KR20170002094A - Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same - Google Patents

Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same Download PDF

Info

Publication number
KR20170002094A
KR20170002094A KR1020150092061A KR20150092061A KR20170002094A KR 20170002094 A KR20170002094 A KR 20170002094A KR 1020150092061 A KR1020150092061 A KR 1020150092061A KR 20150092061 A KR20150092061 A KR 20150092061A KR 20170002094 A KR20170002094 A KR 20170002094A
Authority
KR
South Korea
Prior art keywords
water
tank
flow rate
membrane filtration
treatment
Prior art date
Application number
KR1020150092061A
Other languages
Korean (ko)
Other versions
KR102400039B1 (en
Inventor
권오성
박용민
권정원
Original Assignee
코웨이엔텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코웨이엔텍 주식회사 filed Critical 코웨이엔텍 주식회사
Priority to KR1020150092061A priority Critical patent/KR102400039B1/en
Publication of KR20170002094A publication Critical patent/KR20170002094A/en
Application granted granted Critical
Publication of KR102400039B1 publication Critical patent/KR102400039B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

An objective of the present invention is to provide a membrane filtration-type advanced water treatment apparatus which can maintain flow rate at a constant level without requiring separate forced transfer equipment by using siphon and differential head principles. For this purpose, the present invention provides the membrane filtration-type advanced water treatment apparatus comprising: a pretreatment tank in which untreated water is collected; a membrane filtration tank which is located such that a head thereof is lower than a head inside the pretreatment tank; a membrane module which is immersed into the membrane filtration tank; a treatment tank which is located such that a head thereof is lower than a head inside the membrane filtration tank; a first siphon which provides communication such that when the untreated water reaches a predetermined water level inside the pretreatment tank, the untreated water flows into the membrane filtration tank; a second siphon which provides communication such that treated water inside the membrane filtration tank, which has been filtrated via the membrane module, flows into the treatment tank; a first flow rate control valve which is provided on the first siphon, and selectively permits or shuts off a flow of untreated water and controls flow rate; a second flow rate control valve which is provided on the second siphon, and selectively permits or shuts off a flow of treated water and controls flow rate; and a water level transmitter which controls opening and closing of the first and second flow rate control valves based on a water level of the treated water inside the treatment tank.

Description

수두차를 이용한 막여과 고도정수처리 장치 및 그 유량 제어 방법{MEMBRANE FILTRATION FOR ADVANCED WATER TREATMENT DEVICE USING HYDRAULIC HEAD DIFFERENTIAL AND METHOD FOR FLOW CONTTROLLING THE SAME}Technical Field [0001] The present invention relates to an apparatus for treating a membrane filtration using a water hammer and an apparatus for controlling the flow rate of the membrane filtration,

본 발명은 사이펀 및 수두차 원리를 응용한 막여과 고도정수처리 장치에 관한 것으로서, 더욱 상세하게는 수두차를 두고 순차적으로 설치되는 복수 개의 수조와, 그 수조들 사이를 통하도록 연결하는 사이펀(siphon)의 작용에 의해 원수가 자연 유하(nonpressure flow) 방식으로 통과하면서 정화되도록 함으로써 원수의 유동 및 처리수량 조정을 위한 펌프 등과 같은 별도의 압송설비 없이도 유량을 일정하게 유지하면서 원수를 원활하게 정화처리할 수 있는 막여과 고도정수처리 장치 및 그 유량 제어 방법에 관한 것이다.The present invention relates to a membrane filtration advanced water treatment apparatus using siphon and water head difference principle, and more particularly, to a siphon filtration apparatus and a membrane filtration advanced water treatment apparatus using siphon and siphon which are connected to each other through water tanks ), The raw water is cleaned while passing through the nonpressure flow system, so that the raw water can be smoothly purified while keeping the flow rate constant without a separate feeding device such as a pump for controlling the flow of raw water and the quantity of the processed water The present invention relates to a membrane filtration advanced water treatment apparatus and a flow control method thereof.

고도정수처리시설이란 재래식수처리공정(혼화, 응집, 침전, 여과, 소독)으로는 완전히 제거되지 않아 "먹는물 수질기준"의 충족이 어려운 여러 가지 유해물질들을 적절하게 처리하기 위한 정수처리시설로서 오존을 이용한 기술 및 고도산화법을 이용한 기술, 활성탄을 이용한 기술, 막분리 기능을 이용한 기술 등이 있다.An advanced water treatment facility is a water treatment facility to properly treat various harmful substances that can not be completely removed by the conventional water treatment process (mixing, coagulation, sedimentation, filtration, disinfection) Technology using advanced oxidation technology, technology using activated carbon, and technology using membrane separation function.

특히 막분리 기능을 이용한 막여과(Membrane Filtration) 기술은 최근 급속히 확산 및 보급되고 있는 고효율의 정수처리기술로서 미세한 공극으로 선택적 투과성을 갖는 반투과성 분리막(Membrane)을 여재로 이용하여 원수 중의 불순물을 분리 제거함과 동시에 병원성 미생물을 제거하고 회수율이 높으므로 기존 정수처리시설의 단점을 보완하는 차세대 기술로써 각광받고 있다.Membrane filtration technology using membrane separation function is a high-efficiency water treatment technology that is rapidly spreading and widespread recently. It separates and removes impurities in raw water by using semipermeable membrane (membrane) having selective permeability as fine pores as a filter medium. And it is attracting attention as a next-generation technology that complements the disadvantages of the existing water treatment facility because it has high recovery rate by removing pathogenic microorganisms.

이러한 막여과 기술은 분리막의 재질, 구조, 형태, 공치공경(Nominal pore size), 통수방식, 운전방식, 여과방식, 제어방식 등에 따라 분류할 수 있다.Such membrane filtration techniques can be classified according to the material, structure, form, Nominal pore size, flow rate, operation mode, filtration method, control method, and the like of the membrane.

이 중에서 운전방식에 의한 분류는 원기둥 모양의 하우징 내부에 실 형태의 중공사막을 갖는 막모듈로 물을 넣고 압력을 가하면서 통과시켜 이물질이나 불순물을 걸러내는 가압식과, 미세 구멍을 갖는 분리막을 침지조에 담가 물을 통과시키는 과정에서 이물질이나 불순물을 걸러내는 침지식이 있다. 가압식은 펌프에 의한 가압으로 현탁물질을 배제시키며 전처리시설로 부유물질 배제공정이 필요하고 강제 순환을 위한 동력비가 상대적으로 높은 한계가 있다. 침지식은 펌프에 의한 흡입으로 현탁물질을 배제시키며 막모듈이 침지조에 장착됨에 따라 수온의 영향이 크다.Among them, the operation type is classified into a pressing type in which water is put into a membrane module having a hollow hollow fiber membrane in a cylindrical shape and a pressure is applied to the membrane module to filter out foreign matter or impurities and a separating membrane having fine holes in an immersion tank There is a sedimentation that filters foreign matter or impurities in the process of passing water through the litter. The pressurized type eliminates the suspended substances by the pressurization by the pump, requires a process of excluding the suspended substances as a pretreatment facility, and has a relatively high power ratio for forced circulation. The immersion method removes the suspended material by suction by the pump, and the influence of the water temperature is large as the membrane module is mounted in the immersion tank.

종래의 가압식 막여과 고도정수처리 장치는 원수(미처리수)가 막모듈을 통과하면서 그 오염물질은 점착되고 여과된 투과수(처리수)만 배출되는 구조이므로, 여과 공정이 진행되면서 필연적으로 막모듈에 점착되는 오염물질의 양이 증가하고, 이러한 오염물질의 점착으로 인해 막모듈을 통한 원수의 흐름이 방해되어 결과적으로 물질 투과율이 급격히 감소하는 이른바 파울링(fouling) 현상이 발생하여 그 본연의 성능 저하는 물론 막모듈을 통과시키기 위한 원수(미처리수)의 필요 압력은 증가하게 된다.In the conventional pressurized membrane filtration advanced water treatment apparatus, since the raw water (untreated water) passes through the membrane module and the contaminants are adhered and only filtered permeated water (treated water) is discharged, The so-called fouling phenomenon occurs in which the flow of the raw water through the membrane module is interrupted due to the adhesion of the contaminants, resulting in a drastic decrease in the substance permeability. As a result, The required pressure of the raw water (untreated water) for passing the membrane module increases as well as the decrease.

이에 따라 주기적으로 막모듈에 점착된 오염물질을 제거하는 막 세정작업을 실시해야만 하는데, 이러한 막 세정작업은 주로 여과된 투과수(처리수)를 막모듈에 강하게 역류시켜 물리적으로 오염물질을 털어내는 역세(backwashing of water or air), 공기세정(air scrubbing), 플러싱(flushing) 등의 물리적 세정작업(physical cleaning)과 화학약품을 포함하는 세정제를 막모듈에 반복적으로 접촉시킴으로써 화학적으로 오염물질을 제거하는 화학적 세정작업(chemical in place)으로 구분된다.Accordingly, it is necessary to periodically perform a membrane cleaning operation for removing contaminants adhered to the membrane module. Such membrane washing operation is mainly performed by strongly refluxing the filtered permeated water (treated water) into the membrane module to physically remove contaminants Physical cleaning of backwashing of water or air, air scrubbing and flushing, and repeated contact of the cleaning agent containing chemicals to the membrane module chemically remove contaminants (Chemical in place).

또한, 종래의 침지식 막여과 고도정수처리 장치는 유입되는 원수(미처리수)를 저류조에 집수하고 혼화조에서 응집제와 함께 혼화시키고, 응집조에서 원수에 포함되어 있는 유기물질 등을 응집시킨 후, 응집조에서 응집처리가 완료된 응집처리수를 침전조로 유입시켜 응집물 또는 입자성 오염물질을 경사판을 통하여 침전시킨다.In the conventional immersion membrane filtration advanced water treatment apparatus, the raw water (untreated water) to be introduced is collected in a storage tank and mixed with the flocculating agent in a mixing tank. After coagulating the organic substances contained in the raw water in the flocculating tank, In the flocculation tank, the flocculation treatment water having been subjected to the coagulation treatment is introduced into the settling tank to precipitate the aggregate or particulate contaminant through the swash plate.

그리고 침전조의 침전처리수를 막모듈이 설치된 분리막조로 유입시켜 막모듈(분리막)을 통해 여과함으로써 정수를 얻을 수 있으며, 필요에 따라서는 오존 및/또는 활성탄 처리의 고도처리를 수행할 수도 있다.The purified water of the settling tank may be introduced into the membrane separation tank provided with the membrane module, filtered through the membrane module (separation membrane) to obtain purified water, and advanced treatment of ozone and / or activated carbon may be performed if necessary.

그런데 이와 같은 종래의 막여과 고도정수처리 장치는 처리수의 강제 압송 등을 위해 펌프가 설치되므로 초기 설치비 및 운전비용이 높은 문제점과 함께 설치장소(부지면적)에 제약이 따를 수밖에 없다.However, since such a conventional membrane filtration advanced water treatment apparatus is provided with a pump for forced feeding of treated water, the initial installation cost and the operation cost are high, and the installation site (site area) is constrained.

한편, 수두(hydraulic head)는 물기둥의 높이를 뜻하는 유체정역학 용어로, 높은 곳에 있는 물이 가지는 위치에너지, 압력, 속도와 연관되어 있다. 베르누이의 원리에 의하면 물기둥에 의해 가해지는 압력차(△p)는 물의 밀도(ρ), 중력가속도(g), 물기둥의 높이차인 수두차(△h)의 곱으로 표현되는 데, 일반적으로 앞의 두 값은 일정하기 때문에 압력차는 수두차에 정비례 즉, 함수관계가 성립한다. 따라서 원하는 압력을 얻기 위해서는 그에 해당하는 수두만큼 수면의 높이를 만들어주면 된다. 사이펀(siphon)의 원리도 이와 연관된 개념이다.On the other hand, a hydraulic head is a hydrostatic term which refers to the height of a water column. It is related to the energy, pressure, and velocity of the water in a high place. According to Bernoulli's principle, the pressure difference (Δp) exerted by a water column is expressed as the product of the density of water (ρ), the acceleration of gravity (g), and the height difference of the water column (Δh) Since the two values are constant, the pressure difference is directly proportional to the water head difference, that is, a function relation holds. Therefore, in order to obtain the desired pressure, the height of the water surface should be made equal to the corresponding head. The principle of siphon is also a related concept.

대한민국 공개특허공보 10-2014-0144933호(2014.12.22)Korean Patent Publication No. 10-2014-0144933 (December 22, 2014) 대한민국 공개특허공보 10-2014-0081552호(2014.07.01)Korean Patent Publication No. 10-2014-0081552 (July 1, 2014) 대한민국 등록특허공보 10-1342689호(2013.12.11)Korean Registered Patent No. 10-1342689 (December 13, 2013) 대한민국 등록특허공보 10-1276499호(2013.06.12)Korean Registered Patent No. 10-1276499 (June 3, 2013) 대한민국 등록특허공보 10-0925680호(2009.11.02)Korean Patent Registration No. 10-0925680 (2009.11.02) 대한민국 등록특허공보 10-0932154호(2009.12.08)Korean Registered Patent No. 10-0932154 (2009.12.08) 대한민국 등록특허공보 10-0843656호(2008.06.27)Korean Registered Patent No. 10-0843656 (Jun. 27, 2008) 대한민국 등록특허공보 10-0791896호(2007.12.28)Korean Registered Patent No. 10-0791896 (December 28, 2007)

이에 본 발명자는 상술한 제반 사항을 종합적으로 고려하여 기존의 기술이 갖는 한계 및 문제점의 해결에 역점을 두어, 원수의 유동 및 처리수의 양 조절을 위한 펌프 등과 같은 별도의 압송설비 없이도 유량을 일정하게 유지하면서 원수를 정화처리할 수 있는 막여과 고도정수처리 장치를 개발하고자 각고의 노력을 기울여 부단히 연구하던 중 그 결과로써 본 발명을 창안하게 되었다.Therefore, the present inventor has focused on solving the limitations and problems of the existing technology in consideration of the above-mentioned matters in a comprehensive manner, and it is possible to control the flow rate of the raw water and the flow rate of the treated water without adjusting a pump The present invention was invented as a result of intensive efforts to develop a membrane filtration advanced water treatment apparatus capable of purifying raw water while maintaining a high water content.

따라서 본 발명이 해결하고자 하는 기술적 과제 및 목적은 수조들 내의 수두차와 수조들을 연통하는 사이펀의 작용에 의해 원수가 자연 유하로 흘러서 여과 처리될 수 있도록 하는 막여과 고도정수처리 장치 및 그 유량 제어 방법을 제공하는 데 있는 것이다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a membrane filtration advanced water treatment apparatus and a flow control method thereof, which enable raw water to flow into a natural stream under the action of a siphon that communicates with water tanks in water tanks, To provide.

본 발명이 해결하고자 하는 다른 기술적 과제 및 목적은 수두압과 사이펀 압력 변화에 따른 수두차를 이용하여 유량을 일정하게 유지할 수 있도록 하는 막여과 고도정수처리 장치 및 그 유량 제어 방법을 제공하는 데 있는 것이다.It is another object of the present invention to provide a membrane filtration advanced water purification apparatus and a flow control method thereof, which can maintain the flow rate constant by using the head difference according to the variation of the head pressure and the siphon pressure .

상술한 바와 같은 해결 과제 및 목적을 달성하기 위하여 본 발명의 제1실시 양태에 따른 구체적인 수단은, 미처리수가 모이는 전처리조와, 상기 전처리조 내의 수두보다 수두가 낮도록 위치된 막여과조와, 상기 막여과조의 내부에 침지된 막모듈과, 상기 막여과조 내의 수두보다 수두가 낮도록 위치된 처리수조와, 상기 전처리조 내의 미처리수가 일정수위에 이르러 상기 막여과조 내로 흘러가도록 연통하는 제1사이펀과, 상기 막모듈을 통하여 여과 처리된 상기 막여과조 내의 처리수가 상기 처리수조 내로 흘러가도록 연통하는 제2사이펀과, 상기 제1사이펀상에 구비되어 미처리수의 흐름을 개폐 및 유량을 조절하는 제1유량조절밸브와, 상기 제2사이펀상에 구비되어 처리수의 흐름을 개폐 및 유량을 조절하는 제2유량조절밸브 및 상기 처리수조 내 처리수의 수위에 따라 상기 제1 및 제2유량조절밸브의 개폐를 제어하는 수위전송기를 포함하는 것을 특징으로 하는 막여과 고도정수처리 장치를 제시한다.According to a first aspect of the present invention, there is provided a membrane filtration apparatus comprising: a pretreatment tank in which untreated water is collected; a membrane filtration tank positioned so that the head of the water in the pretreatment tank is lower than the head; A first siphon which communicates the untreated water in the pretreatment tank so that the untreated water reaches a certain level and flows into the membrane filtration tank; A second siphon communicating with the first siphon so that the treated water in the membrane filtration tank filtrated through the first siphon flows into the treated water tank and a first flow control valve provided on the first siphon for opening and closing the flow of untreated water, A second flow control valve provided on the second siphon for opening and closing the flow of the treated water and controlling the flow rate, And a water level transmitter for controlling the opening and closing of the first and second flow rate control valves according to the water level of the water.

이로써 본 발명의 제1실시 양태는, 수두차 및 사이펀 원리에 의해 유량을 일정하게 유지하면서 자연 유하 방식으로 미처리수 및 처리수를 유동시키기 때문에 별도의 압송설비에 의한 에너지 사용량과 설치공간을 줄이고 설치비용 및 운전비용을 절감할 수 있다.As a result, since the untreated water and treated water flow in a natural descending manner while keeping the flow rate constant by the water head difference and the siphon principle, the first embodiment of the present invention reduces the energy consumption and installation space by a separate press- Cost and operation cost can be reduced.

그리고 본 발명의 제2실시 양태에 따른 구체적인 수단은, 미처리수가 모이는 전처리조와, 상기 전처리조 내의 수두보다 수두가 낮도록 위치되고, 상부에 유입구가 형성되고 하부에 배출구가 형성된 케이싱과, 상기 케이싱의 내부에 구비된 막모듈과, 상기 케이싱 내의 수두보다 수두가 낮도록 위치된 처리수조와, 상기 전처리조 내의 미처리수가 일정수위에 이르러 상기 케이싱 내로 흘러가도록 연통하는 제1사이펀과, 상기 막모듈을 통하여 여과 처리된 상기 케이싱 내의 처리수가 상기 처리수조 내로 흘러가도록 연통하는 제2사이펀과, 상기 제1사이펀상에 구비되어 미처리수의 흐름을 개폐 및 유량을 조절하는 제1유량조절밸브와, 상기 제2사이펀상에 구비되어 처리수의 흐름을 개폐 및 유량을 조절하는 제2유량조절밸브 및 상기 처리수조 내 처리수의 수위에 따라 상기 제1 및 제2유량조절밸브의 개폐를 제어하는 수위전송기를 포함하는 것을 특징으로 하는 막여과 고도정수처리 장치를 제시한다.A specific means according to the second embodiment of the present invention is characterized in that it comprises a pretreatment tank in which untreated water is collected, a casing which is positioned such that the head of the water in the pretreatment tank is lower than the head of the water in the pretreatment tank, A first siphon which communicates the untreated water in the pre-treatment tank to a predetermined level to flow into the casing; and a second siphon which communicates with the first siphon through the membrane module A second flow control valve provided on the first siphon for opening and closing the flow of untreated water and controlling a flow rate of the untreated water; A second flow rate control valve provided on the siphon for opening and closing the flow of the treated water and controlling the flow rate thereof, And a water level transmitter for controlling the opening and closing of the first and second flow rate control valves according to the water level.

이로써 본 발명의 제2실시 양태는, 수두차 및 사이펀 원리에 의해 유량을 일정하게 유지하면서 자연 유하 방식으로 미처리수 및 처리수를 유동시키기 때문에 별도의 압송설비에 의한 에너지 사용량과 설치공간을 줄이고 설치비용 및 운전비용을 절감할 수 있을 뿐만 아니라 사이펀 현상을 더욱 효과적으로 유도 및 유발하여 미처리수를 신속하고 수월하게 여과 처리할 수 있다.Thus, since the untreated water and the treated water flow in a natural descending manner while keeping the flow rate constant by the water head difference and the siphon principle, the second embodiment of the present invention reduces the energy consumption and the installation space by a separate press- It is possible to reduce the cost and operation cost as well as to induce and induce the siphon phenomenon more effectively, so that the untreated water can be filtered quickly and easily.

그리고 본 발명의 제3실시 양태에 따른 구체적인 수단은, 상기 처리수조 내의 처리수를 상기 케이싱의 배출구에서 상기 유입구로 통하도록 분출하여 역세하는 역세펌프를 더 포함하여 구성됨으로써 막모듈의 파울링(fouling)을 감소시켜 더욱 효과적이면서 효율적으로 생산유량을 일정하게 유지시킬 수 있다.The concrete means according to the third embodiment of the present invention further comprises a backwash pump for spraying and backwashing the treated water in the treated water tank from the outlet of the casing to the inlet so as to backwash the fouling ) Can be reduced to more effectively and efficiently maintain the production flow rate constant.

또한, 본 발명의 바람직한 제1 내지 제3실시 양태로, 상기 전처리조는 침전, 분말 활성탄(PAC) 접촉, 혼화, 응집 중 적어도 어느 하나의 전처리공정을 구현 가능하도록 설치될 수 있다.In addition, in the first to third embodiments of the present invention, the pretreatment tank may be installed so as to be capable of implementing at least one pretreatment process such as sedimentation, contact with powdered activated carbon (PAC), mixing, and agglomeration.

또한, 본 발명의 바람직한 제1 내지 제3실시 양태로, 상기 전처리조는 미처리수에 포함된 입자들을 여과 및 침전 가능한 크기의 플록으로 성장시키는 교반기가 구비될 수 있다.In addition, in the first to third embodiments of the present invention, the pretreatment tank may be provided with a stirrer for growing the particles contained in the untreated water into filtrate and floccable sized flocs.

또한, 본 발명의 바람직한 제1 내지 제3실시 양태로, 상기 막모듈은 중공사형(hollow fiber type membrane), 평판형(flat sheet type membrane), 관형(tubular type membrane) 중 어느 하나의 막모듈로 이루어질 수 있다.In the first to third embodiments of the present invention, the membrane module may be a membrane module of any one of a hollow fiber type membrane, a flat sheet type membrane, and a tubular type membrane. Lt; / RTI >

한편, 본 발명의 제1실시 양태에 따른 막여과 고도정수처리 장치에서, 상기 제1 및 제2유량조절밸브의 개방 정도를 조절함으로써 처리수의 생산유량을 제어하는 유량 제어 방법으로, 상기 처리수조 내 처리수의 수위가 미리 정해진 일정범위 내로 유지하는지를 상기 수위전송기가 실시간으로 계측하는 제1단계와, 상기 처리수조 내 처리수의 수위가 미리 정해진 일정범위를 벗어나면 상기 처리수조 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하도록 상기 제1 및 제2유량조절밸브의 개방 정도를 조절하는 제2단계로 이루어지는 것을 특징으로 하는 막여과 고도정수처리 장치의 유량 제어 방법을 제시한다.On the other hand, in the membrane filtration advanced water purification apparatus according to the first embodiment of the present invention, the flow rate control method for controlling the production flow rate of treated water by regulating the degree of opening of the first and second flow rate control valves, A first step in which the level transmitter measures in real time whether the level of the treated water is maintained within a predetermined range; and a step of, when the level of the treated water in the treated water tank is out of a predetermined range, And a second step of adjusting the opening degree of the first and second flow rate control valves so that the first and second flow rate control valves coincide with a predetermined range.

그리고 본 발명의 제2실시 양태에 따른 막여과 고도정수처리 장치에서, 상기 제1 및 제2유량조절밸브의 개방 정도를 조절함으로써 처리수의 생산유량을 제어하는 유량 제어 방법으로, 상기 처리수조 내 처리수의 수위가 미리 정해진 일정범위 내로 유지하는지를 상기 수위전송기가 실시간으로 계측하는 제1단계와, 상기 처리수조 내 처리수의 수위가 미리 정해진 일정범위를 벗어나면 상기 처리수조 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하도록 상기 제1 및 제2유량조절밸브의 개방 정도를 조절하는 제2단계로 이루어지는 것을 특징으로 하는 막여과 고도정수처리 장치의 유량 제어 방법을 제시한다.In the membrane filtration advanced water treatment apparatus according to the second embodiment of the present invention, a flow rate control method for controlling the production flow rate of treated water by regulating the degree of opening of the first and second flow rate control valves, A first step in which the level transmitter measures in real time whether or not the level of the treated water is maintained within a predetermined range; and a step of, when the level of the treated water in the treated water tank is out of a predetermined range, And a second step of adjusting the opening degree of the first and second flow rate control valves so as to coincide with a predetermined range of the flow rate.

또한, 본 발명의 제2실시 양태에 따른 막여과 고도정수처리 장치에서, 바람직한 유량 제어방법으로, 상기 제2단계에서 일정시간 동안 상기 처리수조 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하지 않으면 상기 제1 및 제2유량조절밸브를 폐쇄하고, 상기 막모듈의 파울링(fouling)이 감소하도록 상기 처리수조 내의 처리수를 상기 케이싱의 처리수 배출구에 상기 유입구와 슬러지 배출구로 통하도록 분출하여 상기 막모듈을 역세하는 역세펌프의 작동을 제어하는 제3단계를 더 포함하여 이루어질 수 있다.In the membrane filtration advanced water treatment apparatus according to the second aspect of the present invention, preferably, in the second flow rate control method, the water level of the treated water in the treated water tank does not coincide with a predetermined range , The first and second flow control valves are closed and the treated water in the treatment tank is injected into the treatment water outlet of the casing so as to pass through the inlet and the sludge outlet so that fouling of the membrane module is reduced And a third step of controlling the operation of the backwash pump to back up the membrane module.

상기와 같은 기술적 과제의 해결과 목적을 달성하기 위한 수단 및 구성을 갖춘 본 발명은, 펌프 등의 압송설비를 이용한 인위적·기계적 압력으로 원수 및 처리수를 이동시켰던 기존의 방식과 달리 별도의 동력이 필요없는 수두차 및 사이펀 원리를 이용하여 자연 유하 방식으로 원수 및 처리수를 유동시키므로 원수 및 처리수의 유동 및 양 조절을 위한 압송설비에 의한 에너지 사용량과 설치공간(부지면적)을 최소화하고 설치비용 및 운전비용을 크게 절감할 수 있다.The present invention having the means and construction for achieving the objects and the objects of the technical object as described above is different from the conventional method in which raw water and treated water are moved by artificial and mechanical pressure using a press- It minimizes the energy usage and installation space (site area) by controlling the flow and volume of raw water and treated water by controlling the flow of raw water and treated water by using the natural submerged method using unnecessary water column and siphon principle. And operation cost can be greatly reduced.

게다가 처리수조에 담기는 처리수의 수위를 실시간으로 계측하여 그 수위가 일정 범위 내를 벗어나면 제1 및 제2유량조절밸브의 개폐 정도를 제어하고, 아울러 역세 과정을 통해 막모듈의 파울링(fouling)을 감소시켜 수두압과 사이펀 압력을 조절함으로써 처리수의 생산유량을 일정하게 유지시킬 수 있다.In addition, when the water level of the treated water is measured in real time in the treated water tank and the level of the treated water is out of a predetermined range, the degree of opening and closing of the first and second flow rate control valves is controlled, fouling) to control the head pressure and siphon pressure to keep the production flow rate of treated water constant.

나아가서, 본 발명은 소규모 정수장이나 마을 상수도와 같이 전문인력이 부족한 곳에서는 자동화 및 무인화가 가능하여 통합운영관리를 꾀할 수 있을 뿐만 아니라 응집제 투여의 감량화, 슬러지 발생량의 저감화, 에너지 사용의 합리화 등의 효과를 얻을 수 있다.Further, the present invention can automate and unattend the system where a skilled workforce is insufficient, such as a small-scale water purification plant or a village water supply system, thereby achieving integrated operation management, as well as reducing coagulant dosage, reducing sludge generation and rationalizing energy use Can be obtained.

도 1은 본 발명의 제1실시 예에 따른 막여과 고도정수처리 장치를 개략적으로 나타낸 블록도이다.
도 2는 본 발명의 제2실시 예에 따른 막여과 고도정수처리 장치를 개략적으로 나타낸 블록도이다.
도 3은 본 발명의 제3실시 예에 따른 막여과 고도정수처리 장치를 개략적으로 나타낸 블록도이다.
1 is a block diagram schematically showing an apparatus for treating a membrane filtration advanced water purification apparatus according to a first embodiment of the present invention.
2 is a block diagram schematically showing a membrane filtration advanced water purification apparatus according to a second embodiment of the present invention.
3 is a block diagram schematically showing a membrane filtration advanced water purification apparatus according to a third embodiment of the present invention.

이하, 본 발명에 따른 실시 예를 첨부된 도면을 참조하여 보다 구체적으로 설명한다.Hereinafter, embodiments according to the present invention will be described more specifically with reference to the accompanying drawings.

이에 앞서, 후술하는 용어들은 본 발명에서의 기능을 고려하여 정의된 것으로서, 이는 본 발명의 기술적 사상에 부합되는 개념과 당해 기술분야에서 통용 또는 통상적으로 인식되는 의미로 해석하여야 함을 명시한다.Prior to this, the following terms are defined in consideration of the functions of the present invention, and they are to be construed to mean concepts that are consistent with the technical idea of the present invention and interpretations that are commonly or commonly understood in the technical field of the present invention.

또한, 본 발명과 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description, well-known functions or constructions are not described in detail to avoid obscuring the subject matter of the present invention.

여기서, 첨부된 도면들은 기술의 구성 및 작용에 대한 설명과 이해의 편의 및 명확성을 위해 일부분을 과장하거나 간략화하여 도시한 것으로, 각 구성요소가 실제의 크기와 정확하게 일치하는 것은 아님을 밝힌다.Hereinafter, the attached drawings are exaggerated or simplified in order to facilitate understanding and clarification of the structure and operation of the technology, and it is to be understood that each component does not exactly coincide with the actual size.

아울러 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, when a part includes an element, it does not exclude other elements unless specifically stated otherwise, but may include other elements.

<제1실시 예>&Lt; Embodiment 1 >

도 1에 도시된 바와 같이 본 발명의 제1실시 예에 따른 막여과 고도정수처리 장치는 크게 전처리조(10), 막여과조(20), 막모듈(30), 처리수조(40), 제1사이펀(50), 제2사이펀(60), 제1유량조절밸브(70), 제2유량조절밸브(80) 및 수위전송기(90)를 포함하여 구성되어 있다.As shown in FIG. 1, the membrane filtration advanced water purification apparatus according to the first embodiment of the present invention includes a pretreatment tank 10, a membrane filtration tank 20, a membrane module 30, a treatment tank 40, A siphon 50, a second siphon 60, a first flow control valve 70, a second flow control valve 80, and a water level transmitter 90.

<전처리조>&Lt; Pretreatment tank &

전처리조(10)는 착수정 등의 외부에서 취수 및 유입되는 원수(미처리수)의 수위 변동을 안정시키고 원수의 배출량을 일정하게 유지하여 후속공정으로 이루어지는 응집제 주입, 침전, 여과 등 일련의 수처리작업이 용이하도록 함과 동시에 막모듈(30)의 오염현상을 최소화하기 위한 전처리공정이 원활하게 이루어질 수 있도록 한다.The pretreatment tank 10 stabilizes the fluctuation of the water level of the raw water (untreated water) taken in and out from the outside such as the headwater, and keeps the discharge amount of the raw water constant so that a series of water treatment operations such as coagulant injection, So that the pretreatment process for minimizing the contamination of the membrane module 30 can be performed smoothly.

그리고 전처리조(10)는 외부로부터 원수를 연속적 또는 간헐적으로 공급하는 관로(미도시)와 연결되어 있고, 그 내부에 담긴 미처리수의 수두(h1)가 막여과조(20) 내의 수두(h2)보다 상대적으로 높도록 설치되어 있다. 기준면으로부터의 수두 h = P/rw(압력수두)+V2/2g(속도수두)+Z(위치수두)이다. 여기서, P는 압력, rw는 체적당 물의 중량, g는 중력가속도, V는 속도를 나타낸다.The pretreatment tank 10 is connected to a conduit (not shown) for supplying raw water continuously or intermittently from the outside and the water head h1 of untreated water contained in the pretreatment tank 10 is connected to the water head h2 in the membrane filtration tank 20 And is relatively high. A head h = P / r w (pressure head) + V 2 / 2g (velocity head) + Z (head position) from the reference plane. Where P is the pressure, r w is the weight of water per volume, g is the gravitational acceleration, and V is the velocity.

또한, 전처리조(10)는 통상의 정수처리 방식인 응집, 침전, 여과, 오존, 염소소독으로 제거되지 않는 맛·냄새 원인(유발)물질(2-MIB, 지오스민 등), 합성세제, 페놀류, 트리할로메탄과 그 전구물질, 화학물질과 기타 유기물질을 제거할 수 있도록 침전조 또는 분말 활성탄(PAC) 접촉조로도 이용이 가능하다.In addition, the pretreatment tank 10 is made of a material for causing taste and odor (2-MIB, geosmin, etc.), synthetic detergent, phenol , Precipitates or powdered activated carbon (PAC) contact vessels to remove trihalomethanes and their precursors, chemicals and other organic materials.

그리고 전처리조(10)는 원수에 포함되어 있는 오염물질과 투입된 응집제를 짧은 시간에 반응시켜 전기적 중화 및 흡착에 의해 미세 플록(micro floc)을 생성시키는 혼화조로도 이용 가능하고, 또 응집제를 투입하여 침전되지 않는 콜로이드 상태의 물질과 침전속도가 느린 부유물질이 잘 침전될 수 있도록 큰 플록을 형성시키는 응집조로도 이용 가능하다.Also, the pretreatment tank 10 can be used as a mixing tank which reacts contaminants contained in raw water with a coagulant introduced for a short time to generate micro floc by electrical neutralization and adsorption, It is also possible to use a coagulation tank which forms a large floc so that the precipitated colloidal material and the sedimentation suspended solids can settle well.

또한, 전처리조(10)는 고탁도일 때 알칼리제와 응집보조제를 투입하여 응집효율을 향상시키거나 막여과 역세척수 또는 배출수 처리수를 받아들이는 목적과 기능을 가질 수 있고, 아울러 원수(미처리수)를 기계적으로 휘저어 섞어 고르고 균일한 혼합상태로 만들거나 콜로이드 상태의 미세한 부유물질의 전기화학적 특성을 변화시켜 불안정화시키는 급속혼화와, 불안정화된 입자들을 효과적으로 서로 충돌시켜 여과 및 침전 가능한 크기의 플록으로 성장시키기 위한 교반기가 설치될 수도 있다.In addition, the pretreatment tank (10) can have the purpose and function of enhancing the flocculation efficiency by introducing the alkali agent and the coagulation assistant when the turbidity is high or accepting the membrane filtration backwash water or effluent treatment water, To a homogeneous mixing state, or by rapidly changing the electrochemical properties of the colloidal suspended solids to destabilize them, and to effectively collide the unstabilized particles with each other to produce filtrates and flocculable sized flocs A stirrer may be installed.

<막여과조><Membrane filtration tank>

막여과조(20)는 전처리조(10) 내의 수두(h1)보다 그 수두(h2)가 상대적으로 낮도록 설치되어 전처리조(10)에서 배출되는 미처리수를 제1사이펀(50)을 통해 공급받아 수위 변동을 안정시키고 배출량을 일정하게 유지하여 막모듈(30)을 통한 여과처리가 원활하게 이루어질 수 있도록 한다.The membrane filtration tank 20 is installed such that its head h2 is relatively lower than the water head h1 in the pretreatment tank 10 and the untreated water discharged from the pretreatment tank 10 is supplied through the first siphon 50 The water level fluctuation is stabilized and the discharge amount is kept constant so that the filtration treatment through the membrane module 30 can be performed smoothly.

여기서, 막여과조(20)는 역세정과 공기세정을 위한 별도의 역세펌프(미도시)와 연결될 수 있고, 슬러지 등의 농축수(미처리수 중 막모듈을 투과하지 못하고 배제된 원수)를 배출하기 위한 별도의 진공펌프(미도시)와 연결될 수도 있다.Here, the membrane filtration tank 20 can be connected to a separate backwash pump (not shown) for backwashing and air cleaning, and can discharge concentrated water such as sludge (raw water that has not been permeated through the untreated water membrane module and is excluded) And may be connected to a separate vacuum pump (not shown).

<막모듈><Membrane module>

막모듈(30)은 넓은 막 면적을 콤팩트하게 집적시킨 단위체로 이루어져 막여과조(20)의 내부에 침지된 상태로 설치되어 제1사이펀(50)을 통해 전처리조(10)에서 미처리수를 공급받아 체거름작용과 부착작용 및 케이크층에 의한 포착작용을 통해 여과 처리한다.The membrane module 30 is composed of a unit body having a large membrane area compactly integrated and immersed in the membrane filtration tank 20 and supplied with untreated water through the first siphon 50 in the pretreatment tank 10 Filtration is performed through sieving action and adhesion action and catching action by the cake layer.

여기서, 막모듈(30)은 음압이나 차압 등의 외압(out-to-in) 방식에 의해 불순물이나 이물질, 슬러지 등의 고형성분을 제외한 유체만이 중공사형(hollow fiber type membrane), 평판형(flat sheet type membrane) 또는 관형(tubular type membrane)의 분리막을 선택적으로 통과하도록 구현할 수 있다.Here, the membrane module 30 is a hollow fiber type membrane, a flat-plate type membrane module, or the like, except for a solid component such as impurities, foreign matter, and sludge, by an out- a flat sheet type membrane or a tubular type membrane.

그리고 막모듈(30)의 여과막으로는 0.01㎛의 공칭공경과 90% 이상의 회수율을 가진 폴리비닐리덴 디플루오라이드(PVDF), 폴리테트라 플루오르에틸렌(PTFE) 등과 같은 유기계 재질의 정밀여과막(MF)이나 1,000Dalton 이상의 분획분자량을 가진 PVDF 등과 같은 유기계 재질의 한외여과막(UF) 구조를 채용할 수 있으나, 이에 특별히 한정하지 않으며, 공지된 무기막 또는 유기막 재질도 사용 가능하다.As the filtration membrane of the membrane module 30, a microfiltration membrane MF of an organic material such as polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE) or the like having a nominal pore diameter of 0.01 μm and a recovery ratio of 90% An ultrafiltration membrane (UF) structure of an organic material such as PVDF having a cutoff molecular weight of 1,000 Daltons or more can be employed, but not limited thereto, and a known inorganic film or organic film material can be used.

예를 들어, 세라믹 및 금속막을 포함하는 무기막이나 폴리프로필렌(PP), 폴리아마이드(PA), 폴리에틸렌(PE), 폴리비닐리덴 디플루오라이드(PVDF), 폴리슐폰(PS), 폴리아크릴로니트릴(PAN), 폴리테트라 플루오르에틸렌(PTFE), 셀룰로오스 아세테이트, 폴리술포네이트 및 이들의 조합으로 이루어진 군에서 선택된 1종의 유기막이 가능하다.For example, an inorganic film including a ceramic and a metal film or a film made of an inorganic film such as polypropylene (PP), polyamide (PA), polyethylene (PE), polyvinylidene difluoride (PVDF), polysulfone (PS), polyacrylonitrile (PAN), polytetrafluoroethylene (PTFE), cellulose acetate, polysulfonate, and combinations thereof.

그리고 막모듈(30)은 1개 또는 복수 개가 사용된 군집(카세트, 랙)을 병렬로 배열한 형태를 채용할 수 있다.The membrane module 30 may have one or a plurality of assemblies (cassettes, racks) arranged in parallel.

또한, 막모듈(30)의 하부에는 폭기가 충분히 이루어지도록 공기를 기포 상태로 만들어 분산시키는 별도의 산기 장치(air diffuser)를 설치함으로써 막모듈(30)에 부유입자나 미생물 등이 정착되어 막히는 파울링을 방지하고 여과 성능 및 효율을 향상시킬 수도 있다.In addition, a separate air diffuser is provided in the lower part of the membrane module 30 to disperse air into a bubble state so that aeration can be sufficiently carried out, so that floating particles or microorganisms are fixed on the membrane module 30, It is possible to prevent ringing and improve filtration performance and efficiency.

<처리수조>&Lt; Treated water tank &

처리수조(40)는 막여과조(20) 내의 수두(h2)보다 그 수두(h3)가 상대적으로 낮도록 설치되어 막여과조(20)에서 배출되는 처리수를 제2사이펀(60)을 통해 공급받아 수위 변동을 안정시켜 배출량을 일정하게 유지하면서 별도의 송배수관을 통해 정수장의 정수지(미도시)로 배출한다.The treatment water tank 40 is provided so that the head h3 is lower than the water head h2 in the membrane filtration tank 20 so that the treated water discharged from the membrane filtration tank 20 is supplied through the second siphon 60 The water level fluctuation is stabilized and the discharged amount is discharged to the purified water (not shown) of the water purification plant through a separate water discharge pipe while keeping the discharge amount constant.

여기서, 전처리조(10)와 막여과조(20) 간의 수두차 및 막여과조(20)와 처리수조(40) 간의 수두차는 충분히 수두를 가질 수 있도록 각각 계단식으로 설치하는 것이 바람직하다.It is preferable that the water head difference between the pretreatment tank 10 and the membrane filtration tank 20 and the water head difference between the membrane filtration tank 20 and the treatment water tank 40 are set in a stepwise manner so as to have a sufficient head.

<제1사이펀><First Siphon>

제1사이펀(50)은 연통관으로 형성되어 전처리조(10) 내의 미처리수가 일정수위에 이르면 사이펀의 원리에 의해 막여과조(20) 내로 자연스럽게 흘러가도록 연결한다.The first siphon 50 is formed as a communication pipe, and when the untreated water in the pretreatment tank 10 reaches a predetermined water level, the first siphon 50 is connected to the membrane filtration tank 20 so as to flow naturally.

즉, 제1사이펀(50) 상단의 유입구는 전처리조(10) 내의 미처리수 속에 잠기고, 그 하단의 배출구는 막여과조(20) 내의 미처리수 속에 잠기도록 설치되어 수두가 높은 전처리조(10) 내의 미처리수 표면에 대기압이 작용하여 누르면 전처리조(10) 내의 미처리수를 위로 끌어올리거나 수평방향으로 끌러내어 배출시키다가 중력 작용으로 수두가 낮은 막여과조(20)로 흘러내리도록 작용한다.That is, the inlet at the upper end of the first siphon 50 is immersed in the untreated water in the pretreatment tank 10, and the outlet at the lower end thereof is installed so as to be submerged in the untreated water in the membrane filtration tank 20, When the atmospheric pressure acts on the surface of the untreated water, the untreated water in the pretreatment tank 10 is pulled up or pulled out in the horizontal direction to be discharged, and then flows down to the membrane filtration tank 20 having a low head due to gravity.

<제2사이펀><The 2nd siphon>

제2사이펀(60)은 연통관으로 형성되어 막모듈(30)을 통하여 여과 처리된 막여과조(20) 내의 처리수(미처리수 중 막모듈을 투과한 원수)가 사이펀의 원리에 의해 처리수조(40) 내로 자연스럽게 흘러가도록 연결한다.The second siphon 60 is formed of a communicating tube so that the treated water (raw water permeated through the untreated water membrane module) in the membrane filtration tank 20 filtered through the membrane module 30 is supplied to the treated water tank 40 ) So that they flow naturally.

즉, 제2사이펀(60) 상단의 유입구는 막여과조(20) 내의 처리수 속에 잠기고, 그 하단의 배출구는 처리수조(40) 내의 처리수 속에 잠기도록 설치되어 수두가 높은 막여과조(20) 내의 처리수 표면에 대기압이 작용하여 누르면 막여과조(20) 내의 처리수를 위로 끌어올리거나 수평방향으로 끌러내어 배출시키다가 중력 작용으로 수두가 낮은 처리수조(40)로 흘러내리도록 작용한다.That is, the inlet at the upper end of the second siphon 60 is immersed in the treated water in the membrane filtration tank 20, and the outlet at the lower end of the second siphon 60 is installed so as to be submerged in the treated water in the treated water tank 40, When the atmospheric pressure acts on the surface of the treated water, the treated water in the membrane filtration tank 20 is pulled up or pulled out in the horizontal direction to be drained, and then flows down to the treatment tank 40 having a low head due to gravity action.

<제1유량조절밸브><First Flow Control Valve>

제1유량조절밸브(70)는 전처리조(10) 내의 미처리수가 막여과조(20) 내로 흘러가는 흐름을 개폐하여 그 유량을 조절할 수 있도록 제1사이펀(50)상에 설치되어 있다.The first flow control valve 70 is installed on the first siphon 50 so that the untreated water in the pretreatment tank 10 can be opened and closed by controlling the flow rate of the untreated water flowing into the membrane filtration tank 20.

여기서, 제1유량조절밸브(70)로는 수위전송기(90)의 출력에 연결된 컨트롤러(C)로부터 제어 신호를 수신하고, 그에 의해 내장된 솔레노이드밸브가 플랩 등을 개폐 작동시켜 밸브를 통과하는 미처리수의 유량을 조절하여 여과속도를 제한하며 막여과조(20)로의 흐름을 억제하는 급수 자동조절밸브(feed water regulating valve)를 채택하여 적용할 수 있다.The first flow rate control valve 70 receives a control signal from the controller C connected to the output of the level transmitter 90 so that the built-in solenoid valve opens and closes the flap, A feed water regulating valve that restricts the flow rate of the filtrate to the membrane filtration tank 20 and restricts the flow of the filtrate to the membrane filtration tank 20 can be applied.

즉, 제1유량조절밸브(70)는 사전에 설정된 유량을 유지하기 위하여 수위전송기(90)의 수위 계측 신호에 따라 자동으로 개폐된다.That is, the first flow rate control valve 70 is automatically opened and closed in accordance with the level measurement signal of the level transmitter 90 to maintain a preset flow rate.

<제2유량조절밸브>&Lt; Second flow rate control valve &

제2유량조절밸브(80)는 막여과조(20) 내의 처리수가 처리수조(40) 내로 흘러가는 흐름을 개폐하여 그 유량을 조절할 수 있도록 제2사이펀(60)상에 설치되어 있다.The second flow control valve 80 is provided on the second siphon 60 so that the flow of the process water in the membrane filtration tank 20 can be controlled by opening and closing the flow of the process water into the process water tank 40.

여기서, 제2유량조절밸브(80)로는 제1유량조절밸브(70)와 마찬가지로 수위전송기(90)의 출력에 연결된 컨트롤러(C)로부터 제어 신호를 수신하고, 그에 의해 내장된 솔레노이드밸브가 플랩 등을 개폐 작동시켜 밸브를 통과하는 처리수의 유량을 조절하여 여과속도를 제한하며 처리수조(40)로의 흐름을 억제하는 급수 자동조절밸브(feed water regulating valve)를 채택하여 적용할 수 있다.The second flow rate control valve 80 receives a control signal from the controller C connected to the output of the level transmitter 90 in the same manner as the first flow rate control valve 70 so that the built- It is possible to adopt a feed water regulating valve which restricts the filtration rate by controlling the flow rate of the process water passing through the valve and suppresses the flow to the process water tank 40. [

즉, 제2유량조절밸브(80)는 사전에 설정된 유량을 유지하기 위하여 수위전송기(90)의 수위 계측 신호에 따라 자동으로 개폐된다.That is, the second flow rate control valve 80 is automatically opened or closed in accordance with the level measurement signal of the level transmitter 90 to maintain the predetermined flow rate.

<수위전송기><Water level transmitter>

수위전송기(90)는 처리수조(40) 내 처리수의 수위 변화에 따라 제1 및 제2유량조절밸브(70)(80)의 개폐를 제어할 수 있도록 처리수조(40)상에 설치되어 있다.The water level transmitter 90 is installed on the treatment water tank 40 so as to control the opening and closing of the first and second flow rate control valves 70 and 80 in accordance with the change in the water level of the treatment water in the treatment water tank 40 .

여기서, 수위전송기(90)로는 처리수조(40) 내 처리수의 수위 변화에 따라 제1 및 제2유량조절밸브(70)(80)의 컨트롤러(C)로 제어 신호를 실시간으로 송신하는 구조를 채용할 수 있다. The water level transmitter 90 is provided with a structure for transmitting control signals to the controller C of the first and second flow rate control valves 70 and 80 in real time in accordance with a change in the level of the treated water in the treatment water tank 40 Can be adopted.

예를 들어, 전류의 흐름여부를 이용하여 일정한 지점에서의 수위의 높고 낮음을 판단하는 전기 전도식 수위 검지기, 수위의 증감에 따라 전하량의 크기가 변하면서 정전 용량이 변하는 원리를 이용하여 수위를 정전식으로 검출해 제1 및 제2유량조절밸브(70)(80)의 컨트롤러로 제어 신호를 전달하는 정전용량식 수위레벨 검지기(Capacitance Probe type), 처리수조(40)의 고수위측과 저수위측의 차압을 측정하여 수위로 환산하고, 이를 비교 판단하여 제1 및 제2유량조절밸브(70)(80)의 개폐를 제어하는 컨트롤러(C)로 제어 신호를 보내는 차압 전송기(Differential pressure transmitter), 수위에 따라 플로트가 상하로 운동하면서 스위치를 탈착시키고, 이에 의해 전기회로를 형성함으로써 수위를 검출하는 플로트 스위치(Float level switch), 처리수조(40) 내에 채워진 처리수에 잠긴 디스플레이서의 부력에 의한 미소변위를 토르크 튜브를 통해 로드 셀에 전달함으로써 선형적인 전기신호로 출력하여 이 신호 크기에 따른 레벨을 표시하는 레벨 트랜스미터(Level transmitter) 등을 채택하여 적용할 수 있다.For example, an electric conductivity level detector that judges the level of the water level at a certain point by using the flow of the electric current, the water level is changed to the electric power level by using the principle that the capacitance is changed according to the increase and decrease of the water level, A capacitive probe type detector that detects the flow rate of the fluid in the processing tank 40 and transfers the control signal to the controller of the first and second flow rate control valves 70 and 80, A differential pressure transmitter for sending a control signal to the controller C for controlling the opening and closing of the first and second flow control valves 70 and 80 by measuring the pressure difference and converting the measured pressure into a water level, A float switch for detecting the water level by forming an electric circuit by detaching the switch while the float moves up and down according to the float level switch, A level transmitter for outputting a linear electric signal by transmitting the minute displacement due to the buoyancy of the displacer to the load cell through the torque tube and displaying a level according to the signal amplitude, and the like.

즉, 수위전송기(90)는 처리수조(40) 내 처리수의 수위를 실시간으로 계측하여 그 수위가 미리 정해진 일정 범위 내를 벗어나면 제1 및 제2유량조절밸브(70)(80)의 개폐 정도를 제어하도록 신호를 출력함으로써 처리수의 생산유량을 일정하게 유지시킬 수 있다.That is, the water level transmitter 90 measures the water level of the treated water in the treatment water tank 40 in real time, and when the water level deviates from a predetermined range, the first and second flow rate control valves 70, The production flow rate of the treated water can be kept constant.

한편, 수위전송기(90)의 수위 계측신호가 수신되는 별도의 컨트롤러(C)는 미처리수 및 처리수의 흐름을 단속하는 제1 및 제2유량조절밸브(70)(80)의 작동을 제어할 수 있도록 상호 전기적으로 연결되어 있다.On the other hand, a separate controller (C) receiving the level measurement signal of the level transmitter (90) controls the operation of the first and second flow control valves (70, 80) for interrupting the flow of untreated water and treated water Are electrically connected to each other.

<작용 및 작동원리, 제어 방법><Operation and Operation Principle, Control Method>

이와 같이 구성된 본 발명의 제1실시 예에 따른 막여과 고도정수처리 장치는 전처리조(10)가 막여과조(20)보다 수두가 더 높게 위치하도록 설치되고, 막여과조(20)가 처리수조(40)보다 수두가 더 높게 위치하도록 설치되며, 아울러 제1사이펀(50)이 전처리조(10) 내의 미처리수를 막여과조(20) 내로 흘러가도록 연통하고, 제2사이펀(60)이 막여과조(20) 내의 처리수를 처리수조(40) 내로 흘러가도록 연통함으로써 수두차 및 사이펀 원리를 병행하여 자연 유하 방식으로 원수 및 처리수를 유동시킬 수 있고, 이로 인해 원수 및 처리수의 유동 및 처리수량 조정을 위한 압송설비가 불필요하여 에너지 사용량과 설치공간(부지면적)을 최소화하고 설치비용 및 운전비용을 크게 절감할 수 있다.The apparatus for treating a membrane filtration advanced water purifying apparatus according to the first embodiment of the present invention is constructed such that the pretreatment tank 10 is located higher than the membrane filtration tank 20 so that the membrane filtration tank 20 is located in the treatment tank 40 The first siphon 50 communicates with the untreated water in the pretreatment tank 10 so as to flow into the membrane filtration tank 20 and the second siphon 60 communicates with the membrane filtration tank 20 The water and the treated water can be flown by the natural descent method in parallel with the water head difference and the siphon principle, and the flow of raw water and treated water can be controlled and the amount of treated water can be adjusted , It is possible to minimize the energy consumption and the installation space (area) and greatly reduce the installation cost and operation cost.

더욱이 수위전송기(90)가 처리수조(40) 내 처리수의 수위 변화를 실시간으로 계측하여 그 수위가 미리 정해진 일정 범위 내를 벗어날 경우 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하도록 제1 및 제2유량조절밸브(70)(80)의 개폐 정도를 신속하게 제어하여 수두압과 사이펀 압력을 조절함으로써 처리수의 생산유량을 일정하게 유지시킬 수 있다.Furthermore, when the water level transmitter 90 measures the water level change of the treated water in the treatment water tank 40 in real time and the water level deviates from a predetermined range, the water level of the treated water in the treatment water tank 40 falls within a predetermined range The flow rate of the treated water can be kept constant by controlling the opening and closing degree of the first and second flow rate control valves 70 and 80 so as to match the water head pressure and the siphon pressure.

즉, 처리수조(40) 내의 처리수가 정상 유량범위보다 낮을 경우 이를 테면, 막모듈(30)이 오염되어 처리수조(40) 내 수위가 미리 정해진 일정 범위를 벗어나서 낮아지면 수위전송기(90)는 이를 검출하여 제1 및 제2유량조절밸브(70)(80)의 개방 정도를 서서히 증가시키도록 컨트롤러(C)로 제어 신호를 송신하고, 그 컨트롤러(C)의 제어 신호를 수신하는 제1 및 제2유량조절밸브(70)(80)는 그 개방 정도를 증가시켜 수두압과 사이펀 압력을 조절하고, 이렇게 상승하는 수두압과 사이펀 압력에 의해 처리수조(40) 내의 처리수가 정상 유량범위 내로 증가하면 즉, 처리수조(40) 내 수위가 미리 정해진 일정 범위 내로 증가하면 수위전송기(90)는 이를 검출하여 제1 및 제2유량조절밸브(70)(80)의 개방 정도를 감소시키도록 컨트롤러(C)로 제어 신호를 송신하고, 그 컨트롤러(C)의 제어 신호를 수신하는 제1 및 제2유량조절밸브(70)(80)는 그 개방 정도를 감소시켜 미리 정해진 처리수의 생산유량을 일정하게 유지하게 된다.That is, when the treated water in the treated water tank 40 is lower than the normal flow rate range, for example, if the membrane module 30 is contaminated and the water level in the treated water tank 40 falls outside a predetermined range, The control signal is transmitted to the controller C so as to gradually increase the degree of opening of the first and second flow control valves 70 and 80. The first and second flow control valves 70 and 80, The two flow rate control valves 70 and 80 adjust the head pressure and the siphon pressure by increasing the degree of opening and when the treated water in the treatment water tank 40 is increased to the normal flow rate range by the rising head pressure and the siphon pressure That is, when the water level in the treatment water tank 40 increases within a predetermined range, the water level transmitter 90 detects the water level in the water level transmitter 40 to reduce the opening degree of the first and second flow rate control valves 70 and 80, , And the control signal of the controller (C) First and second flow control valves (70 and 80) for receiving a control signal to reduce the degree of the opening is maintained constant in the production flow rate of the predetermined process.

<제2실시 예>&Lt; Embodiment 2 >

이하, 도 2를 참조하여 본 발명의 제2실시 예에 따른 막여과 고도정수처리 장치에 대해 설명한다.Hereinafter, the membrane filtration advanced water purification apparatus according to the second embodiment of the present invention will be described with reference to FIG.

여기서, 본 발명의 제2실시 예에 따른 막여과 고도정수처리 장치와 관련한 구성요소 중 전술한 제1실시 예와 동일 또는 유사한 작용효과를 갖는 구성요소는 그와 동일한 참조부호를 사용하며, 그에 대한 반복적이고 구체적인 설명은 생략한다.Here, among constituent elements related to the membrane filtration advanced water treatment apparatus according to the second embodiment of the present invention, constituent elements having the same or similar operational effects as those of the first embodiment described above use the same reference numerals, Repetitive and detailed explanations are omitted.

도 2에 도시된 바와 같이 본 발명의 제2실시 예에 따른 막여과 고도정수처리 장치는 크게 전처리조(10), 케이싱(21), 막모듈(30), 처리수조(40), 제1사이펀(50), 제2사이펀(60), 제1유량조절밸브(70), 제2유량조절밸브(80) 및 수위전송기(90)를 포함하여 구성되어 있다.2, the membrane filtration advanced water treatment apparatus according to the second embodiment of the present invention roughly includes a pretreatment tank 10, a casing 21, a membrane module 30, a treatment tank 40, A second siphon 60, a first flow control valve 70, a second flow control valve 80, and a water level transmitter 90.

<케이싱><Casing>

케이싱(21)은 밀폐된 내부로 전처리조(10)에서 수두차와 제1사이펀(50)을 통해 자연 유하 방식으로 배출되는 미처리수를 공급받아 막모듈(30)을 통해 여과처리한 후, 처리수조(40)로 수두차와 제2사이펀(60)을 통해 자연 유하 방식으로 배출한다.The casing 21 receives the untreated water discharged from the pretreatment tank 10 through the first siphon 50 and the untreated water discharged through the first siphon 50 through the membrane module 30, And discharged to the water tank 40 through the water head and the second siphon 60 in a natural descent manner.

즉, 케이싱(21)의 상부에는 제1사이펀(50) 하단의 배출구와 연통되는 유입구(22)가 형성되어 있고, 하부에는 제2사이펀(60) 상단의 유입구와 연통되는 처리수 배출구(23)가 형성되어 있으며, 그 내부에 유입되는 미처리수의 수두(h2)가 전처리조(10) 내의 수두(h1)보다 낮고 처리수조(40) 내의 수두(h3)보다 높도록 위치되어 있다.The upper portion of the casing 21 is provided with an inlet 22 communicating with a discharge port at the lower end of the first siphon 50. A lower portion of the casing 21 has a treated water outlet 23 communicating with an inlet at the upper end of the second siphon 60, And the water head h2 of the untreated water flowing into the water tank h2 is positioned lower than the water head h1 in the pretreatment tank 10 and higher than the water head h3 in the treatment water tank 40. [

<막모듈><Membrane module>

막모듈(30)은 케이싱(21)의 내부에 수납된 상태로 구비되어 제1사이펀(50)을 통해 전처리조(10)에서 미처리수를 공급받아 체거름 작용과 부착작용 및 케이크층에 의한 포착작용을 통해 여과 처리한다.The membrane module 30 is housed in the casing 21 so that untreated water is supplied to the pretreatment tank 10 through the first siphon 50 to perform sieving and adhesion and capture by the cake layer Filtration through the action.

여기서, 막모듈(30)은 음압이나 차압 등의 외압(out-to-in) 또는 내압 방식에 의해 불순물이나 이물질, 슬러지 등의 고형성분을 제외한 유체만이 중공사형(hollow fiber type) 관형막(tubular type) 또는 평판형(Flat sheet type membrane) 등의 분리막을 선택적으로 통과하도록 구현할 수 있다.Here, the membrane module 30 is a hollow fiber-type tubular membrane (not shown) except for a solid component such as impurities, foreign matter, sludge and the like due to an out-to-in or pressure- tubular type, or flat sheet type membrane.

한편, 본 발명의 제2실시 예에 따른 막여과 고도정수처리 장치에서 전처리조(10)와 케이싱(21) 간의 수두차 및 케이싱(21)과 처리수조(40) 간의 수두차는 충분히 가질 수 있도록 설치하는 것이 바람직하다.In the membrane filtration advanced water treatment apparatus according to the second embodiment of the present invention, the water head difference between the pretreatment tank 10 and the casing 21 and the water head difference between the casing 21 and the treatment water tank 40 are set .

<작용 및 작동원리, 제어 방법><Operation and Operation Principle, Control Method>

이와 같이 구성된 본 발명의 제2실시 예에 따른 막여과 고도정수처리 장치는 전처리조(10)가 케이싱(21)보다 수두가 더 높게 위치하도록 설치되고, 케이싱(21)이 처리수조(40)보다 수두가 더 높게 위치하도록 설치되며, 아울러 제1사이펀(50)이 전처리조(10) 내의 미처리수를 케이싱(21) 내로 흘러가도록 연통하고, 제2사이펀(60)이 케이싱(21) 내의 처리수를 처리수조(40) 내로 흘러가도록 연통함으로써 수두차 및 사이펀 원리를 병행하여 자연 유하 방식으로 원수 및 처리수를 유동시킬 수 있고, 이로 인해 원수 및 처리수의 유동 및 처리수량 조정을 위한 압송설비가 불필요하여 에너지 사용량과 설치공간(부지면적)을 최소화하고 설치비용 및 운전비용을 크게 절감할 수 있다.In the membrane filtration advanced water treatment apparatus according to the second embodiment of the present invention constructed as described above, the pretreatment tank 10 is installed such that the head of the pretreatment tank 10 is positioned higher than the casing 21, The first siphon 50 communicates with the untreated water in the pretreating tank 10 so as to flow into the casing 21 and the second siphon 60 communicates with the treated water in the casing 21, So that the raw water and the treated water can be flown in a natural descending manner in parallel with the water head difference and the siphon principle, Unnecessary energy consumption and installation space (area) can be minimized, and installation and operating costs can be greatly reduced.

특히 막모듈(20)을 막여과조(20)에 침지시키는 방식의 전술한 제1실시 예와 달리 케이싱(21)에 내장하는 구조이기 때문에 설치가 한층 더 용이하고 유입구(22)와 처리수 배출구(23)의 압력차에 의한 사이펀 현상을 더욱 효과적으로 유도 및 유발하여 미처리수를 한층 신속하고 수월하게 여과 처리할 수 있을 뿐만 아니라 여러 개를 적용할 경우 순간유량 및 생산유량을 조절할 수 있다.In particular, unlike the first embodiment in which the membrane module 20 is immersed in the membrane filtration tank 20, the structure is built in the casing 21 so that the installation is further facilitated and the inlet 22 and the process water outlet 23), it is possible to filter the untreated water more quickly and easily, and to control the flow rate and the production flow rate when applying several kinds of siphon.

더욱이 수위전송기(90)가 처리수조(40) 내 처리수의 수위 변화를 실시간으로 계측하여 그 수위가 미리 정해진 일정 범위 내를 벗어날 경우, 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하도록 제1 및 제2유량조절밸브(70)(80)의 개폐 정도를 제어하여 수두압과 사이펀 압력을 조절함으로써 처리수의 생산유량을 일정하게 유지시킬 수 있다.Furthermore, when the water level transmitter 90 measures the water level change of the treated water in the treatment water tank 40 in real time and the water level deviates from a predetermined range, when the water level of the treated water in the treatment water tank 40 is within a predetermined range The flow rate of the treated water can be kept constant by controlling the opening and closing degree of the first and second flow rate control valves 70 and 80 so as to match the water head pressure and the siphon pressure.

즉, 처리수조(40) 내의 처리수가 정상 유량범위보다 낮을 경우 이를 테면, 막모듈(30)이 오염되어 처리수조(40) 내 수위가 미리 정해진 일정 범위를 벗어나서 낮아지면 수위전송기(90)는 이를 검출하여 제1 및 제2유량조절밸브(70)(80)의 개방 정도를 서서히 증가시키도록 별도의 컨트롤러(C)로 제어 신호를 송신하고, 그 컨트롤러(C)의 제어 신호를 수신하는 제1 및 제2유량조절밸브(70)(80)는 그 개방 정도를 증가시켜 수두압과 사이펀 압력을 조절하고, 이렇게 상승하는 수두압과 사이펀 압력에 의해 처리수조(40) 내의 처리수가 정상 유량범위 내로 증가하면 즉, 처리수조(40) 내 수위가 미리 정해진 일정 범위 내로 증가하면 수위전송기(90)는 이를 검출하여 제1 및 제2유량조절밸브(70)(80)의 개방 정도를 감소시키도록 컨트롤러(C)로 제어 신호를 송신하고, 그 컨트롤러(C)의 제어 신호를 수신하는 제1 및 제2유량조절밸브(70)(80)는 그 개방 정도를 감소시켜 미리 정해진 처리수의 생산유량을 일정하게 유지하게 된다.That is, when the treated water in the treated water tank 40 is lower than the normal flow rate range, for example, if the membrane module 30 is contaminated and the water level in the treated water tank 40 falls outside a predetermined range, And transmits the control signal to a separate controller C so as to gradually increase the opening degree of the first and second flow rate control valves 70 and 80. The first and second flow rate control valves 70 and 80, And the second flow rate control valves 70 and 80 adjust the head and siphon pressures by increasing the degree of opening thereof so that the treated water in the treatment water tank 40 can flow into the normal flow rate range When the water level in the processing bath 40 is increased to a predetermined range, the water level transmitter 90 detects this and decreases the opening degree of the first and second flow control valves 70 and 80, (C), and the control First and second flow control valve (70) for receiving a control signal (C), (80) reduces the degree of its opening is maintained constant in the production flow rate of the predetermined process.

<제3실시 예>&Lt; Third Embodiment >

이하, 도 3을 참조하여 본 발명의 제3실시 예에 따른 막여과 고도정수처리 장치에 대해 설명한다.Hereinafter, the membrane filtration advanced water purification apparatus according to the third embodiment of the present invention will be described with reference to FIG.

여기서, 본 발명의 제3실시 예에 따른 막여과 고도정수처리 장치와 관련한 구성요소 중 전술한 제1 및 제2실시 예와 동일 또는 유사한 작용효과를 갖는 구성요소는 그와 동일한 참조부호를 사용하며, 그에 대한 반복적이고 구체적인 설명은 생략한다.Here, among the components related to the membrane filtration advanced water treatment apparatus according to the third embodiment of the present invention, components having the same or similar operational effects as those of the first and second embodiments described above use the same reference numerals , Repetitive and detailed explanations thereof are omitted.

도 3에 도시된 바와 같이 본 발명의 제3실시 예에 따른 막여과 고도정수처리 장치는 크게 전처리조(10), 케이싱(21), 막모듈(31), 처리수조(40), 제1사이펀(50), 제2사이펀(60), 제1유량조절밸브(70), 제2유량조절밸브(80), 수위전송기(90), 역세펌프(45), 이물탱크(28) 및 솔레노이드밸브(29)를 포함하여 구성되어 있다.3, the membrane filtration advanced water treatment apparatus according to the third embodiment of the present invention roughly includes a pretreatment tank 10, a casing 21, a membrane module 31, a treatment tank 40, The second siphon 60, the first flow control valve 70, the second flow control valve 80, the level transmitter 90, the backwash pump 45, the foreign matter tank 28, and the solenoid valve 29).

<역세펌프><Backwash pump>

역세펌프(45)는 처리수조(40) 내의 처리수를 원수의 흐름과 반대로 케이싱의 처리수 배출구(23)에서 유입구(22)와 슬러지 배출구(24)로 통하도록 분출하여 막모듈(30)을 역세(back washing)한다.The backwash pump 45 blows the treated water in the treated water tank 40 from the treated water outlet 23 of the casing to the inlet 22 and the sludge outlet 24 to return the membrane module 30 Back wash.

여기서, 역세펌프(45)에 의해 케이싱의 처리수 배출구(23)에서 유입구(22)와 슬러지 배출구(24)로 통하도록 분출하는 처리수는 컴프레셔 등과 같은 별도의 압축공기공급장치에서 공급되는 고압의 압축공기와 동시에 분출하도록 이루어짐으로써 막모듈(31)의 역세 시 높은 압력이 가해져 마찰을 일으키게 되고, 이로 인해 막모듈(30)에 점착된 오염물질을 한층 더 효과적으로 제거하여 역세 효율을 증대시키고 역세 시간을 단축할 수 있다.The treated water sprayed from the treated water discharge port 23 of the casing through the inlet 22 and the sludge discharge port 24 by the backwash pump 45 is supplied from a separate compressed air supply device such as a compressor, The compressed air is jetted at the same time, so that a high pressure is applied during backwashing of the membrane module 31 to cause friction, thereby more effectively removing the contaminants adhering to the membrane module 30 to improve backwashing efficiency, Can be shortened.

<이물탱크><Foreign body tank>

이물탱크(28)는 역세펌프(45)의 작동에 의한 역세 과정에서 막모듈(31)에서 분리 제거되어 슬러지 배출구(24)로 유출되는 이물을 받아서 저장한다.The foreign matter tank 28 is separated and removed from the membrane module 31 in the backwash process by the operation of the backwash pump 45 to receive and store the foreign matter flowing out to the sludge discharge port 24.

<솔레노이드밸브><Solenoid valve>

솔레노이드밸브(29)는 슬러지 배출구(24)와 이물탱크(28)를 연결하는 배관상에 설치되어 슬러지 배출구(24)로 유출되는 이물이 이물탱크(28)로 이동하는 것을 단속한다.The solenoid valve 29 is provided on a pipe connecting the sludge discharge port 24 and the foreign matter tank 28 to control the foreign matter flowing out to the sludge discharge port 24 to move to the foreign matter tank 28.

한편, 수위전송기(90)의 수위 계측신호가 수신되는 별도의 컨트롤러(C)는 미처리수 및 처리수의 흐름을 단속하는 제1 및 제2유량조절밸브(70)(80)와, 역세를 위해 처리수조(40) 내의 처리수를 케이싱의 처리수 배출구(23)로 압송하는 역세펌프(45)와, 역세에 의해 케이싱의 유입구(22)를 통해 유출되는 이물의 이동을 단속하는 솔레노이드밸브(29)의 작동을 제어할 수 있도록 이들과 각각 전기적으로 연결되어 있다.On the other hand, a separate controller (C) receiving the level measurement signal of the level transmitter (90) includes first and second flow control valves (70) and (80) for interrupting the flow of untreated water and treated water, A backwash pump 45 for feeding the treated water in the treatment water tank 40 to the treated water outlet 23 of the casing and a solenoid valve 29 for interrupting the movement of the foreign matter flowing out through the inlet 22 of the casing Respectively, so as to control the operation of the motor.

<작용 및 작동원리, 제어 방법><Operation and Operation Principle, Control Method>

이와 같이 구성된 본 발명의 제3실시 예에 따른 막여과 고도정수처리 장치는 수위전송기(90)가 처리수조(40) 내 처리수의 수위 변화를 실시간으로 계측하여 그 수위가 일정 범위 내 즉, 정상 유량범위를 벗어날 경우 이를 테면, 막모듈(30)이 오염되어 처리수조(40) 내 수위가 미리 정해진 일정 범위를 벗어나서 낮아지면 제1 및 제2유량조절밸브(70)(80)의 개방 정도를 서서히 증가시키도록 컨트롤러(C)로 제어 신호를 송신하고, 그 컨트롤러(C)의 제어 신호를 수신하는 제1 및 제2유량조절밸브(70)(80)는 그 개방 정도를 서서히 증가시켜 수두압과 사이펀 압력을 조절한다.In the membrane filtration advanced water treatment system according to the third embodiment of the present invention configured as described above, the water level transmitter 90 measures the water level change of the treated water in the treatment water tank 40 in real time, If the membrane module 30 is contaminated and the water level in the process water tank 40 is lowered beyond a predetermined range, the opening degree of the first and second flow control valves 70 and 80 The first and second flow rate control valves 70 and 80, which transmit the control signal to the controller C so as to gradually increase the opening degree of the controller C and receive the control signal of the controller C, And siphon pressure.

아울러 설정된 일정시간 동안에도 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하지 않을 경우에는 컨트롤러(C)가 제1 및 제2유량조절밸브(70)(80)를 닫힘 상태로 제어하여 막모듈(31)로 미처리수가 공급되지 않도록 하고, 솔레노이드밸브(29)는 열림 상태로 제어한 후, 역세펌프(45)를 작동시켜 처리수조(40) 내의 처리수를 케이싱의 처리수 배출구(23)에서 유입구(22)와 슬러지 배출구(24)로 통하도록 분출하여 막모듈(31)을 역세 함으로써 막모듈(31)의 파울링(fouling)을 감소시킨다.When the level of the treated water in the treatment tank 40 does not coincide with a predetermined range within a predetermined time, the controller C sets the first and second flow control valves 70 and 80 to the closed state So that the untreated water is not supplied to the membrane module 31 and the solenoid valve 29 is controlled to be open so that the backwash pump 45 is operated to return the treated water in the treatment water tank 40 to the treated water The membrane module 31 is blown out from the discharge port 23 to the inlet 22 and the sludge discharge port 24 to back up the membrane module 31 to reduce the fouling of the membrane module 31.

이 과정에서 케이싱의 유입구(22)로 유출되는 막모듈(31)에서 떨어져 나오는 이물은 처리수와 함께 폐수를 이루며, 이는 솔레이노이드밸브(29)를 통해 이물탱크(28)로 모이게 된다.In this process, the foreign matter falling from the membrane module 31 flowing out to the inlet 22 of the casing forms wastewater together with the treated water, which is collected into the foreign-matter tank 28 through the solenoid valve 29.

따라서 막모듈(31)을 통과하는 처리수의 흐름이 원활하면서 그 양이 증가함으로써 더욱 효과적이면서 효율적으로 처리수의 생산유량을 일정하게 유지시킬 수 있다.Therefore, the flow of the treatment water passing through the membrane module 31 is smooth and the amount thereof is increased, so that the production flow rate of the treatment water can be maintained more effectively and efficiently.

한편, 본 발명은 상술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 안에서 예시되지 않은 여러 가지 변형과 응용 가능함은 물론 구성요소의 치환 및 균등한 타 실시 예로 변경하여 폭넓게 적용할 수도 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 있어 명백하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. It will be obvious to those skilled in the art that the present invention can be widely applied.

그러므로 본 발명의 기술적 특징에 대한 변형과, 응용에 관계된 내용은 본 발명의 기술사상 및 범위 내에 포함되는 것으로 해석하여야 할 것이다.Therefore, the modifications to the technical features of the present invention and the contents related to the application should be interpreted to be included in the technical idea and scope of the present invention.

10: 전처리조 20: 막여과조
21: 케이싱 22: 유입구
23: 처리수 배출구 24: 슬러지 배출구
28: 이물탱크 29: 솔레노이드밸브
30, 31: 막모듈 40: 처리수조
45: 역세펌프 50: 제1사이펀
60: 제2사이펀 70: 제1유량조절밸브
80: 제2유량조절밸브 90: 수위전송기
10: Pretreatment tank 20: Membrane filtration tank
21: casing 22: inlet
23: treated water outlet 24: sludge outlet
28: Foreign body tank 29: Solenoid valve
30, 31: membrane module 40: treated water tank
45: backwash pump 50: 1st siphon
60: second siphon 70: first flow control valve
80: second flow control valve 90: water level transmitter

Claims (12)

미처리수가 모이는 전처리조(10);
상기 전처리조(10) 내의 수두보다 수두가 낮도록 위치된 막여과조(20);
상기 막여과조(20)의 내부에 침지된 막모듈(30);
상기 막여과조(20) 내의 수두보다 수두가 낮도록 위치된 처리수조(40);
상기 전처리조(10) 내의 미처리수가 일정수위에 이르러 상기 막여과조(20) 내로 흘러가도록 연통하는 제1사이펀(50);
상기 막모듈(30)을 통하여 여과 처리된 상기 막여과조(20) 내의 처리수가 상기 처리수조(40) 내로 흘러가도록 연통하는 제2사이펀(60);
상기 제1사이펀(50)상에 설치되어 미처리수의 흐름을 개폐 및 유량을 조절하는 제1유량조절밸브(70);
상기 제2사이펀(60)상에 설치되어 처리수의 흐름을 개폐 및 유량을 조절하는 제2유량조절밸브(80); 및
상기 처리수조(40) 내 처리수의 수위에 따라 상기 제1 및 제2유량조절밸브(70)(80)의 개폐를 제어하는 수위전송기(90);
를 포함하는 막여과 고도정수처리 장치.
A pretreatment tank 10 for collecting untreated water;
A membrane filtration tank (20) positioned so that the head of the water in the pretreatment tank (10) is lower than the water head;
A membrane module (30) immersed in the membrane filtration tank (20);
A treatment water tank (40) positioned so that the head of the water in the membrane filtration tank (20) is lower than the water head;
A first siphon (50) communicating with the pretreatment tank (10) so that the untreated water reaches a certain level and flows into the membrane filtration tank (20);
A second siphon (60) communicating with the treatment tank (40) so that the treatment water in the membrane filtration tank (20) filtered through the membrane module (30) flows into the treatment tank (40);
A first flow control valve (70) installed on the first siphon (50) for opening and closing the flow of untreated water and regulating the flow rate;
A second flow control valve (80) installed on the second siphon (60) for opening and closing the flow of treated water and regulating the flow rate; And
A water level transmitter 90 for controlling the opening and closing of the first and second flow rate control valves 70 and 80 according to the level of the treated water in the treatment water tank 40;
Wherein the membrane filtration advanced water treatment apparatus comprises:
제1항에 있어서,
상기 전처리조(10)와 상기 막여과조(20) 간의 수두차 및 상기 막여과조(20)와 상기 처리수조(40) 간의 수두차는 충분히 수두를 가질 수 있도록 각각 설치된 막여과 고도정수처리 장치.
The method according to claim 1,
The water head difference between the pre-treatment tank 10 and the membrane filtration tank 20 and the water head difference between the membrane filtration tank 20 and the treatment water tank 40 are set so as to have a sufficient head.
미처리수가 모이는 전처리조(10);
상기 전처리조(10) 내의 수두보다 수두가 낮도록 위치되고, 상부에 유입구(22)가 형성되고 하부에 처리수 배출구(23)가 형성된 케이싱(21);
상기 케이싱(21)의 내부에 구비된 막모듈(30);
상기 케이싱(21) 내의 수두보다 수두가 낮도록 위치된 처리수조(40);
상기 전처리조(10) 내의 미처리수가 일정수위에 이르러 상기 케이싱(21) 내로 흘러가도록 연통하는 제1사이펀(50);
상기 막모듈(30)을 통하여 여과 처리된 상기 케이싱(21) 내의 처리수가 상기 처리수조(40) 내로 흘러가도록 연통하는 제2사이펀(60);
상기 제1사이펀(50)상에 설치되어 미처리수의 흐름을 개폐 및 유량을 조절하는 제1유량조절밸브(70);
상기 제2사이펀(60)상에 설치되어 처리수의 흐름을 개폐 및 유량을 조절하는 제2유량조절밸브(80); 및
상기 처리수조(40) 내 처리수의 수위에 따라 상기 제1 및 제2유량조절밸브(70)(80)의 개폐를 제어하는 수위전송기(90);
를 포함하는 막여과 고도정수처리 장치.
A pretreatment tank 10 for collecting untreated water;
A casing 21 positioned below the water head in the pretreatment tank 10 so that the water head is lower than the water head in the pretreatment tank 10, an inlet 22 formed at an upper portion thereof and a treated water outlet 23 formed at a lower portion thereof;
A membrane module (30) provided inside the casing (21);
A treatment water tank (40) positioned so that the head of the water in the casing (21) is lower than the water head;
A first siphon (50) communicating with the pretreatment tank (10) so that the untreated water reaches a certain level and flows into the casing (21);
A second siphon (60) communicating with the processing water in the casing (21) filtered through the membrane module (30) so as to flow into the processing water tank (40);
A first flow control valve (70) installed on the first siphon (50) for opening and closing the flow of untreated water and regulating the flow rate;
A second flow control valve (80) installed on the second siphon (60) for opening and closing the flow of treated water and regulating the flow rate; And
A water level transmitter 90 for controlling the opening and closing of the first and second flow rate control valves 70 and 80 according to the level of the treated water in the treatment water tank 40;
Wherein the membrane filtration advanced water treatment apparatus comprises:
제3항에 있어서,
상기 처리수조(40) 내의 처리수를 상기 케이싱의 처리수 배출구(23)에서 상기 유입구(22)와 슬러지 배출구(24)로 통하도록 분출하여 상기 막모듈(30)을 역세(back washing)하는 역세펌프(45)를 더 포함하는 막여과 고도정수처리 장치.
The method of claim 3,
The membrane module 30 is backwashed by spraying the treated water in the treated water tank 40 from the treated water outlet 23 of the casing to the inlet 22 and the sludge outlet 24, Further comprising a pump (45).
제4항에 있어서,
상기 역세펌프(45)의 작동에 따라 상기 케이싱의 유입구(22)로 유출되는 이물을 받아서 저장하는 이물탱크(28); 및
상기 슬러지 배출구(24)와 상기 이물탱크(28)를 연결하는 배관상에 설치되어 케이싱의 유입구(22)를 통해 슬러지 배출구(24)로 유출되는 이물의 이동을 단속하는 솔레노이드밸브(29);
를 더 포함하는 막여과 고도정수처리 장치.
5. The method of claim 4,
A foreign matter tank (28) for receiving and storing foreign matter flowing into the inlet (22) of the casing according to the operation of the backwash pump (45); And
A solenoid valve 29 installed on a pipe connecting the sludge discharge port 24 and the foreign matter tank 28 to control the movement of foreign matter flowing into the sludge discharge port 24 through the inlet port 22 of the casing;
Further comprising a membrane filtration high-altitude water treatment device.
제3항 내지 제5항 중 어느 한 항에 있어서,
상기 전처리조(10)와 상기 케이싱(21) 간의 수두차 및 상기 케이싱(21)과 상기 처리수조(40) 간의 수두차는 충분히 수두를 가질 수 있도록 각각 설치된 막여과 고도정수처리 장치.
6. The method according to any one of claims 3 to 5,
Wherein the water head difference between the pre-treatment tank (10) and the casing (21) and the water head difference between the casing (21) and the treatment water tank (40) have sufficient head.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 전처리조(10)는 침전, 분말 활성탄(PAC) 접촉, 혼화, 응집 중 적어도 어느 하나의 전처리공정을 구현 가능하도록 설치된 막여과 고도정수처리 장치.
6. The method according to any one of claims 1 to 5,
The pretreatment tank (10) is provided with a pretreatment step of at least one of precipitation, powder activated carbon (PAC) contact, agglomeration, and agglomeration.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 전처리조(10)는 미처리수에 포함된 입자들을 여과 및 침전 가능한 크기의 플록으로 성장시키는 교반기가 구비된 막여과 고도정수처리 장치.
6. The method according to any one of claims 1 to 5,
The pretreatment tank (10) comprises a stirrer for growing particles contained in untreated water into flocs of a size capable of filtration and sedimentation.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 막모듈(30)은 중공사형(hollow fiber type membrane), 평판형(flat sheet type membrane), 관형(tubular type membrane), 와권형(spiralwound membrane) 중 어느 하나의 막모듈로 이루어진 막여과 고도정수처리 장치.
6. The method according to any one of claims 1 to 5,
The membrane module 30 may be a membrane filtration high-altitude water purification device comprising a membrane module of a hollow fiber type membrane, a flat sheet type membrane, a tubular type membrane, and a spiral wound membrane. Processing device.
제1항의 막여과 고도정수처리 장치에서, 상기 제1 및 제2유량조절밸브(70)(80)의 개폐 정도를 조절함으로써 처리수의 생산유량을 제어하는 유량 제어 방법으로,
상기 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내로 유지하는지를 상기 수위전송기(90)가 실시간으로 계측하는 제1단계;
상기 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위를 벗어나면 상기 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하도록 상기 제1 및 제2유량조절밸브(70)(80)의 개폐 정도를 조절하는 제2단계;
로 이루어지는 막여과 고도정수처리 장치의 유량 제어 방법.
The flow rate control method for controlling the production flow rate of treated water by adjusting the degree of opening and closing of the first and second flow rate control valves (70, 80) in the membrane filtration advanced water treatment apparatus according to claim 1,
A first step in which the level transmitter (90) measures in real time whether the level of the treated water in the treatment tank (40) is maintained within a predetermined constant range;
When the level of the treated water in the treating water tank (40) is out of a predetermined range, the first and second flow control valves (70, 70) are controlled so that the level of the treated water in the treating water tank (40) (80);
Of the membrane filtration high-altitude water treatment apparatus.
제3항의 막여과 고도정수처리 장치에서, 상기 제1 및 제2유량조절밸브(70)(80)의 개폐 정도를 조절함으로써 처리수의 생산유량을 제어하는 유량 제어 방법으로,
상기 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내로 유지하는지를 상기 수위전송기(90)가 실시간으로 계측하는 제1단계;
상기 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위를 벗어나면 상기 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하도록 상기 제1 및 제2유량조절밸브(70)(80)의 개폐 정도를 조절하는 제2단계;
로 이루어지는 막여과 고도정수처리 장치의 유량 제어 방법.
The flow rate control method for controlling the production flow rate of treated water by adjusting the degree of opening and closing of the first and second flow rate control valves (70, 80) in the membrane filtration advanced water treatment apparatus according to claim 3,
A first step in which the level transmitter (90) measures in real time whether the level of the treated water in the treatment tank (40) is maintained within a predetermined constant range;
When the level of the treated water in the treating water tank (40) is out of a predetermined range, the first and second flow control valves (70, 70) are controlled so that the level of the treated water in the treating water tank (40) (80);
Of the membrane filtration high-altitude water treatment apparatus.
제11항에 있어서,
상기 제2단계에서 일정시간 동안 상기 처리수조(40) 내 처리수의 수위가 미리 정해진 일정범위 내와 일치하지 않으면 상기 제1 및 제2유량조절밸브(70)(80)를 폐쇄하고, 상기 막모듈(30)의 파울링(fouling)이 감소하도록 상기 처리수조(40) 내의 처리수를 상기 케이싱의 처리수 배출구(23)에서 상기 유입구(22)와 슬러지 배출구(24)로 통하도록 분출하여 상기 막모듈(30)을 역세하는 역세펌프(45)의 작동을 제어하는 제3단계;
를 더 포함하여 이루어지는 막여과 고도정수처리 장치의 유량 제어 방법.
12. The method of claim 11,
The first and second flow control valves 70 and 80 are closed if the water level of the treated water in the treatment water tank 40 does not coincide with a predetermined range within a predetermined range in the second step, The treated water in the treatment water tank 40 is sprayed from the treated water outlet 23 of the casing to the inlet 22 and the sludge outlet 24 so that the fouling of the module 30 is reduced, A third step of controlling the operation of the backwash pump (45) to back up the membrane module (30);
And a flow rate control unit for controlling the flow rate of the membrane filtration advanced water treatment apparatus.
KR1020150092061A 2015-06-29 2015-06-29 Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same KR102400039B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150092061A KR102400039B1 (en) 2015-06-29 2015-06-29 Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150092061A KR102400039B1 (en) 2015-06-29 2015-06-29 Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same

Publications (2)

Publication Number Publication Date
KR20170002094A true KR20170002094A (en) 2017-01-06
KR102400039B1 KR102400039B1 (en) 2022-05-19

Family

ID=57832217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150092061A KR102400039B1 (en) 2015-06-29 2015-06-29 Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same

Country Status (1)

Country Link
KR (1) KR102400039B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057367A (en) * 2018-11-16 2020-05-26 한국건설기술연구원 Submerged water treatment and water reservoir system for adjusting siphon driving water level
KR102156361B1 (en) * 2020-01-15 2020-09-15 청수기술환경 주식회사 Automatic backwashing device of dipping membrane using siphon principle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296829A (en) * 1993-04-01 1994-10-25 Suido Kiko Kk Non-powered filter device by permeable membrane
KR100791896B1 (en) 2005-11-23 2008-01-08 (주)대우건설 Membrane filtering water treatment apparatus having pre-treatment selectively controled by the quality of raw water and method using the same
KR100843656B1 (en) 2007-05-16 2008-07-03 주식회사 한화건설 Advanced drinking water treatment system using two-stage submerged membranes
KR100925680B1 (en) 2009-05-15 2009-11-11 주식회사 한화건설 Apparatus for water treatment using membrane filtration automatically level controlled Floodgates
KR100932154B1 (en) 2009-02-25 2009-12-16 최삼숙 A non-powered water purifying plant
KR20120046838A (en) * 2010-10-28 2012-05-11 코오롱글로벌 주식회사 Apparatus and method for water treatment using two stage membrane filtration
KR101169027B1 (en) * 2012-05-01 2012-07-30 (주)대우건설 Apparatus and method for compact mobile membrane filtration by circulated pressure and dual pump
KR20120122928A (en) * 2011-04-29 2012-11-07 코오롱인더스트리 주식회사 Filtration System
KR101342689B1 (en) 2013-09-09 2013-12-19 (주)웰크론한텍 A assembly and method of high pressurized water back flushing in ceramic membrane filtration process
KR20140081552A (en) 2012-12-21 2014-07-01 제일모직주식회사 Submerged membrane apparatus and method for purifying water
KR20140144933A (en) 2013-06-12 2014-12-22 한국건설기술연구원 Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296829A (en) * 1993-04-01 1994-10-25 Suido Kiko Kk Non-powered filter device by permeable membrane
KR100791896B1 (en) 2005-11-23 2008-01-08 (주)대우건설 Membrane filtering water treatment apparatus having pre-treatment selectively controled by the quality of raw water and method using the same
KR100843656B1 (en) 2007-05-16 2008-07-03 주식회사 한화건설 Advanced drinking water treatment system using two-stage submerged membranes
KR100932154B1 (en) 2009-02-25 2009-12-16 최삼숙 A non-powered water purifying plant
KR100925680B1 (en) 2009-05-15 2009-11-11 주식회사 한화건설 Apparatus for water treatment using membrane filtration automatically level controlled Floodgates
KR20120046838A (en) * 2010-10-28 2012-05-11 코오롱글로벌 주식회사 Apparatus and method for water treatment using two stage membrane filtration
KR101276499B1 (en) 2010-10-28 2013-06-24 코오롱글로벌 주식회사 Apparatus and method for water treatment using two stage membrane filtration
KR20120122928A (en) * 2011-04-29 2012-11-07 코오롱인더스트리 주식회사 Filtration System
KR101169027B1 (en) * 2012-05-01 2012-07-30 (주)대우건설 Apparatus and method for compact mobile membrane filtration by circulated pressure and dual pump
KR20140081552A (en) 2012-12-21 2014-07-01 제일모직주식회사 Submerged membrane apparatus and method for purifying water
KR20140144933A (en) 2013-06-12 2014-12-22 한국건설기술연구원 Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same
KR101342689B1 (en) 2013-09-09 2013-12-19 (주)웰크론한텍 A assembly and method of high pressurized water back flushing in ceramic membrane filtration process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057367A (en) * 2018-11-16 2020-05-26 한국건설기술연구원 Submerged water treatment and water reservoir system for adjusting siphon driving water level
KR102156361B1 (en) * 2020-01-15 2020-09-15 청수기술환경 주식회사 Automatic backwashing device of dipping membrane using siphon principle

Also Published As

Publication number Publication date
KR102400039B1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US8518261B2 (en) Water purification apparatus and method for using pressure filter and pore control fiber filter
EP2694182B1 (en) Method and system for filtration and filtration cake layer formation
RU2410336C2 (en) Apparatus for purifying liquid, method of washing hollow-fibre filter and application of method of washing hollow-fibre filter
KR20070095226A (en) Membrane module and water treatment system
KR102400040B1 (en) Membrane filtration for advanced water treatment device using hydraulic head differential and method for dynamic pressure conttrolling the same
JP2015077530A (en) Water production method and water production device
JP2014057931A (en) Water production method
CN113697903A (en) Zero-medicament short-flow membrane direct filtration system and sewage treatment method
JP2001276844A (en) Water producing method and water producing system
KR102400039B1 (en) Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP5801249B2 (en) Desalination apparatus and desalination method
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
KR100402556B1 (en) Water treatment method for using membrane separation device
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
KR20170075085A (en) Membrane Filtration System for Drinking Water and Method for Reducing Manganese Using That Membrane Filtration System
KR102315906B1 (en) Membrane filtration for advanced water treatment device using hydraulic head differential
KR102295027B1 (en) Membrane filtration and hydrostatic treatment control system and method with Inclined plate sedimentation basin and filtration membrane
US20160288023A1 (en) Method for processing waste water
KR200471174Y1 (en) Filtration apparatus having means for recovering filter material
JP2010131472A (en) Apparatus and method for concentrating backwash effluent in membrane filtration
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
KR100785815B1 (en) Tubular membrane module and system equipped reciprocated and rotated suction tubing for continuous cleaning
CN216426887U (en) Membrane direct filtration filter and zero-medicament short-flow membrane direct filtration system
KR101543503B1 (en) Cylindrical Dissolved Air Flotation Facility combined with Membrane Filtration

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant