KR20160111482A - 유도성 전력 전송 시스템들을 위한 결합된 코일 전력 제어 - Google Patents

유도성 전력 전송 시스템들을 위한 결합된 코일 전력 제어 Download PDF

Info

Publication number
KR20160111482A
KR20160111482A KR1020167022791A KR20167022791A KR20160111482A KR 20160111482 A KR20160111482 A KR 20160111482A KR 1020167022791 A KR1020167022791 A KR 1020167022791A KR 20167022791 A KR20167022791 A KR 20167022791A KR 20160111482 A KR20160111482 A KR 20160111482A
Authority
KR
South Korea
Prior art keywords
coil
power
receiver
coupling
transmitter
Prior art date
Application number
KR1020167022791A
Other languages
English (en)
Inventor
에우헤니오 후니오르 시아 레시아스
준보 정
사이닝 런
다니엘 제임스 로버트슨
마이클 나사
론 레이퍼 플로레스카
아루님 쿠마르
알리 압돌카니
Original Assignee
파워바이프록시 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파워바이프록시 리미티드 filed Critical 파워바이프록시 리미티드
Publication of KR20160111482A publication Critical patent/KR20160111482A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Near-Field Transmission Systems (AREA)
  • Measuring Magnetic Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

유도성 전력 전송 디바이스는: 전력 전송 코일 및 전력 전송 커패시터를 구비한 공진 회로; 상기 전력 전송 코일에 자기-결합된 커플링 코일; 가변 임피던스; 그리고 부하에 제공된 전력을 실질적으로 조정함 (regulating); 공진 회로 공진 주파수를 미리 정해진 주파수로 실질적으로 동조함 (tuning); 상기 전력 전송 코일과 연관된 자기장의 주파수를 조절함; 그리고/또는 상기 전력 전송 코일에 의해 반사된 임피던스를 대응하는 결합된 전력 전송 코일로 조절함을 포함하는, 미리 정해진 기준에 기초하여 상기 가변 임피던스의 임피던스 값을 판별하도록 구성된 제어기를 포함한다.

Description

유도성 전력 전송 시스템들을 위한 결합된 코일 전력 제어 {COUPLED-COIL POWER CONTROL FOR INDUCTIVE POWER TRANSFER SYSTEMS}
본 발명은 유도선 전력 전송 시스템 내 부하에 제공된 전력을 조정하는 것 (regulating)에 대체적으로 관련된다. 더 상세하게는, 본 발명은 부하에 제공된 전력을 조정하기 위해 전송 코일 또는 수신 코일에 결합된 코일을 이용하는 것에 관련된다.
IPT 기술은 증가하는 개발의 영역이며 그리고 IPT 시스템들은 넓은 응용분야들에서 그리고 다양한 구성들을 가지고 이제 활용된다. 보통은, 1차측 (primary side) (즉, 유도성 전력 전송기)은 교번하는 자기장을 생성하기 위한 전송 코일 또는 코일들을 포함할 것이다. 이 자기장은 2차측 (secondary side) (즉, 유도성 전력 수신기)의 수신 코일 또는 코일들 내에서 교류 전류를 유도한다. 수신기에서의 이 유도된 전류는, 예를 들면, 배터리를 충전하거나 또는 휴대용 디바이스에 전력을 공급하기 위해서 그 후에 어떤 부하로 제공될 수 있다. 몇몇의 경우들에서, 상기 전송 코일(들) 또는 수신 코일(들)은 커패시터들과 적절하게 연결되어 공진 회로를 생성할 수 있다. 이것은 대응하는 공진 주파수에서 전력 처리량 및 효율을 증가시킬 수 있다.
IPT 시스템과 연관된 문제는 부하로 제공되는 전력의 양을 조정하는 것 (regulating)이다. 부하로 제공된 전력이 그 부하의 전력 요구를 충족시키기에 충분하다는 것을 보장하기 위해 그 전력을 조정하는 것은 중요하다. 유사하게, 부하로 제공된 전력이 과도하지 않다는 것이 중요하며, 그 과도한 전력은 비효율로 이끌 수 있다. 일반적으로, IPT 시스템들에서의 전력 제어는 전송기-측 전력 제어 및 수신기-측 전력 제어의 두 가지 접근 방법들이 존재한다.
전송기-측 전력 제어에서, 전송기는 (예를 들면, 전송 코일(들)에 공급된 전력을 조절함으로써 또는 상기 전송기의 동조 (tunning)을 조절함으로써) 상기 생성된 자기장의 전력을 조절하기 위해 제어되는 것이 보통이다.
수신기-측 전력 제어에서, 수신기는 (예를 들면, 조정 스테이지를 포함함으로써 또는 수신기의 동조를 조절함으로써) 상기 수신 코일들로부터 부하로 제공되는 전력을 조절하기 위해 제어된다.
조정 스테이지들에 의존하는 몇몇의 수신기-측 전력 제어 시스템들과 연관된 문제는 그런 조정 스테이지들이 DC 인덕터를 포함할 것을 필요로 할 수 있을 것이라는 것이다. 그런 DC 인덕터들은 크기의 면에서 상대적으로 클 수 있다. 수신기들을 소형화하여, 그 수신기들이 휴대용 전자 디바이스들 내에 들어맞을 수 있도록 하라는 요구가 있을 수 있으며, 그래서 DC 인덕터가 수신기 회로로부터 제거되도록 하는 것이 소망될 수 있을 것이다.
상기 코일들의 동조를 조절하는 전력 제어 시스템들은 (그것들이 전송기-측이건 또는 수신기-측이건 간에) 스위치 설비를 상기 공진 회로의 일부로서 보통 포함할 것이다. 이 스위치들은 상기 공진 회로의 부분들을 단락시키거나 개방하기 우해 선택적으로 활성화될 수 있으며, 그래서 상기 공진 회로 및 전송되거나 수신된 전력을 동조하는 것에 영향을 준다. 그러나, 이 스위치들이 공진 회로의 일부이기 때문에, 그 스위치들과 연관된 피크 전류 또는 전압들로 인한 높은 손실들의 결과가 될 수 있다. 또한, 이 스위치들의 차단 전압은 부하가 요청한 전압에 대해 정격이 정해져야 한다. 큰 전압 스위치들은 비싸며 그리고 소형화하는 것이 어려울 수 있다.
미국 특허 No. 6705441은 직렬 제어 스위치를 가진 공진 수신 코일을 개시한다. 이 제어 스위치는 부하로 제공된 전력의 양을 조정하기 위해 선택적으로 스위치 온 및 오프된다. 이런 접근 방식과 연관된 (그리고 위에서 언급된 것과 같은) 문제는 상기 제어 스위치는 큰 전압들에 대해 정격이 정해져야 한다는 것이다. 또한, 상기 스위차가 스위치 온 되고 오프될 때에 그 스위치를 통한 과도 전류들을 최소화하기 위해 영-전류 크로싱 (zero-current crossing)이 구현된다고 하더라도, 그 스위치 양단에서 관찰되는 바람직하지 않은 큰 전압 스파이크들이 존재할 수 있다.
미국 특허 No. 6705441은 결합된 공진 픽업 코일을 조절함으로써, 비-공진 수신 코일이 수신한 전력의 양을 제어하기 위한 시스템을 또한 개시한다. 비록 이 시스템이 DC 인덕터에 대한 필요성을 제거하지만, 그 시스템은 무선 전력 컨소시움 Qi 표준과 같은 무선 전력 전송을 위한 현재 및 미래의 소비자 전자 산업 표준들과 호환되지 않을 수 있을 비-공진 수신 코일에 의존한다. 이 시스템과 연관된 문제는 공진 픽업 코일이 전송기로부터 전력을 끌어들일 것이며 그리고 상기 전송 코일의 공진에 영향을 줄 것이라는 것이다. 또한, 상기 공진 픽업 코일이 전송된 전력을 수신하기 때문에, 상기 공진 픽업 코일의 제어와 연관된 스위치는 높은 손실들의 결과를 가져올 수 있을 것이다.
따라서, 본 발명 실시예들은 유도성 전력 전송 시스템들의 향상된 결합된-코일 전력 제어를 제공할 수 있으며 또는 적어도 공중에게 유용한 선택을 제공할 수 있을 것이다.
하나의 예시적인 실시예에 다라서, 유도성 전력 전송 디바이스가 제공되며, 이 디바이스는: 전력 전송 코일 및 전력 전송 커패시터를 구비한 공진 회로; 상기 전력 전송 코일에 자기-결합된 커플링 코일; 가변 임피던스; 그리고 부하에 제공된 전력을 실질적으로 조정함 (regulating); 공진 회로 공진 주파수를 미리 정해진 주파수로 실질적으로 동조함 (tuning); 상기 전력 전송 코일과 연관된 자기장의 주파수를 조절함; 그리고/또는 상기 전력 전송 코일에 의해 반사된 임피던스를 대응하는 결합된 전력 전송 코일로 조절함을 포함하는, 미리 정해진 기준에 기초하여 상기 가변 임피던스의 임피던스 값을 판별하도록 구성된 제어기를 포함한다.
추가의 예시적인 실시예에 따라서, 유도성 전력 수신기를 제어하는 방법이 제공되며, 여기에서 상기 유도성 전력 수신기는: 수신 코일, 상기 수신 코일로부터의 전력을 부하로 제공하기 위한 수신기 회로, 상기 수신 코일에 자기-결합된 커플링 코일; 제1 방향에서 상기 커플링 코일을 통해 흐르는 전류를 변경하려고 구성된 제1 스위치; 및 제2 방향에서 상기 커플링 코일을 통해 흐르는 전류를 변경하려고 구성된 제2 스위치를 포함하며, 여기에서 상기 방법은: 전류가 커플링 코일을 통해서 제2 방향 또는 제1 방향에서 흐르는 것으로부터 영 (zero)으로 간 이후에 제1 시간 구간에 제1 스위치를 스위치 온 하는 단계; 전류가 상기 커플링 코일을 통해서 제1 방향 또는 제2 방향에서 흐르는 것으로부터 영으로 간 이후에 제2 시간 구간에 제2 스위치를 스위치 온 하는 단계; 상기 제2 스위치가 스위치 온 될 때에 또는 상기 제2 스위치가 스위치 온 되고 그리고 상기 커플링 코일을 통한 전류가 상기 제2 방향에서 흐르는 것으로부터 영으로 가는 사이의 어느 포인트에서 상기 제1 스위치를 스위치 오프하는 단계; 상기 제1 스위치가 스위치 온 될 때에 또는 상기 제1 스위치가 스위치 온 되고 그리고 상기 커플링 코일을 통한 전류가 상기 제1 방향에서 흐르는 것으로부터 영으로 가는 사이의 어느 포인트에서 상기 제2 스위치를 스위치 오프하는 단계; 그리고 부하로 제공된 전력을 조정하기 위해 상기 제1 시간 구간 및 상기 제2 시간 구간의 지속시간을 제어하는 단계를 포함한다.
"포함", "포함한다" 및 "포함하는"의 용어들은 변하는 권한들 하에서 배타적인 또는 포함하는 의미 중 어느 하나를 구비한 것으로 생각될 수 있을 것이라는 것이 인정된다. 본 발명에서의 목적을 위해서, 그리고 다르게 언급되지 않았다면, 이 용어들은 포함하는 의미를 가지는 것으로 의도된 것이다 - 즉, 그 용어들은 직접적인 참조들을 사용하는 열거된 컴포넌트들 그리고 어쩌면 다른 비-규정된 컴포넌트들 또는 요소들을 포함하는 것을 의미하는 것으로 취해질 것이다.
본 명세서에서 어떤 종래 기술에 대한 참조한다고 해도 그런 종래 기술이 공통의 일반적인 지식의 일부를 형성한다는 것을 인정하는 것을 구성하지 않는다.
본 발명의 효과는 본 명세서의 해당되는 부분들에 개별적으로 명시되어 있다.
본 명세서에 통합되며 명세서의 일부를 형성하는 동반된 도면들은 본 발명의 실시예들을 예시하며 그리고 위에서 주어진 일반적인 설명, 및 아래에서 주어진 실시예들의 상세한 설명과 함께 본 발명의 원칙들을 설명하는데 도움이 된다.
도 1은 일 실시예에 따른 유도성 전력 전송 시스템의 블록 도면이다.
도 2는 일 실시예에 따른 유도성 전력 전송 수신기의 회로도이다.
도 3a는 일 실시예에 따른 결합된 회로의 회로도이다.
도 3b는 다른 실시예에 따른 결합된 회로의 회로도이다.
도 4a는 일 실시예에 따른 도 2 또는 도 3a의 가변 임피던스의 제어와 연관된 파형의 그래프이다.
도 4b는 다른 실시예에 따른 도 2 또는 도 3a의 가변 임피던스의 제어와 연관된 파형의 그래프이다.
도 4c는 일 실시예에 따른 도 3b의 가변 임피던스의 제어와 연관된 파형의 그래프이다.
도 5는 다른 실시예에 따른 유도성 전력 전송 시스템의 블록도이다.
도 6은 다른 실시예에 따른 유도성 전력 수신기의 회로도이다.
도 7a는 결합된 유닛의 측면 모습이다.
도 7b는 도 7a의 결합된 유닛의 정면 모습이다.
도 7c는 도 7a의 결합된 유닛의 바닥 모습이다.
도 8은 2:1의 권선-비율을 제공하는 삼중필라의 개략적인 모습이다.
도 9a - 도 9p는 일 실시예에 따른 코일 권선 방법의 개략적인 모습들이다.
도 10은 추가의 실시예에 따른 유도성 전력 전송 시스템의 블록 도면이다.
도 11은 도 10 내 시스템의 회로도이다.
도 12는 제어 방식 하부구조의 회로도이다.
도 13은 스위칭 파형들의 그래프들이다.
도 14는 커패시터 전압의 기본적인 성분을 보여주는 등가 회로 및 그래프이다.
도 15는 각 동작 모드의 등가 도면들이다.
도 1은 일 실시예에 따른 유도성 전력 전송 (nductive power transfer (IPT) ) 시스템 (1)의 표현을 보여준다. 이 IPT 시스템은 특별한 애플리케이션들을 위해 적합하게 수정되거나 보충될 수 있을 것이다. 상기 IPT 시스템은 유도성 전력 전송기 (2) 및 유도성 전력 수신기 (3)를 포함한다.
상기 유도성 전력 전송기 (2)는 (간선 전력과 같은) 적절한 전력 공급원 (4)에 연결된다. 상기 유도성 전력 전송기는 전송기 회로 (5)를 포함할 수 있다. 그런 전송기 회로는 유도성 전력 전송기의 동작을 위해 필요할 수 있을 어떤 회로를 포함한다. 상기 전송기 회로는 컨버터들, 인버터들, 스타트-업 회로들, 탐지 회로들 및 제어 회로들을 포함할 수 있다.
상기 전송기 회로 (5)는 전송기 공진 회로 (6)에 연결된다. 상기 전송기 공진 회로는 전송 코일 (7) 및 전송기 커패시터와 같은 하나 또는 그 이상의 동조 (tuning) 요소들 (8)을 포함한다. 상기 전송 코일 및 상기 전송기 커패시터는 공진 회로를 생성하기 위해 병렬로 또는 직렬로 연결될 수 있을 것이다. 상기 전송기 공진 회로 내에 추가의 인덕터들 및/또는 커패시터들 (도시되지 않음)을 구비하는 것이 소망될 수 있을 것이다. 상기 전송기 공진 회로는 대응하는 공진 주파수를 가진다.
간략함을 위해서, 도 1의 유도성 전력 전송기 (2)는 하나의 전송기 공진 회로 (6)를 구비하는 것으로 보인다. 그러나, 여러 전송기 공진 회로들이 존재할 수 있을 것이다. 예를 들면, 충전 패드들 내에 전송 코일들의 어레이가 존재할 수 있을 것이며, 그 전송 코일들은 연관된 공진 커패시터에 각각 연결될 수 있을 것이다. 그런 전송기 공진 회로들은 동일한 전송기 회로 (5)에 모두가 연결될 수 있으며, 또는 그것들은 연관된 전송기 회로에 각각 연결될 수 있다. 상기 전송기 공진 회로들 및/또는 전송 코일들 각각 또는 일부에 선택적으로 에너지를 공급하는 것이 가능할 수 있다.
아래에서 설명될 것처럼, IPT 시스템들의 몇몇의 실시예들에서, 상기 유도성 전력 전송기 (2)의 전송 코일 (7)이 비-공진인 것이 소망될 수 있을 것이다. 말하자면, 어떤 전송기 공진 회로 (6)도 또는 전송기 커패시터 (8)도 존재하지 않는다. 이 실시예에서, 상기 전송기 회로 (5)는 상기 전송 코일 그 자체에 연결된다. 그러나, 비-공진 전송 코일 또한 사용될 수 있을 것이다.
상기 전송기 회로 (5)는 상기 전송기 공진 회로 (6)에 AC 전류를 공급하도록 구성되며, 그래서 상기 전송 코일 (7)이 유도성 전력 전송을 위해 적합한 교번하는 자기장을 생성하도록 한다. 특별한 실시예에서, 상기 AC 전류는 상기 전송기 공진 회로의 또는 상기 수신기 공진 회로 (15)의 공진 주파수에 실질적으로 대응하는 주파수를 가질 것이다.
도 1은 유도성 전력 전송기 (2) 내 전송기 제어기 (9)를 또한 보여준다. 상기 전송기 제어기는 상기 유도성 전력 전송기의 각 부분에 연결될 수 있을 것이다. 상기 전송기 제어기는 상기 유도성 전력 전송기의 부분들로부터 입력들을 수신하고 그리고 각 부분의 동작을 제어하는 출력들을 생산하도록 구성될 수 있다. 상기 전송기 제어기는 단일 유닛 또는 별도의 유닛들로 구현될 수 있을 것이다. 상기 전송기 제어기는 상기 유도성 전력 전송기의 요구사항들에 종속한 상이한 계산 태스크들을 수행하기 위해 프로그램된 프로그래머블 논리적 제어기 또는 유사한 제어기인 것이 바람직하다. 상기 전송기 제어기는 자신의 기능들에 종속하여 상기 유도성 전력 전송기의 다양한 모습들을 제어하도록 구성될 수 있을 것이며, 상기 기능들은 예를 들면, 전력 흐름 (아래에서 더욱 상세하게 설명될 것임), 동조, 전송 코일들에게 선택적으로 에너지 공급, 유도성 전력 수신기 검출 및/또는 통신들 (아래에서 더욱 상세하게 설명될 것임)을 포함한다.
도 1은 유도성 전력 전송기 (2) 내 전송기 결합 회로 (10)를 또한 보여준다. 상기 전송기 결합 회로 (coupled circuit)는 상기 전송기 공진 회로 (6)로부터 갈바닉하게 절연될 수 있을 것이다. 상기 전송기 결합 회로는 커플링 또는 전력 흐름 제어 코일 (11) 및 가변 임피던스 (12)를 포함한다. 상기 커플링 코일은, 그 커플링 코일이 상기 전송 코일 (7)에 자기적으로 결합되도록 구성된다. 아래에서 더욱 상세하게 설명될 것처럼, 상기 전송기 제어기 (9)는 상기 전송기 결합 회로를 제어하여 상기 전송기 공진 회로에 영향을 미치도록 하며, 이는 상기 유도성 전력 전송기로부터 상기 유도성 전력 수신기 (3)로 공급되는 전력에 차례로 영향을 미칠 것이다 (그리고, 그래서 부하에 공급된 전력을 조정한다). 다른 실시예에서, 상기 전송기 결합 회로는 상기 주파수를 조절하기 위해 사용될 수 있으며, 이는, 예를 들면, 통신 목적들을 위해 사용될 수 있다. 하나보다 많은 전송기 공진 회로 및/또는 하나보다 많은 전송기 코일이 존재하는 실시예들에서, 각 전송기 공진 회로 및/또는 전송 코일에 연관된 전송기 결합 회로를 포함하는 것이 가능할 수 있을 것이다.
아래에서 설명될 것처럼, IPT 시스템들의 몇몇의 실시예들에서, 상기 유도성 전력 전송기 (2)는 전송기 결합 회로 (10)를 포함하지 않을 수 있다. 그러나, 전송기 결합 회로를 포함하지 않으면서 유도성 전력 전송기가 또한 구현될 수 있을 것이다.
또한, 상기 유도성 전력 전송기 (2)는 자기적 침투성 (permeable) 요소 또는 코어 (13)를 포함할 수 있다. 상기 자기적 침투성 코어는 상기 전송 코일(들) (7)과 연관된다. 자기적으로 침투성있는 코어를 사용함으로써, 상기 전송기 코일 및 상기 전력 수신기의 수신기 코일 사이의 커플링이 향상될 수 있으며, 이는 차례로 전력 전송을 향상시킬 수 있다. 상기 자기적 침투성 코어는 페라이트 재질로부터 만들어질 수 있을 것이다. 상기 자기적 침투성 코어의 크기 및 형상은 상기 전송 코일 및 유도 전력 전송기의 특별한 기하학적 모습 그리고 요구사항들에 종속할 것이다. 예를 들면, 일 실시예에서, 상기 전송 코일이 평면형인 경우, 상기 자기적 침투성 코어는, 그 자기적 침투성 코어가 상기 전송 코일 밑에 위치하도록 배치될 수 있을 것이다. 다른 실시예에서, 상기 전송 코일은 상기 자기적 침투성 코어 그 자체 주위로 권선될 수 있을 것이다. 추가의 실시예에서, 상기 자기적 침투성 코어는 상기 전송기 결합 회로 (10)의 커플링 코일 (11) 및 전송기 코일 사이의 자기적 커플링을 향상시키도록 구성될 수 있다.
도 1을 다시 참조하면, 유도성 전력 수신기 (3)가 또한 도시된다. 상기 유도성 전력 수신기 (3)는 부하 (14)에 연결된다. 알 수 있듯이, 상기 유도성 전력 수신기는 상기 유도성 전력 전송기 (2)로부터 유도성 전력을 수신하고 그리고 그 전력을 상기 부하에 제공한다. 그 부하는 상기 유도성 전력 수신기가 사용되고 있을 애플리케이션에 의존하는 어떤 적합한 부하일 수 있다. 예를 들면, 상기 부하는 휴대용 전자 디바이스에 전력을 공급하거나 또는 배터리를 충전할 수 있을 것이다. 부하의 전력 요구들은 변할 수 있을 것이며, 그러므로 그 부하에 제공된 전력이 그 부하의 전력 요구들에 부합하는 것이 중요하다. 특히, 그 전력은 상기 전력 요구들을 과도하게 초과하지 않으면서도 (이것은 비효율들로 이끌 수 있다) 그 전력 요구들을 충족시키기에 충분해야 한다.
상기 유도성 전력 수신기 (3)는 수신기 공진 회로 (15)를 포함한다. 그 수신기 공진 회로는 수신 코일 (16) 및 수신기 커패시터와 같은 하나 또는 그 이상의 동조 요소들 (17)을 포함한다. 상기 수신 코일 및 상기 수신기 커패시터는 병렬로 또는 직렬로 연결되어 공진 회로를 생성할 수 있다. 상기 수신기 공진 회로 내에 포함되는 추가의 인덕터들 및/또는 커패시터들 (도시되지 않음)을 구비하는 것이 소망될 수 있다. 상기 수신기 공진 회로는 대응하는 공진 주파수를 가질 것이다. 특별한 실시예에서, 상기 수신기 공진 회로는, 자신의 공진 주파수가 상기 전송기 공진 회로 (6)의 공진 주파수 또는 상기 전송 코일(들) (7)의 주파수에 실질적으로 부합하도록 구성될 것이다.
간략함을 위해서, 상기 유도성 전력 수신기 (3)는 하나의 수신기 공진 회로 (15)를 구비한 것으로 도시된다. 그러나, 여러 수신기 공진 회로들이 존재할 수 있을 것이다. 예를 들면, 몇몇의 휴대용 디바이스들에서, 그 휴대용 디바이스의 상이한 부분들 상에 위치한 수신 코일들이 존재할 수 있을 것이다. 그런 수신기 공진 회로들은 모두가 동일한 수신기 회로 (18)에 연결될 수 있을 것이며, 또는 그 수신기 공진 회로들 각각은 연관된 수신기 회로에 연결될 수 있을 것이다. 상기 수신기 공진 회로들 및/또는 수신 코일들 각각 또는 일부를 선택적으로 활성화하는 것이 가능할 수 있다.
위에서 언급된 것처럼, 상기 수신기 공진 회로 (15)는 수신기 회로 (18)에 연결된다. 그런 수신기 회로는 상기 유도성 전력 수신기 (3)의 동작을 위해 필요할 수 있을 어떤 회로를 포함한다. 예를 들면, 상기 수신 회로는 유도된 전류를 상기 부하 (14)를 위해 적절한 모습으로 변환하도록 구성될 수 있을 것이다. 범위를 제한하지 않으면서, 수신기 회로는 정류기들, 레귤레이터들, 평탄화 회로들 및 제어 회로들을 포함할 수 있을 것이다.
도 1은 상기 유도성 전력 수신기 (3) 내 수신기 제어기 (19)를 또한 보여준다. 상기 수신기 제어기는 상기 유도성 전력 수신기의 각 부분에 연결될 수 있다. 상기 수신기 제어기는 상기 유도성 전력 수신기의 부분들로부터 입력들을 수신하고 그리고 각 부분의 동작을 제어하는 출력들을 생산하도록 구성될 수 있을 것이다. 상기 수신기 제어기는 단일의 유닛 또는 분리된 유닛들로 구현될 수 있을 것이다. 상기 수신기 제어기는 상기 유도성 전력 수신기의 요구사항들에 종속한 상이한 계산 태스크들을 수행하기 위해 프로그램된 프로그래머블 논리 제어기 또는 유사한 제어기일 수 있다. 상기 수신기 제어기는 자신의 기능들에 종속하여 상기 유도성 전력 수신기의 다양한 모습들을 제어하도록 구성될 수 있을 것이며, 그 기능들은 예를 들면, 전력 흐름 (아래에서 더욱 상세하게 설명될 것임), 동조, 수신 코일들을 선택적으로 활성화 및/또는 통신들 (아래에서 더욱 상세하게 설명될 것임)을 포함한다.
도 1은 유도성 전력 수신기 (3) 내 수신기 결합 회로 (20)를 또한 보여준다. 상기 수신기 결합 회로는 상기 수신기 공진 회로 (15)로부터 갈바닉하게 절연될 수 있을 것이다. 상기 수신기 결합 회로는 커플링 또는 전력 흐름 제어 코일 (21) 및 가변 임피던스 (22)를 포함한다. 상기 수신기 커플링 코일은, 그 커플링 코일이 상기 수신 코일 (16)에 자기적으로 결합되도록 구성된다.
아래에서 더욱 상세하게 설명될 것처럼, 상기 수신기 제어기 (19)는 상기 수신기 결합 회로를 제어하여 상기 수신기 공진 회로에 의해 수신된 전력에 영향을 미치도록 한다 (그래서, 부하 (14)에 제공된 전력을 조정하며 그리고/또는 상기 전송기가 본 반사된 임피던스를 조절하며, 이는, 예를 들면, 상기 전송기와 수신기 사이의 IPT 통신들을 위한 것이다). 다른 실시예에서, 상기 수신기 결합 회로는 상기 반사된 임피던스를 조절하기 위해 사용될 수 있으며, 이는, 통신 목적들을 위해 사용될 수 있다. 하나보다 많은 수신기 공진 회로 그리고/또는 하나보다 많은 수신기 코일이 존재하는 실시예들에서, 각 수신기 공진 회로 및/또는 수신기 코일과 연관된 수신기 결합 회로를 포함하는 것이 가능할 수 있을 것이다.
또한, 상기 유도성 전력 수신기 (3)는 자기적 침투성 요소 또는 코어 (23)를 포함할 수 있다. 상기 자기적 침투성 코어는 상기 수신 코일 (16)과 연관된다. 자기적 침투성 코어를 도입함으로써, 상기 수신 코일 (16) 및 상기 전송 코일 (7) 사이의 커플링 (coupling)은 향상될 수 있으며, 이는 차례로 전력 전송을 향상시킬 수 있다. 상기 자기적 침투성 코어는 페라이트 재질로 만들어질 수 있을 것이다. 상기 자기적 침투성 코어의 크기 및 형상은 상기 전송 코일 및 유도 전력 전송기의 특별한 기하학적 모습 그리고 요구사항들에 종속할 것이다. 예를 들면, 일 실시예에서, 상기 수신 코일이 평면형인 경우, 상기 자기적 침투성 코어는, 그 자기적 침투성 코어가 상기 수신 코일 밑에 위치하도록 배치될 수 있을 것이다. 다른 실시예에서, 상기 수신 코일은 상기 자기적 침투성 코어 그 자체 주위로 감겨질 수 있을 것이다. 추가의 실시예에서, 상기 자기적 침투성 코어는 상기 수신기 결합 회로 (20)의 커플링 코일 (21) 및 수신기 코일 사이의 자기적 커플링을 향상시키도록 구성될 수 있다.
도 1의 IPT 시스템 (1)을 일반적으로 설명한다면, 상기 유도성 전력 전송기 (2) 및 유도성 전력 수신기 (3)의 결합 회로들 (10, 20)을 이제 각각 살펴보는 것이 도움이 된다. 위에서 표시된 것처럼, 상기 결합 회로들은 상기 전송기 공진 회로 (6)에 의해 전송된 전력 또는 상기 수신기 공진 회로 (15)에 의해 수신된 전력에 영향을 주도록 구성된다. 각각이 아래에서 더욱 상게하게 설명될 것이다.
상기 전송기 결합 회로 (10)는 가변 임피던스 (12) 및 커플링 코일 (11)을 포함한다. 상기 커플링 코일은 상기 전송 코일 (7)에 자기적으로 결합된다. 그런 자기 결합은 상기 커플링 코일과 상기 전송 코일이 가깝게 근접하도록 또는 자기적 침투성 코어 (13)를 공유하도록 설정하는 것을 통해서 달성될 수 있을 것이다. 즉, 상기 전송 코일 및 커플링 코일은 밀하게 결합된다. 상기 결합 회로는 상기 커플링 코일과 직렬로 그리고/또는 병렬로 연결된 추가의 인덕터들을 포함할 수 있다. 바람직한 실시예에서, 상기 커플링 코일은 비-공진 회로를 형성할 수 있을 것이다. 다른 실시예에서, 상기 결합된 회로는 공진 회로일 수 있으며 그리고 상기 커플링 코일과 직렬로 그리고/또는 병렬로 연결된 추가의 커패시터들을 포함할 수 있을 것이다. 상기 가변 임피던스는 제어되어, 상기 커플링 코일 양단의 임피던스를 변하게 하며, 그래서 상기 커플링 코일을 통해서 흐르는 전류를 변하게 한다. 아래에서의 설명으로부터 이해될 것처럼, 상기 가변 임피던스는 전류 흐름을 허용하거나 또는 전류 흐름을 제한하는 것 중 어느 하나에 의해서 상기 전류를 변경하도록 구성될 수 있을 것이다. 즉, 상기 가변 임피던스에 의해 제공된 임피던스의 양은 영 (zero) 임피던스부터 무한대의 임피던스까지 변할 수 있을 것이다 (예를 들면, 상기 가변 임피던스는 스위치 모드에서 동작되는 스위치일 수 있다). 그러나, 상기 가변 임피던스에 의해 제공된 임피던스의 양은 임피던스들의 범위에 걸쳐서 변하여, 어떤 범위에 걸쳐서 흐르는 전류의 양을 변하게 할 수 있다는 것이 가능하다 (예를 들면, 상기 가변 임피던스는 선형 모드에서 동작된 스위치일 수 있다). 본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자는 상기 전송기 (2)가 어떤 범위의 임피던스들을 구비한 가변 임피던스를 위해 어떻게 구성될 수 있을 것이며 그리고 본 발명이 그런 면으로 한정되지 않는다는 것을 알 것이다.
예를 들면, 상기 가변 임피던스는 AC 스위치일 수 있다. 본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들은 많은 유형의 AC 스위치들이 사용될 수 있을 것이며 그리고 본 발명은 그런 면으로 제한되지 않는다는 것을 알 것이다. 상기 가변 임피던스는 상기 전송기 제어기 (9)에 적합하게 연결되며, 그래서 상기 전송기 제어기가 상기 가변 임피던스를 제어할 수 있도록 한다.
예를 들면, 가변 임피던스 (12)가 스위치 오프일 때에, 상기 가변 임피던스는 상기 커플링 코일 (11) 양단에 무한의 임피던스를 제공할 것이다. 그러므로, 그 커플링 코일에서는 어떤 전류도 흐르지 않을 것이며 (즉, 전류 흐름이 제한될 것이다) 그리고 상기 커플링 코일은 상기 전송 코일 (7) 상에 어떤 영향도 미치지 않을 것이다. 그래서, 상기 전송기 공진 회로 (6)는 그 자신의 공진 주파수에서 정상적으로 동작할 것이다.
또한, 상기 가변 임피던스 (12)가 스위치 온 될 때에, 상기 가변 임피던스는 상기 커플링 코일 (11) 양단의 영 임피던스를 제공할 것이다. 그러므로, 상기 커플링 코일 내에 전류가 흐를 수 있을 것이며 그리고 상기 커플링 코일은 상기 전송 코일 (7)로의 저 임피던스 경로를 나타낼 것이다. 본질적으로, 이것은 상기 전송 코일의 유효 인덕턴스를 변하게 할 것이다. 차례로, 이것은 상기 전송기 공진 회로 (6)를 그 자신의 공진 주파수에서 동작하는 것으로부터 탈동조 (detune)시킨다. 그래서 부하 (14)로의 배달을 위해서 더 적은 전력이 상기 전송기 공진 회로로부터 상기 수신기 공진 회로 (15)로 유도성으로 전달된다. 전력 하락 (즉, 상기 가변 임피던스가 스위치 온 될 때에)의 양은 상기 전송 코일 및 커플링 코일 사이의 커플링의 정도에 종속되는 것은 물론이며, 전송기 결합 회로 및 상기 전송기 공진 회로 내 컴포넌트들의 상대적인 용량/크기들에도 종속된다는 것이 인정될 것이다
그러므로, 상기 부하 (14)에 의해서 더 많은 전력이 필요하다면, 상기 가변 임피던스 (12)는 스위치 오프될 수 있으며 그리고 더 적은 전력을 상기 부하가 필요로 한다면, 상기 가변 임피던스는 스위치 온 될 수 있다. 가변 임피던스가 언제 스위치 오프 및 온 되어야 하는 가를 결정하기 위해서, 상기 전송기 제어기 (9)는 상기 부하의 전력 요구들을 결정하며 그리고 그에 따라서 상기 가변 임피던스를 제어하도록 한다. 일 실시예에서, 상기 전송기 제어기는 상기 유도성 전력 수신기 (3)과 통신하며, 이것은 부하 정보를 상기 유도성 전력 전송기 (2)에게 전달할 수 있을 것이다. 다른 실시예에서, 상기 전송기 제어기는 상기 전송기 공진 회로 (6)에 의해 당겨진 전력을 간접적으로 기반으로 하여 상기 부하의 전력 요구들을 추정할 수 있을 것이다.
상기 가변 임피던스 (12)가 제외된다면, 부하 (14)로 제공되는 전력은 어느 정도는 최대일 것이다. 상기 가변 임피던스가 유지된다면, 상기 부하로 제공되는 전력은 제2 값일 것이다. 그러므로, 상기 가변 임피던스가 온 이며 그리고 상기 가변 임피던스가 오프인 시간의 비율을 조절함으로써, 상기 부하로 제공되는 전력은 이 제1 값 및 제2 값 사이의 범위에서 조정될 수 있다.
일 실시예에서, 상기 전송기 제어기 (9)는 상기 가변 임피던스 (12)를 제어하기 위해 진폭 변조 (pulse width modulation (PWM))를 사용할 수 있을 것이다. 상기 가변 임피던스에 제공된 PWM 제어 신호의 듀티 사이클은 상기 부하의 전력 요구들에 종속하여 조절될 수 있을 것이다. 다른 실시예에서, 상기 전송기 제어기는 상기 가변 임피던스가 온인 사이클들의 개수를 제어하기 위해 그리고 상기 가변 임피던스가 오프인 사이클들의 개수를 제어하기 위해 동적-사이클 제어를 사용할 수 있을 것이다. 추가의 실시예에서, 상기 전송기 제어기는 부하의 전력 요구들에 응답하여 직접적으로 상기 가변 임피던스를 제어하기 위해 뱅뱅 제어 (bang-bang control)를 사용할 수 있을 것이다. 상기 전송기 결합 회로 (10)를 제어하기 위한 이 방법들은 아래의 도 2의 유도성 전력 수신기 (3)에 관련하여 더욱 상세하게 설명될 것이며, 그리고 본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들은 이 방법들이 유도성 전력 전송기 (2)의 환경에서 작동하기 위해 어떻게 적응될 수 있는가를 알 수 있을 것이다.
다른 실시예에서, 상기 전송기 결합 회로 (10)는 상기 전송기 공진 회로 (6)를 공진 주파수 또는 어떤 다른 타겟 주파수에 동조시키기 위해 사용될 수 있다. 이 실시예에서, 상기 전송기 결합 회로는 상기 부하 (14)로의 전력을 조정하기 위해 사용되는 것이 아니라 상기 유도성 전력 전송기 (2)로부터 상기 유도성 전력 수신기 (3)로의 최적의 전력 전송을 보장하기 위해 사용된다. 상기 유도성 전력 전송기 및/또는 유도성 전력 수신기는 그러므로 상기 부하로 제공되는 전력을 조정하기 위한 몇몇의 다른 수단을 포함할 수 있을 것이다.
추가의 실시예에서, 상기 전송기 결합 회로 (10)는 상기 전송 코일 (7)에 의해 생성된 교번 자기장의 주파수 (즉, 전송된 전력의 주파수)를 변조하기 위해 사용될 수 있다. 알 수 있을 것처럼, 상기 전송기 공진 회로 (6)의 몇몇의 실시예들에서, (예를 들면, 상기 전송기 회로 (5) 내 인버터가 AC 전류를 생성하기 위해 영-볼트 스위칭을 사용하는 경우에) 동작 주파수는 상기 전송 코일의 인덕턴스에 종속할 것이다. 상기 전송기 결합 회로의 가변 임피던스 (12)는 제1 주파수 및 제2 주파수 사이의 주파수를 조절하기 위해 제어될 수 있을 것이다.
예를 들면, 가변 임피던스 (12)가 오프일 때에, 그 가변 임피던스는 커플링 코일 (11) 양단의 무한 임피던스를 제공할 것이다. 그러므로, 상기 커플링 코일 내에는 어떤 전류도 흐르지 않을 것이며 (즉, 전류 흐름이 제한될 것이다) 그리고 상기 커플링 코일은 상기 전송 코일 (7)에 어떤 영향도 주지 않을 것이다. 그래서, 상기 전송기 공진 회로 (6)는 상기 전송 코일의 인덕턴스에 종속한 제1 주파수를 가지는 교번 자기장을 생성할 것이다.
상기 가변 임피던스 (12)가 스위치 온 될 때에, 상기 가변 임피던스는 상기 커플링 코일 (11) 양단에 영 임피던스를 제공할 것이다. 그러므로 상기 커플링 코일 내에 전류가 흐를 수 있을 것이며 그리고 상기 커플링 코일은 상기 전송 코일 (7)로의 낮은 임피던스 경로를 제공할 것이다. 본질적으로, 이것은 상기 전송 코일의 유효 인덕턴스를 변경할 것이다. 그래서, 상기 전송기 공진 회로는 상기 전송 코일 및 상기 커플링 코일의 인덕턴스에 의존하는 제2 자푸스를 가진 교번 자기장을 생성할 것이다.
이 방식에서, 상기 전송기 결합 회로 (10)는 전송된 전력의 주파수를 변조하기 위해 사용될 수 있을 것이다. 이 변조가 두 상태들 (즉, 상기 제1 주파수 및 상기 제2 주파수) 사이에 존재하기 때문에, 이것은 이진 데이터 신호를 상기 전송된 전력 신호로 인코드하기 위해 사용될 수 있을 것이다. 이것은 그러면 상기 유도성 전력 전송기 (2)로부터 상기 유도성 전력 수신기 (3)로 데이터를 전달하기 위해 사용될 수 있다는 것이 인정될 것이다. 상기 전송기 제어기 (9)는 전달될 필요가 있는 데이터 신호에 따라서 상기 가변 임피던스 (12)를 제어하도록 적합하게 구성될 수 있을 것이다. 또한, 상기 유도성 전력 수신기는 상기 전송된 전력으로부터의 데이터 신호를 디코드하기 위해 적합한 복조 회로를 포함할 수 있을 것이다.
상기 제1 주파수 및 상기 제2 주파수의 진폭은 상기 전송 코일 (7) 및 상기 커플링 코일 (11)의 인덕턴스들에 종속될 것이라는 것이 인정될 것이다. 바람직한 실시예에서, 상기 유도성 전력 전송기 (2)는, 한 주파수 (즉, 상기 제1 주파수 또는 제2 주파수)가 상기 IPT 시스템 (1)의 공진 주파수에 대응하고, 그리고 다른 주파수 (즉, 상기 제2 주파수 또는 제1 주파수)는 상기 공진 주파수보다 약간 더 크거나 또는 약간 더 작도록 구성될 수 있을 것이다. 이 방식에서, 순수한 전력 전송은 데이터가 전송되고 있을 때에만 약간 영향을 받을 것이다.
도 2를 참조하면, 도 1에 관련하여 설명된 유도성 전력 수신기 (3)의 특별한 실시예에 따른 유도성 전력 수신기 (3)가 도시된다. 상기 유도성 전력 수신기는 유도성 전력 전송기 (도시되지 않음)로부터 전력을 유도적으로 수신한다.
도 1에 관련하여 더욱 상세하게 설명되는 것처럼, 상기 유도성 전력 수신기 (3)는 상기 수신기 공진 회로 (15)를 포함한다. 이 실시예에서, 상기 수신기 공진 회로는 수신기 커패시터 (17)와 직렬로 연결된 수신 코일 (16)을 구비한 직렬-공진이다. 상기 유도성 전력 수신기는 수신기 회로 (18)를 또한 포함한다. 이 실시예에서, 상기 수신기 회로는 상기 직렬 공진 회로로부터의 AC 전류를 상기 부하 (14)로 제공되는 DC 전류로 변환하기 위해 정류기 (24)를 포함한다. 상기 수신기 회로는 DC 평탄화 커패시터 (25)를 또한 포함할 수 있을 것이다.
도 2의 유도성 전력 수신기 (3)는 수신기 결합 회로 (20)를 또한 포함한다. 상기 수신기 결합 회로는 가변 임피던스 (22)에 연결된 커플링 코일 (21)을 포함한다. 또한, 상기 결합 회로는 DC 차단 커패시터 (도시되지 않음)를 포함할 수 있다. 상기 커플링 코일은 상기 수신 코일 (16)과 자기적으로 결합된다. 그런 자기적인 결합은 상기 커플링 코일 및 상기 수신 코일이 가깝게 근접하도록 하며 그리고 자기적 침투성 코어 (23)를 공유하도록 구성하는 것을 통해서 달성될 수 있을 것이다. 즉, 상기 수신 코일 및 커플링 코일은 '밀하게 (tightly)' 결합된다. 일 실시예에서, 상기 커플링 코일은 상기 수신 코일의 상기 전송 코일의 커플링에 비교해서 상기 수신 코일과 더 양호한 커플링을 가질 수 있을 것이다. 예를 들면, 상기 커플링 코일과 상기 수신 코일 사이의 커플링 계수 k는 대략적으로 0.8 일 수 있으며, 반면에 상기 수신 코일과 상기 전송 코일 사이의 커플링 계수 k는 대략적으로 0.4 및 그 미만일 수 있다. 다른 실시예에서, 상기 커플링 코일은 상기 수신 코일과 직렬인 추가의 코일과 결합될 수 있을 것이다. 이것은 전력 흐름 제어의 면에서 유사한 결과를 줄 것이다.
가변 임피던스 (22)는 상기 커플링 코일 (21) 양단의 임피던스를 변경하도록 제어되며, 그래서 상기 커플링 코일을 통해 흐르는 전류를 변하게 한다. 아래의 설명으로부터 이해될 것처럼, 전류 흐름을 허용하거나 전류 흐름을 제한하는 것 중 어느 하나에 의해서, 상기 가변 임피던스 (22)는 상기 커플링 코일 (21)로 흐르는 전류를 변하게 하도록 구성될 수 있다. 즉, 상기 가변 임피던스에 의해 제공된 임피던스의 양은 영 임피던스로부터 무한대의 임피던스까지 변할 수 있을 것이다 (예를 들면, 상기 가변 임피던스는 스위치 모드에서 동작되는 스위치일 수 있다). 그러나, 상기 가변 임피던스에 의해 제공된 임피던스의 양은 임피던스들의 범위에 걸쳐서 변하여, 범위에 걸쳐서 흐르는 전류의 양을 변하게 하는 것이 가능하다 (예를 들면, 상기 가변 임피던스는 선형 모드에서 동작되는 스위치 또는 단일 사이클을 통해서 스위치 온 및/또는 오프하는 스위치일 수 있으며, 영 및 무한대 사이의 임피던스를 나타낸다). 본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들은 상기 수신기 (3)가 임피던스들의 범위를 구비한 가변 임피던스에 대해 어떻게 구성될 수 있을 것인가 그리고 본 발명은 이런 면에서 제한되지 않는다는 것을 인정할 것이다. 이 방식에서, 상기 결합 회로는 수신기 측에서의 부하에 전달되는 전력 흐름을 조정하기 위해 사용된다.
가변 임피던스 (22)는 도 2에서 n-채널 MOSFET (metal oxide semiconductor field effect transistor)들의 양방향 쌍으로 도시된다. 상기 MOSFET들의 게이트들은 상기 수신기 제어기 (19)로부터의 동일한 출력 (VGATE)에 둘 모두 연결되어, 상기 MISFET들이 동시에 스위치 온 또는 오프될 수 있도록 한다. 아래에서 더 상세하게 설명될 것처럼, 상기 수신기 제어기는 가변 임피던스 (즉, 상기 MOSFET들의 게이트들)를 제어하도록 구성되어, 상기 커플링 코일 (21)을 통한 전류의 흐름을 바꾸도록 한다.
본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들은 본 발명이 가변 임피던스들의 다른 구성들과 함께 동작하도록 구성될 수 있을 것이며, 그리고 스위치들을 채택한 구성들의 경우에, 여기에서 설명된 예시적인 실시예들에서 예시된 반도체 스위치들이 아닌 스위치 유형들이 사용될 수 있을 것이라는 것을 알 것이다. 도 3a는 다른 실시예에 따른 결합 회로 (35)를 보여준다. 이 실시예에서, 커플링 코일 (21)의 출력은 정류기 (36)에 연결될 수 있다. 상기 정류기의 DC 출력은 그러면 DC 스위치 (37) (예를 들면, 단일 MOSFET)에 의해 스위치될 수 있다. 상기 스위치는 제어기로부터의 제어 신호 (즉, VGATE)에 의해 구동되며, 그래서 상기 커플링 코일 양단의 임피던스를 변하게 한다. 도 3a의 결합 회로는 DC 차단 커패시터 (38)와 직렬로 연결된 커플링 코일을 또한 보여준다.
도 3b는 다른 실시예에 따른 결합 회로 (39)를 보여준다. 이 실시예에서, 가변 임피던스 (22)는 n-채널 MOSFET 스위치들의 양방향 쌍이다; 간명함을 위해서 이 스위치들은 제1 스위치 (40) 및 제2 스위치 (41)로 불릴 것이다. 각 스위치는 제어기 (도시되지 않음)로부터의 독립적인 제어 신호에 의해 구동된다 - 즉, 상기 제1 스위치는 VG1에 의해 구동되며 그리고 상기 제2 스위치는 VG2에 의해 구동된다. 도면은 상기 제1 스위치 및 제2 스위치와 각각 연관되는 바디 다이오드 (42, 43)를 또한 보여준다. 인정될 것처럼, 이 바디 다이오들로 인해서, 각 스위치는 커플링 코일을 통해 흐르는 전류를 한 방향으로만 변하게 할 수 있을 뿐이다. 예를 들면, 상기 제2 스위치 (41)가 완전하게 온 된다고 가정하면, 전류 i가 양일 때에, 상기 커플링 코일을 통한 전류는 상기 제1 스위치의 상태를 제어함으로써 변경될 수 있다. 그러나, 상기 전류가 음일 때에, 전류는 상기 제1 스위치의 상태에 상관없이 상기 커플링 코일을 통해 흐를 것이다 (즉, 전류는 상기 바디 다이오드 (42)를 통해서, 또는 상기 제1 스위치 (40)가 온 (on)이라면 그 제1 스위치를 통해서 흐를 것이다). 유사하게, 상기 제1 스위치 (40)가 완전하게 온 된다고 가정하면, 전류 i가 음일 때에, 상기 커플링 코일을 통한 전류는 상기 제2 스위치의 상태를 제어함으로써 변할될 수 있다. 그러나, 상기 전류가 양일 때에, 전류는 상기 제2 스위치의 상태에 상관없이 상기 커플링 코일을 통해 흐를 것이다 (즉, 전류는 상기 바디 다이오드 (43)를 통해서, 또는 상기 제2 스위치 (41)가 온 (on)이라면 그 제2 스위치를 통해서 흐를 것이다).
도 4c와 관련하여 설명될 것처럼, 각 스위치를 독립적으로 구동하는 것은 상기 제1 스위치 및 제2 스위치 그리고 그것들의 연관된 바디 다이오들을 통한 손실들을 최소화한다. 도 3b의 결합 회로는 DC 차단 커패시터 (38)와 직렬로 연결된 커플링 코일을 또한 보여준다.
도 2의 결합 회로 (20)로 돌아가서, 상기 가변 임피던스 (22)가 스위치 오프될 때에 (즉, LOW 신호가 수신기 제어기 (19)로부터 MOSGET들의 게이트들로 공급되고 있다), 상기 가변 임피던스는 상기 커플링 코일 (21) 양단의 무한대의 임피던스를 나타낼 것이다. 그러므로, 상기 커플링 코일에는 어떤 전류도 흐르지 않을 것이며 (즉, 전류 흐름이 제한될 것이다) 그리고 상기 커플링 코일은 상기 수신 코일 (16)에 어떤 영향도 미치지 않을 것이다. 그래서, 상기 수신 공진 회로 (15)는 자신의 공진 주파수에서 정상적으로 동작할 것이다. (특히, 상기 수신기의 공진 주파수가 상기 전송기의 공진 주파수와 부합한다면) 상기 수신기 (3)는 상기 유도성 전력 전송기로부터 최대의 전력을 수신할 것이다. 그러면, 최대의 전력이 부하 (14)에 제공될 것이다.
상기 가변 임피던스 (22)가 스위치 온 될 때에 (즉, HIGH 신호가 상기 MOSFET들의 게이트들에 공급되고 있다), 상기 가변 임피던스는 상기 커플링 코일 (21) 양단에서 제로 임피선스를 제공할 것이다. 그러므로, 상기 커플링 코일에 전류가 흐를 수 있을 것이다. 상기 커플링 코일 내에서 전류가 흐를 수 있기 때문에, 그리고 상기 커플링 코일이 상기 수신 코일에 밀하게 결합되기 때문에, 상기 수신 코일에서는 어떤 전압도 유도되지 않는다. 수신 수신 코일에서 어떤 전압도 유도되지 않을 것이며, 이는 상기 수신 코일에서 유도된 어떤 전압도 상기 커플링 코일 내 전류 및 소거 전압의 결과를 가져올 것이기 때문이다. 이 효과의 순수한 결과는 어떤 플럭스도 상기 수신 코일에 진입하지 않을 것이라는 것이다. 그래서 상기 수신기 공진 회로에 의해 어떤 전력도 수신되지 않을 것이며, 그리고 부하 (14)에는 어떤 전력도 제공되지 않을 것이다.
그러므로, 부하 (14)에 의해 더 많은 전력이 필요하다면, 상기 가변 임피던스 (220는 스위치 오프될 수 있으며 그리고 부하에 의해 더 작은 전력이 필요하다면, 상기 가변 임피던스는 스위치 온 될 수 있다. 상기 가변 임피던스가 언제 스위치 오프 및 온 되어야 하는가를 결정하기 위해서, 상기 수신기 제어기 (19)는 상기 부하의 전력 요구들을 결정하고 그에 따라서 상기 가변 임피던스를 제어한다. 일 실시예에서, 상기 수신기 제어기는 상기 부하에 공급된 전압 (VLOAD)을 감지할 수 있으며, 이 전압은 더 많은 또는 더 작은 전력이 제공될 필요가 있는가를 결정하기 위해서 레퍼런스 전압 (VREF)과 그 후에 비교될 수 있다.
가변 임피던스 (22)가 제외된다면, 그러면 상기 부하 (14)로 제공된 전력은 제1 값일 것이다. 상기 가변 임피던스가 유지된다면, 그러면 상기 부하에 제공된 전력은 제2 값일 것이다. 그러므로, 상기 가변 임피던스가 온 이며 그리고 상기 가변 임피던스가 오프인 시간의 비율을 조절함으로써, 상기 부하로 제공되는 전력은 이 제1 값 및 제2 값 사이의 범위에서 조정될 수 있다.
도 4a 및 도 4b는 본 발명의 다른 실시예들에 따라 (도 2 및 도 3a에서 보이는 것처럼) 상기 수신기 결합 회로 (20)의 MOSFET 스위치를 제어하는 것과 연관된 파형들을 보여준다
도 4a는 영 전류 스위칭과 연관된 파형을 보여준다. 상기 스위치들은 상기 부하에 더 적은 전력이 제공될 필요가 있다면 스위치 온 된다. 상기 부하에 더 많은 전력이 제공될 필요가 있다면 상기 스위치들은 스위치 오프된다. 그러나, 상기 스위치들에서의 손실들을 최소화하기 위해서, 상기 제어기는 상기 스위치들을 통한 전류의 영 전류 크로싱을 탐지하고, 그리고 상기 게이트 전압을 제어하도록 구성될 수 있으며, 그래서 상기 스위치들을 통한 전류가 영일 때에 상기 스위치들이 오직 스위치 오프하도록 한다. 본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들은 이것이 적합한 영 전류 탐지 회로를 필요로 할 것이라는 것을 인정할 것이다. 그러므로, 상기 스위치가 오프 및 온 되는 시간의 비율을 제어함으로써, 부하에 제공되는 전력이 조정될 수 있다.
도 4b는 뱅-뱅 제어와 연관된 파형을 보여준다. 뱅-뱅 제어는, 상기 제어기가 영 전류 크로싱을 탐지하지 않고 그리고 부하에서의 변화에 직접 응답하여 스위치를 스위치 오프한다는 것을 제외하면 위에서의 것과 유사하다. 비록 이것이 상기 제어 회로를 간략하게 하더라도, 스위치들에서의 원하지 않은 손실들로 이끌 수 있다.
도 4c는 도 3b에서 보이는 수신기 결합 회로의 MOSFET를 제어하는 것과 연관된 파형들을 보여준다. 이 실시예에서, 각 스위치는 독립적으로 구동된다. 예를 들면, 제1 스위치 (40)가 턴 온 (44)될 때에 (예를 들면, VG1은 HIGH로 간다), 양의 전류가 커플링 코일 내에 흐를 것이다 (수신 코일에 의한 커플링 코일에서 유도된 전압들로 인한 것임). 이 전류는 영으로 돌아갈 것이다 (45). 상기 제어기는 이 제로-크로싱을 탐지하도록 적합하게 구성된다. 이 제로-크로싱은 커플링 코일을 통한 전류의 위상을 판별하기 위해 사용된다. 그러면 제1 시간 지연 t1 이후에 제2 스위치 (41)가 스위치 온 (46) 된다 (예를 들면, VG2가 HIGH로 간다). 이것은 상기 커플링 코일을 통해서 음의 전류가 흐르도록 할 것이다. 다시, 전류가 영으로 복귀할 때에, 상기 제로 크로싱 (47)이 탐지되며 그리고 상기 제1 스위치가 다시 턴 온 되기 이전에 제2 시간 지연 t2가 적용된다. 상기 시간 지연들이 더 길게 만들어진다면 (예를 들면, 도 4c의 파형의 참조번호 49의 영역에서 보이는 t1' 및 t2'), 더 적은 전류가 상기 커플링 코일에서 그리고 더 짧은 시간 동안 흐를 것이다. 그래서, 상기 시간 지연들의 길이를 제어함으로써, 상기 제어기는 상기 커플링 코일을 통해 흐르는 전류의 양을 변경할 수 있으며, 그래서 부하로의 전력이 조정될 수 있다는 것이 인정될 것이다. 이 지연 (즉, 도 4c 상의 참조번호 44 및 45의 영역들에서 각각 보이는 t1/t2 또는 t1'/t2')은 즉각적으로 적용될 수 있을 것이다. 그러나, 몇몇의 제어기들은 제로 크로싱을 충분히 빨리 탐지할 수 없으며 그래서 이 시간 내에 적합한 출력을 생성할 수 없을 수 있기 때문에, 상기 시간 지연들은 상기 제로 크로싱 (그 이후에 지연들이 카운트된다)이 탐지된 이후에 여러 개의 반 사이클에서 적용될 수 있을 것이라는 것이 인정될 것이다. 상기 제1 시간 지연 및 제2 시간 지연이 동일하도록 상기 스위치들은 제어될 수 있을 것이다 (즉, 도 4c에서 보이는 것처럼 t1=t2 및 t1'=t2'). 대안의 실시예에서, 상기 제1 시간 지연 및 제2 시간 지연은 상이할 수 있다.
도 4c는 상기 스위치들을 스위치 오프하는 두 접근 방식들을 또한 보여준다. 참조번호 44의 영역에서의 제1 접근 방식에서, 상기 제1 스위치 (40)는 상기 제2 스위치 (41)가 스위치 온 된 이후 약간의 시간이 지난 후에 스위치 오프된다 (예를 들면, VG1이 LOW로 간다). 이것의 이익은 그것이 시간 α1 - 그 시간 동안에 상기 제1 스위치는 스위치 오프되며 그리고 상기 바디 다이오드 (42)를 통해서 전류가 흘러야만 한다 - 을 최소화한다는 것이다. 유사하게, 상기 제2 스위치 (41)는 상기 제1 스위치 (40)가 스위치 온 된 이후 약간의 시간이 지난 후에 스위치 오프된다 (예를 들면, VG2가 LOW로 간다). 이것의 이익은 그 것이 시간 α2 - 그 시간 동안에 상기 제2 스위치는 스위치 오프되며 그리고 상기 바디 다이오드 (43)를 통해서 전류가 흘러야만 한다 - 을 최소화한다는 것이다
영역 45에서 보이는 다른 접근 방식에서, 상기 스위치들은 스위치 온 되고 있는 다른 스위치들과 동시에 스위치 오프된다. 즉, 상기 제1 스위치 (40)는 상기 제2 스위치 (41)가 스위치 온 될 때에 스위치 오프되며, 그리고 상기 제2 스위치 (41)는 상기 제1 스위치 (40)가 스위치 온 될 때에 스위치 오프된다. 이것은 상기 스위치들이 50%의 듀티 사이클, 180도의 역위상으로 동작되도록 하는 결과를 가져온다.
다른 실시예에서, 상기 수신기 결합 회로는 상기 수신기 공진 회로를 공진 주파수 또는 몇몇의 다른 타겟 주파수로 동조시키기 위해 사용될 수 있다. 이 실시예에서, 상기 수신기 결합 회로는 부하로의 전력을 조정하기 위한 것이 아니라 상기 유도성 전력 전송기로부터 상기 유도성 전력 수신기로의 최적의 전력 전송을 보장하기 위해 사용된다. 상기 유도성 전력 전송기 및/또는 유도성 전력 수신기는 그러므로 상기 부하로 제공된 전력을 조정하기 위한 몇몇의 다른 수단을 포함할 수 있다.
추가의 실시예에서, 상기 수신기 결합 회로는 상기 수신 코일로부터 상기 전송 코일로 반사된 임피던스를 변조하기 위해 사용될 수 있다. 상기 수신기 결합 회로의 가변 임피던스는 상기 제1 임피던스 및 제2 임피던스 사이에서의 반사된 임피던스를 조절하기 위해 제어될 수 있다.
예를 들면, 상기 가변 임피던스가 오프일 때에, 상기 가변 임피던스는 상기 커플링 코일 양단의 무한의 임피던스를 나타낼 것이다. 그러므로, 상기 커플링 코일 내에는 어떤 전류도 흐리지 않을 것이며 (즉, 전류 흐름이 제한될 것이다) 그리고 상기 커플링 코일은 상기 반사된 임피던스에 어떤 영향도 끼치지 않을 것이다. 그래서, 상기 수신 코일은 제1 임피던스를 반사할 것이다.
상기 가변 임피던스가 스위치 온 될 때에, 상기 가변 임피던스는 비-공진 코일 양단에서 영 임피던스를 나타낼 것이다. 그러므로, 커플링 코일 내에 전류가 흐를 수 있을 것이며 그리고 상기 커플링 코일은 상기 수신 코일에 진입하는 것으로부터의 플럭스를 방지할 것이다. 그래서, 상기 수신 코일은 제2 임피던스를 반사할 것이다.
이 방식에서, 상기 수신기 결합 회로는 상기 반사된 임피던스를 변조하기 위해 사용될 수 있다. 이 변조가 두 상태들 (즉, 상기 제1 임피던스 및 상기 제2 임피던스) 사이에 존재하기 때문에, 이것은 이진 데이터 신호를 상기 반사된 임피던스로 인코드하기 위해 사용될 수 있다. 이것은 그러면 상기 유도성 전력 수신기로부터 상기 유도성 전력 전송기로 데이터를 전달하기 위해 사용될 수 있다는 것이 인정될 것이다. 상기 수신기 제어기는 전달될 것을 필요로 하는 상기 데이터 신호에 따라서 상기 가변 임피던스를 제어하도록 적합하게 구성될 수 있을 것이다. 또한, 상기 유도성 전력 전송기는 상기 반사된 임피던스 내 데이터 신호를 탐지하고 디코드하기 위한 적합한 탐지 회로를 포함할 수 있다.
도 1 내지 도 4의 상기 설명으로부터 상기 결합 회로는 상기 부하로 제공된 전력을 조정하기 위해 사용될 수 있다. 상기 결합 회로는 상기 전송기 공진 회로에 의해 전송된 전력 또는 상기 수신기 공진 회로에 의해 수신된 전력을 제어하기 위해 또한 사용될 수 있을 것이다. 상기 결합 회로는 상기 유도성 전력 전송기 또는 상기 유도성 전력 수신기 중 어느 하나로부터 데이터를 전달하기 위해 또한 사용될 수 있을 것이다.
비록 도 1이 유도성 전력 전송기 및 유도성 전력 수신기 둘 모두에서의 결합 회로를 보여주지만, 상기 유도성 전력 전송기에서만 또는 상기 유도성 전력 수신기에서만 결합 회로를 포함하는 것이 소망될 수 있을 것이다. 이것은 IPT 시스템의 특별한 구현이 전송기-측 전력 제어에 또는 수신기-측 제어에 적합한가의 여부에 달려있을 것이다.
IPT 시스템의 일 실시예에서, 유도성 전력 수신기만이 결합 회로를 포함한다 (즉, 수신기-측 제어). 이 실시예를 위해서, 상기 유도성 전력 전송기는 적합한 전송 코일을 구비하여 구성될 수 있을 것이며, 이는 공진할 수 있을 것이며 또는 공진하지 않을 수 있을 것이다.
다른 실시예에서, 전력 제어의 방법들의 조합을 구현하는 것이 또한 가능할 것이다. 예를 들면, 전송기로부터 수신기로의 전력을 제어하기 위해 (위에서 설명된 것과 같은) 유도성 전력 전송기 내에 결합 회로를 포함하는 것이 가능할 수 있으며 그리고 수신기로부터 부하로 제공된 전력을 조정하기 위해 상기 유도성 전력 수신기 내에 레귤레이터를 포함하는 것이 가능할 수 있다
도 5는 IPT 시스템 (26)의 추가의 실시예의 표현을 보여준다. 상기 IPT 시스템은 도 1에 관련하여 위에서 설명된 유도성 전력 전송기 (2) 및 유도성 전력 수신기 (3)를 포함한다. 그러나, 이 실시예에서, 상기 유도성 전력 전송기는 전송기 포화 코일 (27) 및 전송기 DC 소스 (28)를 더 포함하며, 그리고 상기 유도성 전력 수신기는 수신기 포화 코일 (29) 및 수신기 DC 소스 (30)를 더 포함한다.
상기 전송기 DC 소스 (28)는 DC 전류를 생성한다. 상기 전송기 DC 소스는 상기 전송기 포화 코일 (27)에 연결된다. 상기 전송기 포화 코일은 자기적 침투성 코어 (13)와 연관된다. 이것은 자기적 침투성 코어의 특별한 기하학적 모습에 종속할 것이다. 예를 들면, 상기 전송기 포화 코일은 상기 자기적 침투성 코어 주위에 감겨질 수 있다.
상기 전송기 포화 코일 (27)은, DC 전류가 전송기 DC 소스 (28)로부터 상기 전송기 포화 코일로 공급될 때에 상기 자기적 침투성 코어 (13)의 포화에 영향을 주도록 구성된다. 상기 전송기 제어기 (9)는 상기 전송기 DC 소스를 제어하여, 상기 전송기 포화 코일로 공급되는 DC 전류를 제어한다. 이 DC 전류를 제어함으로써, 상기 자기적 침투성 코어의 포화는 제어될 수 있다. 인정될 것처럼, 포화가 변하면, 상기 자기적 침투성 코어의 투자율 (permeability) 또한 변한다. 상기 전송 코일 (7) 및 수신 코일 (16) 사이의 커플링이 상기 자기적 침투성 코어의 투자율에 종속하기 때문에, 상기 자기적 침투성 코어의 투자율을 제어함으로써, 상기 전송 코일 및 수신 코일 사이의 커플링이 제어될 수 있으며, 그래서 상기 전송기 (2)로부터 상기 수신기 (3)로 전송되는 전력이 제어될 수 있다. 예를 들면, 전송기 포화 코일로 제공된 DC 전류가 증가하면, 상기 자기적 침투성 코어의 포화 또한 증가할 것이며 그리고 상기 투자율은 대응하여 감소할 것이다. 상기 투자율이 감소하기 때문에, 상기 전송 코일 및 수신 코일 사이의 커플링이 감소된다. 그러므로, 더 적은 전력이 상기 전송 코일로부터 수신 코일로 전송될 것이며, 그리고 궁극적으로는 상기 부하 (14)로 제공되는 전력이 더 적어진다. 그래서, 상기 전송기 포화 코일로 공급되는 DC 전류를 제어함으로써, 상기 부하로 제공되는 전력이 조정될 수 있다는 것이 인정될 것이다.
특별한 실시예에서, 상기 부하 (14)로 제공되는 전력을 조정하기 위해서 상기 전송기 제어기 (9)는 (위에서 설명된) 전송기 결합 회로 (12) 그리고 (위에서 설명된) 전송기 DC 소스 (28) 둘 모두를 제어할 수 있을 것이다. 상이한 양의 제어 정밀도를 제공하기 위해 전력 제어의 각 방법이 구성될 수 있을 것이다. 예를 들면, 상기 전송기 제어기가:
상기 전송기 결합 회로를 제어함으로써, 상기 부하에 제공되는 전력의 대략적인 조정을; 그리고
상기 전송기 DC 소스를 제어함으로써, 상기 부하에 제공되는 전력의 미세 조정을 달성하는 것이 가능할 수 있다.
도 5를 다시 참조하면, 수신기 DC 소스 (30)는 DC 전류를 생성한다. 상기 수신기 DC 소스는 수신기 포화 코일 (29)에 연결된다. 그 수신기 포화 코일은 자기적 침투성 코어 (23)와 연관된다. 이것은 자기적 침투성 코어의 특별한 기하학적인 모습에 종속할 수 있다. 예를 들면, 상기 수신기 포화 코일은 상기 자기적 침투성 코어 주위에 권선될 수 있을 것이다.
상기 수신기 포화 코일 (29)은, DC 전류가 수신기 DC 소스 (30)로부터 상기 수신기 포화 코일로 공급될 때에 상기 자기적 침투성 코어 (23)의 포화에 영향을 주도록 구성된다. 상기 수신기 제어기는 상기 수신기 DC 소스를 제어하여, 상기 수신기 포화 코일로 공급되는 DC 전류를 제어한다. 이 DC 전류를 제어함으로써, 상기 자기적 침투성 코어의 포화는 제어될 수 있다. 인정될 것처럼, 포화가 변하면, 상기 자기적 침투성 코어의 투자율 또한 변한다. 상기 수신 코일 (16) 및 전송 코일 (17) 사이의 커플링이 상기 자기적 침투성 코어의 투자율에 종속하기 때문에, 상기 자기적 침투성 코어의 투자율을 제어함으로써, 상기 수신 코일 및 전송 코일 사이의 커플링이 제어될 수 있으며, 그래서 상기 전송기 (3)로부터 상기 수신기 (2)에 수신된 전력이 제어될 수 있다. 예를 들면, 수신기 포화 코일로 제공된 DC 전류가 증가하면, 상기 자기적 침투성 코어의 포화 또한 증가할 것이며 그리고 상기 투자율은 대응하여 감소할 것이다. 상기 투자율이 감소하기 때문에, 상기 수신 코일 및 전송 코일 사이의 커플링이 감소된다. 그러므로, 더 적은 전력이 상기 전송 코일로부터 상기 수신 코일에 의해수신될 것이며, 그리고 궁극적으로는 상기 부하 (14)로 제공되는 전력이 더 적어진다. 그래서, 상기 수신기 포화 코일로 공급되는 DC 전류를 제어함으로써, 상기 부하로 제공되는 전력이 조정될 수 있다는 것이 인정될 것이다.
특별한 실시예에서, 상기 부하 (14)로 제공되는 전력을 조정하기 위해서 상기 수신기 제어기 (19)는 (위에서 설명된) 수신기 결합 회로 (20) 그리고 (위에서 설명된) 수신기 DC 소스 (30) 둘 모두를 제어할 수 있을 것이다. 상이한 양의 제어 정밀도를 제공하기 위해 전력 제어의 각 방법이 구성될 수 있을 것이다. 예를 들면, 상기 수신기 제어기가:
상기 수신기 결합 회로를 제어함으로써, 상기 부하에 제공되는 전력의 대략적인 조정을; 그리고
상기 수신기 DC 소스를 제어함으로써, 상기 부하에 제공되는 전력의 미세 조정을 달성하는 것이 가능할 수 있다.
도 6은 도 2의 유도성 전력 수신기 (3)의 추가의 실시예를 보여주며, 이는 수신기 포화 코일 (29) 및 수신기 DC 소스 (30)를 더 포함한다. 수신 코일 (16), 커플링 코일 (17) 및 수신기 포화 코일 (29) 모두는 자기적 침투성 코어 (23)와 연관된다.
수신기 포화 코일 (290은 수신기 DC 소스 (30)에 연결된다. 상기 수신기 포화 코일은 전류 제한 저항기 (31)에 연결될 수 있다. 상기 수신기 포화 코일은 상기 수신기 포화 코일에 의해 우연히 픽업될 수 있을 어떤 AC 전류도 필터하기 위해 필터링 커패시터 (32)에 또한 연결될 수 있다.
이 특별한 실시예에서, 상기 수신기 DC 소스 (30)는 버퍼 메모리 (33) 및 디지털-아날로그 컨버터 (Analog Converter (DAC)) (34)로 구성된다. 상기 수신기 DC 소스는 수신기 제어기 (19)에 연결된다. 상기 제어기는 부하에 제공된 전압 (VLOAD)을 감지하도록 구성되며, 상기 전압은 그 후에 레퍼런스 전압 (VREF)과 비교된다. 이 정보는 상기 수신기 DC 소스를 제어하기 위한 제어 신호를 생산하기 위해 사용된다. 특히, 상기 DAC는 필요한 DC 전류를 수신기 포화 코일 (29)를 통해 제공하기 위해 상기 버퍼에 대한 전압을 세팅하기 위해 사용된다.
더 많은 전력이 상기 부하 (14)에 제공될 필요가 있다면, 상기 수신기 포화 코일 (29)에 공급되는 DC 전류는 감소한다. 이것은 상기 자기적 침투성 코어 (23)의 투자율을 증가시키고, 그리고 상기 수신기 공진 회로 (13)에 의해 수신된 전력을 증가시킬 것이다. 반대로, 더 적은 전력이 상기 부하에 제공될 필요가 있다면, 상기 수신기 포화 코일로 공급되는 DC 전류는 감소된다. 이것은 상기 자기적 침투성 코어의 투자율을 감소시키고, 그리고 상기 수신기 공진 회로에 의해 수신된 전력을 감소시킬 것이다.
상기 수신기 제어기 (19)는 수신기 결합 회로 (20) 및 수신기 DC 소스 (30) 둘 모두를 제어할 수 있다. 특별한 실시예에서, 상기 수신기 제어기는 상기 수신기 결합 회로 및 상기 수신기 DC 소스 둘 모두를 동시에 제어하도록 구성될 수 있다.
비록 도 5가 전송기 (2) 및 수신기 (3) 둘 모두에 포함된 포화 코일 (27)을 보여주지만, 상기 유도성 전력 전송기에만 또는 상기 유도성 전력 수신기에만 포화 코일을 포함하는 것이 소망될 수 있을 것이라는 것이 인정될 것이다. 이것은 IPT 시스템의 특별한 구현이 전송기-측 전력 제어에 또는 수신기-측 전력 제어에 적합한가의 여부에 달려있을 것이다.
이전에 설명된 것처럼, 상기 전송기 및 수신기 결합 회로들 (10, 20)의 커플링 코일들 (11, 21)은 각자의 전송 및 수신 코일들 (7, 16)에 가깝게 근접하도록 구성되어, 밀 결합 (tight coupling)을 제공한다. 자체적인 그런 밀 결합은 상대적으로 높은 커플링 계수 k, 예를 들면, 약 0.6보다 더 큰 커플링 계수를 제공한다. 커플링 계수를 증가시키는 것은 전력 흐름 제어의 레벨을 증가시키며 그리고 상기 전송기 및/또는 수신기 (2, 3)의 더욱 효율적인 동작을 제공한다. 상기 전송 코일 및 수신 코일 사이의 커플링을 보장함으로써 증가가 제공될 수 있으며 그리고 연관된 커플링 코일들은 상대적으로 완전하며 코일들 양단에서 균일하다. 도 7a - 도 7c는 전력 흐름 제어 커플링의 레벨을 증가시키는 본 발명의 예시적인 실시예를 보여준다.
도 7a - 도 7c에서, 결합 유닛 (35)은, 대체적으로 직사각형 구성인 상기 자기적 침투성 요소 (23) 상에 배치된 수신 코일 (16) 및 커플링 코일 (21) 쌍에 대응하여 도시된다. 수신기 (3)의 컴포넌트들이 도 7a - 도 7c에서 도시되지만, 그 도시 및 다음의 설명은 그런 컴포넌트들이 IPT 시스템에서 제공될 때에 전송기 (2)의 유사한 컴포너트들에도 또한 적용 가능하다는 것이 이해되어야 한다. 또한, 참조번호 23의 대체적인 직사각형 구성 그리고 상기 코일들 (16, 21)의 대체적인 타원형 구성이 도면들에서 도시되지만, 본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들은 다른 구성들 및 모습들이 또한 적용 가능하다는 것을 이해한다.
상기 결합 유닛에서, 상기 코일들 (16 및 21)은 와이어 스트랜드 (strand) 권선으로부터 코일 모습들로 구성되어, 각각이 특정 개수의 '턴들 (turns)'을 가진다. 특히, 상기 코일들 (16 및 21)은 화살표 A의 방향으로 함께 감겨지며, 그래서 상기 커플링 코일 (21)의 와이어 스트랜드들이 상기 수신 코일 (16)과 서로 꼬여지도록 한다. 이 방식에서, 상기 코일들 (16 및 21) 사이의 커플링은 실질적으로 균일하며 그리고 상기 수신 코일을 가로질러 완전하게 제공되며, 그럼으로써 커플링 계수를 증가시킨다. 본 출원인은 0.8보다 더 큰 커플링 계수가 상기 코일들 (16 및 21)의 서로 꼬임의 방식에 따라서 가능하다는 것을 발견했다. 예를 들면, 상기 수신 코일 및 커플링 코일은 서로 꼬여져서, 자신들 사이에서 약 0.8을 넘는 커플링 계수 k를 제공할 수 있으며 그리고 나중에 설명되는 특정의 실시예에서 상기 수신 코일 및 커플링 코일은 서로 꼬여져서, 자신들 사이에서 약 0.9를 넘는 커플링 계수 k를 제공한다.
서로 꼬임의 방식에 관하여, 상기 커플링 계수의 최대화는 상기 코일들 (16 및 21)의 동시 감기 그리고 동일한 장소에서 두 코일들 (16 및 21)의 감기를 시작하고 (16S 및 21S) 동일한 장소에서 두 코일들 (16 및 21)의 감기를 종결 (16F 및 21F)하는 것을 통해서 가능하다. 이 프로세스는 도 7b 및 도 7b에서 도시된 것처럼 자기적 침투성 요소 (23) 내에 슬롯 (36)을 제공하는 것에 의해 도움을 받아서, 상기 서로 꼬인 코일들의 전반적인 두께에서의 증가 없이 상기 코일들을 감는 것이 상기 코일들의 중심 또는 내부에서 시작하고 그 코일들의 원주 또는 외부로 방사하도록 하며, 그럼으로써 상기 서로 꼬인 코일들의 폼 팩터를 최소화하며, 이는 IPT 회로의 최소화 또는 제한된 크기를 필요로 하는 IPT 시스템의 애플리케이션들을 위해 중요하다.
다중-턴 코일들을 제공하기 위해 여러 스트랜드들을 감는 것은 잘 알려진 것이다. 예를 들면, 이중필라 (bifilar) 코일, 즉, 두 스트랜드들을 가진 코일이 권선되어 상기 결합 유닛 (35)을 제공한다. 그러나, 그런 이중필라 권선은 상기 수신 코일 및 커플링 코일이 동일한 개수의 턴들을 가진 결합 유닛에만 적용 가능하다. 본 출원인은 상기 결합 회로 (20)의 연관된 회로의 전압 및 전류 요구사항들의 균형을 잡기 위해서 상기 코일들 (16 및 21)의 상이한 개수의 턴들이 바람직하다는 것을 발견했다. 즉, 턴들의 어떤 비율은 회로 컴포넌트 값들의 특별한 선택이 상기 전송기 및/또는 수신기의 전력 출력, 전력 손실, 효율 등과 같은 미리 정해진 특성들을 제공하는 것을 허용한다.
상이한 개수의 스트랜드들의 다중-필라들을 권선함으로써 상이한 턴-비율들이 제공될 수 있을 것이다. 예를 들면, 커플링 코일에 대한 수신 코일의 2:1의 턴-비율은 삼중필라 (trifilar) 코일, 즉, 도 8에 도시된 것과 같은 세 개의 스트랜드들 i, ii, 및 iii에 의해 제공될 수 있을 것이다. 그러나, 이 예 그리고 어떤 다른 다중-필라 예에서, 요청된 턴-비율을 제공하기 위해서 특정 스트랜드들의 상호연결 (37)이 만들어져야만 하며, 이것은 권선 프로세스를 복잡하게 하며 그리고 정수 배수의 턴-비율들만이 가능하다.
도 9a - 도 9p는 본 발명의 예시적인 실시예의 권선 프로세스의 이어지는 단계들을 도시하며, 여기에서 약 2:1의 턴-비율이 제공되어, 수신 코일 및 커플링 코일의 실질적으로 균일하며 완전한 커플링을 보장한다. 이 실시예에서, 약 0.9부터 약 0.96까지의 커플링 계수 k는 고성능 페라이트 재질 (23) (예를 들면, MN95) 상의 Litz의 0.05 mm 직경 스트랜드의 150개 스트랜드들로부터 감겨진 코일들을 이용하여 얻어지며, 여기에서 상기 수신기 (3)의 전력 출력은 1.5 A의 전류 및 110 KHz의 동작 주파수에서 약 7.5 와트이다. 예시적인 권선 프로세스가 이제 설명될 것이다.
도 9a는 결합 유닛의 내부 형상 (38)을 도시한다. 상기 내부 형상은 최종적인 결합 유닛의 일부를 형성하지 않는 '지그 (jig)' 요소로서 제공될 수 있을 것이다. 대안으로, 상기 내부 형상 (38)은 상기 페라이트 요소의 돌기일 수 있으며, 그러므로 상기 최종적인 결합 유닛의 일부를 형성한다. 도한, 상기 내부 형상 (38)은 직사각형인 것으로 도시되지만, 이전에 설명된 것처럼 다른 모습들이 가능하다.
도 9b에서, 16S에서 시작하는 수신 코일 스트랜드의 '풀 턴', 즉, 360도가 상기 내부 형상 (38) 주위에 만들어진다. 그러면, 21S에서 시작하는 커플링 코일과 함께, 상기 수신 코일 스트랜드 및 커플링 코일 스트랜드 둘 모두의 '사분의 일 턴', 즉, 90도가 만들어진다 (도 9c). 16S 및 21S의 상대적인 위치들은, 예를 들면, 도 7b 및 도 7b에서 보이는 것처럼, 예시의 목적들을 위해 제공된 것이며, 실제의 위치들을 나타내는 것이 아니라는 것이 이해된다.
다음에, 두 코일 스트랜드들의 '사분의 일 턴'이 도 9d에 도시된 것처럼 커플링 코일 스트랜드 (21)를 덮는 수신 코일 스트랜드 (16) 또는 그 반대인 것과 함께 만들어진다. 겹침의 포인트 (39a)는 상기 스트랜드들의 제한된 영역 내에 또는 상기 스트랜드들의 연관된 '턴'을 가로질러서의 중에서 어느 하나로 제공된다. 이 겹침은 상기 커플링 코일 스트랜드 (21)의 상기 내부 형상 (38)에 대해 상기 수신 코일 스트랜드 (16)와의 교환 (swapping) 또는 위치 교체의 결과가 된다. 추가의 도시된 권선 방법 단계들로부터 명백하게 될 것처럼, 상대적인 위치들의 이 교환은 요청된 2:1 턴-비율에서 상기 두 스트랜드들의 실질적으로 균일한 권선을 제공한다. 이 포인트에서, 상기 수신 코일 (16)은 1.5 턴을 가지며 그리고 상기 커플링 코일 (21)은 0.5 턴을 가지며, 상기 시작에 대한 '하프 (half) 턴', 즉, 180도에 있는 겹침 (39a)를 구비한다. 상기 겹침의 '턴' 위치는 임의적으로 선택될 수 있을 것이지만, 그러나, 본 출원인은 상기 권선 시작 및 완료 위치들로부터 상대적인 스트랜드 위치들의 교환을 오프셋하는 것이, 즉, 적절한 '패킹' 또는 스트랜드들이 함께 하도록 주장하는 것과 함께 상기 시작 위치로부터 '하프 턴' 동안에 겹침을 만드는 것이 상기 코일 스트랜드들의 상당한 컴팩트한 그리고 균일한 권선을 제공한다는 것을 발견했다.
다음에, 두 코일 스트랜드들의 '사분의 일 턴'이 만들어지며 (도 9e) 그리고 그 후에 상기 수신 코일 스트랜드 (16)의 '풀 턴'이 만들어진다 (도 9f). 이 단계들은 설명을 용이하게 하기 위해 분리하여 도시되었으며 그리고 채용된 패킹의 방식에 종속하여 도 9a - 도 9p의 다른 연속하는 단계들 중 어느 것과도 결합될 수 있어서, 상기 권선 프로세스가 부분적으로 또는 전체적으로 계속해서 수행되도록 할 수 있을 것이라는 것에 유의한다. 도 9f에서 볼 수 있는 것처럼, 상기 수신 코일 스트랜드 (16)는 상기 커플링 코일 스트랜드 (21)와 상대적인 위치들을 이제 다시 교환했다.
다음에, 두 코일 스트랜드들의 '사분의 일 턴'이, 도 9g에 도시된 상기 커플링 코일 스트랜드 (21)와 겹치는 수신 코일 스트랜드 (16)과 함께 또는 그 반대와 함께 만들어진다. 이 두 번째 겹침의 포인트 (39b)는 상기 스트랜드들의 제한된 영역 내에 또는 상기 스트랜드들의 연관된 '턴'을 가로질러 중 어느 하나에 제공된다. 이 두 번째 겹침은 상기 커플링 코일 스트랜드 (21)의 다시 상기 내부 형상 (38)에 상대적인 상기 수신 코일 스트랜드 (16)와의 교환 또는 위치 교체의 결과가 된다. 이 포인트에서, 상기 수신 코일 (16)은 3.0 턴을 가지며 그리고 상기 커플링 코일 (21)은 1.0 턴을 가지며, 상기 시작에 대해 '풀 턴'에 있는 참조번호 39b의 겹침을 구비한다. 상기 두 번째 겹침의 '턴' 위치는 임의적으로 선택될 수 있을 것이지만, 본 출원인은 시작 이후의 '풀 턴' 그리고 상기 스트랜드들을 함께 패킹하는 것과 함께 상기 첫 번째 겹침 이후에 '하프' 턴 동안에 겹침을 만드는 것이 상기 코일 스트랜드들의 상당한 컴팩트한 그리고 균일한 권선을 제공한다는 것을 발견했다.
다음에, 두 코일 스트랜드들의 '사분의 삼 턴', 즉, 270도가 만들어진다 (도 9h). 그 후에, 상기 수신 코일 스트랜드 (16)의 '풀 턴'이 만들어지며 (도 9i), 그럼으로써 상기 상대적인 스트랜드 위치들을 다시 교체한다. 두 코일 스트랜드들의 '하프 턴'이 그러면 만들어진다 (도 9j).
다음에, 두 코일 스트랜드들의 '사분의 일 턴'이 도 9k에 도시된 것처럼 상기 커플링 코일 스트랜드 (21)에 겹치는 상기 수신 코일 스트랜드 (16)와 함께 또는 그 반대와 함께 만들어지며, 그럼으로써 '하프 턴' 동안에 상기 상대적인 스트랜드 위치들을 다시 교체한다. 이 세 번째 겹침의 포인트 (39c)는 상기 스트랜드들의 제한된 영역 내에 또는 상기 스트랜드들의 연관된 '턴'을 가로지르는 것 중 어느 하나에 제공된다. 이 포인트에서, 상기 수신 코일 (16)은 5.5 턴을 가지며 그리고 상기 커플링 코일 (21)은 2.5 턴을 가진다.
다음에, 두 코일 스트랜드들의 '사분의 일 턴'이 만들어지며 (도 9l) 그리고 그 후에 상기 수신 코일 스트랜드 (16)의 '풀 턴'이 만들어진다 (도 9m).
다음에, 두 코일 스트랜드들의 '사분이 일 턴'이 도 9n에서 도시된 것처럼 상기 커플링 코일 스트랜드 (21)에 겹치는 상기 수신 코일 스트랜드 (16)과 함께 또는 그 반대와 함게 만들어지며, 그럼으로써 '풀 턴' 동안에 상기 상대적인 스트랜드 위치들을 다시 교체한다. 이 네 번째 겹침의 포인트 (39d)는 상기 스트랜드들의 제한된 영역 내에 또는 상기 스트랜드들의 연관된 '턴'을 가로지르는 것 중 어느 하나에 제공된다. 이 포인트에서, 상기 수신 코일 (16)은 7.0 턴을 가지며 그리고 상기 커플링 코일 (21)은 3.0 턴을 가진다.
다음에, 두 코일 스트랜드들의 '사분의 삼 턴'이 만들어진다 (도 9o). 그 후에, 두 코일 스트랜드들의 '사분의 일 턴'이 만들어져서 (도 9p), 16F 및 21F의 위치들에서 종결한다. 이 포인트에서, 상기 수신 코일 (16)은 8.0 턴 그리고 상기 커플링 코일 (21)은 4.0의 턴을 가지며, 그럼으로써 2:1의 마지막 턴-비율을 제공한다.
위에서 설명된 권선 방법은 2:1 턴-비율을 제공하기 위한 예시적인 실시예이다. 볼 수 있듯이, 단계들의 패턴이 일반적으로 계속되며, 그에 의해서 특정 애플리케이션에 의해 요청되는 크기 및 구성의 코일들을 가지는 결합 유닛을 제공하기 위해 단계들의 그룹들이나 블록들을 반복하는 것이 가능하다. 또한, 각 스트랜드의 턴들의 개수, 겹침/교체의 상대적인 위치들, 상대적인 시작 및 완료 위치들, 단계들의 그룹들 각각이 반복되는 회수 등을 포함하는 특정 단계들이 소망되는 구성에 종속하여 일반적으로 선택 가능하다. 예를 들면, 다음의 표 1은 90도의 스트랜드 교체 오프셋을 구비한 12.0 턴의 수신 코일 및 6.0 턴의 커플링 코일을 가진 2:1 턴-비율 결합 유닛을 제공하기 위한 단계들의 반복된 패턴을 예시한다.

단계

16

21

조합
(Combined)

겹침
(Overlap)

턴 16

턴 21
1 1       1 0
2     0.25   1.25 0.25
3     0.25 하프 턴
(Half turn)
1.5 0.5
4     0.25   1.75 0.75
5 1       2.75 0.75
6     0.25 풀 턴
(Full turn)
3 1
7     0.75   3.75 1.75
8 1       4.75 1.75
9     0.5   5.25 2.25
10     0.25 하프 턴 5.5 2.5
11     0.25   5.75 2.75
12 1       6.75 2.75
13     0.25 풀 턴 7 3
14     0.75   7.75 3.75
15 1       8.75 3.75
16     0.5   9.25 4.25
17     0.25 하프 턴 9.5 4.5
18     0.25   9.75 4.75
19 1       10.75 4.75
20     0.25 풀 턴 11 5
21     1   12 6
도 10은 IPT 시스템 (100)의 추가의 실시예의 대표적인 모습을 보여준다. 상가 IPT 시스템 (100)은 유도성 전력 전송기 (102) 및 유도성 전력 수신기 (103)를 포함하며, 이것들은 도 1에 관련하여 위에서 설명된 전송기 및 수신기와 유시한 기능들 및 동작을 가진 컴포넌트들을 구비한다.
즉, 상기 전송기 (2)는 (간선 전력과 같은) 적절한 전력 공급원 (104)에 연결되며, 상기 전송기의 동작에 필요할 수 있을 회로를 구비한 전송기 회로 (105), 하나 이상의 전송기 공진 회로들 (106)로, 각각이 상기 전송기 회로 (105)에 연결되며 전송기 커패시터와 같은 하나 또는 그 이상의 동조 요소들 (108)에 병렬로 또는 직렬로 연결된 전송 코일 (107)을 포함하여, 상기 전송기 회로 (105)로부터의 AC 전류의 공급으로 인해서 상기 전송기 코일(들) (107)이 교번 자기장을 생성하는 곳인 공진 회로 (그러나 비-공진 실시예 또한 적용 가능함)를 생성하는, 하나 이상의 전송기 공진 회로들 (106), 상기 전송기의 연결되어 전송기의 각 부분을 제어하는 전송기 제어기 (109), 그리고 상기 전송 코일(들) (107)과 연관된 자기적 침투성 요소 또는 코어 (113)를 포함한다.
또한, 상기 유도성 전력 수신기 (103)는 수신기 공진 회로 (115)를 포함하며, 이 수신기 공진 회로는 수신기 커패시터와 같은 하나 또는 그 이상의 동조 요소들 (117)에 병렬로 또는 직렬로 연결된 수신 코일 (116)을 포함하여, 상기 전송기 공진 회로 (106)의 공진 주파수 또는 상기 전송 코일(들) (107)의 주파수에 실질적으로 부합하는 공진 주파수를 구비한 공진 회로를 생성하며, 상기 수신기 공진 회로 (115) 및 부하 (14) 사이에 연결되며, 상기 수신기의 동작에 필요할 수 있는 회로를 구비한 수신기 회로 (118)를 포함하며, 그리고 상기 수신기의 각 부분에 연결되며 그 각 부분을 제어하는 수신기 제어기 (119)를 포함한다. 그러나, 이 실시예에서, 상기 유도성 전력 수신기 (103)는 이전에 설명된 실시예들의 결합 회로(들)과는 상이하게 구성된 수신기 결합 회로 (120)를 포함한다.
이전의 결합 회로들과 비슷하게, 상기 수신기 결합 회로 (120)는 커플링 또는 전력 흐름 제어 코일 (121) 및 가변 임피던스 (122)를 포함하지만, 이전의 결합 회로들과는 다르게, 상기 수신기 결합 회로 (120)는 커플링 커패시터와 같은 하나 또는 그 이상의 동조 요소들 (124)을 상기 커플링 코일과 병렬로 포함시키는 것을 통한 공진 회로일 수 있다.
상기 수신기 커플링 코일 (121)은 상기 수신 코일 (116)에 자기적으로 결합된다. 그런 자기적 결합은 상기 수신기 커플링 코일 (121) 및 상기 수신 코일 (116)이 근접하게 위치하도록 그리고/또는 자기적 침투성 코어 (123)을 공유하도록 설정하는 것을 통해서 달성될 수 있을 것이다. 이 실시예에서, 상기 수신 코일 및 커플링 코일 사이에서의, 이전에 설명된 실시예에서의 밀 결합과는 반대인 어느 정도의 '느슨한 (loose)' 결합은 효율적인 전력 흐름 제어/조정을 제공한다. 예를 들면, k1 이 상기 전송 코일 (107) 및 상기 수신 코일 (116) 사이의 커플링을 나타내면, k2 는 상기 전송기 (102)의 전송 코일 (107) 및 상기 수신기 커플링 코일 (121) 사이의 커플링을 나타내며, 그리고 k3 는 상기 수신 코일 (116) 및 상기 수신기 커플링 코일 (121) 사이의 커플링을 나타낸다. 상기 두 개의 수신기 코일들이 동일한 코어 상에서 권선되고 그리고 상기 전송 코일 (107)에 관련하여 동일한 상태를 가진다 (k1 = k2). 안정된 제어를 유지하기 위해서, k3 는 최대의 커플링 (1.0)으로부터 k1 또는 k2 보다 더 큰 어떤 값 까지 변할 수 있으며, 즉, k1 = k2 = 0.5라면, 그러면 0.5 < k3 < 약 1.0 이며, 여기에서 k1 및 k2 는 상기 전송기 코일에 상대적인 상기 수신기 코일의 포지셔닝에 종속하며 그리고 약 0.1 내지 약 0.8까지 변할 수 있다.
아래에서 더욱 상세하게 설명될 것처럼, 수신기 제어기 (119)는 상기 수신기 결합 회로를 제어하여, 상기 수신기 공진 회로가 수신한 전력에 영향을 미치도록 하며 (그래서 부하 (114)로 제공되는 전력을 조정한다), 또는 (예를 들면, 상기 전송기와 수신기 사이의 IPT 통신들용의) 반사된 임피던스를 조절하도록 한다. 특히, 병렬-동조된 커플링 코일은 전류 소스를 형성하며, 그리고 출력 전압은 메인 수신기 코일에 대해 위상을 시프트함으로써 조정 (regulate)된다. 상기 커플링 코일이 전류 소스로서 행동하기 때문에, 이 실시예는 상기 가변 임피던스의 스위치들 S1 및 S2 의 게이트 신호들을 겹치게 함으로써 전압을 조정할 수 있을 것이다. 이것은 스위치들이 동시에 동작하는 것을 피하게 하기 위해 안전 여유로서 사용되는 다르게 요청된 '데드 타임'을 줄어들게 할 수 있을 것이다. 상기 위치들 S1 및 S2 는 바디 다이오드들을 구비한 FET들, MOSFET들 등과 같이 단일 방향성이다.
도 11은 수신기 커플링 코일 회로 및 수신 코일 회로를 보여준다. 상기 수신기 커플링 코일 (LS2)은 커패시터 (Cs2)와 병렬-동조되어 제어된 전류-소스를 형성하며 그리고 상기 수신 코일 (LS1)은 직렬 또는 병렬-동조될 수 있어서 부하에 전력을 공급하는 전력 공급원을 형성한다.
도 12에서, 비례-적분-미분 (proportional-integral-derivative (PID)) 제어기는 출력 전압 오류를 판별하여 DC 신호를 생성한다. 자기 커플링 계수들 k1 및 k2 는 실질적으로 동일하며, 그래서 상기 전송 (1차) 코일 그리고 상기 수신 코일 (2차) 및 커플링 코일 사이의 상호 인덕턴스 (M)는 실질적으로 동일하다. 동시에, 상기 커플링 코일 양단의 전압의 위상은 적합한 비교기들을 이용하여 탐지되며, 그에 따라서 원래의 위상으로서 동일한 주파수를 구비한 두 개의 램프 (ramp) 파형들이 생성된다. 이 두 램프들은 그러면 상기 PID 제어기로부터 생성된 DC 신호와 비교되며, 그리고 도 13에서 보이는 방식으로 게이트 구동 신호들이 생성된다. 예를 들면, DC 신호 (상기 PID 제어기의 출력)가 상기 램프 신호보다 더 높으면, 상기 게이트 신호는 하이 (high)이며 그리고 상기 램프 신호가 상기 DC 신호보다 더 높을 때에 상기 게이트 신호는 로우 (low)이다. 이것은 다른 게이트 구동 신호에 대해서 유사하게 발생한다.
상기 생성된 게이트 신호들은 서로의 역 (inversion)이 아니며 그리고 그 신호들은 특정 시간 구간동안들에서 겹친다. 상기 생성된 게이트 신호들은 위상에 있어서 상기 전압의 원래의 위상으로부터 시프트된다. 도 13은 Vab를 Cs2 를 가로질러 측정된 LS2 의 공진 회로 (탱크) 전압 파형의 차동 (differential)으로서 보여준다. 상기 공진 전압 Vab 는 두 스위치들 S1 및 S2가 ON일 때인 시간 Tsh 동안 단락 (short)되며, 그리고 그것은, 예를 들면, 상기 스위치들 중 하나가 OFF 일 때에 시간 Tr 동안 어떤 전력 흐름 조정도 없는 정상 공진 모드에서 동작하고 있다. 상기 스위치들의 바디 다이오드들은 두 스위치들 모두가 Tsh 동안에 동시에 ON될 때에는 전도하지 않을 것이며, 이는 회로 손실들을 줄어들게 하는데 도움을 준다. 높은 전력 요구 (즉, 더 높은 Pout)에서, PID 제어기가 상기 부하로 더 많은 전력이 공급되도록 허용하면 단락 시간은 감소하며, 그리고 부하에 의해 요청된 전력이 감소할 때에, 상기 단락 시간은 증가하여 병렬-공진 탱크를 단락시키며, 그래서 상기 부하로 공급되는 전력이 감소되도록 한다.
도 14는 상기 스위치들로부터의 강제하는 (clamping) 행동이 등가 개방 회로 전압 그리고 커패시터 전압 파형 사이에서의 위상 시프트를 어떻게 생성하는가를 보여준다. 전송된 전력은 수학식 1에 의해 다음과 같이 근사화될 수 있다.
Figure pct00001
여기에서
Figure pct00002
는 상기 커플링 코일의 개방 회로 전압 (Voc2) 및 Cs2 양단의 전압의 기본 고조파 (Vc1) 사이의 각도이다. 이것은 주어진 진폭 및 알려진 위상 차이를 가진 두 개의 능동 전압 소스들 사이에서 전송된 전력의 양을 기술한다. 전송된 전력은 전압 진폭 및 두 개의 전압 소스들 사이의 위상에 종속한다. 영 위상 지연에 대해, Voc2 및 Vc1 사이의 위상
Figure pct00003
은 0도이며 그리고 최대 전력이 부하로 전송된다. 그리고 Voc2 및 Vc1 사이의 위상
Figure pct00004
이 0도보다 더 클 때에, 수학식 1로 주어진 것처럼 더 적은 전력이 전송된다. 결과적으로, 상기 위상 지연을 조절함으로써, 상기 부하로 배송된 전력이 제어될 수 있다.
도 15는 상기 결합 회로의 네 개의 상이한 동작 모드들 모드 1 내지 모드 4에 대한 등가 회로들을 보여준다. 이것들이 이제 설명된다.
모드 1 (M1) : t=0에서 양의 공진 모드 (0 < t < t1), S1은 턴 오프되고 S2는 턴 온된다. 이 모드 동안에 S1의 바디 다이오드 D1은 자신의 단자-K에서의 전압이 양이면 (Va > 0) 역으로 바이어스되며, 이는 S1 양단에서의 전압이 양의 방향에서 느리게 증가하도록 하며, 반면에 S1을 통한 전류는 0으로 감소한다. 실제로, 커패시터 전압 Vs2은 병렬 공진 탱크와 유사하게 LS2와 공진하여 양의 피크 전압으로 공진할 것이며 그리고 영으로 반대로 돌아간다. 이 동작 모드 동안에, 수학식을 지배하는 제 2차수가 수학식 2에서 보인다.
Figure pct00005
모드 2 (M2) : t=t1에서 단락 모드 (t1 < t < t2), 커패시터 전압은 자연스럽게 양으로 교차한다. 이 순간에 S1은 상기 PID 제어기 출력과 상기 램프 신호 사이의 비교로부터 생성된 신호에 따라서 턴 온 한다. S2가 여전히 온 이기 때문에, 공진 사이클은 종결되며 그리고 상기 커패시터 전압이 음의 방향에서 구축되는 것을 방지하며, 그럼으로써 Cs2 양단의 전압을 영으로 강제한다 (clamp). 이것은 S1 및 S2로 하여금, Vs2가 양으로부터 음의 전압으로 바뀌는 경우인 포인트에서 시간 Tsh 동안 Vs2로 고정시키도록 한다. 이 모드에서, 상기 공진 탱크는 단락되며 그리고 단락 회로 전류는 S1 및 S2를 통해서 흐른다. 바디 다이오드들 D1 및 D2 둘 모두는 이 모드에서 단락된다.
이 동작 모드 동안에, 수학식을 지배하는 제1 차수가 수학식 3에서 보인다.
Figure pct00006
상기 커플링 회로를 통해서 흐르는 단락 회로 전류가 isc2(t) = Isc2 sin ωt이면, 수학식 4에서 치환한다.
Figure pct00007
상기 회로를 통해 흐르는 최대 전류는 수학식 5에 의해 주어진 단락 회로 전류이다.
Figure pct00008
모드 3 (M3) : t=t2 (t2 < t < t3)에서 음의 공진 모드, S1은 턴 온 되고 S2는 턴 오프된다. M1과 유사하게, 상기 회로는 음의 피크 전압으로의 병렬 공진 탱크와 유사하게 동작하며 그리고 영으로 반대로 돌아간다. 이 모드 동안에, D2는 자신의 단자-K에서의 전압이 양이면 (Vb > 0) 역으로 바이어스되며, 이는 S2 양단에서의 전압이 음의 방향에서 느리게 증가하도록 하며, 반면에 S2를 통한 전류는 영으로 감소한다.
모드 4 (M4) : t=t3에서 단락 모드 (t3 < t < t4), M2와 유사하게, 커패시터 전압이 자연스럽게 영으로 크로스한다. 이 순간에 S2는 상기 PID 제어기 출력과 상기 램프 신호 사이의 비교로부터 생성된 신호에 따라서 턴 온 한다. S1이 여전히 온 이기 때문에, 공진 사이클은 종결되며 그리고 상기 커패시터 전압이 양의 방향에서 구축되는 것을 방지하며, 그럼으로써 Cs2 양단의 전압을 영으로 강제한다. 이것은 S1 및 S2로 하여금, Vs2가 음으로부터 양의 전압으로 바뀌는 경우인 포인트에서 시간 Tsh 동안 Vs2로 고정시키도록 한다. 상기 공진 탱크는 단락되며 그리고 단락 회로 전류는 S1 및 S2를 통해서 흐른다. 바디 다이오드들 둘 모두는 이 모드 동안에 단락된다. 이 모드 이후에, 상기 회로는 M1으로 거꾸로 돌아가며, 그리고 상기 스위칭 프로세스가 반복된다.
이 실시예는 소프트 스위칭을 달성하여, 낮은 스위칭 손실들, 낮은 스위칭 스트레스 및 감소된 EMI (Electromagnetic Interference) 레벨들을 허용한다. 상기 낮은 스위칭 손실들은 높은 동작 효율을 제공할 수 있다. 더욱이, 낮은 EMI는 픽업 제어 회로 및 근처의 외부 시스템들 상에 간섭을 거의 제공하지 않을 것이다.
본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들은 여기에서 개시되고 첨부된 청구항들에서 선언된 다양한 실시예들이 활용성있는 발명을 제공하고 그리고 공중에게 유용한 선택을 적어도 제공한다는 것을 이해한다.
본 발명이 본 발명의 실시예들의 설명에 의해 예시되었으며, 그리고 상기 실시예들이 상세하게 설명되었지만, 첨부된 청구항들의 범위를 그런 상세한 내용으로 제한하거나 어떤 방식으로건 한정하는 것은 본 출원인의 의도가 아니다. 추가적인 유리함들 및 수정들은 본 발명이 속한 기술 분야에서의 통상의 지식을 가진 자들에게는 쉽게 떠오를 것이다. 그러므로, 본 발명의 더 넓은 모습들에서의 본 발명은 특정의 상세한 내용들, 대표적인 장치 및 방법, 그리고 도시되고 설명된 예시적인 예들로 제한되지 않는다. 따라서, 본 출원인의 일반적인 특허성있는 개념의 사상 또는 범위로부터 벗어나지 않으면서도 그런 상세한 내용으로부터 벗어나는 내용들이 만들어질 수 있을 것이다.

Claims (23)

  1. 전력 전송 코일 및 전력 전송 커패시터를 구비한 공진 회로;
    상기 전력 전송 코일에 자기-결합된 커플링 코일;
    가변 임피던스; 그리고
    부하에 제공된 전력을 실질적으로 조정함 (regulating);
    공진 회로 공진 주파수를 미리 정해진 주파수로 실질적으로 동조함 (tuning);
    상기 전력 전송 코일과 연관된 자기장의 주파수를 조절함; 그리고/또는
    상기 전력 전송 코일에 의해 반사된 임피던스를 대응하는 결합된 전력 전송 코일로 조절함을 포함하는,
    미리 정해진 기준에 기초하여 상기 가변 임피던스의 임피던스 값을 판별하도록 구성된 제어기를 포함하는 유도성 전력 전송 디바이스.
  2. 제1항에 있어서,
    상기 디바이스는 유도성 전력 전송 시스템용의 유도성 전력 수신기이며, 상기 공진 회로는 수신기 공진 회로이며, 상기 전력 전송 코일은 수신기 코일이며, 상기 전력 전송 커패시터는 수신기 커패시터이며, 그리고:
    상기 수신기 공진 회로로부터 부하로 전력을 제공하기 위한 수신기 회로를 더 포함하는, 유도성 전력 전송 디바이스.
  3. 제1항에 있어서,
    상기 디바이스는 유도성 전력 전송 시스템용의 유도성 전력 전송기이며, 상기 공진 회로는 전송기 공진 회로이며, 상기 전력 전송 코일은 전송기 코일이며, 상기 전력 전송 커패시터는 전송기 커패시터이며, 그리고:
    전력 공급원으로부터 상기 전송기 공진 회로로 전력을 제공하기 위한 전송기 회로를 더 포함하는, 유도성 전력 전송 디바이스.
  4. 제1항에 있어서,
    상기 커플링 코일 및 가변 임프던스는 비-공진 회로를 형성하는, 유도성 전력 전송 디바이스.
  5. 제4항에 있어서,
    상기 전력 전송 코일은 상기 전력 전송 커패시터와 직렬로 연결된, 유도성 전력 전송 디바이스.
  6. 제2항에 있어서,
    상기 수신기 회로는 DC 전력을 상기 부하로 제공하기 위한 정류기를 포함하는, 유도성 전력 전송 디바이스.
  7. 제1항에 있어서,
    상기 제어기는 상기 부하의 전력 요구에 기초하여 상기 임피던스 값을 판별하도록 구성된, 유도성 전력 전송 디바이스.
  8. 제7항에 있어서,
    상기 제어기는, 상기 부하로 제공된 전력을 조정하기 위해서, 상기 커플링 코일을 통해서 흐르는 전류를 상기 가변 임피던스가 변경하고 있는 시간 비율을 결정하도록 구성된, 유도성 전력 전송 디바이스.
  9. 제8항에 있어서,
    상기 제어기는, 상기 커플링 코일을 통해서 흐르는 전류를 상기 가변 임피던스가 변경하고 있는 시간의 비율을 제어하기 위해 펄스 폭 변조를 사용하도록 구성된, 유도성 전력 전송 디바이스.
  10. 제1항에 있어서,
    상기 가변 임피던스는 AC 스위치를 포함하는, 유도성 전력 전송 디바이스.
  11. 제1항에 있어서,
    상기 전력 전송 코일과 연관된 자기적 침투성 코어를 더 포함하는, 유도성 전력 전송 디바이스.
  12. 제11항에 있어서,
    상기 전력 전송 코일 및 상기 커플링 코일은 상기 자기적 침투성 코어 상에 서로 꼬여진 (interwound), 유도성 전력 전송 디바이스.
  13. 제12항에 있어서,
    상기 커플링 코일은 상기 전력 전송 코일과 서로 꼬여져서, 상기 전력 전달 코일을 가로질러 자기-결합이 실질적으로 균일하도록 하는, 유도성 전력 전송 디바이스.
  14. 제13항에 있어서,
    상기 서로 꼬여진 전력 전송 코일 및 커플링 코일의 커플링 계수 k는 약 0.8보다 더 큰, 유도성 전력 전송 디바이스.
  15. 제11항에 있어서,
    상기 자기적 침투성 코어의 포화에 영향을 주도록 구성된 포화 코일에 연결된 DC 소스를 더 포함하는, 유도성 전력 전송 디바이스.
  16. 제15항에 있어서,
    상기 DC 소스는 상기 부하에 제공된 전력을 조정하기 위해 제어되는, 유도성 전력 전송 디바이스.
  17. 제14항에 있어서,
    상기 가변 임피던스는 상기 부하에 제공된 전력을 대략적으로 조정하도록 제어되며 그리고 상기 DC 소스는 상기 부하에 제공된 전력을 미세하게 조정하도록 제어되는, 유도성 전력 전송 디바이스.
  18. 제1항에 있어서,
    상기 전력 전송 코일에 의해 반사된 임피던스에서의 변화는, 상기 전력 전송 코일로부터의 데이터를 상기 대응하는 결합된 전력 전송 코일로 전달하기 위해 사용되는, 유도성 전력 전송 디바이스.
  19. 제1항에 있어서,
    상기 자기장의 주파수에서의 변화는, 상기 전력 전송 코일로부터의 데이터를 상기 대응하는 결합된 전력 전송 코일로 전달하기 위해 사용되는, 유도성 전력 전송 디바이스.
  20. 제1항에 있어서,
    상기 커플링 코일과 병렬인 동조 커패시터를 더 포함하는, 유도성 전력 전송 디바이스.
  21. 제20항에 있어서,
    상기 제어기는 상기 부하에 제공된 전력을 상기 동조 커패시터 양단의 전압과 등가 개방 회로 전압 사이의 위상 차이를 기초로 하여 조정하도록 구성된, 유도성 전력 전송 디바이스.
  22. 제21항에 있어서,
    상기 제어기는 상기 스위칭 사이클의 일부를 위해 상기 동조 커패시터를 고정 (clamp)하도록 구성되며, 상기 일부는 상기 부하로 공급된 전력을 판별하는, 유도성 전력 전송 디바이스.
  23. 전류가 커플링 코일을 통해서 제2 방향 또는 제1 방향에서 흐르는 것으로부터 영 (zero)으로 간 이후에 제1 시간 구간에 제1 스위치를 스위치 온 하는 단계;
    전류가 상기 커플링 코일을 통해서 제1 방향 또는 제2 방향에서 흐르는 것으로부터 영으로 간 이후에 제2 시간 구간에 제2 스위치를 스위치 온 하는 단계;
    상기 제2 스위치가 스위치 온 될 때에 또는 상기 제2 스위치가 스위치 온 되고 그리고 상기 커플링 코일을 통한 전류가 상기 제2 방향에서 흐르는 것으로부터 영으로 가는 사이의 어느 포인트에서 상기 제1 스위치를 스위치 오프하는 단계;
    상기 제1 스위치가 스위치 온 될 때에 또는 상기 제1 스위치가 스위치 온 되고 그리고 상기 커플링 코일을 통한 전류가 상기 제1 방향에서 흐르는 것으로부터 영으로 가는 사이의 어느 포인트에서 상기 제2 스위치를 스위치 오프하는 단계; 그리고
    부하로 제공된 전력을 조정하기 위해 상기 제1 시간 구간 및 상기 제2 시간 구간의 지속시간을 제어하는 단계를 포함하는, 유도성 전력 수신기 제어 방법.
KR1020167022791A 2014-01-22 2015-01-22 유도성 전력 전송 시스템들을 위한 결합된 코일 전력 제어 KR20160111482A (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201461930191P 2014-01-22 2014-01-22
US61/930,191 2014-01-22
US201461990409P 2014-05-08 2014-05-08
US61/990,409 2014-05-08
US201562106176P 2015-01-21 2015-01-21
US62/106,176 2015-01-21
PCT/NZ2015/050002 WO2015112029A1 (en) 2014-01-22 2015-01-22 Coupled-coil power control for inductive power transfer systems

Publications (1)

Publication Number Publication Date
KR20160111482A true KR20160111482A (ko) 2016-09-26

Family

ID=53681723

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167022791A KR20160111482A (ko) 2014-01-22 2015-01-22 유도성 전력 전송 시스템들을 위한 결합된 코일 전력 제어

Country Status (6)

Country Link
US (1) US10020687B2 (ko)
EP (1) EP3108487B1 (ko)
JP (2) JP2017511101A (ko)
KR (1) KR20160111482A (ko)
CN (1) CN106062906B (ko)
WO (1) WO2015112029A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996704B2 (en) 2020-11-18 2024-05-28 Samsung Electronics Co., Ltd Electronic device receiving wireless power

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513190B2 (en) * 2014-09-10 2019-12-24 Witricity Corporation Methods and apparatus for tuning and controlling double couple inductive power transfer systems
CN107925250B (zh) * 2015-08-28 2021-03-19 Tdk株式会社 非接触供电装置和非接触电力传送装置
KR102554457B1 (ko) * 2016-09-20 2023-07-11 주식회사 위츠 무선 전력 송신 장치 및 그의 제어 방법
WO2018163408A1 (ja) * 2017-03-10 2018-09-13 三菱電機エンジニアリング株式会社 共振型電力送信装置及び共振型電力伝送システム
US10389162B2 (en) 2017-05-19 2019-08-20 Qualcomm Incorporated Power receiving unit reflected reactance and tuning methods
EP3346580A1 (de) 2017-11-03 2018-07-11 Hilti Aktiengesellschaft Resonanter schwingkreis zum übertragen von elektrischer energie ohne leistungsverstärker
EP3346579A1 (de) 2017-11-03 2018-07-11 Hilti Aktiengesellschaft Resonanter schwingkreis zum übertragen von elektrischer energie
CN108023475A (zh) * 2018-01-10 2018-05-11 赛尔康技术(深圳)有限公司 一种平面变压器的电磁兼容调整电路
JP6927113B2 (ja) * 2018-03-27 2021-08-25 オムロン株式会社 非接触給電装置
US10812102B2 (en) * 2018-06-29 2020-10-20 Apple Inc. Efficient data encoding
KR102218147B1 (ko) * 2018-09-12 2021-02-23 주식회사 아모센스 자기 유도 전원 공급 장치
JP7205169B2 (ja) * 2018-11-01 2023-01-17 オムロン株式会社 非接触給電装置
WO2020113007A1 (en) * 2018-11-30 2020-06-04 Witricity Corporation Systems and methods for low power excitation in high power wireless power systems
EP3664253A1 (en) * 2018-12-05 2020-06-10 Koninklijke Philips N.V. Device and method for wireless power transfer
CN109742863B (zh) * 2018-12-27 2023-06-20 华为技术有限公司 一种无线充电系统的接收端、发射端及无线充电系统
JP7088040B2 (ja) * 2019-01-18 2022-06-21 オムロン株式会社 非接触給電装置
CN110346398B (zh) * 2019-08-23 2023-05-26 武汉中科牛津波谱技术有限公司 一种磁共振探头矢量调谐检测装置和方法
JP7408952B2 (ja) * 2019-08-28 2024-01-09 オムロン株式会社 非接触給電装置
JP7395879B2 (ja) * 2019-08-28 2023-12-12 オムロン株式会社 非接触給電装置及び送電装置
DE102020118575B4 (de) * 2020-07-14 2022-03-03 Infineon Technologies Ag Nahfeldkommunikationsvorrichtung, elektronische Vorrichtung zum Bereitstellen einer Substanz, Verfahren zum Betreiben einer Nahfeldkommunikationsvorrichtung und Verfahren zum Bereitstellen einer Substanz
US11616397B2 (en) * 2020-08-12 2023-03-28 Medtronic, Inc. Magnetic alignment of transcutaneous energy transfer coils
TWI794795B (zh) * 2021-04-26 2023-03-01 國立陽明交通大學 感應諧振式無線充電系統、諧振式無線充電發射裝置、無線充電中繼裝置及感應式無線充電接收裝置
CN115214394B (zh) * 2022-07-18 2023-04-21 广西电网有限责任公司电力科学研究院 电动汽车动态无线充电系统及横向偏移功率波动抑制方法
CN116131479B (zh) * 2023-01-30 2023-09-29 巨翼(苏州)新动力有限公司 一种双向谐振无线充电系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748570A (en) * 1972-06-26 1973-07-24 Amco Prod Co Adjustable output voltage transformer
NZ329195A (en) 1997-11-17 2000-07-28 Auckland Uniservices Ltd Loosely coupled inductive power transfer using resonant pickup circuit, inductor core chosen to saturate under overload conditions
NZ337716A (en) * 1999-09-09 2002-10-25 Auckland Uniservices Ltd Series resonant inductive pickup where power can be regulated by time-regulated opening and closing a switch
AU2004241916A1 (en) * 2003-05-23 2004-12-02 Auckland Uniservices Limited Frequency controlled resonant converter
US8004235B2 (en) * 2006-09-29 2011-08-23 Access Business Group International Llc System and method for inductively charging a battery
FR2919072B1 (fr) 2007-07-20 2009-09-11 Schneider Electric Ind Sas Detecteur de proximite inductif a bobinages commutes.
JP2011035964A (ja) * 2009-07-30 2011-02-17 Olympus Imaging Corp 充電装置及び充電システム
JP5519367B2 (ja) * 2010-03-29 2014-06-11 パナソニック株式会社 受電装置及び電力伝送システム
KR101817320B1 (ko) * 2010-06-10 2018-01-11 액세스 비지니스 그룹 인터내셔날 엘엘씨 유도 전력 전달을 위한 코일 구성
US20120068548A1 (en) 2010-09-16 2012-03-22 Advantest Corporation Wireless power supply apparatus
NZ589865A (en) * 2010-12-10 2013-06-28 Auckland Uniservices Ltd Inductive power transfer pick-up with separate AC and DC outputs
US9166440B2 (en) 2011-01-10 2015-10-20 Powermat Technologies Ltd. System for transferring power inductively to items within a container
JP2012191796A (ja) * 2011-03-11 2012-10-04 Sanyo Electric Co Ltd 充電システム、受電装置、無線電力伝送システム、移動体並びに電源装置
JP2012205379A (ja) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd 充電システム、電源装置、移動体、無線電力送受電システム及び受電装置
US9006935B2 (en) * 2011-03-30 2015-04-14 Tdk Corporation Wireless power feeder/receiver and wireless power transmission system
US8830638B2 (en) 2011-04-21 2014-09-09 Sandeep Taneja High efficiency switching method and apparatus for dynamically connecting or disconnecting mutually coupled inductive coils
JP5847468B2 (ja) * 2011-07-13 2016-01-20 矢崎総業株式会社 給電システムの設計方法
CN104040863B (zh) * 2011-11-10 2018-06-22 苹果公司 用于控制转换器的方法
EP2786464B2 (en) * 2011-12-02 2023-03-29 Powermat Technologies Ltd. System and method for regulating inductive power transmission
US10193394B2 (en) 2012-01-06 2019-01-29 Philips Ip Ventures B.V. Wireless power receiver system
WO2013176752A2 (en) * 2012-05-20 2013-11-28 Access Business Group International Llc Wireless power supply system
CN102969803B (zh) * 2012-11-03 2014-11-26 河海大学常州校区 可稳压调频的电磁耦合式电能传输装置
CN102969776B (zh) * 2012-12-03 2014-12-10 中国科学院电工研究所 一种电动汽车无线充电装置
CN103219807B (zh) * 2013-04-23 2015-07-15 重庆交通大学 一种自适应无线电能传输装置
CN103312016B (zh) * 2013-05-23 2015-12-02 东南大学 一种蓄电池无线充电最小接入装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996704B2 (en) 2020-11-18 2024-05-28 Samsung Electronics Co., Ltd Electronic device receiving wireless power

Also Published As

Publication number Publication date
US10020687B2 (en) 2018-07-10
JP2017511101A (ja) 2017-04-13
US20170005525A1 (en) 2017-01-05
EP3108487A4 (en) 2017-12-06
JP2020092596A (ja) 2020-06-11
CN106062906A (zh) 2016-10-26
EP3108487B1 (en) 2019-02-27
WO2015112029A1 (en) 2015-07-30
EP3108487A1 (en) 2016-12-28
CN106062906B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
KR20160111482A (ko) 유도성 전력 전송 시스템들을 위한 결합된 코일 전력 제어
JP2914439B2 (ja) 被制御インダクタを有する共振コンバータ
US10923953B2 (en) Received wireless power regulation
Aldhaher et al. Tuning class E inverters applied in inductive links using saturable reactors
US11404911B2 (en) Wireless power transfer system
JP5462953B2 (ja) ワイヤレス受電装置およびワイヤレス給電システム
US7388760B2 (en) Switching power supply circuit
US20120068548A1 (en) Wireless power supply apparatus
US20160294221A1 (en) Secondary-Side Output Boost Technique in Power Converters and Wireless Power Transfer Systems
CN108736726B (zh) 转换器
Haldi et al. A 3.5 kW wireless charger for electric vehicles with ultra high efficiency
JP2017537588A (ja) コンバータ
CN107294223A (zh) 操作无线电源发射器的反相器的方法及相应的装置
US20180269726A1 (en) Inductive Power Transmitter
WO2017002550A1 (ja) 電源回路
US20180226834A1 (en) An Inductive Power Receiver
US10985574B2 (en) Resonant power transfer
JP2014150690A (ja) 電流共振型スイッチング電源
KR102643411B1 (ko) 전력을 전기 부하로 송전하기 위한 컨버터
CN110647230B (zh) 一种服务器的电源系统
KR101405806B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
KR101880267B1 (ko) 무선 전력 전송에서 넓은 공진주파수 허용을 위한 집전 컨버터 스위칭 방법
JP2018506948A (ja) 誘導受電器
KR20230038744A (ko) 변환기의 성능 향상

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E902 Notification of reason for refusal
E601 Decision to refuse application