KR20170121587A - Surface coated method for sintered part having high wear resistance - Google Patents

Surface coated method for sintered part having high wear resistance Download PDF

Info

Publication number
KR20170121587A
KR20170121587A KR1020160050246A KR20160050246A KR20170121587A KR 20170121587 A KR20170121587 A KR 20170121587A KR 1020160050246 A KR1020160050246 A KR 1020160050246A KR 20160050246 A KR20160050246 A KR 20160050246A KR 20170121587 A KR20170121587 A KR 20170121587A
Authority
KR
South Korea
Prior art keywords
sintered body
layer
coating
wear resistance
sintered part
Prior art date
Application number
KR1020160050246A
Other languages
Korean (ko)
Inventor
이선홍
안기봉
이병훈
박건태
전태원
김민주
Original Assignee
(주)지아이엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지아이엘 filed Critical (주)지아이엘
Priority to KR1020160050246A priority Critical patent/KR20170121587A/en
Publication of KR20170121587A publication Critical patent/KR20170121587A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/347Carbon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

According to the present invention, a surface coated method for a sintered part having high wear resistance comprises: a coating step of forming at least one layered film on the sintered part with a vapor deposition method; a step of blasting a surface of the sintered part in which the film is formed with a particle abrasive material; and a step of brushing the surface of the sintered part that is blasted. Therefore, the surface coated method for a sintered part having high wear resistance has excellent chipping resistance and improves the generally mechanical matter property such as wear resistance and tension.

Description

내마모성을 갖는 소결체의 표면처리방법{Surface coated method for sintered part having high wear resistance}TECHNICAL FIELD [0001] The present invention relates to a method of surface-treating a sintered body having wear resistance,

본 발명은 내마모성을 갖는 소결체의 표면처리방법에 관한 것이다.The present invention relates to a method for surface treatment of a sintered body having wear resistance.

일반적으로 탄화텅스텐(WC)에 코발트(Co)를 혼합하여 소결한 초경함(cemented carbide)이나, Ti계 탄질화물 서멧(cermet)을 모재로 하는 절삭공구는 절삭구의 기계적 물성을 향상시키기 위해 모재 표면에 내마소성을 위한 경질의 코팅층이 형성된다. 이러한 코팅층은 금속산화물, 탄화물 등의 화합물을 화학적 증착법이나 물리적 증착법으로 형성된다.In order to improve the mechanical properties of the cutting tool, a cutting tool using cemented carbide or Ti-based carbonitride cermet, which is obtained by sintering cobalt (Co) mixed with tungsten carbide (WC) A hard coating layer for the anti-friction property is formed. Such a coating layer is formed by chemical vapor deposition or physical vapor deposition of a compound such as a metal oxide or a carbide.

그러나 종래의 코팅층은 결정 입자들이 증착되어 형성되는데, 일부 입자가 돌출되어 불균일한 표면을 형성한다. 이에 따라 절삭 공구의 최외각 표면은 뾰족한 돌출부를 갖게 되어 거칠어지는 현상이 발생된다. 이러한 현상은 코팅층이 두꺼워 질수록 심해진다. However, conventional coating layers are formed by depositing crystal grains, in which some particles protrude to form a non-uniform surface. As a result, the outermost surface of the cutting tool has a sharp protrusion, which causes a phenomenon of roughness. This phenomenon becomes worse as the coating layer becomes thicker.

이러한 거친 표면 상태를 가지는 절삭 공구는 피삭재의 절삭시 응력이 불균일하게 걸리게 되어, 특히 절삭 부위에서 쉽게 칩핑이 발생되고, 이와 동시에 코팅층이나 모재에 손상을 주어 절삭 공구의 성능을 저하시키는 문제가 있었다.The cutting tool having such a rough surface state has a problem that the stress is unevenly applied at the time of cutting the workpiece, in particular, chipping occurs at the cutting position, and at the same time, the coating layer and the base material are damaged, thereby deteriorating the performance of the cutting tool.

본 발명의 목적은 피삭재의 절삭 시 내칩핑성이 우수하며, 내마모성과 인성 등의 전반적인 기계적 물성이 우수한 내마모성을 갖는 소결체의 표면처리방법을 제공하는 것이다.It is an object of the present invention to provide a method for surface treatment of a sintered body having excellent wear resistance and excellent mechanical properties such as abrasion resistance and toughness while exhibiting excellent chipping resistance during cutting of a workpiece.

상기 목적을 달성하기 위하여 내마모성을 갖는 소결체의 표면처리방법에 있어서, 상기 소결체 상에 기상 증착법을 이용하여 적어도 한 층의 피막을 형성하는 코팅단계와; 상기 피막이 형성된 소결체 표면에 입자상의 연마재를 사용하여 블라스팅하는 단계와; 상기 블라스팅된 소결체 표면을 브러싱하는 단계를 포함한다.In order to accomplish the above object, there is provided a surface treatment method of a sintered body having abrasion resistance, comprising: a coating step of forming a coating on at least one layer on the sintered body by vapor deposition; Blasting the surface of the sintered body on which the coating is formed by using a particulate abrasive; And brushing the surface of the blasted sintered body.

여기서 상기 피막은 TiCN층을 포함하며, 상기 TiCN층은 TiCxNy(단, 0.65≤x/(x+y)≤0.90)의 조성을 가지며, (422)면의 면 간격이 0.8765∼0.8790Å이고, 배향성 지수 TC(hkl)에 있어서 TC(220)가 최대가 되는 주상 결정 영역을 갖는 것이 바람직하다.Wherein the coating comprises a TiCN layer, the TiCN layer has a composition of TiCxNy (where 0.65? X / (x + y)? 0.90), the plane spacing of the (422) plane is 0.8765 to 0.8790, It is preferable that the TC (hkl) has a columnar crystal region in which the TC 220 becomes the maximum.

또한 상기 피막은 적어도 한 층의 알루미나층을 포함하며, 상기 알루미나층은 α형 산화알루미늄으로 이루어지며, 그 평균 두께가 2∼15 ㎛인 것이 바람직하다.The coating preferably comprises at least one layer of alumina, the alumina layer being made of alpha-aluminum oxide and having an average thickness of from 2 to 15 mu m.

한편 상기 연마재는 광물 입자, 세라믹 입자 및 금속 입자로 이루어진 군 중에서 선택된 적어도 하나 이상인 것을 사용할 수 있다.On the other hand, the abrasive may be at least one selected from the group consisting of mineral particles, ceramic particles and metal particles.

또한 상기 브러싱하는 단계는 브러시 및 절삭 인서트 중 어느 하나 또는 둘 모두를 60 ~ 120 rpm의 속도로 회전시키면서 50 ~ 200 초 동안 실시하는 것이 바람직하다.Also, it is preferable that the brushing step is performed for 50 to 200 seconds while rotating either or both of the brush and the cutting insert at a speed of 60 to 120 rpm.

본 발명에 따른 내마모성을 갖는 소결체의 표면처리방법은 피삭재의 절삭 시 내칩핑성이 우수하며, 내마모성과 인성 등과 같은 전반적인 기계적 물성이 향상된다.The method for surface treatment of a sintered body having wear resistance according to the present invention has excellent chipping resistance during cutting of a workpiece and improves overall mechanical properties such as abrasion resistance and toughness.

도 1은 본 발명에 따른 내마모성을 갖는 소결체의 표면처리방법을 나타낸 순서도이다.1 is a flow chart showing a method of surface treatment of a sintered body having wear resistance according to the present invention.

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 내마모성을 갖는 소결체의 표면처리방법은 소결체 상에 기상 증착법을 이용하여 적어도 한 층의 피막을 형성하는 코팅단계와(S103); 피막이 형성된 소결체 표면에 입자상의 연마재를 사용하여 블라스팅하는 단계와(S105); 블라스팅된 소결체 표면을 브러싱하는 단계(S105)로 구성된다.A method for surface treatment of a sintered body having abrasion resistance according to the present invention includes: a coating step (S103) of forming at least one coating layer on a sintered body by vapor phase deposition; Blasting the surface of the sintered body on which the coating is formed by using a particulate abrasive (S105); And brushing the surface of the blasted sintered body (S105).

코팅단계(S103)에서는 소결체 상에 기상증착법을 이용하여 소결체 표면에 10∼30 ㎛, 보다 바람직하게는 10∼25 ㎛의 두께로 피막이 형성된다. 이러한 피막에 포함되는 TiCN층은, 주상 결정 영역을 갖고, 이 주상 결정 영역은 TiCxNy(단, 0.65≤x/(x+y)≤0.90)이라는 조성을 가지며, (422)면의 면 간격(d치)이 0.8765∼0.8790Å이고, 또한 배향성 지수 TC(hkl)에 있어서 TC(220)가 최대가 되는 것을 특징으로 한다. 본 발명의 TiCN층은, 이러한 구성을 가짐으로써, 내마모성과 내칩핑성이 고도로 향상된다고 하는 우수한 효과를 나타낸다. 이는, 주상 결정 영역의 탄질화 티탄에 있어서 탄소와 질소의 합계에 대한 탄소의 원자비를 높임으로써 피삭재에 대한 내용착성과 내마모성을 향상시키고, 또한 (422)면의 면 간격을 소정 범위로 함으로써 결정 내부의 변형이 변화되고, 배향성 지수 TC(hkl)에 있어서 TC(220)가 최대가 됨으로써 기재 표면에 대하여 상기 주상 결정이 수직 방향으로 고르게 성장하므로 피막의 마모가 균일하게 진행되어, 이로써 이들의 상승 작용에 의해 내박리성이 저하되지 않고 내칩핑성이 향상됨으로써 얻어진 것이라고 고려된다. In the coating step (S103), a film is formed on the surface of the sintered body by a vapor deposition method on the sintered body to a thickness of 10 to 30 mu m, more preferably 10 to 25 mu m. The TiCN layer included in such a coating has a columnar crystal region, and the columnar crystal region has a composition of TiCxNy (where 0.65? X / (x + y)? 0.90) ) Is in the range of 0.8765 to 0.8790 angstrom, and the TC (220) is the maximum in the orientation index TC (hkl). The TiCN layer of the present invention has such a constitution that it exhibits an excellent effect of highly improving wear resistance and chipping resistance. This is achieved by increasing the atomic ratio of carbon to the total amount of carbon and nitrogen in the titanium carbonitride in the columnar crystal region to improve the wear resistance and wear resistance of the material to be worked and setting the surface interval of the (422) The inner deformation is changed and the TC 220 is maximized in the orientation index TC (hkl), so that the columnar crystals grow uniformly in the vertical direction with respect to the substrate surface, so that the wear of the film uniformly progresses, It is considered that the peeling property is not deteriorated by the action and the chipping resistance is improved.

이 조성은 TiCN에 있어서 탄소와 질소의 합계에 대한 탄소의 원자비를 높일 수 있는 것을 의미한다. x/(x+y)가 0.65 미만인 경우, 충분한 경도 및 윤활성을 얻을 수 없고, 따라서 내마모성이 향상되지 않는다. 또한, x/(x+y)가 0.90을 넘는 경우, TiCN층이 매우 취약해지고 내충격성(내칩핑성)이 저하된다. x/(x+y)의 보다 바람직한 범위는, 0.67∼0.87이다. 또한, TiCxNy에서의「Ti」와「C」및「N」의 합계와의 원자비는, 「Ti」를 1로 하는 경우, 「C」와「N」의 합계는 0.80∼1.10으로 하는 것이 바람직하다. 즉, 본 발명에서의 화학식「TiCN」이나「TiCxNy」에 있어서, 「Ti」는 반드시 그 원자비가「1」인 것을 나타내는 것이 아니라, 종래 공지의 원자비가 전부 포함되는 것으로 한다. 이러한 본 발명의 TiCN층은 그 두께가 5 ㎛미만이면, 연속 가공에 있어서 충분히 내마모성을 발휘할 수 없는 경우가 있고, 16 ㎛를 넘으면 단속 절삭에 있어서 내칩핑성이 안정되지 않는 경우가 발생하므로 5∼16 ㎛, 보다 바람직하게는 7∼13 ㎛의 두께를 갖는 것이 바람직하다. This composition means that the atomic ratio of carbon to the total of carbon and nitrogen in TiCN can be increased. When x / (x + y) is less than 0.65, sufficient hardness and lubricity can not be obtained, and therefore wear resistance is not improved. When x / (x + y) exceeds 0.90, the TiCN layer becomes very weak and the impact resistance (chipping resistance) is lowered. A more preferable range of x / (x + y) is 0.67 to 0.87. The atomic ratio to the total of "Ti", "C" and "N" in TiCxNy is preferably 0.80 to 1.10 when the total of "C" and "N" is "Ti" Do. That is, in the formulas " TiCN " and " TiCxNy " in the present invention, "Ti" does not necessarily indicate that the atomic ratio thereof is "1", but includes all conventionally known atomic ratios. When the thickness of the TiCN layer of the present invention is less than 5 탆, sufficient abrasion resistance may not be exhibited in continuous machining. When the thickness exceeds 16 탆, the chipping resistance may not be stabilized during interrupted cutting, 16 mu m, and more preferably 7 to 13 mu m.

또한 피막은 TiCN층과 더불어 적어도 한 층의 알루미나층을 포함하는 것이 바람직하다. 이러한 본 발명의 알루미나층은, α형 산화알루미늄으로 이루어지고, 또한 그 평균 두께가 2∼15 ㎛이다. 이러한 알루미나층은 내산화성이 우수하고, 강철의 고속 절삭시에 발생하는 열에 의한 마모(산화 마모)나 주물의 절삭시의 내용착성이 우수하기 때문에 바람직하다. 본 발명의 알루미나층은 상기와 같은 작용을 나타내기 때문에, 피막 중에 있어서 상기한 TiCN층 보다 표면측에 형성하는 것이 바람직하다. 또한, 알루미나층의 두께가 2 ㎛ 미만인 경우, 고속 절삭시의 내마모성이 불충분해지는 경우가 있고, 또한 15㎛를 넘는 경우, 단속 절삭에 있어서 내파손성이 저하되거나, 경제적으로 불리해지는 경우가 있다. 알루미나층의 보다 바람직한 평균 두께는 3∼10 ㎛이다.It is also preferred that the coating comprises at least one layer of alumina layer in addition to the TiCN layer. The alumina layer of the present invention is composed of? -Type aluminum oxide and has an average thickness of 2 to 15 占 퐉. Such an alumina layer is preferable because it is excellent in oxidation resistance and is excellent in abrasion (oxidation wear) caused by heat generated during high-speed cutting of steel, and in its excellent weatherability at the time of cutting of the casting. Since the alumina layer of the present invention exhibits the above-described action, it is preferable that the alumina layer is formed on the surface side of the TiCN layer in the film. When the thickness of the alumina layer is less than 2 占 퐉, the abrasion resistance at high speed cutting may be insufficient, and when it exceeds 15 占 퐉, the fracture resistance at interrupted cutting may be deteriorated or economically disadvantageous. A more preferable average thickness of the alumina layer is 3 to 10 mu m.

본 발명의 피막은, 상기한 TiCN층이나 알루미나층 이외의 다른 층을 포함할 수 있다. 이러한 다른 층으로서는, 예를 들면 기재와 피막과의 밀착성을 더 높이기 위해서 기재의 바로 위에 형성되는 TiN, TiC, TiBN 등으로 이루어지는 하지층이나, TiCN층과 알루미나층의 밀착성을 높이기 위해서 양층의 사이에 형성되는 TiCNO, TiBNO 등으로 이루어지는 중간층이나, 날끝의 사용 여부에 관한 식별성을 나타내기 위해서 피막의 최외측 표면에 형성되는 TiN, TiCN, TiC 등으로 이루어지는 최외층 등을 예로 들 수 있지만, 이들 만에 한정되는 것은 아니다. 이러한 다른 층은 통상 0.5∼2.0 ㎛의 두께로 형성할 수 있다.The coating of the present invention may comprise a layer other than the TiCN layer or alumina layer described above. Examples of such other layers include a base layer made of TiN, TiC, TiBN or the like formed directly on the base material or a base layer formed between the base layer and the alumina layer in order to improve the adhesion between the base material and the coating film TiCNO, TiBNO, or the like, or an outermost layer of TiN, TiCN, TiC, or the like formed on the outermost surface of the film in order to show discrimination as to whether or not to use the edge, But is not limited thereto. Such another layer may be formed usually in a thickness of 0.5 to 2.0 占 퐉.

이러한 피막을 형성하기 위해서는 화학 기상 증착 장치의 반응실 체적의 10배 이상의 체적의 원료 가스를 매분당 화학 기상 증착 장치에 공급하고, 또한 반응 온도를 820∼950℃한다. In order to form such a film, a raw material gas having a volume of 10 times or more the volume of the reaction chamber of the chemical vapor deposition apparatus is supplied to the chemical vapor deposition apparatus per minute and the reaction temperature is 820 to 950 占 폚.

이후 피막이 형성된 소결체 표면에 입자상의 연마재를 사용하여 블라스팅을 수행한다(S105). 여기서 연마재는 연마재는 광물 입자(천연 모래나 규사 등), 세라믹 입자(알루미나 입자 등) 및 금속 입자(주철, 합금강 입자 등) 등으로 이루어진 군중에서 선택된 1종 또는 2종 이상의 혼합을 사용할 수 있다. 또한, 상기 연마재의 입자는 30㎛ ~ 900㎛의 크기(입도 분포)를 가지는 것이 좋다. 이때, 연마재의 입자 크기가 30㎛ 미만으로서 너무 작으면, 양호한 평탄도를 갖게 하기 어렵고 시간이 오래 걸려 바람직하지 않다. 그리고 연마재의 입자 크기가 900㎛를 초과하여 너무 크면, 오히려 거침 정도가 심해질 수 있고, 코팅층에 균열이 발생되거나 손상될 수 있다. 또한, 절삭 공구(예를 들어, 인서트)의 경우 국부적으로 돌출된 부분(코너, 가장자리 부분 등)이 존재하게 되는데, 연마재의 입자 크기가 크면 상기 돌출된 부분이 식각될 수 있어 바람직하지않다. 아울러, 상기 입자상의 연마재는 30㎛ ~ 75㎛의 소직경 입자와 75㎛ ~ 900㎛의 대직경 입자를 1 : 0.5 ~ 2의 비율로 혼합하여 사용할 수 있다.Thereafter, blasting is performed using a particulate abrasive on the surface of the sintered body on which the coating is formed (S105). Here, the abrasive may be one or a mixture of two or more selected from the group consisting of mineral particles (natural sand or silica sand), ceramic particles (alumina particles, etc.) and metal particles (cast iron, alloy steel particles, etc.). It is preferable that the particles of the abrasive have a size (particle size distribution) of 30 mu m to 900 mu m. At this time, if the particle size of the abrasive is too small as less than 30 占 퐉, it is difficult to obtain a good flatness and it takes time, which is not preferable. If the particle size of the abrasive is too large to be more than 900 占 퐉, the degree of roughness may become rather large, and cracks may be generated or damaged in the coating layer. In addition, in the case of a cutting tool (e.g., an insert), there is a locally protruding portion (corner, edge portion, etc.), which is undesirable because the protruded portion can be etched if the particle size of the abrasive is large. The particulate abrasive may be used by mixing small diameter particles of 30 탆 to 75 탆 and large diameter particles of 75 탆 to 900 탆 in a ratio of 1: 0.5 to 2.

블라스팅된 소결체 표면을 평탄하게 하기위해 최종적으로 브러싱 공정을 수행한다(S107). 브러싱공정(S107)은 통상의 브러싱 방법(브러싱 호닝법)으로 실시할 수 있다. 이러한 브러싱공정(S107)은, 예를 들어 도 1에 도시한 바와 같은 브러싱 기기를 사용하여 실시할 수 있다. 브러싱공정(S107)은, 바람직하게는 아래에서 설명되는 브러싱 기기를 이용하여 브러시 및 절삭 인서트 중에서 선택된 어느 하나를 회전시켜 실시할 수있다. 이때, 보다 바람직하게는 브러시 및 절삭 인서트 둘 모두를 동시에 회전시키면서 실시하는 것이 좋다.A brushing process is finally performed to smooth the surface of the blasted sintered body (S107). The brushing step (S107) can be carried out by a normal brushing method (brushing honing method). This brushing step (S107) can be carried out, for example, by using a brushing device as shown in Fig. The brushing step (S107) can be carried out by rotating any one of the brush and the cutting insert, preferably using the brushing device described below. At this time, it is more preferable that both the brush and the cutting insert are rotated simultaneously.

이러한 구성에 따라 얻어지는 내마모성을 갖는 소결체의 표면처리방법은 피삭재의 절삭 시 내칩핑성이 우수하며, 내마모성과 인성 등과 같은 전반적인 기계적 물성이 향상된다.The surface treatment method of the sintered body having the abrasion resistance obtained according to such a structure has excellent chipping resistance during cutting of the workpiece and improves overall mechanical properties such as abrasion resistance and toughness.

S101: 소결체 준비단계 S103: 소결체 코팅단계
S105: 블라스팅단계 S107: 브러싱단계
S101: Sintered body preparing step S103: Sintered body coating step
S105: Blasting Step S107: Brushing Step

Claims (5)

내마모성을 갖는 소결체의 표면처리방법에 있어서,
상기 소결체 상에 기상 증착법을 이용하여 적어도 한 층의 피막을 형성하는 코팅단계와;
상기 피막이 형성된 소결체 표면에 입자상의 연마재를 사용하여 블라스팅하는 단계와;
상기 블라스팅된 소결체 표면을 브러싱하는 단계를 포함하는 것을 특징으로 하는 내마모성을 갖는 소결체의 표면처리방법.
A method for surface treatment of a sintered body having abrasion resistance,
A coating step of forming at least one coating layer on the sintered body by vapor deposition;
Blasting the surface of the sintered body on which the coating is formed by using a particulate abrasive;
And brushing the surface of the blasted sintered body.
제1항에 있어서,
상기 피막은 TiCN층을 포함하며,
상기 TiCN층은 TiCxNy(단, 0.65≤x/(x+y)≤0.90)의 조성을 가지며, (422)면의 면 간격이 0.8765∼0.8790Å이고, 배향성 지수 TC(hkl)에 있어서 TC(220)가 최대가 되는 주상 결정 영역을 갖는 것을 특징으로 하는 내마모성을 갖는 소결체의 표면처리방법.
The method according to claim 1,
Wherein the coating comprises a TiCN layer,
The TiCN layer has a composition of TiCxNy (0.65? X / (x + y)? 0.90), the surface interval of the (422) plane is 0.8765 to 0.8790 angstroms, the TC 220 is in the orientation index TC (hkl) Wherein the sintered body has a columnar crystal region in which the maximum crystal phase of the sintered body is maximized.
제1항에 있어서,
상기 피막은 적어도 한 층의 알루미나층을 포함하며,
상기 알루미나층은 α형 산화알루미늄으로 이루어지며, 그 평균 두께가 2∼15 ㎛인 것을 특징으로 하는 내마모성을 갖는 소결체의 표면처리방법.
The method according to claim 1,
Wherein the coating comprises at least one layer of alumina,
Wherein the alumina layer is made of? -Type aluminum oxide and has an average thickness of 2 to 15 占 퐉.
제1항에 있어서,
상기 연마재는 광물 입자, 세라믹 입자 및 금속 입자로 이루어진 군중에서 선택된 적어도 하나 이상인 것을 특징으로 하는 내마모성을 갖는 소결체의 표면처리방법.
The method according to claim 1,
Wherein the abrasive is at least one selected from the group consisting of mineral particles, ceramic particles and metal particles.
제1항에 있어서,
상기 브러싱하는 단계는 브러시 및 절삭 인서트 중 어느 하나 또는 둘 모두를 60 ~ 120 rpm의 속도로 회전시키면서 50 ~ 200 초 동안 실시하는 것을 특징으로 하는 내마모성을 갖는 소결체의 표면처리방법.
The method according to claim 1,
Wherein the brushing step is performed for 50 to 200 seconds while rotating one or both of the brush and the cutting insert at a speed of 60 to 120 rpm.
KR1020160050246A 2016-04-25 2016-04-25 Surface coated method for sintered part having high wear resistance KR20170121587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160050246A KR20170121587A (en) 2016-04-25 2016-04-25 Surface coated method for sintered part having high wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160050246A KR20170121587A (en) 2016-04-25 2016-04-25 Surface coated method for sintered part having high wear resistance

Publications (1)

Publication Number Publication Date
KR20170121587A true KR20170121587A (en) 2017-11-02

Family

ID=60383478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160050246A KR20170121587A (en) 2016-04-25 2016-04-25 Surface coated method for sintered part having high wear resistance

Country Status (1)

Country Link
KR (1) KR20170121587A (en)

Similar Documents

Publication Publication Date Title
KR102033188B1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
CN108290223B (en) Cutting tool
EP3085478B1 (en) Coated tool
JP2009028894A (en) Coated cutting tool
JP5902865B2 (en) Coated tool
JP2009519139A (en) Coated cutting tool insert
KR20130008506A (en) Coated cutting tool insert for turning of steels
JP5918457B1 (en) Coated tool
JP2006305714A (en) Surface coated cutting tool
JP2007237391A (en) Coated cermet cutting tool
JP2010253594A (en) Surface coated tool
CN110318039B (en) Cutting tool and method for manufacturing same
JP2012144766A (en) Coated member
JP2006281361A (en) Surface coated member and surface coated cutting tool
KR20090037345A (en) Coated cutting tool insert for milling
JP6556246B2 (en) Coated tool
JP5597469B2 (en) Cutting tools
KR20170121587A (en) Surface coated method for sintered part having high wear resistance
JP4936742B2 (en) Surface coating tools and cutting tools
JP2016155200A (en) Coated tool
JP5898394B1 (en) Coated tool
EP3124144B1 (en) Coated cutting tool
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2003145312A (en) Coated cemented carbide tool
JP4936741B2 (en) Surface coating tools and cutting tools