KR20180027556A - 회전 전기 기기 냉각 구조 - Google Patents

회전 전기 기기 냉각 구조 Download PDF

Info

Publication number
KR20180027556A
KR20180027556A KR1020187003601A KR20187003601A KR20180027556A KR 20180027556 A KR20180027556 A KR 20180027556A KR 1020187003601 A KR1020187003601 A KR 1020187003601A KR 20187003601 A KR20187003601 A KR 20187003601A KR 20180027556 A KR20180027556 A KR 20180027556A
Authority
KR
South Korea
Prior art keywords
rotor
refrigerant
shielding wall
coolant
rotating electrical
Prior art date
Application number
KR1020187003601A
Other languages
English (en)
Other versions
KR102016863B1 (ko
Inventor
도모유키 마나베
다케나리 오쿠야마
Original Assignee
닛산 지도우샤 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 지도우샤 가부시키가이샤 filed Critical 닛산 지도우샤 가부시키가이샤
Publication of KR20180027556A publication Critical patent/KR20180027556A/ko
Application granted granted Critical
Publication of KR102016863B1 publication Critical patent/KR102016863B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing

Abstract

효율적인 모터의 냉각을 저렴하게 달성 가능한 회전 전기 기기 냉각 구조를 제공하는 것을 목적으로 한다. 로터(2)의 내부에 냉매를 도입하는 냉매 공급로(4)와, 로터(2)의 회전에 수반하여 스테이터(3)의 코일 엔드(32e)를 향하여 냉매가 비산하도록 냉매 공급로(4)에 개구된 냉매 출구(43a)를 구비한 회전 전기 기기 냉각 구조이며, 냉매 출구(43a)와 코일 엔드(32e) 사이의 냉매 비산로(14a)에, 로터(2)의 회전 시에 냉매 출구(43a)로부터 비산하는 냉매의 일부를 차폐하는 차폐벽 부재(5)를 설치하고, 차폐벽 부재(5)는 냉매를 코일 엔드(32e)에 대하여 차폐하는 비율이, 로터(2)의 저회전 시에 낮고, 고회전 시에 높은 것을 특징으로 하는 회전 전기 기기 냉각 구조로 하였다.

Description

회전 전기 기기 냉각 구조
본 발명은 냉매를 사용하여 회전 전기 기기를 냉각하는 회전 전기 기기 냉각 구조에 관한 것이다.
종래, 소형·고출력의 모터 개발을 위해, 모터 내부에 냉매를 도입하여 고온으로 되는 부품을 효율적으로 냉각하는 구조가 검토되고 있다.
이러한 냉각 구조로서, 영구 자석형 모터에 있어서, 스프링이나 플레이트 등으로 구성되는 냉매 유로 전환 부품을 로터에 내장함으로써, 모터의 동작 상태에 따라서 냉매 유로를 전환하도록 한 회전 전기 기기 냉각 구조가 알려져 있다(예를 들어, 특허문헌 1 참조).
이 종래 기술에서는, 스테이터의 코일 온도가 높아지는 저회전 시에는 코일에 냉매를 공급하고, 로터의 자석 온도가 높아지는 고회전 시에는 로터 내에 냉매를 공급함으로써, 효율적인 냉각을 실현할 수 있다.
일본 특허 공개 제2009-118686호 공보
그러나, 상술한 종래 기술에서는, 효율적인 모터의 냉각을 달성하기 위해서는, 스프링이나 플레이트 등의 유로 전환 부품을 로터 내에 내장할 필요가 있다.
이 때문에, 부품 개수 증가, 조립 공정 증가를 초래하여, 비용 상승을 초래한다는 문제가 있었다.
본 발명은 상기 문제에 착안하여 이루어진 것으로, 효율적인 모터의 냉각을 저렴하게 달성 가능한 회전 전기 기기 냉각 구조를 제공하는 것을 목적으로 한다.
본 발명의 회전 전기 기기 냉각 구조는, 로터의 회전에 수반하여 스테이터의 코일 엔드를 향하여 냉매가 비산하도록 냉매 공급로에 개구된 냉매 출구를 구비하고 있다.
그리고, 본 발명은 냉매 출구와 코일 엔드 사이의 냉매 비산로에 설치한 차폐벽은, 냉매를 코일 엔드에 대하여 차폐하는 비율이, 로터의 저회전 시에 낮고, 고회전 시에 높은 것을 특징으로 하는 회전 전기 기기 냉각 구조로 하였다.
본 발명에서는, 원심력으로 냉매 출구로부터 냉매 비산로에서 코일 엔드를 향하여 비산하는 냉매를, 로터의 냉매 출구와 스테이터의 코일 엔드 사이에 설치한 차폐벽에 의해, 로터의 회전수에 따라 코일 엔드와 로터 코어에의 냉매 공급 비율을 상이하게 할 수 있다. 따라서, 효율적인 모터의 냉각을 저렴하게 달성 가능한 회전 전기 기기 냉각 구조를 제공할 수 있다.
도 1은 실시 형태 1의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 2는 실시 형태 1의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 주요부를 도시하는 사시도이다.
도 3은 실시 형태 2의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 주요부를 도시하는 사시도이다.
도 4는 실시 형태 3의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 주요부를 도시하는 사시도이다.
도 5는 실시 형태 4의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 6은 실시 형태 5의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 7은 실시 형태 6의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 8은 실시 형태 7의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 9는 실시 형태 8의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 10은 실시 형태 9의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 11은 실시 형태 10의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 12는 실시 형태 11의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 13은 실시 형태 12의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
도 14는 실시 형태 13의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이다.
이하, 본 발명의 회전 전기 기기 냉각 구조를 실현하는 최선의 형태를, 도면에 도시하는 실시 형태에 기초하여 설명한다.
(실시 형태 1)
실시 형태 1에 있어서의 회전 전기 기기 냉각 구조의 구성을 설명한다.
먼저, 본 실시 형태 1의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기(A)의 구조에 대하여 설명한다.
도 1은, 회전 전기 기기(A)를 도시하는 단면도이다.
이 회전 전기 기기(A)는, 하우징(1)과 로터(2)와 스테이터(3)를 구비하고 있다.
하우징(1)은 대략 원통 형상의 하우징 본체(11)와, 이 하우징 본체(11)의 축방향 양단의 개구를 막는 대략 원반 형상의 커버(12, 13)를 구비하고, 내부에 수용 공간(14)을 형성하고 있다.
로터(2)는 로터 샤프트(21)와 로터 코어(22)를 구비하고 있다.
로터 샤프트(21)는 하우징(1)의 중심축을 따라서 배치되고, 양단부가, 커버(12, 13)에 베어링(25, 26)을 통하여, 회전 가능하게 지지되어 있다.
또한, 커버(12, 13)는, 수용 공간(14)을 향하여 축방향으로 원환형으로 돌출된 원환 볼록부(12a, 13a)를 구비하고, 이 원환 볼록부(12a, 13a)의 내주에서 베어링(25, 26)의 외주를 지지하고 있다.
로터 코어(22)는 복수의 금속판을 축방향으로 적층하고, 그 축방향의 양단부를, 엔드 플레이트(22e, 22e)에 의해 지지한 상태에서, 로터 샤프트(21)의 외주에 고정되어 있다. 본 실시 형태 1의 회전 전기 기기(A)는, 영구 자석식 동기 모터이며, 로터 코어(22)는 내부에, 둘레 방향으로 간격을 두고 복수의 영구 자석(22a)을 구비하고 있다.
스테이터(3)는 스테이터 코어(31)를 구비하고 있다.
이 스테이터 코어(31)는 로터 코어(22)의 외주와 에어 갭을 개재하여 배치되고, 하우징 본체(11)의 내주에 고정되어 있다.
또한, 스테이터 코어(31)는 내주에 복수의 티스를 구비하고, 각 티스에 코일(32)이 감겨 있고, 코일 엔드(32e)가 스테이터 코어(31)의 축방향 양단 외측에 배치되어 있다.
또한, 스테이터 코어(31)는 다수매의 링형 강판을 로터 샤프트(21)의 축방향으로 적층하여 구성되어 있다.
이상의 구성의 회전 전기 기기(A)는, 코일(32)에 통전하여, 전동기로서 기능하는 것이 가능함과 함께, 회전 전기 기기(A)에 외부로부터 전달되는 구동력에 의해 발전하는 발전기로서 기능하는 것도 가능하다.
이어서, 회전 전기 기기(A)에 있어서의 냉각 구조에 대하여 설명한다.
로터(2)는 회전 전기 기기(A)의 외부로부터 냉매액을 공급하는 냉매 공급로(4)를 구비하고 있다. 즉, 회전 전기 기기(A)는, 냉매액을 순환시켜서, 영구 자석(22a) 및 코일 엔드(32e)를 냉각하는 구조이다. 또한, 냉매액으로서는, 냉각 오일을 사용할 수 있지만, 이것에 한정되는 것은 아니다. 또한, 냉매액은, 도시하지 않은 펌프에 의해 회전 전기 기기(A)에 대하여 공급 및 배출된다.
냉매 공급로(4)는 회전축심 유로(41)와, 직경 방향 유로(42)와, 로터축 방향 유로(43)를 구비하고 있다.
회전축심 유로(41)는 로터 샤프트(21)의 일단부 냉매 입구(41a)로부터 로터 샤프트(21)의 중심축을 따라서 축방향으로 연장되고, 그 연장 방향의 선단은 로터 코어(22)의 축방향의 대략 중심 위치에 배치되어 있다.
직경 방향 유로(42)는 회전축심 유로(41)의 선단으로부터, 외경 방향으로 로터 샤프트(21)를 관통하여 로터 코어(22)의 직경 방향 중간 위치까지 연장된 것이며, 둘레 방향으로 간격을 두고 복수 형성되어 있다.
로터축 방향 유로(43)는 각 직경 방향 유로(42)의 외경 방향의 선단으로부터, 로터 코어(22)의 축방향 양측 단부면(22b, 22b)까지 축방향을 따라서 연장되고, 로터 코어(22)의 축방향 양측 단부면(22b, 22b)에 냉매 출구(43a)를 개구하고 있다.
냉매 출구(43a)는 도 2에 도시한 바와 같이, 로터 코어(22)의 축방향 양측 단부면(22b, 22b)에 있어서 둘레 방향으로 대략 등간격으로 설치되어 있다.
로터(2)의 회전 시에는, 도 1에 도시하는 냉매 입구(41a)로부터 냉매 공급로(4)에 공급된 냉매액은, 원심력에 의해, 냉매 출구(43a)로부터 외경 방향의 코일 엔드(32e)를 향하여 비산한다.
수용 공간(14)에 있어서, 이렇게 냉매 출구(43a)로부터 코일 엔드(32e)에 이르는 냉매액이 비산하는 부분이 냉매 비산로(14a)이다. 즉, 냉매 비산로(14a)는 축방향을 따르는 방향에서 로터 코어(22)의 양측 단부면(22b, 22b)과, 커버(12, 13)의 원환 볼록부(12a, 13a) 사이에 끼워지고, 직경 방향으로 냉매 출구(43a)와 코일 엔드(32e) 사이의 공간이다.
또한, 이 냉매 비산로(14a)에서 비산한 냉매액은, 수용 공간(14) 내에서 낙하하고, 하우징 본체(11)에 형성된 배출 구멍(11c, 11c)을 통하여, 도시하지 않은 오일탱크로 복귀되고, 도시하지 않은 방열기 등에서 방열한 후, 냉매 입구(41a)로부터 냉매 공급로(4)로 복귀된다.
또한, 본 실시 형태 1의 냉각 구조는, 냉매 비산로(14a)에, 냉매 출구(43a)로부터 코일 엔드(32e)를 향하여 외경 방향으로 비산하는 냉매액의 일부를 차폐하는 차폐벽 부재(5)를 구비한다.
본 실시 형태 1에서는, 차폐벽 부재(5)는 커버(12, 13)에 고정되어 있다.
이 차폐벽 부재(5)는 측단부면(22b)으로부터 먼 측의 부위를 도 2에 도시한 바와 같이 원환형으로 형성하고 있고, 냉매 비산로(14a)를 전체 둘레에 걸쳐서 차폐한다.
한편, 차폐벽 부재(5)는 측단부면(22b)에 가까운 측에는, 도 1에 도시한 바와 같이, 냉매 출구(43a)측과 코일 엔드(32e)측을 연통하는 연통로(51)를 형성하고 있다.
즉, 연통로(51)는 차폐벽 부재(5)의 로터 코어(22)측의 축방향 선단면과, 로터 코어(22)의 측단부면(22b) 사이의 간극과, 차폐벽 부재(5)에 형성한 도 2에 도시하는 연통용 오목부(51a)에 의해 형성되어 있다.
또한, 연통용 오목부(51a)는 차폐벽 부재(5)의 로터 코어(22)측의 단부에 있어서, 둘레 방향으로 일정한 간격으로 설치되어 있고, 차폐벽 부재(5)는 도 2에 도시한 바와 같이, 요철 형상을 이루고 있다.
따라서, 차폐벽 부재(5)는 축축방향으로 로터 코어(22)의 양측 단부면(22b, 22b)으로부터 축방향으로 이격된 위치에서는, 전체 둘레에 걸쳐서 냉매 출구(43a)를 외경 방향을 향하여 차폐하고, 외경 방향의 코일 엔드(32e)에 대한 차폐 면적이 크고 차폐도가 높다.
한편, 차폐벽 부재(5)는 축방향으로 로터 코어(22)의 양측 단부면(22b, 22b)에 가까운 위치에서는, 측단부면(22b)에 가까운 측의 연통 단면적이 큰 연통로(51)를 구비하고, 차폐 면적이 작고 외경 방향의 코일 엔드(32e)에 대한 차폐도가 낮다.
(실시 형태 1의 작용)
이어서, 실시 형태 1의 작용을 설명한다.
회전 전기 기기(A)의 구동 시에는, 냉매 공급로(4)의 냉매 입구(41a)에 냉매를 공급한다. 이 냉매 공급로(4)에 공급된 냉매액은, 로터(2)의 회전에 의해 작용하는 원심력에 의해, 냉매 출구(43a)로부터 냉매 비산로(14a)에서 외경 방향으로 비산한다.
그리고, 냉매 비산로(14a)에서 비산한 냉매액은, 로터(2)의 영구 자석(22a)이나, 스테이터(3)의 코일(32)과 열교환을 행하여 이들을 냉각한 후, 하우징 본체(11)의 배출 구멍(11c)으로부터 배출된다.
이 냉매액의 순환에 의해, 회전 전기 기기(A)의 냉각을 행한다.
그런데, 회전 전기 기기(A)에서는, 로터(2)의 회전수의 고저에 따라, 로터(2)의 영구 자석(22a)과, 스테이터(3)의 코일(32)에서 발열하기 쉬운 부위가 변화한다.
저회전 시에는, 일반적으로 높은 출력 토크를 얻고자 하는 경우가 많다. 이러한 경우에는, 코일(32)에 흘리는 전류가 커져 동손이 증가하여 코일(32)이 발열하기 쉽다.
한편, 고회전 시에는, 영구 자석(22a)을 가로지르는 자속의 교체가 많아져서, 히스테리시스 손실이나 소용돌이 전류 손실, 즉 철손이 증가하여 영구 자석(22a)이 발열하기 쉬운 상태가 된다.
그래서, 본 실시 형태 1에서는, 차폐벽 부재(5)의 차폐 특성에 기초하여, 로터(2)의 영구 자석(22a)과, 스테이터(3)의 코일(32)의 냉각액의 공급 비율을 바꾸고, 냉각하는 개소를 전환한다.
이하에, 본 실시 형태 1에 있어서 상술한 회전 전기 기기(A)의 회전수의 고저에 따라, 로터 코어(22)와 코일 엔드(32e)에의 냉매액의 공급 비율의 전환 동작을 설명한다.
로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액에 작용하는 원심력이 고회전 시와 비교하여 작아지고, 냉매 출구(43a)로부터 비산하는 냉매액의 유속도 낮다.
이 경우, 냉매 출구(43a)로부터 비산하는 냉매액은, 도 2에 있어서 점선의 화살표(tei)로 도시한 바와 같이, 축방향으로, 로터(2)의 양측 단부면(22b, 22b)에 가까운 위치를 통과하는 비율이 상승하고, 실선의 화살표(kou)로 도시한 바와 같이, 양측 단부면(22b, 22b)으로부터 먼 위치를 통과하는 비율이 저하된다.
따라서, 로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액 중, 차폐벽 부재(5)에 의해 차폐되지 않고 연통로(51)를 통과하여 코일 엔드(32e)를 향하는 비율이 고회전 시보다 높고, 차폐벽 부재(5)에 의해 차폐되는 비율이 고회전 시보다도 낮다.
따라서, 상대적으로 로터 코어(22)보다도 코일 엔드(32e)를 효율적으로 냉각한다.
반대로, 로터(2)의 고회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액에 작용하는 원심력이 저회전 시와 비교하여 커져서, 냉매 출구(43a)로부터 비산하는 냉매액의 유속이 높아진다.
이 경우, 냉매 출구(43a)로부터 비산하는 냉매액은, 도 2에 있어서 점선의 화살표(tei)로 도시한 바와 같이, 축방향으로, 로터(2)의 양측 단부면(22b, 22b)에 가까운 위치를 통과하는 비율이 저하되고, 실선의 화살표(kou)로 도시한 바와 같이, 양측 단부면(22b, 22b)으로부터 먼 위치를 통과하는 비율이 상승한다.
따라서, 로터(2)의 고회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액 중, 연통로(51)를 통과하는 비율이 저회전시보다도 저하되어, 차폐벽 부재(5)에 의해 차폐되는 비율이 저회전시보다도 상승한다.
따라서, 코일 엔드(32e)에의 공급 비율을 저하시킴과 함께, 로터 코어(22) 및 영구 자석(22a)에의 공급 비율을 상승시킨다.
이에 의해, 코일 엔드(32e)로부터 수열량을 저하시키고, 로터 코어(22) 및 영구 자석(22a)에 공급하는 냉매액 온도를 억제하여, 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각한다.
또한, 차폐벽 부재(5)를 설치함으로써, 로터(2)의 회전 시에, 냉매 출구(43a)로부터 외경 방향을 향하는 냉매액(오일)의 유량을 제한하여, 차폐벽 부재(5)의 내경측의 냉매액량이, 차폐벽 부재(5)를 설치하지 않은 경우보다도 많아진다. 이 때문에, 베어링(25, 26)에의 냉각액(오일)의 공급량이 증대하여, 윤활성을 높일 수 있고, 특히, 고회전 시에, 이 공급량이 증대하여, 윤활성을 보다 높일 수 있다.
이상과 같이, 냉매 출구(43a)로부터 외경 방향으로 비산하는 냉매의 차폐벽 부재(5)에 의한 차폐 비율을 로터(2)의 회전수에 따라서 가변으로 하여, 회전 전기 기기(A)의 발열 부위를 효율적으로 냉각할 수 있다. 그리고, 이러한 로터(2)의 회전수에 따른 차폐벽 부재(5)의 내외에의 냉매의 공급 비율의 차이를, 로터(2)의 냉매 출구(43a)와 스테이터(3)의 코일 엔드(32e) 사이에 차폐벽 부재(5)를 설치했을 뿐인 단순한 구조에 의해 달성할 수 있다. 따라서, 효율적인 회전 전기 기기(A)의 냉각을 저렴하게 달성 가능한 회전 전기 기기 냉각 구조를 제공할 수 있다.
(실시 형태 1의 효과)
이하에, 실시 형태 1의 효과를 열거한다.
1) 실시 형태 1의 회전 전기 기기 냉각 구조는,
회전 전기 기기(A)의 로터(2)의 내부에 냉매를 도입하는 냉매 공급로(4)와,
로터(2)의 회전에 수반하여 스테이터(3)의 코일 엔드(32e)를 향하여 냉매가 비산하도록 냉매 공급로(4)에 개구된 냉매 출구(43a)
를 구비한 회전 전기 기기 냉각 구조이며,
냉매 출구(43a)와 코일 엔드(32e) 사이의 냉매 비산로(14a)에, 로터(2)의 회전 시에 냉매 출구(43a)로부터 비산하는 냉매의 일부를 차폐하는 차폐벽 부재(5)를 설치하고,
차폐벽 부재(5)는, 냉매를 코일 엔드(32e)에 대하여 차폐하는 비율이, 로터(2)의 저회전 시에 낮고, 고회전 시에 높은 것을 특징으로 한다.
따라서, 단순히 차폐벽 부재(5)를 설치하고, 그 차폐 비율을 저회전 시와 고회전 시가 상이하게 한 단순하고 저렴한 구성에 의해, 로터(2)의 저회전 시에, 코일 엔드(32e)를 효율적으로 냉각하고, 로터(2)의 고회전 시에, 로터 코어(22)를 효율적으로 냉각할 수 있다.
따라서, 효율적인 회전 전기 기기의 냉각을 저렴하게 달성 가능하다.
2) 실시 형태 1의 회전 전기 기기 냉각 구조는,
냉매 출구(43a)를, 로터(2)의 로터 코어(22)의 축방향 양측 단부면(22b, 22b)에 갖고,
차폐벽 부재(5)는, 냉매 비산로(14a)에, 냉매 출구(43a)측과 코일 엔드(32e)측을 연통하는 연통로(51)를 형성함과 함께, 연통로(51)의 단면적을, 로터 코어(22)의 측단부면(22b)으로부터 먼 측보다도 로터 코어(22)의 측단부면(22b)측을 크게 형성한 것을 특징으로 한다.
따라서, 로터 코어(22)의 측단부면(22b)측의 단면적을 크게 형성한 연통로(51)를 차폐벽 부재(5)에 갖는 단순한 구성에 의해, 상기 1)의 작용 효과를 얻을 수 있다.
3) 실시 형태 1의 회전 전기 기기 냉각 구조는,
차폐벽을, 냉매 비산로(14a)의 측면을 형성하는 회전 전기 기기(A)의 하우징(1)의 커버(12, 13) 및 로터 코어(22)와는 별체의 차폐벽 부재(5)에 의해 형성한 것을 특징으로 한다.
따라서, 차폐벽을, 하우징(1)과 로터 코어(22) 중 어느 것에 일체로 형성하는 것과 비교하여, 제조가 용이함과 함께, 냉매 비산로(14a)에 있어서의 차폐 면적 및 연통로(51)의 단면적의 설정이 용이하다.
(다른 실시 형태)
이어서, 다른 실시 형태의 회전 전기 기기 냉각 구조에 대하여 설명한다.
또한, 다른 실시 형태는, 실시 형태 1의 변형예이기 때문에, 실시 형태 1과 공통되는 구성에는 실시 형태 1과 동일한 부호를 부여하여 설명을 생략하고, 실시 형태 1과의 상위점만 설명한다.
(실시 형태 2)
실시 형태 2의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 3은, 실시 형태 2의 회전 전기 기기 냉각 구조에 있어서의 로터(2) 및 차폐벽 부재(205)를 도시하는 사시도이며, 도시한 바와 같이, 차폐벽 부재(205)의 형상을 실시 형태 1의 차폐벽 부재(5)의 형상과 상이하게 하였다.
즉, 차폐벽 부재(205)는, 전체 둘레에 걸쳐서 환형으로 형성되어 있다. 그리고, 차폐벽 부재(205)는 연통로로서, 차폐벽 부재(205)를 관통하여 형성됨과 함께, 각각 둘레 방향으로 일정한 간격으로 배치되어서 복수의 제1 연통 구멍(205a), 제2 연통 구멍(205b)을 구비하고 있다.
또한, 제1 연통 구멍(205a)은, 제2 연통 구멍(205b)에 비하여 로터 코어(22)의 측단부면(22b)에 가까운 측에 배치되고, 또한, 제2 연통 구멍(205b)보다도 둘레 방향으로 긴 형상으로 형성되어 있다. 이에 의해, 차폐벽 부재(205)는 냉매 출구(43a)측과 코일 엔드(32e)측을 연통하는 연통로(251)의 단면적을, 로터 코어(22)의 측단부면(22b)으로부터 먼 측보다도 가까운 측을 크게 형성하였다.
따라서, 로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액 중, 점선의 화살표(tei)로 도시하는 제1, 제2 연통 구멍(205a, 205b)을 통과하여 코일 엔드(32e)를 향하는 비율이 고회전 시보다 높아, 코일 엔드(32e)를 효율적으로 냉각할 수 있다.
한편, 로터(2)의 고회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액 중, 도 3에 있어서 실선의 화살표(kou)로 도시하는 차폐벽 부재(205)에 의해 차폐하는 비율이 저회전 시보다 높아, 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각할 수 있다.
따라서, 실시 형태 2의 회전 전기 기기 냉각 구조에 있어서도, 상기 1) 내지 3)과 동일한 효과를 얻을 수 있다.
(실시 형태 3)
실시 형태 3의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 4는, 실시 형태 3의 회전 전기 기기 냉각 구조에 있어서의 로터(2) 및 차폐벽 부재(305)를 도시하는 사시도이며, 도시한 바와 같이, 차폐벽 부재(305)의 형상이 실시 형태 1의 차폐벽 부재(5)의 형상과 상이하다.
이 차폐벽 부재(305)는 전체 둘레에 걸쳐서 원환형으로 형성되어 있다. 그리고, 차폐벽 부재(305)의 로터 샤프트(21)의 축방향을 따르는 방향의 선단면과, 이것에 대향하는 로터 코어(22)의 측단부면(22b) 사이에 냉매액의 유통을 가능하게 하는 연통로(351)를 형성하고 있다.
따라서, 로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 도 4에 있어서 점선의 화살표(tei)로 도시한 바와 같이, 로터(2)의 측단부면(22b)과 차폐벽 부재(305)의 선단면 사이의 연통로(351)를 통과하는 비율이, 고회전 시보다도 높아진다.
따라서, 냉매 출구(43a)로부터 비산하는 냉매액 중, 코일 엔드(32e)에 공급 비율이 증가하고, 코일 엔드(32e)를 효율적으로 냉각한다.
그에 반하여 로터(2)의 고회전 시에는, 도 4에 있어서 실선의 화살표(kou)로 도시한 바와 같이, 로터(2)에 대하여 축방향으로 이격된 위치를 통과하는 비율이 증가하여, 차폐벽 부재(305)에 의해 차폐되는 비율이 증가한다.
이 때문에, 냉매 출구(43a)로부터 비산하는 냉매액 중, 차폐벽 부재(305)를 통과하여 외경 방향을 향하는 유량의 비율이 저회전 시보다 감소되고, 로터 코어(22)에 공급하는 비율이 증가되어, 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각한다.
따라서, 실시 형태 3의 회전 전기 기기 냉각 구조에 있어도, 상기 1) 내지 3)의 효과를 얻을 수 있다.
(실시 형태 4)
실시 형태 4의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 5는, 실시 형태 4의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이며, 도시한 바와 같이, 차폐벽 부재(405)의 형상이 실시 형태 1의 차폐벽 부재(5)의 형상과 상이하다.
차폐벽 부재(405)는, 베이스판(405a)과, 환형 벽부(405b)를 구비하고 있다. 베이스판(405a)은 원반형으로 형성되어 있고, 커버(12, 13)의 원환 볼록부(12a, 13a)의 선단면에 고정되어 있다.
환형 벽부(405b)는 원환형으로 형성되어 있고, 베이스판(405a)의 외주부에 일체로 결합되어 있다. 이 환형 벽부(405b)의 형상은, 실시 형태 1 내지 3에 나타낸 차폐벽 부재(5, 205, 305) 중 어느 형상이어도 된다.
따라서, 실시 형태 4에 있어서는, 상기 실시 형태 1) 내지 3)의 효과에 추가로, 커버(12, 13)에 있어서의 차폐벽 부재(405)의 지지 강도를 향상시킬 수 있다고 하는 효과를 발휘한다.
(실시 형태 5)
실시 형태 5의 회전 전기 기기 냉각 구조에 대하여 설명한다.
실시 형태 5는, 차폐벽을 하우징(1)과 일체로 형성한 예이다.
도 6은 실시 형태 5의 회전 전기 기기 냉각 구조를 구비한 회전 전기 기기의 단면도이며, 하우징(1)을 구성하는 커버(512, 513)의 원환 볼록부(512a, 513a)를 차폐벽으로서 사용하고 있다.
즉, 원환 볼록부(512a, 513a)의 선단면(512b, 513b)을, 실시 형태 1과 비교하여, 로터(2)의 양측 단부면(22b, 22b)에 근접시켜서 배치하고 있다. 그리고, 양자 사이에 위치하는 냉매 비산로(14a)를 냉매 출구(43a)측과 코일 엔드(32e)측을 연통하는 연통로(551)로 하고 있다.
따라서, 로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 실시 형태 1과 마찬가지로, 화살표(tei)로 도시하는 바와 같이 원환 볼록부(512a, 513a)의 선단면(512b, 513b)에 가까운 위치를 통과한다.
이 때문에, 냉매 출구(43a)로부터 비산하는 냉매액 중, 점선의 화살표(tei)로 도시하는 바와 같이 연통로(551)를 통과하여 코일 엔드(32e)를 향하는 비율이 높고, 실선의 화살표(kou)로 도시한 바와 같이, 냉매 출구(43a)로부터, 기울기 축방향으로 선단면(512b, 513b)을 향하는 비율이 낮다.
이 때문에, 로터(2)의 저회전 시에는, 로터(2)보다도 코일 엔드(32e)를 효율적으로 냉각한다.
한편, 로터(2)의 고회전 시에는, 점선의 화살표(tei)로 도시하는 바와 같이 연통로(551)를 통과하여 코일 엔드(32e)를 향하는 비율이 낮고, 화살표(kou)로 도시하는 바와 같이, 냉매 출구(43a)로부터, 기울기 축방향으로 선단면(512b, 513b)을 향하는 비율이 높다.
냉매 출구(43a)로부터 비산하는 냉매액 중, 실선의 화살표(kou)로 도시하는 원환 볼록부(512a, 513a)에 의해 차폐되어서, 내경 방향을 향하는 비율이 증가한다.
이 때문에, 로터(2)의 고회전 시에는, 코일 엔드(32e)보다도 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각한다.
또한, 실시 형태 5의 회전 전기 기기 냉각 구조는, 차폐벽을, 냉매 비산로(14a)의 측면을 형성하는 회전 전기 기기의 하우징(1)을 구성하는 커버(512, 513)의 원환 볼록부(512a, 513a)와 일체로 형성한 것을 특징으로 한다.
차폐벽으로서, 독립적인 차폐벽 부재를 사용하지 않기 때문에, 부품 개수를 저감시켜서 비용 절감을 도모하는 것이 가능하게 된다.
(실시 형태 6)
실시 형태 6의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 7은, 실시 형태 6의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이며, 이 실시 형태 6은, 차폐벽 부재(605)를 로터(2)에 설치한 예이다.
이 차폐벽 부재(605)는, 베이스 플레이트(605a)와 원환벽부(605b)를 구비하고 있다. 베이스 플레이트(605a)는 원판상으로 형성되고, 엔드 플레이트를 겸하여 로터 코어(22)의 축방향 양단에 설치되어 있다.
원환벽부(605b)는, 원환형을 이루고, 베이스 플레이트(605a)의 외주연부를 따라서 일체로 결합되고, 그 선단면이, 냉매 출구(43a)와 코일 엔드(32e) 간을 차폐하도록, 커버(12, 13)의 원환 볼록부(12a, 13a)에 근접하여 배치하고 있다.
또한, 원환벽부(605b)는, 실시 형태 2에 나타낸 제1, 제2 연통 구멍(205a, 205b)과 마찬가지로 둘레 방향으로 일정한 간격으로 형성한 구멍에 의해, 냉매 비산로(14a)에 있어서 냉매 출구(43a)측과 코일 엔드(32e)측을 연통하는 연통로(651)를 형성하고 있다.
따라서, 이 실시 형태 6에 있어서도, 로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 점선의 화살표(tei)로 도시하는 연통로(651)를 통과하여 코일 엔드(32e)를 향하는 비율이 높다.
한편, 로터(2)의 고회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 실선의 화살표(kou)로 도시하는 원환벽부(605b)에 의해 차폐되어서, 내경 방향을 향하는 비율이 높다.
따라서, 이 실시 형태 6에 있어도, 상기 1) 내지 3)의 효과를 얻을 수 있다.
또한, 실시 형태 6에서는, 차폐벽 부재(605)의 베이스 플레이트(605a)가 로터 코어(22)의 엔드 플레이트를 겸하도록 했기 때문에, 부품 개수를 억제할 수 있다.
(실시 형태 7)
실시 형태 7의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 8은, 실시 형태 7의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이다.
이 실시 형태 7은, 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 구조가 실시 형태 1과 달리, 회전 전기 기기로서 소위 권선 계자식의 것을 사용하고 있다.
즉, 로터(702)의 로터 코어(722)는 직경 방향의 외주측에 도시를 생략한 복수의 슬롯을 둘레 방향 등간격으로 갖고, 슬롯에 배치한 코일(727)을 로터 코어(722)에 감고, 코일(727)에 통전함으로써 로터(702)의 자극을 여자한다. 또한, 로터 코어(722)의 양측 단부면의 외경 방향 테두리부에 코일 엔드(727e)가 배치되어 있다.
차폐벽 부재(705)는, 실시 형태 3과 마찬가지로 원환형으로 형성되어 있고, 차폐벽 부재(705)의 선단면과, 이것에 대향하는 코일 엔드(727e)를 포함하는 로터 코어(722)의 측단부면(722b) 사이에 연통로(751)를 형성하고 있다.
따라서, 이 실시 형태 7에 있어도, 로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 점선의 화살표(tei)로 도시하는 연통로(751)를 통과하여 코일 엔드(32e)를 향하는 비율이 높다.
한편, 로터(2)의 고회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 실선의 화살표(kou)로 도시하는 차폐벽 부재(705)에 의해 차폐되어서, 내경 방향을 향하는 비율이 높다.
따라서, 이 실시 형태 7에 있어도, 상기 1) 내지 3)의 효과를 얻을 수 있다.
(실시 형태 8)
실시 형태 8의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 9는, 실시 형태 8의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이며, 이 실시 형태 8은, 회전 전기 기기로서 소위 유도식의 것을 사용한 예이다.
즉, 로터(802)의 로터 코어(822)는 직경 방향의 외주부에, 복수의 도체 바(827)를 둘레 방향 등간격으로 갖고, 스테이터(3)로 형성되는 회전 자계에 의해, 로터(802)에 유도 전류가 발생하여 회전 토크가 발생한다.
차폐벽 부재(805)는, 실시 형태 3과 마찬가지로, 원환형으로 형성하고, 또한, 차폐벽 부재(805)의 선단면과, 이것에 대향하는 도체 바(827)를 포함하는 로터 코어(822)의 양측 단부면(822b) 사이에 연통로(851)를 형성하고 있다.
따라서, 실시 형태 8의 회전 전기 기기 냉각 구조에 있어서는, 유도식의 회전 전기 기기를 사용해도, 상기 1) 내지 3)의 효과를 얻을 수 있다.
(실시 형태 9)
실시 형태 9의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 10은, 실시 형태 9의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이다.
이 실시 형태 9는, 냉매 공급로(904) 및 차폐벽 부재(905)의 구성이 실시 형태 1과 상이하다.
즉, 냉매 공급로(904)는 축류로(940)와 출구 구멍(941)을 구비하고 있다.
축류로(940)는 로터 샤프트(921)의 축의 중심부 위치에서, 축방향의 전체 길이에 걸쳐서 형성되어 있다.
또한, 출구 구멍(941)은 축방향으로 로터 코어(22)의 양측 단부면(22b, 22b)과, 커버(12, 13)의 원환 볼록부(12a, 13a)의 사이의 위치에서, 로터 샤프트(921)를 관통하여 형성되고, 축류로(940)와 수용 공간(14)을 연통한다. 이에 의해, 로터 샤프트(921)의 외주면에 냉매 출구(941a)를 형성한다.
또한, 회전 전기 기기는, 냉매 출구(941a)와 코일 엔드(32e) 사이에 차폐벽 부재(905)를 구비하고 있다.
이 차폐벽 부재(905)는 원환형으로 형성되고, 커버(12, 13)의 원환 볼록부(12a, 13a)에 고정되어 있다. 또한, 차폐벽 부재(905)는 냉매 출구(941a)에 대향하는 위치에, 연통로(951)를 구비하고 있다. 즉, 연통로(951)는 실시 형태 2와 마찬가지로, 차폐벽 부재(905)를 직경 방향으로 관통하는 구멍을 둘레 방향으로 간격을 두고 복수 형성되어 있다.
따라서, 차폐벽 부재(905)는 냉매 비산로(14a)에 있어서 냉매 출구(941a)측과 코일 엔드(32e)측을 연통하는 연통로(951)의 단면적을, 냉매 출구(941a)의 외경 방향 정면 위치측을 크게, 이 위치로부터 축방향으로 이격된 위치측을 작게 형성하고 있다.
이어서, 실시 형태 9의 작용을 설명한다.
실시 형태 9에서는, 로터(2)의 회전 시에는, 축류로(940)에 공급되는 냉매액은, 냉매 출구(941a)로부터, 외경 방향으로 비산한다.
이 비산 시에, 점선의 화살표(tei)와 같이 외경 방향으로 똑바로 비산하는 것, 및 실선의 화살표(kou)와 같이 로터 코어(22)의 양측 단부면(22b, 22b), 커버(12, 13)의 원환 볼록부(12a, 13a)를 향하여 비스듬히 비산하는 것이 있다.
로터(2)의 저회전 시에는, 냉매 출구(941a)로부터, 점선의 화살표(tei)와 같이 외경 방향으로 똑바로 비산하는 비율이 높고, 이 때문에, 냉매액이 차폐벽 부재(905)의 연통로(951)를 통과하는 비율이 높아, 코일 엔드(32e)를 효율적으로 냉각한다.
한편, 로터(2)의 고회전 시에는, 원심력이 보다 강하게 작용하여, 냉매액이 실선의 화살표(kou)와 같이 비스듬히 비산하는 비율이 높아지기 때문에, 냉매액이 차폐벽 부재(905)에 의해 차폐되는 비율이 높아진다. 이 때문에, 냉매액의 코일 엔드(32e)에의 공급 비율을 저하시킴과 함께, 로터 코어(22) 및 영구 자석(22a)에의 공급 비율을 상승시킨다.
이에 의해, 코일 엔드(32e)로부터 수열량을 저하시키고, 로터 코어(22) 및 영구 자석(22a)에 공급하는 냉매액 온도를 억제하여, 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각한다.
또한, 차폐벽 부재(905)를 설치함으로써, 로터(2)의 회전 시에, 냉매 출구(941a)로부터 외경 방향을 향하는 냉매액(오일)의 유량을 제한하여, 차폐벽 부재(905)의 내경측의 냉매액량이, 차폐벽 부재(905)를 설치하지 않은 경우보다도 많아진다. 이 때문에, 베어링(25, 26)에의 냉각액(오일)의 공급량이 증대하여, 윤활성을 높일 수 있고, 특히, 고회전 시에, 이 공급량이 증대하여, 윤활성을 보다 높일 수 있다.
이상과 같이, 실시 형태 9의 회전 전기 기기 냉각 구조는,
냉매 출구(941a)를, 로터 코어(22)를 회전 가능하게 지지하는 로터 샤프트(921)의 외주면에 구비하고,
차폐벽 부재(905)는, 냉매 비산로(14a)에, 냉매 출구(941a)측과 코일 엔드(32e)측을 연통하는 연통로(951)를 형성함과 함께, 연통로(951)의 단면적을, 냉매 출구(941a)의 외경 방향 정면 위치로부터 축방향으로 이격된 위치측보다도 외경 방향 정면 위치측을 크게 형성한 것을 특징으로 한다.
따라서, 로터(2)의 저회전 시에는, 냉매액이 차폐벽 부재(905)의 연통로(951)를 통과하는 비율이 높아, 코일 엔드(32e)를 효율적으로 냉각한다.
한편, 로터(2)의 고회전 시에는, 냉매액이 차폐벽 부재(905)에 의해 차폐되는 비율이 높아져서, 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각한다.
또한, 실시 형태 9에 있어도, 연통로(951)를 가진 차폐벽 부재(905)를 설치한 단순한 구성에 의해, 상기 작용 효과를 얻을 수 있어, 제조가 용이함과 함께, 냉매 비산로(14a)에 있어서의 차폐 면적 및 연통로(951)의 단면적의 설정이 용이하다.
(실시 형태 10)
실시 형태 10의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 11은, 실시 형태 10의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이다.
이 실시 형태 10은, 실시 형태 9의 변형예이며, 회전 전기 기기로서, 소위 유도식의 것을 사용한 예이다.
즉, 로터(102)의 로터 코어(122)는 직경 방향의 외주부에, 복수의 도체 바(827)를 둘레 방향 등간격으로 갖고, 스테이터(3)로 형성되는 회전 자계에 의해, 로터(102)에 유도 전류가 발생하여 회전 토크가 발생한다.
따라서, 실시 형태 10에서는, 유도식의 회전 전기 기기에 있어서, 실시 형태 9와 동일한 작용 효과를 얻을 수 있다.
(실시 형태 11)
실시 형태 11의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 12는, 실시 형태 11의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이다.
이 실시 형태 11은, 회전 전기 기기로서 실시 형태 7에서 나타낸 권선 계자식의 것을 사용하고 있다.
즉, 로터(202)의 로터 코어(222)는 직경 방향의 외주측에 도시를 생략한 복수의 슬롯을 둘레 방향 등간격으로 갖고, 슬롯에 배치한 코일(727)을 로터 코어(722)에 감고, 코일(727)에 통전함으로써 로터(702)의 자극을 여자한다. 또한, 로터 코어(222)의 양측 단부면의 외경 방향 테두리부에 코일 엔드(727e)가 배치되어 있다.
차폐벽 부재(115)는 원환형으로 형성하고 있고, 차폐벽 부재(115)의 선단면과, 이것에 대향하는 코일 엔드(727e)를 포함하는 로터 코어(222)의 단부면과의 사이에 연통로(151)를 형성하고 있다.
따라서, 이 실시 형태 11에 있어도, 로터(2)의 저회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 점선의 화살표(tei)로 도시하는 연통로(151)를 통과하여 코일 엔드(32e)를 향하는 비율이 높다.
한편, 로터(2)의 고회전 시에는, 냉매 출구(43a)로부터 비산하는 냉매액은, 실선의 화살표(kou)로 도시하는 차폐벽 부재(115)에 의해 차폐되어서, 내경 방향을 향하는 비율이 높다.
따라서, 이 실시 형태 11에 있어도, 실시 형태 9와 동일한 효과를 얻을 수 있다.
(실시 형태 12)
실시 형태 12의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 13은, 실시 형태 12의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이다.
이 실시 형태 12는, 냉매 공급로(124)의 구성이 실시 형태 1과 상이한 것이고, 차폐벽 부재(5) 및 하우징(1)은 실시 형태 1과 동일하다.
냉매 공급로(124)는 회전축심 유로(241)와, 직경 방향 유로(242)와, 로터축 방향 유로(243)를 구비하고 있다.
로터축 방향 유로(243)는 실시 형태 1과 마찬가지로, 영구 자석(22a)의 내경 방향측의 위치에서 로터 코어(22)를 축방향으로 전체 길이에 걸쳐 관통하여 형성하고 있다.
실시 형태 1과의 상이는, 로터축 방향 유로(243)에의 냉매액의 공급과, 로터축 방향 유로(243)로부터 수용 공간(14)의 공급의 형태이다.
즉, 로터축 방향 유로(243)로부터 수용 공간(14)에 냉매액을 공급하는 냉매 출구(243a)가 축방향의 일단부(도면에 있어서 우측)의 엔드 플레이트(222e)에만 개구되어 있다. 또한, 로터축 방향 유로(243)에의 냉매액의 공급은, 축방향의 다른 한쪽 단부(도면에 있어서 좌측)로부터 행한다.
이렇게 로터축 방향 유로(243)의 단부에 냉매액을 공급하기 위해서, 회전축심 유로(241) 및 직경 방향 유로(242)의 구성이 실시 형태 1과 상이하다.
회전축심 유로(241)는 로터 샤프트(21)의 일단부(도면에 있어서 좌측 단부)의 냉매 입구(241a)로부터 로터 샤프트(21)의 중심축을 따라서 축방향으로 냉매 입구(241a)에 가까운 측의 로터 코어(22)의 엔드 플레이트(222e)의 위치까지 형성되어 있다.
직경 방향 유로(242)는 제1 직경 방향 유로(242a)와 제2 직경 방향 유로(242b)를 구비한다.
제1 직경 방향 유로(242a)는 축방향으로 냉매 비산로(14a)와 겹치는 위치에서, 로터 샤프트(21)를 직경 방향으로 관통하여 형성하고 있다.
제2 직경 방향 유로(242b)는 축방향으로 엔드 플레이트(222e)와 겹치는 위치에서, 로터 샤프트(21)를 관통하고, 로터 코어(22)를 따라서 형성되어 있다. 또한, 이 로터 코어(22)를 따르는 부분은, 엔드 플레이트(222e)의 단부면에 홈을 형성함으로써 형성되어 있다.
또한, 이상 설명한 로터축 방향 유로(243), 제1 직경 방향 유로(242a), 제2 직경 방향 유로(242b), 냉매 출구(243a)는 둘레 방향으로 대략 등간격으로 복수 형성되어 있다.
이어서, 실시 형태 12의 작용을 설명한다.
로터(12R)의 회전 시에는, 도 13에 도시하는 냉매 입구(241a)로부터 냉매 공급로(124)에 공급된 냉매액은, 원심력에 의해, 제1 직경 방향 유로(242a)로부터 수용 공간(14)의 냉매 비산로(14a)에서 외경 방향으로 비산한다. 또한, 이것과 병행하여, 직경 방향 유로(242), 로터축 방향 유로(243)를 거쳐서, 로터(12R)를 냉각한 냉매액은, 로터(12R)의 일단부의 냉매 출구(243a)로부터 수용 공간(14)의 냉매 비산로(14a)에서 외경 방향으로 비산한다.
이 냉매 출구(243a)로부터 비산하는 냉매액에 의한 작용은, 실시 형태 1과 동일하다.
즉, 로터(12R)의 저회전 시에는, 냉매 출구(243a)로부터 비산하는 냉매액의 유속이 낮고, 차폐벽 부재(5)를 통과하여 코일 엔드(32e)를 향하는 비율이 고회전 시보다 높고, 차폐벽 부재(5)에 의해 차폐되는 비율이 고회전 시보다도 낮다. 따라서, 상대적으로 로터 코어(22)보다도 코일 엔드(32e)를 효율적으로 냉각한다.
한편, 로터(12R)의 고회전 시에는, 냉매 출구(243a)로부터 비산하는 냉매액의 유속이 높아져서, 연통로(51)를 통과하는 비율이 저회전시보다도 저하되어, 코일 엔드(32e)에의 공급 비율이 저하되고, 로터 코어(22) 및 영구 자석(22a)에의 공급 비율이 상승한다.
이에 의해, 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각한다.
제1 직경 방향 유로(242a)로부터 비산하는 냉매액에 의한 작용도 상기와 마찬가지이며, 로터(12R)의 저회전 시에는, 냉매 출구(243a)로부터 비산하는 냉매액의 유속이 낮다. 이 때문에, 차폐벽 부재(5)를 통과하여 코일 엔드(32e)를 향하는 비율이 고회전 시보다 높아, 상대적으로 로터 코어(22)보다도 코일 엔드(32e)를 효율적으로 냉각한다.
한편, 로터(12R)의 고회전 시에는, 냉매 출구(243a)로부터 비산하는 냉매액의 유속이 높아져서, 연통로(51)를 통과하는 비율이 저회전시보다도 저하되어, 코일 엔드(32e)에의 공급 비율이 저하되고, 로터 코어(22) 및 영구 자석(22a)에의 공급 비율이 상승한다.
이에 의해, 로터 코어(22) 및 영구 자석(22a)를 효율적으로 냉각한다.
이상 설명한 실시 형태 12의 회전 전기 기기 냉각 구조에서는, 실시 형태 1에서 설명한 상기 1) 2) 3)의 효과를 발휘하는 것에 추가로, 이하의 효과를 발휘한다.
로터축 방향 유로(243)에의 냉매액의 공급을, 엔드 플레이트(222e)에 형성한 제2 직경 방향 유로(242b)로부터 행하도록 했기 때문에, 로터 코어(22)를 형성하는 적층 강판으로서, 모두 동일 형상의 것을 사용할 수 있다. 따라서, 로터 코어(22)의 부품 개수를 삭감할 수 있음과 함께, 제조 시에 다른 형상의 강판을 소정 위치에 적층할 때의 수고를 삭감할 수 있고, 그에 의한 비용 저감을 도모할 수 있다.
(실시 형태 13)
실시 형태 13의 회전 전기 기기 냉각 구조에 대하여 설명한다.
도 14는, 실시 형태 13의 회전 전기 기기 냉각 구조를 적용한 회전 전기 기기의 단면도이다.
이 실시 형태 13은, 실시 형태 12의 변형예이며, 냉매 공급로(134)는 제1 로터축 방향 유로(243A)와, 제2 로터축 방향 유로(243B)를 구비한다. 양쪽 로터축 방향 유로(243A, 243B)는, 완전히 동일한 구조이지만, 냉매액의 공급 및 냉매 출구(243a)로부터의 수용 공간(14)에의 공급의 형태가 상이하다.
즉, 로터(13R)는, 실시 형태 12에 있어서 나타낸 제2 직경 방향 유로(242b)를 구비한 엔드 플레이트(222e)를 축방향을 따르는 방향의 양단에 구비한다. 그리고, 도시한 바와 같이, 제1 로터축 방향 유로(243)는 도면에 있어서 우측의 단부가 제2 직경 방향 유로(242b)에 연통되어, 도면에 있어서 좌측에 냉매 출구(243a)를 구비한다. 한편, 제2 로터축 방향 유로(243b)는 도면에 있어서 좌측의 단부가 제2 직경 방향 유로(242b)에 연통되어, 도면에 있어서 좌측에 냉매 출구(243a)를 구비한다.
따라서, 회전축심 유로(341)는 로터 샤프트(21)의 일단부(도면에 있어서 좌측 단부)의 냉매 입구(341a)로부터 로터 샤프트(21)의 중심축을 따라서 축방향으로 냉매 입구(341a)로부터 먼 측의 엔드 플레이트(222e)의 위치까지 형성되어 있다.
직경 방향 유로(242)는 실시 형태 12와 동일한 제1 직경 방향 유로(242a)와 제2 직경 방향 유로(242b)를 구비하는 것에 추가로, 도면에 있어서 우측에 도시하는 엔드 플레이트(222e)에 형성된 제2 직경 방향 유로(242b)를 구비한다.
또한, 상기와 같이 도면에 있어서 좌측의 냉매 비산로(14a)에는, 제1 직경 방향 유로(242a)가 개구되어 있기 때문에, 제1 로터축 방향 유로(243A)의 수보다도 제2 로터축 방향 유로(243B)의 수를 많게 한 편이 바람직하다.
이상 설명한 실시 형태 13의 회전 전기 기기 냉각 구조에 있어도, 실시 형태 12와 마찬가지로, 로터(13R)의 회전 시에는, 냉매 공급로(134)에 공급된 냉매액은, 원심력에 의해, 제1 직경 방향 유로(242a)로부터 수용 공간(14)의 냉매 비산로(14a)에서 외경 방향으로 비산한다. 또한, 이것과 병행하여, 직경 방향 유로(242), 양쪽 로터축 방향 유로(243A, 243B)를 거쳐서, 로터(13R)를 냉각한 냉매액이, 냉매 출구(243a)로부터 수용 공간(14)의 냉매 비산로(14a)에서 외경 방향으로 비산한다.
그리고, 실시 형태 12와 마찬가지로, 로터(13R)의 저회전 시에는, 제1 직경 방향 유로(242a) 및 냉매 출구(243a)로부터 차폐벽 부재(5)를 통과하여 코일 엔드(32e)를 향하는 비율이 고회전 시보다 높아, 코일 엔드(32e)를 효율적으로 냉각한다.
한편, 로터(13R)의 고회전 시에는, 제1 직경 방향 유로(242a) 및 냉매 출구(243a)로부터 비산하는 냉매액의 유속이 높아져서, 연통로(51)를 통과하는 비율이 저회전시보다도 저하되어, 로터 코어(22) 및 영구 자석(22a)을 효율적으로 냉각한다.
이상 설명한 실시 형태 13의 회전 전기 기기 냉각 구조에서는, 실시 형태 1에서 설명한 상기 1) 2) 3)의 효과를 발휘하는 것에 추가로, 실시 형태 12와 마찬가지로, 로터 코어(22)를 형성하는 적층 강판으로서, 모두 동일 형상의 것을 사용할 수 있다.
따라서, 로터 코어(22)의 부품 개수를 삭감할 수 있음과 함께, 제조 시에 다른 형상의 강판을 소정 위치에 적층할 때의 수고를 삭감할 수 있어, 그에 의한 비용 저감을 도모할 수 있다.
이상, 본 발명의 회전 전기 기기 냉각 구조를 실시 형태에 기초하여 설명하였지만, 구체적인 구성에 대해서는, 이 실시 형태에 한정되는 것은 아니고, 청구범위의 각 청구항에 관한 발명의 요지를 일탈하지 않는 한, 설계의 변경이나 추가 등은 허용된다.
예를 들어, 실시 형태에서는, 차폐벽 부재를, 로터 코어와 하우징 중 어느 한쪽에 설치한 예를 나타냈지만, 로터 코어와 하우징의 양쪽에 설치하고, 양자 사이에 연통로를 형성해도 된다.
또한, 차폐벽으로서 차폐벽 부재와 동일한 형상을, 하우징과 로터 코어 중 어느 것에 일체로 형성한 구성으로 해도 된다.
또한, 차폐벽에 연통로를 형성함에 있어서, 그 단면 형상은, 실시 형태에서 나타낸 형상에 한정되는 것은 아니다.
관련 출원의 상호 참조
본 출원은, 2015년 7월 28일에 일본 특허청에 출원된 일본 특허 출원 제2015-149033에 기초하여 우선권을 주장하고, 그 모든 개시는 완전히 본 명세서에서 참조에 의해 원용된다.

Claims (5)

  1. 회전 전기 기기의 로터 내부에 냉매를 도입하는 냉매 공급로와,
    상기 로터의 회전에 수반하여 스테이터의 코일 엔드를 향하여 냉매가 비산하도록 상기 냉매 공급로에 개구된 냉매 출구
    를 구비한 회전 전기 기기 냉각 구조이며,
    상기 냉매 출구와 상기 코일 엔드 사이의 냉매 비산로에, 상기 로터의 회전 시에 상기 냉매 출구로부터 비산하는 상기 냉매의 일부를 차폐하는 차폐벽을 설치하고,
    상기 차폐벽은, 상기 냉매를 상기 코일 엔드에 대하여 차폐하는 비율이, 상기 로터의 저회전 시에 낮고, 고회전 시에 높은 것을 특징으로 하는, 회전 전기 기기 냉각 구조.
  2. 제1항에 있어서,
    상기 냉매 출구를, 상기 로터의 로터 코어의 축방향의 측단부면에 구비하고,
    상기 차폐벽은, 상기 냉매 비산로에, 상기 냉매 출구측과 상기 코일 엔드측을 연통하는 연통로를 형성함과 함께, 상기 연통로의 단면적을, 상기 로터 코어의 상기 측단부면으로부터 먼 측보다도 상기 로터 코어의 상기 측단부면측을 크게 형성한 것을 특징으로 하는, 회전 전기 기기 냉각 구조.
  3. 제1항에 있어서,
    상기 냉매 출구를, 로터 코어를 회전 가능하게 지지하는 로터 샤프트의 외주면에 구비하고,
    상기 차폐벽은, 상기 냉매 비산로에, 상기 냉매 출구측과 상기 코일 엔드측을 연통하는 연통로를 형성함과 함께, 상기 연통로의 단면적을, 상기 냉매 출구의 외경 방향 정면 위치로부터 축방향으로 이격된 위치측보다도 상기 외경 방향 정면 위치측을 크게 형성한 것을 특징으로 하는, 회전 전기 기기 냉각 구조.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 차폐벽을, 상기 냉매 비산로의 측면을 형성하는 상기 회전 전기 기기의 하우징 및 상기 로터의 로터 코어와는 별체의 차폐벽 부재에 의해 형성한 것을 특징으로 하는, 회전 전기 기기 냉각 구조.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 차폐벽을, 상기 냉매 비산로의 측면을 형성하는 상기 회전 전기 기기의 하우징과 상기 로터의 로터 코어 중 어느 것과 일체로 형성한 것을 특징으로 하는, 회전 전기 기기 냉각 구조.
KR1020187003601A 2015-07-28 2016-06-08 회전 전기 기기 냉각 구조 KR102016863B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015149033 2015-07-28
JPJP-P-2015-149033 2015-07-28
PCT/JP2016/067046 WO2017018067A1 (ja) 2015-07-28 2016-06-08 回転電機冷却構造

Publications (2)

Publication Number Publication Date
KR20180027556A true KR20180027556A (ko) 2018-03-14
KR102016863B1 KR102016863B1 (ko) 2019-08-30

Family

ID=57884161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187003601A KR102016863B1 (ko) 2015-07-28 2016-06-08 회전 전기 기기 냉각 구조

Country Status (11)

Country Link
US (1) US10707726B2 (ko)
EP (1) EP3331134A4 (ko)
JP (1) JP6451856B2 (ko)
KR (1) KR102016863B1 (ko)
CN (1) CN107925314B (ko)
BR (1) BR112018001754B1 (ko)
CA (1) CA2993512C (ko)
MX (1) MX2018000907A (ko)
MY (1) MY190175A (ko)
RU (1) RU2702350C2 (ko)
WO (1) WO2017018067A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113230B1 (ko) * 2019-01-25 2020-05-20 엘지전자 주식회사 전동기
KR102122238B1 (ko) * 2019-01-07 2020-06-26 엘지전자 주식회사 전동기
KR20220046263A (ko) * 2020-10-07 2022-04-14 현대위아 주식회사 모터의 냉각구조

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411562B2 (en) * 2016-01-14 2019-09-10 Honeywell International Inc. Compact high speed generator having passageways for air and cooling oil
US10715013B2 (en) * 2016-01-14 2020-07-14 Honeywell International Inc. Compact high speed generator having respective oil and air cooling passages
JP6962078B2 (ja) * 2017-09-04 2021-11-05 トヨタ自動車株式会社 回転電機のロータ、および、回転電機の冷却方法
JP6919989B2 (ja) 2017-09-08 2021-08-18 トヨタ自動車株式会社 車両用回転電機の冷却装置
JP6654655B2 (ja) * 2018-02-19 2020-02-26 トヨタ自動車株式会社 回転電機のロータ
JP2019146387A (ja) * 2018-02-21 2019-08-29 本田技研工業株式会社 回転電機の冷却構造、および回転電機
JP2019165587A (ja) * 2018-03-20 2019-09-26 本田技研工業株式会社 回転電機
JP2019170082A (ja) * 2018-03-23 2019-10-03 本田技研工業株式会社 回転電機及びこれを備えた車両
JP7192488B2 (ja) * 2018-12-26 2022-12-20 トヨタ自動車株式会社 モータ
JP7108529B2 (ja) * 2018-12-26 2022-07-28 本田技研工業株式会社 回転電機
DE102019109721A1 (de) * 2019-04-12 2020-10-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor für eine elektrische Maschine
JP6934489B2 (ja) * 2019-06-03 2021-09-15 本田技研工業株式会社 回転電機
JP2020202705A (ja) * 2019-06-12 2020-12-17 本田技研工業株式会社 回転電機
EP3920384B1 (en) 2020-01-15 2023-06-21 Huawei Digital Power Technologies Co., Ltd. Motor rotor and vehicle
US20210242746A1 (en) * 2020-01-31 2021-08-05 Ford Global Technologies, Llc Motor end cap design that functions as a lube distributor in hybrid transmissions
DE102020111217A1 (de) * 2020-04-24 2021-10-28 Gea Mechanical Equipment Gmbh Separator mit Direktantrieb
FR3119498B1 (fr) * 2021-02-04 2023-08-11 Novares France Moteur électrique comportant un déflecteur de fluide de refroidissement
SE2150535A1 (en) * 2021-04-28 2022-10-29 Scania Cv Ab An electric rotating machine
DE102021209821A1 (de) 2021-09-06 2023-03-09 Mahle International Gmbh Elektromotor
US11799362B2 (en) * 2021-09-20 2023-10-24 Dana Automotive Systems Group, Llc Methods and systems for oil cooled rotor laminations
EP4160877A1 (en) * 2021-10-04 2023-04-05 Scania CV AB Electric rotating machine and method and vehicle comprising electric machine
JP2023085032A (ja) * 2021-12-08 2023-06-20 株式会社小松製作所 モータ
US20230261536A1 (en) * 2022-02-15 2023-08-17 Dana Automotive Systems Group, Llc Methods and systems for cooling an electric machine
US20230299642A1 (en) * 2022-03-18 2023-09-21 Rivian Ip Holdings, Llc Balanced motor cooling using cross flow
JP2023182162A (ja) * 2022-06-14 2023-12-26 株式会社豊田自動織機 遠心圧縮機
DE102022114906A1 (de) * 2022-06-14 2023-12-14 Bayerische Motoren Werke Aktiengesellschaft Kühlfluidführende Rotorwelle für einen Rotor einer elektrischen Maschine mit zweigeteiltem Einströmbereich

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159325A (ja) * 2005-12-07 2007-06-21 Shinko Electric Co Ltd コイルの冷却機構
JP2009118686A (ja) 2007-11-08 2009-05-28 Aisin Aw Co Ltd 回転電機の冷却構造
JP2009171755A (ja) * 2008-01-17 2009-07-30 Toyota Motor Corp 回転電機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU907717A1 (ru) * 1980-06-24 1982-02-23 Горьковский Проектно-Конструкторско-Технологический Институт Электромагнитный тормоз с жидкостным охлаждением
JPH09154258A (ja) * 1995-11-29 1997-06-10 Mitsubishi Heavy Ind Ltd 強制油冷式電動機又は発電機の冷却構造
JP2006006091A (ja) 2004-06-21 2006-01-05 Nissan Motor Co Ltd 電動機の冷却装置
JP4560067B2 (ja) * 2007-07-19 2010-10-13 トヨタ自動車株式会社 回転電機
JP2009118714A (ja) * 2007-11-09 2009-05-28 Toyota Motor Corp 回転電機
JP2009296772A (ja) * 2008-06-04 2009-12-17 Toyota Motor Corp 回転電機のコイルエンド冷却装置
DE102009029716A1 (de) * 2008-06-18 2009-12-24 Ixetic Bad Homburg Gmbh Elektromotor
RU83368U1 (ru) * 2008-12-08 2009-05-27 ООО "НПФ "Электромашиностроение" Ротор электрической машины
JP5417960B2 (ja) * 2009-04-16 2014-02-19 トヨタ自動車株式会社 回転電機
CN102714438B (zh) * 2010-03-24 2015-02-25 爱信艾达株式会社 旋转电机用转子
US8482168B2 (en) * 2010-08-25 2013-07-09 Clean Wave Technologies, Inc. Systems and methods for fluid cooling of electric machines
JP5773196B2 (ja) * 2011-07-19 2015-09-02 アイシン・エィ・ダブリュ株式会社 回転電機
JP2014045586A (ja) * 2012-08-27 2014-03-13 Toyota Motor Corp 回転電機
JP2014082841A (ja) * 2012-10-15 2014-05-08 Toyota Motor Corp 電動機
JP2014087123A (ja) * 2012-10-22 2014-05-12 Otics Corp 回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159325A (ja) * 2005-12-07 2007-06-21 Shinko Electric Co Ltd コイルの冷却機構
JP2009118686A (ja) 2007-11-08 2009-05-28 Aisin Aw Co Ltd 回転電機の冷却構造
JP2009171755A (ja) * 2008-01-17 2009-07-30 Toyota Motor Corp 回転電機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122238B1 (ko) * 2019-01-07 2020-06-26 엘지전자 주식회사 전동기
WO2020145603A1 (ko) * 2019-01-07 2020-07-16 엘지전자 주식회사 전동기
US11894750B2 (en) 2019-01-07 2024-02-06 Lg Magna E-Powertrain Co., Ltd. Motor
KR102113230B1 (ko) * 2019-01-25 2020-05-20 엘지전자 주식회사 전동기
KR20220046263A (ko) * 2020-10-07 2022-04-14 현대위아 주식회사 모터의 냉각구조

Also Published As

Publication number Publication date
CA2993512C (en) 2023-08-15
US10707726B2 (en) 2020-07-07
MX2018000907A (es) 2018-08-15
CN107925314A (zh) 2018-04-17
RU2018107129A3 (ko) 2019-08-28
RU2018107129A (ru) 2019-08-28
EP3331134A4 (en) 2018-07-18
CN107925314B (zh) 2020-10-27
JPWO2017018067A1 (ja) 2018-03-01
US20180205294A1 (en) 2018-07-19
JP6451856B2 (ja) 2019-01-16
CA2993512A1 (en) 2017-02-02
WO2017018067A1 (ja) 2017-02-02
MY190175A (en) 2022-03-31
EP3331134A1 (en) 2018-06-06
BR112018001754A2 (pt) 2018-09-11
KR102016863B1 (ko) 2019-08-30
BR112018001754B1 (pt) 2022-09-27
RU2702350C2 (ru) 2019-10-08

Similar Documents

Publication Publication Date Title
KR20180027556A (ko) 회전 전기 기기 냉각 구조
CN109997296B (zh) 用于冷却电机的方法以及使用这种方法的电机
CN109149825B (zh) 转子芯
JP5445675B2 (ja) 回転機
JP5549857B2 (ja) 回転電機用ロータ
CN114072994A (zh) 用于轴向磁通电机的定子的冷却机构
JP2012235546A (ja) ロータおよび回転電機
JP2014230393A (ja) 回転電機
JP5892091B2 (ja) マルチギャップ型回転電機
JP2016208755A (ja) 回転電機
US9257881B2 (en) Rotating electric machine
JP5408011B2 (ja) 回転電機用冷却装置
JP6247555B2 (ja) 回転電機
JP2022107337A (ja) モータのコイル冷却構造
JP2016158365A (ja) モータ
JP5710886B2 (ja) 回転電機
JP2013258889A (ja) 誘導電動機
JP6942881B2 (ja) 回転電機の冷却構造
EP3070816B1 (en) Method and assembly for cooling an electric machine
CN110994906B (zh) 无刷旋转电机
JP6875350B2 (ja) 回転電機
JP2019134573A (ja) 回転電機のステータ
KR101702023B1 (ko) 전동기 냉각 시스템
JP2019193320A (ja) 回転電機
JP2013225976A (ja) 回転電機の冷却構造

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant