KR20160067100A - 연속 주조 방법 - Google Patents

연속 주조 방법 Download PDF

Info

Publication number
KR20160067100A
KR20160067100A KR1020167007551A KR20167007551A KR20160067100A KR 20160067100 A KR20160067100 A KR 20160067100A KR 1020167007551 A KR1020167007551 A KR 1020167007551A KR 20167007551 A KR20167007551 A KR 20167007551A KR 20160067100 A KR20160067100 A KR 20160067100A
Authority
KR
South Korea
Prior art keywords
stainless steel
molten steel
steel
molten
continuous casting
Prior art date
Application number
KR1020167007551A
Other languages
English (en)
Other versions
KR102084729B1 (ko
Inventor
유우키 혼다
히로시 모리카와
Original Assignee
닛신 세이코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛신 세이코 가부시키가이샤 filed Critical 닛신 세이코 가부시키가이샤
Publication of KR20160067100A publication Critical patent/KR20160067100A/ko
Application granted granted Critical
Publication of KR102084729B1 publication Critical patent/KR102084729B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/106Shielding the molten jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/003Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D31/00Cutting-off surplus material, e.g. gates; Cleaning and working on castings
    • B22D31/002Cleaning, working on castings

Abstract

스테인리스강편(3c)을 주조하는 연속 주조 장치(100)에서는, 레이들(1) 내의 스테인리스 용강(3)을 턴디시(101) 내에 주입하기 위해 턴디시(101) 내에 연장하는 롱 노즐(2)이 레이들(1)에 설치된다. 더욱이 씰 가스로서 질소 가스(4)가 턴디시(101) 내의 스테인리스 용강(3)의 주위에 공급되고, 롱 노즐(2)의 주출구(注出口)(2a)를 턴디시(101) 내의 스테인리스 용강(3)에 침지시키면서, 롱 노즐(2)을 통해 턴디시(101) 내에 스테인리스 용강(3)이 주입됨과 함께, 턴디시(101) 내의 스테인리스 용강(3)이 주형(105)에 주입되고, 스테인리스강편(3c)의 연속 주조가 이루어진다.

Description

연속 주조 방법{CONTINUOUS CASTING METHOD}
본 발명은 연속 주조 방법에 관한 것이다.
금속의 일종인 스테인리스강의 제조 공정에서는, 전기로에서 원료를 용해하여 용선(溶銑)이 생성되고, 생성된 용선은 전로(轉爐), 진공 탈가스 장치로 스테인리스강의 특성을 저하시키는 탄소를 제거하는 탈탄 처리 등을 포함하는 정련이 이루어져 용강으로 되고, 그 후, 용강이 연속 주조되는 것에 의해 응고하여 판 형상의 슬러브 등을 형성한다. 또한, 정련 공정에서는 용강의 최종 성분의 조정이 이루어진다.
연속 주조 공정에서는, 용강은 레이들로부터 턴디시에 흘러들어가고, 더욱이, 턴디시로부터 연속 주조용 주형 안으로 흘러들어가 주조된다. 이때, 최종 성분 조정 후의 용강이, 대기 중의 질소나 산소와 반응하여 질소의 함유량을 증대시키거나 산화되는 것을 방지하기 위해, 레이들로부터 주형에 이르는 용강의 주위에는, 용강과의 반응을 일으키기 어려운 불활성 가스가 씰 가스로서 공급되고, 용강 표면을 대기로부터 차단한다.
예를 들면, 특허 문헌 1에는, 불활성 가스로서 아르곤 가스를 사용하는 연속 슬러브의 제조 방법이 기재되어 있다.
[선행기술문헌]
[특허문헌]
[특허 문헌 1] 일본특허공개 평 4-284945호 공보
그러나, 특허 문헌 1의 제조 방법과 같이, 씰 가스로서 아르곤 가스를 사용하면, 용강 내에 들어온 아르곤 가스가 기포로 남고, 연속 주조 슬러브의 표면에는, 아르곤 가스에 의한 기포 결함, 즉 표면 결함이 생기기 쉽다고 하는 문제가 있다. 더욱이, 연속주조 슬러브에 표면 결함이 발생하면, 필요한 품질을 확보하기 위해서 표면을 깎아내야 하며, 비용이 증대한다고 하는 문제가 있다.
본 발명은 이러한 문제점을 해결하기 위해서 안출된 것이며, 슬러브(금속편)를 주조할 때의 질소 함유량의 증가를 억제함과 함께 표면 결함의 저감을 도모하는 연속 주조 방법을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위해서, 본 발명에 따르는 연속 주조 방법은, 레이들의 용융 금속을 하방의 턴디시 내에 주입하고, 턴디시 내의 용융 금속을 주형에 연속 주입하여 금속편을 주조하는 연속 주조 방법에 있어서, 씰 가스로서 질소 가스를 턴디시 내의 용융 금속의 주위에 공급하고, 레이들의 용융 금속을 턴디시 내에 주입하기 위한 주입 노즐의 주출구를 턴디시 내의 용융 금속에 침지시키면서, 주입 노즐을 통해 턴디시 내에 용융 금속을 주입함과 함께, 턴디시 내의 용융 금속을 주형에 주입하는 것이다.
본 발명에 따른 연속 주조 방법에 의하면, 금속편을 주조할 때의 질소 함유량의 증가를 억제함과 함께 표면 결함을 저감하는 것이 가능해진다.
도 1은 본 발명의 실시형태 1에 따른 연속 주조 방법에서 사용하는 연속 주조 장치의 구성을 나타내는 모식도이다.
도 2는 본 발명의 실시형태 2에 따른 연속 주조 방법으로 주조 시의 연속 주조 장치를 나타내는 모식도이다.
도 3은 실시예 3과 비교예 3의 사이에서 스테인리스강편에 발생하는 기포 개수를 비교한 도면이다.
도 4는 실시예 4와 비교예 4의 사이에서 스테인리스강편에 발생하는 기포 개수를 비교한 도면이다.
도 5는 비교예 3과 비교예 3에 있어서 롱 노즐을 사용한 경우와의 사이에서 스테인리스강편에 발생하는 기포 개수를 비교한 도면이다.
실시형태 1.
이하, 본 발명의 실시형태 1에 따른 연속 주조 방법에 대해 첨부 도면에 근거해 설명한다. 또, 이하의 실시형태에서는, 스테인리스강의 연속 주조 방법에 대해 설명한다.
우선, 스테인리스강의 제조는, 용해 공정, 1차 정련 공정, 2차 정련 공정 및 주조 공정이 이 순서로 실시되어 이루어진다.
용해 공정에서는, 스테인리스 제강용 원료로 되는 스크랩이나 합금을 전기로에서 용해하여 용선을 생성하고, 생성한 용선이 전로에 주입된다. 더욱이, 1차 정련 공정에서는, 전로 내의 용선에 산소를 취정(吹精)하는 것에 의해 함유되어 있는 탄소를 제거하는 조(粗)탈탄 처리가 이루어지고, 그것에 의해 스테인리스 용강과 탄소 산화물 및 불순물을 포함한 슬러그가 생성한다. 또, 1차 정련 공정에서는, 스테인리스 용강의 성분이 분석되고 목적으로 하는 성분에 가까워지기 위해 합금을 투입하는, 성분의 거친 조정도 실시된다. 더욱이, 1차 정련 공정에서 생성한 스테인리스 용강은, 레이들에 출강되어 2차 정련 공정으로 옮겨진다.
2차 정련 공정에서는, 스테인리스 용강이 레이들와 함께 진공탈가스 장치에 들어가 마무리 탈탄 처리가 이루어진다. 그리고, 스테인리스 용강이 마무리 탈탄 처리되는 것에 의해, 순수한 스테인리스 용강이 생성한다. 또, 2차 정련 공정에서는, 스테인리스 용강의 성분이 분석되고, 목적으로 하는 성분에 더 가까워지기 위해 합금을 투입하는, 성분의 최종적인 조정도 실시된다.
주조 공정에서는, 도 1을 참조하면, 진공 탈가스 장치로부터 레이들(1)을 꺼내 연속 주조 장치(CC)(100)에 세팅한다. 용융 금속인 레이들(1)의 스테인리스 용강(3)은, 연속 주조 장치(100)로 흘러들어가고, 더욱이, 연속 주조 장치(100)가 구비한 주형(105)에 의해, 예를 들면 금속편으로서 슬러브 형상의 스테인리스강편(3c)으로 주조된다. 주조된 스테인리스강편(3c)은 다음의 도시하지 않는 압연 공정에 있어서, 열간 압연 또는 냉간 압연되고, 열간 압연 강대 또는 냉간 압연 강대로 된다.
더욱이, 연속 주조 장치(CC)(100)의 구성을 상세하게 설명한다.
연속 주조 장치(100)는, 레이들(1)로부터 보내지는 스테인리스 용강(3)을 일시적으로 받아 들여 주형(105)으로 보내기 위한 용기인 턴디시(101)를 가지고 있다. 턴디시(101)는, 상부가 개방한 본체(101b)와, 본체(101b)의 개방한 상부를 폐쇄하고 외부와 차단하는 상부덮개(101c)와, 본체(101b)의 저부로부터 연장하는 침지 노즐(101d)을 가지고 있다. 그리고, 턴디시(101)에서는, 본체(101b) 및 상부덮개(101c)에 의해 이들 내부에 폐쇄된 내부 공간(101a)이 형성된다. 침지 노즐(101d)은, 입구(101e)에서 본체(101b)의 저부로부터 내부(101a)로 개구하고 있다.
또, 레이들(1)은, 턴디시(101)의 상부에 세팅되고, 턴디시(101)의 상부덮개(101c)를 관통하여 내부(101a)로 연장하는 턴디시용 주입 노즐인 롱 노즐(2)이 레이들(1)의 저부에 접속되고 있다. 그리고, 롱 노즐(2)의 하부 선단의 주출구(2a)가, 내부(101a)에서 개구하고 있다. 또, 롱 노즐(2)에 있어서의 상부덮개(101c)의 관통부와 상부덮개(101c)의 사이는 밀봉되어 기밀성이 유지되고 있다.
턴디시(101)의 상부덮개(101c)에는, 복수의 가스 공급 노즐(102)이 설치되어 있다. 가스 공급 노즐(102)은, 도시하지 않는 가스의 공급원에 접속되어 있고, 턴디시(101)의 내부(101a)에 상방에서 하방을 향해 소정의 가스를 송출한다.
더욱이, 턴디시(101)의 상부덮개(101c)에는, 턴디시(101)의 내부(101a)에, 턴디시 파우더(이하, TD파우더라고 한다)(5)(도 2 참조)를 투입하기 위한 파우더 노즐(103)이 설치되어 있다.
파우더 노즐(103)은, 도시하지 않는 TD파우더 공급원에 접속되어 있고, 턴디시(101)의 내부(101a)에 상방으로부터 하방을 향해 TD파우더(5)를 송출한다. 또, n5는, 합성 슬러그제 등으로 이루어지고, 스테인리스 용강(3)의 표면을 덮는 것에 의해, 스테인리스 용강(3)의 표면의 산화 방지 작용, 스테인리스 용강(3)의 보온 작용, 스테인리스 용강(3)의 개재물을 용해 흡수하는 작용 등을, 스테인리스 용강(3)에 대해서 한다. 또한, 본 실시형태 1에서는, 파우더 노즐(103) 및 TD파우더(5)는 사용되지 않는다.
또, 침지 노즐(101d)의 상방에는, 상하 방향으로 이동 가능한 막대 모양의 스토퍼(104)가 설치되고 있고, 스토퍼(104)는, 턴디시(101)의 상부덮개(101c)를 관통하여 턴디시(101)의 내부(101a)로부터 외부에 걸쳐 연장하고 있다.
스토퍼(104)는, 하부로 이동하는 것에 의해 그 선단에서 침지 노즐(101d)의 입구(101e)를 폐쇄할 수 있는 외에, 입구(101e)를 폐쇄한 상태로부터 상방으로 끌어 올려지는 것에 의해, 턴디시(101) 내의 스테인리스 용강(3)을 침지 노즐(101d) 내에 유입시킴과 함께, 인상(引上)량에 따라 입구(101e)의 개구 면적을 조절하여 스테인리스 용강(3)의 유량을 제어할 수가 있도록 구성되어 있다. 또, 스토퍼(104)에 있어서의 상부덮개(101c)의 관통부와 상부덮개(101c)의 사이는, 밀봉되어 기밀성이 유지되고 있다.
턴디시(101)의 저부의 침지 노즐(101d)의 선단(101f)은 하부의 주형(105)의 관통공(105a) 내로 연장하고, 측방에서 개구하고 있다.
주형(105)의 관통공(105a)은 직사각형 단면을 가지고, 상하로 주형(105)을 관통하고 있다. 관통공(105a)은, 그 내벽면은 도시하지 않는 1차 냉각 기구에 의해 수냉되도록 구성되고, 내부의 스테인리스 용강(3)을 냉각하여 응고시켜 소정의 단면의 주물편(3b)을 형성한다.
더욱이, 주형(105)의 관통공(105a)의 하방에는, 주형(105)에 의해 형성된 주물편(3b)을 아래로 인출하여 이송하기 위한 롤(106)이 간격을 두고 복수개 설치되어 있다. 또, 롤(106)의 사이에는, 주물편(3b)에 대해서 살수하여 냉각하기 위한 도시하지 않는 2차 냉각 기구가 설치되어 있다.
다음에, 연속 주조 장치(100)의 동작을 설명한다.
이대로, 도 1을 참조하면, 연속 주조 장치(100)에서는, 턴디시(101)의 상방에, 2차 정련 후의 스테인리스 용강(3)을 내부에 포함하는 레이들(1)이 설치된다. 더욱이, 레이들(1)의 저부에는 롱 노즐(2)이 장착되고, 주출구(2a)를 가지는 롱 노즐(2)의 선단이 턴디시(101)의 내부(101a)로 연장하고 있다.
이때, 스토퍼(104)는, 침지 노즐(101d)의 입구(101e)를 폐쇄하고 있다.
그리고, 롱 노즐(2)에 설치된 도시하지 않는 밸브가 개방되고, 레이들(1) 내의 스테인리스 용강(3)이, 중력의 작용에 의해 롱 노즐(2) 내를 흘러내리고, 턴디시(101)의 내부(101a)로 흘러들어간다. 또, 가스 공급 노즐(102)로부터 턴디시(101)의 내부(101a)에, 스테인리스 용강(3)에의 용해성을 갖는 질소(N2) 가스(4)가 분사된다. 이것에 의해, 턴디시(101)의 내부(101a)에 존재하고 있던 불순물을 포함한 공기가 질소 가스(4)에 의해 턴디시(101)로부터 외부로 밀려 나오고, 내부(101a)에 충만된 질소 가스(4)가 스테인리스 용강(3)의 주위를 밀봉하여 공기 등의 다른 기체와 접촉시키지 않는다.
그리고, 유입하는 스테인리스 용강(3)에 의해, 턴디시(101)의 내부(101a)의 스테인리스 용강(3)의 표면(3a)이 상승한다. 상승하는 표면(3a)이 롱 노즐(2)의 주출구(2a)를 스테인리스 용강(3)에 침지시키고, 더욱이, 턴디시(101)의 내부(101a)에 있어서의 스테인리스 용강(3)의 깊이가 소정 깊이(D)가 되면, 스토퍼(104)가 상승되고, 내부(101a)의 스테인리스 용강(3)이, 침지 노즐(101d) 내를 지나 주형(105)의 관통공(105a) 내로 유입하여 주조가 개시한다. 동시에, 레이들(1) 내의 스테인리스 용강(3)이 롱 노즐(2)을 통과해 턴디시(101)의 내부(101a)에 주출되어 스테인리스 용강(3)이 보충된다. 또한, 내부(101a)에 있어서의 스테인리스 용강(3)의 깊이가 소정 깊이(D)일 때, 롱 노즐(2)은, 주출구(2a)가 스테인리스 용강(3)의 표면(3a)으로부터 약 100~150 mm의 깊이가 되도록, 스테인리스 용강(3)에 관입(貫入)하여 있는 것이 바람직하다. 상기의 깊이보다 깊게 롱 노즐(2)이 관입하면, 내부(101a)에 모여 있는 스테인리스 용강(3)의 내압에 의한 저항에 의해, 롱 노즐(2)의 주출구(2a)로부터의 스테인리스 용강(3)의 주출이 곤란하게 된다. 한편, 상기의 깊이보다 얕게 롱 노즐(2)이 관입하면, 후술하는 바와 같이, 주조 시에 소정의 위치 부근에 유지하도록 제어되는 스테인리스 용강(3)의 표면(3a)이 변동한 경우, 주출구(2a)가 노출하면, 주출된 스테인리스 용강(3)이 표면(3a)을 비팅(beating)하여 질소 가스(4)가 말려들어갈 가능성이 있기 때문이다.
또, 주형(105)의 관통공(105a) 내에 유입한 스테인리스 용강(3)은, 관통공(105a)을 유통하는 과정에서 도시하지 않는 1차 냉각 기구에 의해 냉각되고, 관통공(105a)의 내벽면측을 응고시켜 응고셀(3ba)을 형성한다. 형성된 응고셀(3ba)은 관통공(105a) 내의 상방에서 새롭게 형성되는 응고셀(3ba)에 의해 하부를 향해 주형(105)의 밖에 밀려 나온다. 또한, 관통공(105a)의 내벽면에는, 침지 노즐(101d)의 선단(101f)측으로부터 몰드 파우더가 공급된다. 몰드 파우더는, 스테인리스 용강(3)의 표면에서 슬러그 용해화하는, 관통공(105a) 내에서의 스테인리스 용강(3)의 표면의 산화를 방지하는, 주형(105)과 응고셀(3ba)의 사이를 윤활하는, 관통공(105a) 내에서의 스테인리스 용강(3)의 표면을 보온하는 등의 역할을 한다.
밀려 나온 응고셀(3ba)과 그 내부의 미응고 스테인리스 용강(3)에 의해 주물편(3b)이 형성되고, 주물편(3b)은 롤(106)에 의해 양측으로부터 끼워져 하부를 향해 더 인출된다. 인출된 주물편(3b)은, 롤(106) 끼리의 사이를 통해 보내지는 과정에서, 도시하지 않는 2차 냉각 기구에 의해 살수 냉각되고, 내부의 스테인리스 용강(3)을 완전히 응고시킨다. 이에 의해, 주물편(3b)이 롤(106)에 의해 주형(105)으로부터 인출되면서, 새로운 주물편(3b)이 주형(105) 내에서 형성됨으로써 주형(105)으로부터 롤(106)의 연재 방향의 전체에 걸쳐 연속하는 주물편(3b)이 형성된다. 더욱이, 롤(106)의 단부로부터는, 롤(106)의 외측에 주물편(3b)이 보내지고, 보내진 주물편(3b)이 절단되는 것에 의해, 슬러브 형상의 스테인리스강편(3c)이 형성된다.
그리고, 주물편(3b)이 주조되는 주조 속도는, 스토퍼(104)에 의한 침지 노즐(101d)의 입구(101e)의 개방 면적을 조절하는 것에 의해 제어된다. 더욱이, 입구(101e)로부터의 스테인리스 용강(3)의 유출량과 동등해지도록, 레이들(1)로부터의 롱 노즐(2)을 통한 스테인리스 용강(3)의 유입량이 조절된다. 이것에 의해, 턴디시(101)의 내부(101a)에 있어서의 스테인리스 용강(3)의 표면(3a)은 스테인리스 용강(3)의 깊이가 소정 깊이(D)의 부근을 유지하는 상태로, 연직 방향으로 거의 일정한 위치를 유지하도록 제어된다. 이때, 롱 노즐(2)은 선단의 주출구(2a)를 스테인리스 용강(3)에 침지시키고 있다. 그리고, 위에서 설명한 바와 같이, 롱 노즐(2)의 주출구(2a)를 턴디시(101)의 내부(101a)의 스테인리스 용강(3)에 침지시키면서, 내부(101a)의 스테인리스 용강(3)의 표면(3a)의 연직 방향의 위치를 거의 일정하게 유지한 주조 상태를 정상 상태라고 부른다.
따라서, 정상 상태에서 주조를 하고 있는 동안, 롱 노즐(2)로부터 유입하는 스테인리스 용강(3)에 의한 표면(3a)의 비팅이 생기지 않기 때문에, 질소 가스(4)는, 스테인리스 용강(3)에 말려 들어가는 일 없이 스테인리스 용강(3)의 온화한 표면(3a)과 접촉한 상태를 유지한다. 이에 의해, 스테인리스 용강(3)에의 용해성을 가지는 질소 가스(4)여도, 정상 상태로 스테인리스 용강(3)에의 용해가 낮게 억제된다.
또, 레이들(1) 내의 스테인리스 용강(3)이 없어지면, 턴디시(101)의 내부(101a)에 있어서의 스테인리스 용강(3)의 표면(3a)은, 롱 노즐(2)의 주출구(2a)보다 하강하지만, 흐르는 스테인리스 용강(3)에 의한 비팅 등의 혼란이 발생하지 않고 질소 가스(4)와 접촉하고 있다. 따라서, 턴디시(101)의 스테인리스 용강(3)이 없어지는 주조 종료까지, 질소 가스(4)의 스테인리스 용강(3)에의 용해에 의한 혼입이 낮게 억제된다.
또, 롱 노즐(2)의 주출구(2a)가 턴디시(101)의 내부(101a) 내의 스테인리스 용강(3)에 침지하기 전에도, 주출구(2a)와 턴디시(101)의 본체(101b)의 저부 및 내부(101a)의 스테인리스 용강(3)의 표면(3a)의 거리가 짧은 것, 및 스테인리스 용강(3)에 의한 표면(3a)의 비팅이 주출구(2a)의 침지까지의 단시간에 한정되는 것에 의해, 스테인리스 용강(3)에의 공기나 질소 가스(4)의 말려들어 가는 것에 의한 혼입이 저감하고 있다.
그리고, 롱 노즐(2)의 주출구(2a)가 턴디시(101)의 내부(101a) 내의 스테인리스 용강(3)에 침지할 때까지의 단시간에 스테인리스 용강(3)에 혼입한 약간의 공기나 질소 가스(4)에 의한 영향이 생기는 주조 초기의 스테인리스강편(3c)을 제외하고, 주조의 개시부터 종료까지의 주조 시간의 대부분을 차지하는 그 외의 시기에 주조된 스테인리스강편(3c)은 상기의 혼입한 공기 및 질소 가스(4)의 영향을 받지 않게 되고, 더욱이, 새로운 질소 가스(4)의 혼입이 낮게 억제된다. 때문에, 상기의 주조 시간의 대부분을 차지하는 스테인리스강편(3c)에서는, 2차 정련 후의 상태로부터의 질소 함유량의 증가가 억제됨과 함께, 소량이지만 혼입하는 질소 가스(4)가 스테인리스 용강(3)에 용해하는 것에 의해 기포에 의한 표면 결함의 발생이 크게 억제된다.
따라서, 주조의 정상 상태 시에 있어서, 질소 가스(4)를 씰 가스로서 이용하는 것에 의해, 주조 후의 스테인리스강편(3c)에 있어서의 기포의 발생을 억제할 수가 있고, 더욱이 턴디시(101) 내의 스테인리스 용강(3)에 주출구(2a)를 침지시킨 롱 노즐(2)을 개입한 스테인리스 용강(3)의 주입에 의해, 2차 정련 후의 상태로부터의 질소 함유량의 증가를 억제할 수 있다.
실시형태 2.
본 발명의 실시형태 2에 따른 연속 주조 방법은, 실시형태 1에 따른 연속 주조 방법에 있어서, 주조 시에 턴디시(101) 내의 스테인리스 용강(3)의 표면(3a) 상에 TD파우더(5)를 살포하여 피복하도록 한 것이다.
또한, 실시형태 2에 따른 연속 주조 방법에서는, 실시형태 1과 마찬가지로 연속 주조 장치(100)를 사용하기 때문에, 연속 주조 장치(100)의 구성의 설명을 생략 한다.
도 2를 참조하여, 실시형태 2에 있어서의 연속 주조 장치(100)의 동작을 설명한다.
연속 주조 장치(100)에 있어서, 레이들(1)이 세팅되고, 레이들(1)에 롱 노즐(2)이 장착된 턴디시(101)에서는, 실시형태 1과 마찬가지로, 스토퍼(104)에 의해 침지 노즐(101d)의 입구(101e)를 폐쇄한 상태로, 레이들(1)로부터 턴디시(101)의 내부(101a)에 롱 노즐(2)을 통해서 스테인리스 용강(3)이 주입된다. 또, 턴디시(101)의 내부(101a)에 가스 공급 노즐(102) 등으로부터 질소 가스(4)가 공급되어 질소 가스(4)로 채워진다.
그리고, 턴디시(101)의 내부(101a)에 있어서, 유입하는 스테인리스 용강(3)에 의해 상승하는 스테인리스 용강(3)의 표면(3a)이 롱 노즐(2)의 주출구(2a)의 부근이 되면, 주출구(2a)로부터 흘러 내리는 스테인리스 용강(3)에 의한 표면(3a)의 비팅이 작아지기 때문에, 파우더 노즐(103)로부터 내부(101a)의 스테인리스 용강(3)의 표면(3a)을 향해 TD파우더(5)가 살포된다. TD파우더(5)는, 스테인리스 용강(3)의 표면(3a) 상의 전체를 가리도록 살포된다. 이에 의해, 스테인리스 용강(3)의 표면(3a) 상에 층 형상으로 퇴적한 TD파우더(5)가, 스테인리스 용강(3)의 표면(3a)과 질소 가스(4)와의 접촉을 차단한다.
더욱이 스테인리스 용강(3)이 주입되는 턴디시(101)의 내부(101a)에 있어서, 스테인리스 용강(3)의 표면(3a)이 상승하고, 그 깊이가 소정의 깊이(D)가 되면, 스토퍼(104)가 상승되고, 그것에 의해 내부(101a)의 스테인리스 용강(3)이 주형(105) 내로 유입하여 주조가 개시된다.
그리고, 주조 중, 턴디시(101)에서는, 롱 노즐(2)의 주출구(2a)를 턴디시(101)의 내부(101a)의 스테인리스 용강(3)에 침지시키면서, 내부(101a)의 스테인리스 용강(3)이 소정 깊이(D)의 부근의 깊이를 유지하고, 표면(3a)이 거의 일정한 위치가 되도록, 침지 노즐(101d)로부터의 스테인리스 용강(3)의 유출량 및 롱 노즐(2)을 통한 스테인리스 용강(3)의 유입량이 조절된다.
따라서, TD파우더(5)로 덮인 스테인리스 용강(3)의 표면(3a)에서는, 주입되는 스테인리스 용강(3)에 의해 퇴적하고 있는 TD파우더(5)가 흐트러지는 것이 억제되고, 따라서, 표면(3a)이 질소 가스(4)에 노출하여 접촉하는 것이 방지된다. 따라서, 정상 상태에서 주조를 하고 있는 동안, TD파우더(5)는, 스테인리스 용강(3)의 표면(3a)와 질소 가스(4)의 사이를 계속 차단한다.
또, 레이들(1) 내의 스테인리스 용강(3)이 없어지면, 턴디시(101)의 내부(101a)에서의 스테인리스 용강(3)의 표면(3a)이 하강하고, 롱 노즐(2)의 주출구(2a)보다 하부가 된다. 이때, 스테인리스 용강(3)의 표면(3a) 상의 TD파우더(5)가 롱 노즐(2)이 관통하여 구멍으로 되어 있던 부위를 메꾸어 표면(3a) 상의 전체를 덮는다. 따라서, 턴디시(101) 내로부터 스테인리스 용강(3)이 없어지는 주조의 종료까지, TD파우더(5)는 스테인리스 용강(3)의 표면(3a)과 질소 가스(4)와의 접촉을 계속 차단한다.
따라서, 턴디시(101)에서는, TD파우더(5)의 살포 후의 주조의 정상 상태 및 그 후의 주조 종료까지의 사이, 내부(101a)의 스테인리스 용강(3)이 TD파우더(5)로 덮이고, 더욱이 레이들(1) 내의 스테인리스 용강(3)은, 내부(101a)의 스테인리스 용강(3)에 주출구(2a)를 침지시킨 롱 노즐(2)을 통해서, 내부(101a)의 스테인리스 용강(3) 내로 주입된다. 이것에 의해, 스테인리스 용강(3)은 질소 가스(4)와 접촉하지 않고, 질소 가스(4)의 스테인리스 용강(3)에의 혼입이 거의 발생하지 않는다.
그리고, TD파우더(5)를 살포하기 전의 단시간에 스테인리스 용강(3) 내에 혼입한 약간의 공기나 질소 가스(4)에 의한 영향이 생기는 주조 초기에 주조되는 스테인리스강편(3c)을 제외하고, 주조의 개시부터 종료까지의 주조 시간의 대부분을 차지하는 그 외의 시기에 주조된 스테인리스강편(3c)은 TD파우더(5)의 살포 전에 혼입한 공기 및 질소 가스(4)의 영향을 받지 않게 되고, 더욱이, 새로운 질소 가스(4)의 혼입이 거의 없다. 때문에, 상기의 주조 시간의 대부분에서 주조되는 스테인리스강편(3c)에서는, 2차 정련 후의 상태로부터 질소 함유량이 거의 증가하지 않고, 혼입하는 질소 가스(4) 등의 기체의 기포화에 의한 표면 결함의 발생이 크게 억제된다.
또, 본 발명의 실시형태 2에 따른 연속 주조 방법에 관한 기타 구성 및 동작은, 실시형태 1과 같기 때문에, 설명을 생략한다.
(실시예)
이하, 실시형태 1 및 2에 따른 연속 주조 방법을 이용하여 스테인리스강편을 주조한 실시예를 설명한다.
SUS430, 페라이트 단상계 스테인리스강(화학 성분:19Cr-0.5Cu-Nb-LCN) 및 SUS316L의 스테인리스강에 대해 실시형태 1 및 2의 연속 주조 방법을 이용하여 스테인리스강편인 슬러브를 주조한 실시예 1 ~ 4와, SUS430의 스테인리스강에 대해 주입 노즐로서 쇼트 노즐을 사용하고, 씰 가스로서 아르곤 가스 또는 질소 가스를 이용하여 슬러브를 주조한 비교예 1 ~ 2에 대해 특성을 평가했다. 또, 이하의 검출 결과는, 실시예에서는, 주조의 초기를 제외한 정상 상태에서 주조된 슬러브로부터 샘플링한 것이며, 비교예에서는 주조 개시부터의 실시예의 샘플링 시기와 동시기에 주조된 슬러브로부터 샘플링한 것이다.
실시예 및 비교예의 각각에 대해, 강종(鋼種), 씰 가스의 종류·공급 유량, 주입 노즐의 종류, TD파우더의 사용의 유무를 표 1에 나타낸다. 또, 표 1에 있어서의 쇼트 노즐이란, 도 1에 있어서, 롱 노즐(2)로 바꾸어 레이들(1)에 장착되었을 때, 그 하부측 선단이 턴디시(101)의 상부덮개(101c)의 하면과 거의 같은 높이가 되는 길이가 짧은 구성의 것이다.
Figure pct00001
실시예 1은, 실시형태 1의 연속 주조 방법을 이용해 SUS430의 스테인리스강 슬러브를 주조한 예이다.
실시예 2는, 실시형태 2의 연속 주조 방법을 이용해 SUS430의 스테인리스강 슬러브를 주조한 예이다.
실시예 3은, 실시형태 2의 연속 주조 방법을 이용해 저질소 강종인 페라이트 단상계 스테인리스강(화학 성분:19Cr-0.5Cu-Nb-LCN)의 스테인리스강 슬러브를 주조한 예이다.
실시예 4는, 실시형태 2의 연속 주조 방법을 이용해 저질소 강종인 SUS316L(오스테나이트계 저질소 강종)의 스테인리스강 슬러브를 주조한 예이다.
비교예 1은, 실시형태 1의 연속 주조 방법에 있어서 롱 노즐(2) 대신에 쇼트 노즐을 사용하고, 씰 가스로서 질소 가스 대신에 아르곤(Ar) 가스를 사용하여 SUS430의 스테인리스강 슬러브를 주조한 예이다.
비교예 2는, 실시형태 1의 연속 주조 방법에 있어서 롱 노즐(2) 대신에 쇼트 노즐을 사용하여 SUS430의 스테인리스강 슬러브를 주조한 예이다.
더욱이, 실시예 1 ~ 4및 비교예 1 ~ 2에서 주조한 슬러브에 있어서의 질소(N)의 픽업량인 N픽업의 결과를 표 2에 나타낸다. 또, 표 2에서는, 실시예 1 ~ 4 및 비교예 1 ~ 2의 각각에 대해 주조된 복수의 슬러브에서 측정한 N픽업을 정리하였다. 또, N픽업은, 2차 정련 공정에서의 최종적인 성분 조정 후의 레이들(1) 내의 스테인리스 용강(3)의 질소 성분에 대해서, 주조 후의 슬러브에게 함유되는 질소 성분의 증가량이며, 주조 공정에 있어서 스테인리스 용강이 새롭게 포함한 질소 성분의 질량이다. N픽업은 질량 농도로 나타내고, 단위는 ppm이다.
Figure pct00002
비교예 1에서는, 씰 가스로서 질소 가스를 이용하지 않고 아르곤 가스를 사용하고 있기 때문에, N픽업이 0 ~ 20ppm의 사이가 되고, 그 평균이 8ppm으로 낮아지고 있다.
비교예 2에서는, 쇼트 노즐을 사용하기 때문에, 턴디시(101) 내에 주입한 스테인리스 용강이, 턴디시(101) 내의 스테인리스 용강의 표면을 비팅하여 주위의 많은 질소 가스를 말려들게 하므로, N픽업이 50ppm가 되고, 그 평균도 50ppm으로 높아지고 있다.
실시예 1에서는, 주조의 정상 상태 시에 있어서, 롱 노즐(2)의 주출구(2a)를 스테인리스강에 침지시키는 것에 의해, 주입된 스테인리스 용강에 의한 턴디시(101) 내의 스테인리스 용강의 표면의 비팅이 방지되고, 질소 가스는 스테인리스 용강의 온화한 표면과 접촉하고 있을 뿐이기 때문에, N픽업이 비교예 1과 동일한 정도로 낮아지고 있다. 구체적으로는, 실시예 1에서의 N픽업은, 0~20ppm의 사이가 되고, 그 평균이 10ppm로 낮아지고 있다.
실시예 2 ~ 4에서는, 주조의 정상 상태 시에 있어서, 롱 노즐(2)을 사용한 이외에 TD파우더에 의해 턴디시(101) 내의 스테인리스 용강과 질소 가스를 차단하기 때문에, N픽업이 비교예 1 및 실시예 1보다 훨씬 작아지고 있다. 구체적으로는, 실시예 2에서의 N픽업은 -10 ~ 0ppm의 사이가 되고, 그 평균이 -4ppm로 매우 낮아지고 있다. 즉, 슬러브에 있어서의 질소 함유량이, 2차 정련 후의 스테인리스 용강보다 적어지고, 이것은, TD파우더가 스테인리스 용강 중의 질소 성분을 흡수하고 있다고 생각된다. 또, 실시예 3에서의 N픽업도 -10 ~ 0ppm의 사이가 되고, 그 평균이 -9ppm로 매우 낮아지고 있다. 더욱이 실시예 4에서의 N픽업도 -10 ~ 0ppm의 사이가 되고, 그 평균이 -7ppm로 매우 낮아지고 있다.
또, 불활성 가스인 아르곤 가스는, 스테인리스 용강에 포함되면 대부분이 스테인리스 용강에 용해하지 않고 기포로서 주조 후의 슬러브 내에 잔류하지만, 스테인리스 용강에의 용해성을 가지는 질소는, 대부분이 스테인리스 용강에 용해하기 때문에, 씰 가스에 질소 가스를 사용한 예에서는, 슬러브로부터는 기포로서 거의 검출되지 않았다. 즉, 실시예 1 ~ 4 및 비교예 2에서는, 슬러브에 기포가 거의 확인되지 않고, 한편, 비교예 1에서는, 슬러브에게 표면 결함이 되는 기포가 많이 확인되었다.
예를 들면, 도 3에는, 실시예 3과 비교예 3(강종:페라이트 단상계 스테인리스강(화학 성분:19Cr-0.5Cu-Nb-LCN), 씰 가스:Ar, 씰 가스 공급 유량:60 Nm3/h, 주입 노즐:쇼트 노즐)의 사이에서 슬러브에 생기는 Φ0.4mm 이상의 기포 개수를 비교한 도가 표시되어 있다. 도 3에서는, 슬러브 표면의 폭방향의 중앙으로부터 단부까지의 절반의 영역에서, 중앙으로부터 단부를 향해 등분한 6개의 측점에서의 10000mm2(100mm×100mm의 영역) 당의 기포 개수가 도시되어 있다.
도 3에 나타내는 바와 같이, 실시예 3에서는, 전 영역에 걸쳐 기포 개수가 0개이고, 비교예 3에서는, 거의 전 영역에 걸쳐 기포가 확인되고, 각 측점에서 0 ~ 14개의 기포가 확인되어 있다.
또, 도 4에는, 실시예 4와 비교예 4(강종:SUS316L(오스테나이트계 저질소 강종), 씰 가스:Ar, 씰 가스 공급 유량:60 Nm3/h, 주입 노즐:쇼트 노즐)과의 사이에서 슬러브에 생기는Φ0.4mm 이상의 기포 개수를 비교한 도가 도시되어 있다. 도 4에서는, 슬러브 표면의 폭방향의 중앙으로부터 단부까지의 절반의 영역에서, 중앙으로부터 단부를 향해 등분한 5개의 측점에서의 10000mm2(100mm×100mm의 영역) 당의 기포 개수가 도시되어 있다.
도 4에 나타내는 바와 같이, 실시예 4에서는, 전 영역에 걸쳐 기포 개수가 0개이고, 비교예 4에서는, 거의 전 영역에 걸쳐 기포가 확인되며, 각 측점에서 5 ~ 35개의 기포가 확인되고 있다.
이와 관련하여, 도 5에는, 상기의 비교예 3에서 슬러브에 생기는 Φ0.4mm 이상의 기포 개수와, 비교예 3에서 쇼트 노즐 대신에 롱 노즐(2)을 사용한 경우에 있어서의 초기를 제외한 정상 상태에서 주조된 슬러브에 생기는 Φ0.4mm 이상의 기포 개수를 비교한 도가 도시되어 있다. 도 5에서는, 슬러브 표면의 폭방향의 중앙으로부터 단부까지의 절반의 영역에서, 중앙으로부터 단부를 향해 등분한 6개의 측점에서의 10000mm2(100 mm×100 mm의 영역) 당의 기포 개수가 도시되어 있다.
도 5에 나타내는 바와 같이, 롱 노즐(2)을 사용한 경우에서도, 비교예 3보다 기포 개수는 감소하고 있지만, 전 영역에 걸쳐 3 ~ 7개의 기포가 확인되어 있고, 실시예 1 ~ 4와 같은 기포 저감 효과는 확인할 수 없다.
따라서, 실시형태 1의 연속 주조 방법을 이용한 실시예 1에서는, 슬러브에 있어서의 기포 결함을 거의 0으로 억제하면서, 주조 공정에서의 N픽업을 씰 가스로 질소 가스를 사용하지 않는 비교예 1과 동일한 정도까지 낮게 억제할 수 있다. 따라서, 실시형태 1의 연속 주조 방법은, 질소 성분의 함유량이 400ppm 이하로 되는 질소 함유량이 낮은 스테인리스강의 제조에, 종래의 아르곤 가스를 씰 가스로서 사용하는 주조 방법으로 바꾸어 적용하는 것이 충분히 가능하고, 더욱이, 기포 결함을 저감하는 효과를 가지고 있다.
또, 실시형태 2의 연속 주조 방법을 이용한 실시예 2 ~ 4에서는, 슬러브에 있어서의 기포 결함을 거의 0으로 억제하면서, 주조 공정에서의 N픽업을, 씰 가스로 질소 가스를 사용하지 않는 비교예 1보다 낮게 억제하고, 거의 0으로 할 수 있다. 따라서, 실시형태 2의 연속 주조 방법은, 저질소 강종의 스테인리스강의 제조에 적용하는 것이 충분히 가능하고, 더욱이, 기포 결함을 낮게 억제하는 효과를 가지고 있다.
따라서, 주조의 정상 상태 시에 질소 가스를 씰 가스로서 사용하는 것에 의해, 주조 후의 스테인리스강편에서의 기포의 발생을 억제할 수 있다. 더욱이, 주조의 정상 상태 시에 턴디시(101) 내의 스테인리스 용강에 주출구(2a)를 침지시킨 롱 노즐(2)을 사용하여 스테인리스 용강의 주입을 하는 것에 의해, N픽업을 저감할 수 있다. 더욱이, 주조의 정상 상태 시에 턴디시(101) 내의 스테인리스 용강의 표면을 TD파우더로 덮음으로써, N픽업을 0 가까이까지 저감할 수 있다.
또, 상기 강종 이외에도 SUS409L, SUS444, SUS445J1, SUS304L 등에 대해서 본 발명을 적용하고, 실시예 1 ~ 4에 나타내는 것 같은 N픽업 저감 효과 및 기포 저감 효과를 얻을 수 있는 것을 확인했다.
또, 실시형태 1 및 2에 따른 연속 주조 방법은, 스테인리스강의 제조에 적용되고 있었지만, 다른 금속의 제조에 적용해도 좋다.
또, 실시형태 1 및 2에 따른 연속 주조 방법에 있어서의 턴디시(101)에서의 제어는 연속 주조에 적용되고 있었지만, 다른 주조 방법에 적용해도 좋다.
1 레이들
2 롱 노즐
2a 주출구
3 스테인리스 용강(용융 금속)
3c 스테인리스강편(금속편)
4 질소 가스
5 턴디시 파우더
100 연속 주조 장치
101 턴디시
105 주형.

Claims (4)

  1. 레이들 내의 용융 금속을 하방의 턴디시 내에 주입하고, 상기 턴디시 내의 상기 용융 금속을 주형에 연속 주입하여 금속편을 주조하는 연속 주조 방법에 있어서,
    씰 가스로서 질소 가스를 상기 턴디시 내의 상기 용융 금속의 주위에 공급하고,
    상기 레이들 내의 상기 용융 금속을 상기 턴디시 내에 주입하기 위한 주입 노즐의 주출구를 상기 턴디시 내의 상기 용융 금속에 침지시키면서, 상기 주입 노즐을 통해 상기 턴디시 내에 상기 용융 금속을 주입함과 함께, 상기 턴디시 내의 상기 용융 금속을 상기 주형에 주입하는 연속 주조 방법.
  2. 제 1 항에 있어서,
    상기 턴디시 내의 상기 용융 금속의 표면 상에 턴디시 파우더를 살포하여, 상기 턴디시 파우더를 상기 용융 금속과 상기 질소 가스 사이에 개재시키는 연속 주조 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 주입 노즐의 상기 주출구를, 상기 턴디시 내의 상기 용융 금속에 100 ~ 150 mm의 깊이로 관입(貫入)시키는 연속 주조 방법.
  4. 제 1 항 내지 제 3 항 중의 어느 한 항에 있어서,
    주조되는 상기 금속편은 함유 질소의 농도가 400ppm 이하의 스테인리스강인 연속 주조 방법.
KR1020167007551A 2013-08-26 2013-08-26 연속 주조 방법 KR102084729B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072721 WO2015029106A1 (ja) 2013-08-26 2013-08-26 連続鋳造方法

Publications (2)

Publication Number Publication Date
KR20160067100A true KR20160067100A (ko) 2016-06-13
KR102084729B1 KR102084729B1 (ko) 2020-03-04

Family

ID=52585727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167007551A KR102084729B1 (ko) 2013-08-26 2013-08-26 연속 주조 방법

Country Status (7)

Country Link
US (1) US9889499B2 (ko)
EP (1) EP3040138B1 (ko)
KR (1) KR102084729B1 (ko)
CN (1) CN105682826B (ko)
ES (1) ES2761258T3 (ko)
TW (1) TWI593482B (ko)
WO (1) WO2015029106A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228524B2 (ja) 2013-09-27 2017-11-08 日新製鋼株式会社 連続鋳造方法
CN110153388A (zh) * 2019-06-21 2019-08-23 苏州大学 一种减少连铸坯中气泡缺陷的方法
JP7171533B2 (ja) * 2019-10-11 2022-11-15 株式会社神戸製鋼所 タンディッシュ内溶鋼のシール方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992280A (zh) * 2009-08-10 2011-03-30 鞍钢股份有限公司 一种减少铸坯中夹杂物含量的方法
JP2012061516A (ja) * 2010-09-17 2012-03-29 Sumitomo Metal Ind Ltd 連々続鋳造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT331437B (de) * 1973-06-14 1976-08-25 Voest Ag Kontinuierliches stahlstranggiessverfahren und vorrichtung zu dessen durchfuhrung
JPS57184563A (en) 1981-05-06 1982-11-13 Kawasaki Steel Corp Powder for surface coating of molten metal in continuous casting
JPS58116959A (ja) * 1981-12-30 1983-07-12 Nippon Steel Corp 連々鋳を実施する連続鋳造における清浄鋼の製造方法
JPS58212848A (ja) * 1982-06-07 1983-12-10 Nippon Kokan Kk <Nkk> 連続鋳造用タンデイツシユ
JP2961332B2 (ja) 1991-03-12 1999-10-12 日新製鋼株式会社 Ti含有鋼の無手入れ連鋳スラブの製造法
CA2083608C (en) * 1991-03-27 1999-05-11 Shigeru Ogura System for removing non-metallic foreign matter in molten metal
JPH0560648U (ja) 1992-01-31 1993-08-10 日新製鋼株式会社 タンディッシュカバー開孔部の開閉装置
JPH0639505A (ja) 1992-07-28 1994-02-15 Sumitomo Metal Ind Ltd チタン含有ステンレス溶鋼の鋳造方法
JPH0857599A (ja) * 1994-08-26 1996-03-05 Nisshin Steel Co Ltd タンディッシュ内スラグの除去方法および装置ならびに連続鋳造装置
US5645121A (en) * 1996-01-05 1997-07-08 National Steel Corporation Method of continuous casting using sealed tundish and improved tundish seal
JP2001113347A (ja) * 1999-10-19 2001-04-24 Sumitomo Metal Ind Ltd 給湯装置および鋼の連続鋳造方法
JP2001286999A (ja) 2000-04-06 2001-10-16 Nkk Corp 鋼の連続鋳造方法
US6516870B1 (en) * 2000-05-15 2003-02-11 National Steel Corporation Tundish fluxing process
JP2002239692A (ja) 2001-02-15 2002-08-27 Nkk Corp 小断面アルミキルド鋼鋳片の連続鋳造方法
US20050133192A1 (en) * 2003-12-23 2005-06-23 Meszaros Gregory A. Tundish control
CN101041177A (zh) * 2007-03-21 2007-09-26 鞍钢股份有限公司 连铸中间包液面自动稳定精确控制装置
CN201147837Y (zh) * 2007-12-06 2008-11-12 江苏沙钢集团淮钢特钢有限公司 中间包钢液防氧化保护装置
US8221562B2 (en) * 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
CN101758176B (zh) * 2010-01-21 2012-03-21 山西太钢不锈钢股份有限公司 一种双层中间包覆盖剂
JP6323973B2 (ja) 2012-03-30 2018-05-16 日新製鋼株式会社 連続鋳造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992280A (zh) * 2009-08-10 2011-03-30 鞍钢股份有限公司 一种减少铸坯中夹杂物含量的方法
JP2012061516A (ja) * 2010-09-17 2012-03-29 Sumitomo Metal Ind Ltd 連々続鋳造方法

Also Published As

Publication number Publication date
KR102084729B1 (ko) 2020-03-04
EP3040138A1 (en) 2016-07-06
US9889499B2 (en) 2018-02-13
EP3040138A4 (en) 2017-04-19
TW201507789A (zh) 2015-03-01
EP3040138B1 (en) 2019-10-09
CN105682826A (zh) 2016-06-15
US20160207101A1 (en) 2016-07-21
CN105682826B (zh) 2017-11-24
WO2015029106A1 (ja) 2015-03-05
ES2761258T3 (es) 2020-05-19
TWI593482B (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
KR20160067842A (ko) 연속 주조 방법
KR102222442B1 (ko) 연속 주조 방법
JP6323973B2 (ja) 連続鋳造方法
JP6228524B2 (ja) 連続鋳造方法
KR20160067100A (ko) 연속 주조 방법
JP5965186B2 (ja) 連続鋳造方法
JPH06599A (ja) 冷延用アルミキルド鋼の連続鋳造方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant