로 척 테이블용 모터로 회전시킨다. 또한, 상방에서 보아 반시계 방향으로 소정의 회전 속도(예컨대 6000 rpm)로 평탄화 유닛(6)의 스핀들(40)을 모터(36)로 회전시킨다. 계속해서, 평탄화 유닛(6)의 Z축 방향 이동 기구(28)로 Z축 방향 가동판(26)을 하강시켜, 단결정 SiC 잉곳(150)의 박리면(174)에 연삭 지석(48)을 접촉시킨다. 박리면(174)에 연삭 지석(48)을 접촉시킨 후에는 소정의 연삭 이송 속도(예컨대 1.0 ㎛/s)로 Z축 방향 가동판(26)을 Z축 방향 이동 기구(28)에 의해 하강시킨다. 이에 의해, SiC 웨이퍼(172)가 박리된 단결정 SiC 잉곳(150)의 박리면(174)을 연삭하여, 박리층 형성 공정에 있어서의 펄스 레이저 광선(LB)의 입사를 방해하지 않을 정도로 단결정 SiC 잉곳(150)의 박리면(174)을 평탄화할 수 있다. 한편, 단결정 SiC 잉곳(150)의 박리면(174)을 연삭하여 평탄화할 때에 단결정 SiC 잉곳(150)의 박리면(174)에 두께 측정기(도시하고 있지 않음)를 접촉시키고, 두께 측정기로 측정한 단결정 SiC 잉곳(150)의 두께가 소정량[예컨대, 박리면(174)의 요철 높이의 분인 100 ㎛] 감소한 것을 검출했을 때에, 단결정 SiC 잉곳(150)의 상면이 평탄화한 것을 검출할 수 있다. 또한, 평탄화 공정에서는, 단결정 SiC 잉곳(150)의 박리면(174)을 연삭하고 있을 때에, 연삭수 공급 유닛(도시하고 있지 않음)으로부터 연삭 영역에 연삭수가 공급되는 바, 연삭 영역에 공급된 연삭수는 베이스(14)의 턴테이블 수용부(16)에 있어서 평탄화 유닛(6)에 인접하여 형성된 배수구(16b)(도 2 참조)를 통해 웨이퍼 생성 장치(2)의 외부로 배출된다.
제1 단결정 SiC 잉곳(150a)에 대해 평탄화 공정을 실시하고, 제3 단결정 SiC 잉곳(150c)에 대해 웨이퍼 박리 공정을 실시하며, 제3 단결정 SiC 잉곳(150c)으로부터 생성한 SiC 웨이퍼(172)에 대해 웨이퍼 반송 공정을 실시하고, 또한, 제4 단결정 SiC 잉곳(150d)에 대해 박리층 형성 공정을 실시한 후, 상방에서 보아 시계 방향으로 90도만큼 턴테이블(18)을 턴테이블용 모터로 회전시킨다. 이에 의해 도 23에 도시된 바와 같이, 제1 단결정 SiC 잉곳(150a)을 흡착하고 있는 척 테이블(20)을 평탄화 위치(P2)로부터 박리층 형성 위치(P3)로 이동시키고, 제2 단결정 SiC 잉곳(150b)을 흡착하고 있는 척 테이블(20)을 대기 위치(P1)로부터 평탄화 위치(P2)로 이동시키며, 제3 단결정 SiC 잉곳(150c)을 흡착하고 있는 척 테이블(20)을 웨이퍼 박리 위치(P4)로부터 대기 위치(P1)로 이동시키고, 또한, 제4 단결정 SiC 잉곳(150d)을 흡착하고 있는 척 테이블(20)을 박리층 형성 위치(P3)로부터 웨이퍼 박리 위치(P4)로 이동시킨다. 이때에는, 도 4에 도시된 바와 같이, 세정 유닛(50)을 작동시켜, 제1 세정부(54)의 각 분사 구멍으로부터 하방을 향해 평탄화 유닛(6)측으로 경사져서 세정수(55)를 분사하여 제1 단결정 SiC 잉곳(150a)으로부터 연삭 부스러기를 제거하고, 제2 세정부(56)의 각 분사 구멍으로부터 하방을 향해 압축 공기(57)를 분사하여 제1 단결정 SiC 잉곳(150a)으로부터 세정수(55)를 제거함으로써, 평탄화 유닛(6)에 의해 평탄화된 제1 단결정 SiC 잉곳(150a)을 세정하고 건조시킨다. 그리고, 제1 단결정 SiC 잉곳(150a)에 대해서는 레이저 조사 유닛(8)으로 박리층 형성 공정을 실시한다. 제2 단결정 SiC 잉곳(150b)에 대해서는 평탄화 유닛(6)으로 평탄화 공정을 실시한다. 제4 단결정 SiC 잉곳(150d)에 대해서는 웨이퍼 박리 유닛(10)으로 웨이퍼 박리 공정을 실시하고, 제4 단결정 SiC 잉곳(150d)으로부터 생성한 SiC 웨이퍼(172)에 대해서는 웨이퍼 반송 유닛(118)으로 웨이퍼 반송 공정을 실시한다. 한편, 대기 위치(P1)에 위치된 제3 단결정 SiC 잉곳(150c)은, 다음에 턴테이블(18)이 회전될 때까지 대기 위치(P1)에서 대기하게 된다.
그리고, 상방에서 보아 시계 방향으로 90도씩 턴테이블(18)을 턴테이블용 모터로 회전시킴으로써 각 척 테이블(20)을 대기 위치(P1), 평탄화 위치(P2), 박리층 형성 위치(P3) 및 웨이퍼 박리 위치(P4)에 순서대로 위치시키고, 각 척 테이블(20)에 유지된 각 단결정 SiC 잉곳(150)에 대해 평탄화 공정, 박리층 형성 공정, 웨이퍼 박리 공정을 반복해서 실시하고, 웨이퍼 박리 유닛(10)에 의해 박리된 각 SiC 웨이퍼(172)에 대해 웨이퍼 반송 공정을 실시함으로써, 각 단결정 SiC 잉곳(150)으로부터 생성 가능한 수량의 SiC 웨이퍼(172)를 생성하며, 생성한 SiC 웨이퍼(172)를 웨이퍼 수용 유닛(12)에 수용한다.
본 실시형태에서는, 각 단결정 SiC 잉곳(150)으로부터 생성 가능한 수량의 SiC 웨이퍼(172)를 생성한 후, 단결정 SiC 잉곳(150)의 소재가 약간 잔류하고 있는 서브스트레이트(164)를 잉곳 반송 유닛(134)으로 베이스(14)의 상면단부에 배치된 적절한 회수 용기(176)(도 1 및 도 2 참조)에 반송하여 회수하는 서브스트레이트 회수 공정을 실시할 수 있다. 서브스트레이트 회수 공정에서는, 먼저, 잉곳 반송 유닛(134)의 아암 이동 기구(140)로 아암(138)을 Y축 방향으로 이동시켜, 대기 위치(P1)에 위치된 서브스트레이트(164)의 상방에 흡착편(146)을 위치시킨다. 계속해서, 잉곳 반송 유닛(134)의 에어 실린더(144)로 흡착편(146)을 하강시켜, 서브스트레이트(164)의 상면에 흡착편(146)의 하면을 밀착시킨다. 계속해서, 흡착편(146)에 접속된 흡인 유닛을 작동시켜 흡착편(146)의 하면에 흡인력을 생성함으로써, 서브스트레이트(164)의 상면에 흡착편(146)의 하면을 흡착시킨다. 계속해서, 서브스트레이트(164)를 흡착한 흡착편(146)을 에어 실린더(144)로 상승시킨다. 계속해서, 아암 이동 기구(140)로 아암(138)을 Y축 방향으로 이동시켜, 회수 용기(176)의 상방에 흡착편(146)을 위치시킨다. 계속해서, 흡착편(146)에 접속된 흡인 유닛의 작동을 정지시켜, 흡착편(146)의 흡인력을 해제하여 서브스트레이트(164)를 회수 용기(176)에 수용한다. 그리고, 턴테이블용 모터로 턴테이블을 회전시켜 순차 대기 위치(P1)에 위치된 서브스트레이트(164)에 대해 서브스트레이트 회수 공정을 실시함으로써, 모든 서브스트레이트(164)를 회수 용기(176)에 반송하여 회수할 수 있다.
이상과 같이 본 실시형태에서는, 단결정 SiC 잉곳(150)을 유지하는 유지 유닛(4)과, 유지 유닛(4)에 유지된 단결정 SiC 잉곳(150)의 상면을 연삭하여 평탄화하는 평탄화 유닛(6)과, 유지 유닛(4)에 유지된 단결정 SiC 잉곳(150)의 상면으로부터 생성해야 할 SiC 웨이퍼(172)의 두께에 상당하는 깊이에 단결정 SiC 잉곳(150)에 대해 투과성을 갖는 파장의 펄스 레이저 광선(LB)의 집광점(FP)을 위치시키고 펄스 레이저 광선(LB)을 단결정 SiC 잉곳(150)에 조사하여 박리층(170)을 형성하는 레이저 조사 유닛(8)과, 단결정 SiC 잉곳(150)의 상면을 유지하고 박리층(170)으로부터 SiC 웨이퍼(172)를 박리하는 웨이퍼 박리 유닛(10)과, 박리된 SiC 웨이퍼(172)를 수용하는 웨이퍼 수용 유닛(12)을 구비하고 있기 때문에, 박리층 형성 공정, 웨이퍼 박리 공정, 웨이퍼 반송 공정 및 평탄화 공정을 순차 실시함으로써, 단결정 SiC 잉곳(150)으로부터 SiC 웨이퍼(172)를 자동적으로 생성하여 웨이퍼 수용 유닛(12)에 수용할 수 있고, 따라서 생산 효율이 향상된다.
본 실시형태에서는, 단결정 SiC 잉곳(150)을 수용하는 잉곳 수용 유닛(132)과, 잉곳 수용 유닛(132)으로부터 단결정 SiC 잉곳(150)을 유지 유닛(4)에 반송하는 잉곳 반송 유닛(134)을 포함하기 때문에, 잉곳 수용 유닛(132)에 단결정 SiC 잉곳(150)을 수용하여 웨이퍼 생성 장치(2)를 가동시킴으로써, 잉곳 수용 유닛(132)으로부터 단결정 SiC 잉곳(150)을 유지 유닛(4)에 반송하는 잉곳 반송 공정에 대해서도 자동화할 수 있다.
또한, 본 실시형태에서는, 평탄화 유닛(6)에 의해 평탄화된 단결정 SiC 잉곳(150)을 세정하는 세정 유닛(50)을 포함하기 때문에, 평탄화 공정에 있어서 단결정 SiC 잉곳(150)의 박리면(174)을 연삭하고 있을 때에 세정 유닛(50)을 작동시킴으로써, 평탄화 공정에서 발생하는 연삭 부스러기나 연삭 영역에 공급되는 연삭수의 레이저 조사 유닛(8)으로의 비산을 방지할 수 있고, 평탄화 공정을 실시한 후에 턴테이블(18)을 회전시킬 때에는 세정 유닛(50)에 의해 평탄화 공정이 실시된 단결정 SiC 잉곳(150)을 세정할 수 있다.
또한, 본 실시형태에서는, 유지 유닛(4)을 구성하는 4개의 척 테이블(20)의 각각은 턴테이블(18)에 배치되어 있고, 4개의 척 테이블(20)은 턴테이블(18)의 회전에 의해 적어도 평탄화 유닛(6), 레이저 조사 유닛(8), 웨이퍼 박리 유닛(10)의 각각의 하방에 위치되기 때문에, 복수의 단결정 SiC 잉곳에 대해 동시에 상이한 공정(적어도 평탄화 공정, 박리층 형성 공정, 웨이퍼 박리 공정)을 실시할 수 있으므로, 효율적으로 복수의 공정을 실시할 수 있다.
한편, 본 실시형태에서는, 박리층 형성 공정에 있어서 오프각(α)이 형성되는 방향(A)과 직교하는 방향으로 단결정 SiC 잉곳(150)에 대해 집광점(FP)을 상대적으로 이동시키고, 또한 인덱스 이송에 있어서 오프각(α)이 형성되는 방향(A)으로 단결정 SiC 잉곳(150)에 대해 집광점(FP)을 상대적으로 이동시키는 예를 설명하였으나, 단결정 SiC 잉곳(150)에 대한 집광점(FP)의 상대적인 이동 방향은 오프각(α)이 형성되는 방향(A)과 직교하는 방향이 아니어도 좋고, 또한, 인덱스 이송에 있어서의 단결정 SiC 잉곳(150)에 대한 집광점(FP)의 상대적인 이동 방향은 오프각(α)이 형성되는 방향(A)이 아니어도 좋다. 또한, 웨이퍼 박리 유닛(10)에 의해 단결정 SiC 잉곳(150)으로부터 박리된 SiC 웨이퍼(172)의 박리면을 연삭하는 웨이퍼 연삭 유닛을 설치해도 좋다.
2: 웨이퍼 생성 장치 4: 유지 유닛
6: 평탄화 유닛 8: 레이저 조사 유닛
10: 웨이퍼 박리 유닛 12: 웨이퍼 수용 유닛
18: 턴테이블 P1: 대기 위치
P2: 평탄화 위치 P3: 박리층 형성 위치
P4: 웨이퍼 박리 위치 50: 세정 유닛
132: 잉곳 수용 유닛 134: 잉곳 반송 유닛
150: 단결정 SiC 잉곳 150a: 제1 단결정 SiC 잉곳
150b: 제2 단결정 SiC 잉곳 150c: 제3 단결정 SiC 잉곳
150d: 제4 단결정 SiC 잉곳 170: 박리층
172: SiC 웨이퍼 LB: 펄스 레이저 광선
FP: 집광점

Claims (4)

  1. 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 웨이퍼 생성 장치로서,
    단결정 SiC 잉곳을 유지하는 유지 유닛과,
    상기 유지 유닛에 유지된 단결정 SiC 잉곳의 상면을 연삭하여 평탄화하는 평탄화 유닛과,
    상기 유지 유닛에 유지된 단결정 SiC 잉곳의 상면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 단결정 SiC 잉곳에 대해 투과성을 갖는 파장의 레이저 광선의 집광점을 위치시키고 레이저 광선을 단결정 SiC 잉곳에 조사하여 박리층을 형성하는 레이저 조사 유닛과,
    단결정 SiC 잉곳의 상면을 유지하고 박리층으로부터 SiC 웨이퍼를 박리하는 웨이퍼 박리 유닛과,
    박리된 SiC 웨이퍼를 수용하는 웨이퍼 수용 유닛
    을 포함하는 웨이퍼 생성 장치.
  2. 제1항에 있어서, 단결정 SiC 잉곳을 수용하는 잉곳 수용 유닛과, 상기 잉곳 수용 유닛으로부터 단결정 SiC 잉곳을 상기 유지 유닛에 반송하는 잉곳 반송 유닛을 더 포함하는 웨이퍼 생성 장치.
  3. 제1항에 있어서, 상기 평탄화 유닛에 의해 평탄화된 단결정 SiC 잉곳을 세정하는 세정 유닛을 더 포함하는 웨이퍼 생성 장치.
  4. 제1항에 있어서, 상기 유지 유닛은 턴테이블에 배치되고, 상기 유지 유닛은 상기 턴테이블의 회전에 의해 적어도 상기 평탄화 유닛, 상기 레이저 조사 유닛, 상기 웨이퍼 박리 유닛에 위치되는 것인 웨이퍼 생성 장치.
KR1020180058206A 2017-06-08 2018-05-23 웨이퍼 생성 장치 KR102482218B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2017-113391 2017-06-08
JP2017113391A JP6904793B2 (ja) 2017-06-08 2017-06-08 ウエーハ生成装置

Publications (2)

Publication Number Publication Date
KR20180134285A true KR20180134285A (ko) 2018-12-18
KR102482218B1 KR102482218B1 (ko) 2022-12-27

Family

ID=64332889

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180058206A KR102482218B1 (ko) 2017-06-08 2018-05-23 웨이퍼 생성 장치

Country Status (8)

Country Link
US (1) US10981250B2 (ko)
JP (1) JP6904793B2 (ko)
KR (1) KR102482218B1 (ko)
CN (1) CN109037027B (ko)
DE (1) DE102018208190B4 (ko)
MY (1) MY192235A (ko)
SG (1) SG10201804286QA (ko)
TW (1) TWI754744B (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US20220290324A1 (en) 2019-08-06 2022-09-15 Kwansei Gakuin Educational Foundation SiC SUBSTRATE PRODUCTION METHOD
WO2021060365A1 (ja) 2019-09-27 2021-04-01 学校法人関西学院 半導体基板の製造方法及び半導体基板の製造装置
WO2021060366A1 (ja) 2019-09-27 2021-04-01 学校法人関西学院 SiC半導体装置の製造方法及びSiC半導体装置
JP7358193B2 (ja) * 2019-10-28 2023-10-10 株式会社ディスコ ウエーハの加工方法
JP7443053B2 (ja) * 2019-12-26 2024-03-05 株式会社ディスコ レーザー加工装置
JP2022096455A (ja) * 2020-12-17 2022-06-29 株式会社ディスコ ウエーハの生成装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094221A (ja) 1998-09-24 2000-04-04 Toyo Advanced Technologies Co Ltd 放電式ワイヤソー
KR20070049349A (ko) * 2005-11-08 2007-05-11 삼성전자주식회사 소잉 유닛을 갖는 웨이퍼 이면 연마 장치
JP2009302369A (ja) * 2008-06-16 2009-12-24 Disco Abrasive Syst Ltd 板状物の加工方法及び加工装置
JP2013049161A (ja) 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
JP2015030005A (ja) * 2013-08-01 2015-02-16 株式会社ディスコ 加工装置
JP2015223589A (ja) * 2014-05-26 2015-12-14 株式会社ディスコ SiC板状ワーク製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464113B2 (ja) * 2003-11-27 2010-05-19 株式会社ディスコ ウエーハの加工装置
JP2007165802A (ja) * 2005-12-16 2007-06-28 Disco Abrasive Syst Ltd 基板の研削装置および研削方法
JP4909657B2 (ja) * 2006-06-30 2012-04-04 株式会社ディスコ サファイア基板の加工方法
JP2010021398A (ja) * 2008-07-11 2010-01-28 Disco Abrasive Syst Ltd ウェーハの処理方法
RU2459691C2 (ru) * 2010-11-29 2012-08-27 Юрий Георгиевич Шретер Способ отделения поверхностного слоя полупроводникового кристалла (варианты)
JP5480169B2 (ja) * 2011-01-13 2014-04-23 浜松ホトニクス株式会社 レーザ加工方法
JP5912287B2 (ja) * 2011-05-19 2016-04-27 株式会社ディスコ レーザー加工方法およびレーザー加工装置
JP2013237097A (ja) * 2012-05-17 2013-11-28 Disco Corp 改質層形成方法
US9196503B2 (en) * 2012-08-23 2015-11-24 Michael Xiaoxuan Yang Methods for fabricating devices on semiconductor substrates
JP2014053510A (ja) * 2012-09-07 2014-03-20 Toshiba Corp 端面加工方法及び端面加工装置
JP6328485B2 (ja) * 2014-05-13 2018-05-23 株式会社ディスコ ウエーハの加工方法
US9789623B2 (en) * 2014-07-25 2017-10-17 Symmetry Medical Manufacturing, Inc. Method and apparatus for releasing laser cut work pieces
JP6391471B2 (ja) * 2015-01-06 2018-09-19 株式会社ディスコ ウエーハの生成方法
JP6444249B2 (ja) * 2015-04-15 2018-12-26 株式会社ディスコ ウエーハの生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094221A (ja) 1998-09-24 2000-04-04 Toyo Advanced Technologies Co Ltd 放電式ワイヤソー
KR20070049349A (ko) * 2005-11-08 2007-05-11 삼성전자주식회사 소잉 유닛을 갖는 웨이퍼 이면 연마 장치
JP2009302369A (ja) * 2008-06-16 2009-12-24 Disco Abrasive Syst Ltd 板状物の加工方法及び加工装置
JP2013049161A (ja) 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
JP2015030005A (ja) * 2013-08-01 2015-02-16 株式会社ディスコ 加工装置
JP2015223589A (ja) * 2014-05-26 2015-12-14 株式会社ディスコ SiC板状ワーク製造方法

Also Published As

Publication number Publication date
SG10201804286QA (en) 2019-01-30
US20180354067A1 (en) 2018-12-13
US10981250B2 (en) 2021-04-20
CN109037027A (zh) 2018-12-18
TW201904739A (zh) 2019-02-01
DE102018208190A1 (de) 2018-12-13
JP6904793B2 (ja) 2021-07-21
KR102482218B1 (ko) 2022-12-27
DE102018208190B4 (de) 2023-11-30
JP2018207034A (ja) 2018-12-27
TWI754744B (zh) 2022-02-11
CN109037027B (zh) 2024-02-27
MY192235A (en) 2022-08-10

Similar Documents

Publication Publication Date Title
KR20180134285A (ko) 웨이퍼 생성 장치
KR102491739B1 (ko) 웨이퍼의 생성 방법 및 웨이퍼 생성 장치
TWI758505B (zh) 晶圓生成裝置
KR102644784B1 (ko) 웨이퍼 생성 장치 및 반송 트레이
KR102549852B1 (ko) 평탄화 방법
KR102450902B1 (ko) SiC 웨이퍼의 생성 방법
KR102560277B1 (ko) 박리 장치
JP2007235069A (ja) ウェーハ加工方法
KR20100007713A (ko) 웨이퍼 처리 방법
JP2019029382A (ja) ウエーハの生成方法およびウエーハ生成装置
JP2007214457A (ja) ウェーハ加工装置及び方法
JP2007235068A (ja) ウェーハ加工方法
KR20200049515A (ko) 웨이퍼 생성 장치
JP2010177228A (ja) 研削装置
JP2010023163A (ja) 加工装置
KR20220086486A (ko) 유지 테이블의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
GRNT Written decision to grant